Histogram-Based Feature Extraction from Individual Gray Matter Similarity-Matrix for Alzheimer's Disease Classification
Automatic computer-aided diagnosis (CAD) systems have been widely used in classification of patients who suffer from Alzheimer's disease (AD). This paper presents an automatic CAD system based on histogram feature extraction from single-subject gray matter similarity-matrix for classifying the...
Saved in:
| Published in | Journal of Alzheimer's disease Vol. 55; no. 4; p. 1571 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Netherlands
01.01.2017
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1387-2877 1875-8908 1875-8908 |
| DOI | 10.3233/JAD-160850 |
Cover
| Abstract | Automatic computer-aided diagnosis (CAD) systems have been widely used in classification of patients who suffer from Alzheimer's disease (AD). This paper presents an automatic CAD system based on histogram feature extraction from single-subject gray matter similarity-matrix for classifying the AD patients from healthy controls (HC) using structural magnetic resonance imaging (MRI) data. The proposed CAD system is composed of five stages. In the first stage, segmentation is employed to perform pre-processing on the MRI images, and segment into gray matter, white matter, and cerebrospinal fluid using the voxel-based morphometric toolbox procedure. In the second stage, gray matter MRI scans are used to construct similarity-matrices. In the third stage, a novel statistical feature-generation process is proposed, utilizing the histogram of the individual similarity-matrix to represent statistical patterns of the respective similarity-matrices of different size and order into fixed-size feature-vectors. In the fourth stage, we propose to combine MRI measures with a neuropsychological test, the Functional Assessment Questionnaire (FAQ), to improve the classification accuracy. Finally, the classification is performed using a support vector machine and evaluated with the 10-fold cross-validation strategy. We evaluated the proposed method on 99 AD and 102 HC subjects from the J-ADNI. The proposed CAD system yields an 84.07% classification accuracy using MRI measures and 97.01% for combining MRI measures with FAQ scores, respectively. The experimental results indicate that the performance of the proposed system is competitive with respect to state-of-the-art techniques reported in the literature. |
|---|---|
| AbstractList | Automatic computer-aided diagnosis (CAD) systems have been widely used in classification of patients who suffer from Alzheimer's disease (AD). This paper presents an automatic CAD system based on histogram feature extraction from single-subject gray matter similarity-matrix for classifying the AD patients from healthy controls (HC) using structural magnetic resonance imaging (MRI) data. The proposed CAD system is composed of five stages. In the first stage, segmentation is employed to perform pre-processing on the MRI images, and segment into gray matter, white matter, and cerebrospinal fluid using the voxel-based morphometric toolbox procedure. In the second stage, gray matter MRI scans are used to construct similarity-matrices. In the third stage, a novel statistical feature-generation process is proposed, utilizing the histogram of the individual similarity-matrix to represent statistical patterns of the respective similarity-matrices of different size and order into fixed-size feature-vectors. In the fourth stage, we propose to combine MRI measures with a neuropsychological test, the Functional Assessment Questionnaire (FAQ), to improve the classification accuracy. Finally, the classification is performed using a support vector machine and evaluated with the 10-fold cross-validation strategy. We evaluated the proposed method on 99 AD and 102 HC subjects from the J-ADNI. The proposed CAD system yields an 84.07% classification accuracy using MRI measures and 97.01% for combining MRI measures with FAQ scores, respectively. The experimental results indicate that the performance of the proposed system is competitive with respect to state-of-the-art techniques reported in the literature. |
