Histogram-Based Feature Extraction from Individual Gray Matter Similarity-Matrix for Alzheimer's Disease Classification

Automatic computer-aided diagnosis (CAD) systems have been widely used in classification of patients who suffer from Alzheimer's disease (AD). This paper presents an automatic CAD system based on histogram feature extraction from single-subject gray matter similarity-matrix for classifying the...

Full description

Saved in:
Bibliographic Details
Published inJournal of Alzheimer's disease Vol. 55; no. 4; p. 1571
Main Authors Beheshti, Iman, Maikusa, Norihide, Matsuda, Hiroshi, Demirel, Hasan, Anbarjafari, Gholamreza
Format Journal Article
LanguageEnglish
Published Netherlands 01.01.2017
Subjects
Online AccessGet full text
ISSN1387-2877
1875-8908
1875-