| Author | Maikusa, Norihide Anbarjafari, Gholamreza Matsuda, Hiroshi Beheshti, Iman Demirel, Hasan |
| Author_xml | – sequence: 1 givenname: Iman surname: Beheshti fullname: Beheshti, Iman organization: Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan – sequence: 2 givenname: Norihide surname: Maikusa fullname: Maikusa, Norihide organization: Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan – sequence: 3 givenname: Hiroshi surname: Matsuda fullname: Matsuda, Hiroshi organization: Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan – sequence: 4 givenname: Hasan surname: Demirel fullname: Demirel, Hasan organization: Biomedical Image Processing Group, Department of Electrical & Electronic Engineering, Eastern Mediterranean University, Famagusta, Mersin 10, Turkey – sequence: 5 givenname: Gholamreza surname: Anbarjafari fullname: Anbarjafari, Gholamreza organization: Department of Electrical and Electronic Engineering, Hasan Kalyoncu University, Gaziantep, Turkey |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27886012$$D View this record in MEDLINE/PubMed |
| BookMark | eNo9kMlOwzAQQC1URBe48AHINw7I4KWNnWPpjoo4AOdoGjvgKktlO7Th60lV4DSj0dOT5vVRp6xKg9A1o_eCC_HwNJ4SFlE1omeox5QcERVT1Wl3oSThSsou6nu_pZQKGssL1OVSqYgy3kP7pfWh-nBQkEfwRuO5gVA7g2eH4CANtipx5qoCr0ptv6yuIccLBw1-hhCMw6-2sDk4GxrSXpw94KxyeJx_fxpbGHfr8dR605rxJAfvbWZTOEov0XkGuTdXv3OA3uezt8mSrF8Wq8l4TdKhVIFstDRSaQ3UaJHKmA0ZlzqKs1gZwaiOlDJp-xVIxVikGQOjNYs51yYDHXMxQHcnb13uoNlDnic7ZwtwTcJocsyXbEEnp3wtfXOid_WmMPof_eslfgBuZW7- |
| CitedBy_id | crossref_primary_10_1016_j_jneumeth_2018_08_017 crossref_primary_10_3233_JAD_161080 crossref_primary_10_1177_1550147719831186 crossref_primary_10_3390_s22197661 crossref_primary_10_3390_diagnostics13152489 crossref_primary_10_1007_s41870_024_01833_x crossref_primary_10_1016_j_bspc_2024_106118 crossref_primary_10_1177_1550147719826048 crossref_primary_10_3233_ADR_230118 crossref_primary_10_1016_j_irbm_2020_06_006 crossref_primary_10_1109_ACCESS_2019_2932786 crossref_primary_10_3233_JAD_190704 crossref_primary_10_1016_j_neubiorev_2020_04_026 crossref_primary_10_1007_s00521_021_05799_w crossref_primary_10_1080_03772063_2023_2205857 crossref_primary_10_2174_1567205017666200303105016 crossref_primary_10_1007_s11548_019_02106_w crossref_primary_10_1007_s11760_023_02878_4 crossref_primary_10_1007_s11760_023_02942_z crossref_primary_10_1007_s11042_018_5647_8 crossref_primary_10_1016_j_ajem_2017_03_073 crossref_primary_10_1016_j_bspc_2018_02_019 crossref_primary_10_1371_journal_pone_0262722 crossref_primary_10_3389_frobt_2018_00120 |
| ContentType | Journal Article |
| CorporateAuthor | Japanese-Alzheimer’s Disease Neuroimaging Initiative |
| CorporateAuthor_xml | – name: Japanese-Alzheimer’s Disease Neuroimaging Initiative |
| DBID | CGR CUY CVF ECM EIF NPM ADTOC UNPAY |
| DOI | 10.3233/JAD-160850 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
| DatabaseTitleList | MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 1875-8908 |
| ExternalDocumentID | oai:openaccess.hku.edu.tr:20.500.11782/757 27886012 |
| Genre | Journal Article |
| GroupedDBID | --- 0R~ 0VX 29J 36B 4.4 53G 5GY AAFNC AAQXI AAWTL ABDBF ABIVO ABJNI ABUBZ ABUJY ACGFS ACPQW ACPRK ACUHS ADZMO AELRD AENEX AFRAH AFRHK AGIAB AHDMH ALMA_UNASSIGNED_HOLDINGS CAG CGR COF CUY CVF DU5 EAD EAP EBS ECM EIF EJD EMB EMK EMOBN ESX F5P HZ~ IL9 IOS J8X MET MIO MV1 NGNOM NPM O9- P2P Q1R S70 SAUOL SFC SV3 TUS VUG AAEJI AAFWJ AAPII ABJZC ACARO ADEBD ADTOC AEJQA AFYTF AIRSE AJGYC AJNRN ALIRC APPIZ ARTOV H13 SCNPE UNPAY |
| ID | FETCH-LOGICAL-c478t-bd7e78dda0ed3c7914127d69f98e310d688ec030a78116d11aedd1922defad923 |
| IEDL.DBID | UNPAY |
| ISSN | 1387-2877 1875-8908 |
| IngestDate | Sun Oct 26 04:16:53 EDT 2025 Wed Feb 19 02:41:53 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | histogram individual gray matter similarity-matrix Alzheimer’s disease Fisher criterion |
| Language | English |
| License | cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c478t-bd7e78dda0ed3c7914127d69f98e310d688ec030a78116d11aedd1922defad923 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://hdl.handle.net/20.500.11782/757 |
| PMID | 27886012 |
| ParticipantIDs | unpaywall_primary_10_3233_jad_160850 pubmed_primary_27886012 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-01-01 |
| PublicationDateYYYYMMDD | 2017-01-01 |
| PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Journal of Alzheimer's disease |
| PublicationTitleAlternate | J Alzheimers Dis |
| PublicationYear | 2017 |
| SSID | ssj0003097 |
| Score | 2.378337 |
| Snippet | Automatic computer-aided diagnosis (CAD) systems have been widely used in classification of patients who suffer from Alzheimer's disease (AD). This paper... |
| SourceID | unpaywall pubmed |
| SourceType | Open Access Repository Index Database |
| StartPage | 1571 |
| SubjectTerms | Aged Aged, 80 and over Alzheimer Disease - classification Alzheimer Disease - diagnosis Diagnosis, Computer-Assisted Female Humans Magnetic Resonance Imaging Male Middle Aged Neurologic Examination ROC Curve White Matter - diagnostic imaging White Matter - pathology |
| Title | Histogram-Based Feature Extraction from Individual Gray Matter Similarity-Matrix for Alzheimer's Disease Classification |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/27886012 https://hdl.handle.net/20.500.11782/757 |
| UnpaywallVersion | submittedVersion |
| Volume | 55 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgHODCIval8qFXlzpOYudY1oKUCgkqwaly4qkotKEKqWh74jf4Pb6EcVKqCi49OwdLb-x5L555Q0hFYtjESti6sEgzN4g9FoEHTIAJHGm46EjbOxw2_UbLvX30HqcmSe___QWcWtWr5S-LyjmVnlwmK76HpLtEVlrNu_pTLqfwmCDvz8eoIPtmKqipwohUOEKcvmjDuG-d2eaSzOowGejxh-715rLJ1QZp_O6jKCJ5rQ6zqBpP_lg0LrDRTbI-ZZS0XoTAFlmCZJuMc_sPW3nFzjBPGWqp3jAFejnK0qKXgdrOEnoza8ii16ke0zD326T33X4XNS9SdBZaE_8RRXJL673JM3T7kH5_fr3Ti-Jth-ZzNW3FUQ7yDmldXT6cN9h0ygKLXakyFhkJUhmja2BELAPucgTJDzqBAuR-xlcKYrwKtO1J9Q3nGoxBXugY6GgEVOySUvKWwD6hHG9WD7hBEYfCK-JRpAKDCi1WUoEW8QHZKwBoDworjbaDChwloXNAKjNEZouoTyyCbUSwXSB4uNhnR2TNsdk3_1NyTEpZOoQT5A5ZVCbLzbuwPI2eH-R_wz8 |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTwIxEG0UDnrxI37hV3rgWqBbdts9ooJoAjFREjyR7naIKCBZlgic_Bv-PX-J010kRC-cu4cmb9p5bzvzhpC8xLAJlbB1YYFmZT90WQAuMAHGd6Thoitt73Cj6dVb5fu2216YJI3_-ws4pYJbSl4WlVOUrtwkWc9F0p0h2VbzofKcyCk8Jsj7kzEqyL6Z8ksqNSIVjhDFV20Y96wz20qS2ZoMR3r2ofv9lWxS2yX1332kRSRvhUkcFML5H4vGNTa6R3YWjJJW0hDYJxswPCCzxP7DVl6xK8xThlqqN4mAVqdxlPYyUNtZQu-WDVn0NtIz2kj8Nuljb9BDzYsUnTWsif-UIrmllf78BXoDiL4_v8b0Jn3boclcTVtxlIB8SFq16tN1nS2mLLCwLFXMAiNBKmN0CYwIpc_LHEHy_K6vALmf8ZSCEK8CbXtSPcO5BmOQFzoGuhoBFUckM3wfwgmhHG9WF7hBEYfCK-BBoHyDCi1UUoEWYY4cpwB0RqmVRsdBBY6S0MmR_BKR5SLqE4tgBxHspAiervfZGdl2bPZN_pSck0wcTeACuUMcXC7i5gdWOsIz |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Histogram-Based+Feature+Extraction+from+Individual+Gray+Matter+Similarity-Matrix+for+Alzheimer%E2%80%99s+Disease+Classification&rft.jtitle=Journal+of+Alzheimer%27s+disease&rft.date=2017-01-01&rft.issn=1387-2877&rft_id=info:doi/10.3233%2Fjad-160850&rft.externalDocID=oai%3Aopenaccess.hku.edu.tr%3A20.500.11782%2F757 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1387-2877&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1387-2877&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1387-2877&client=summon |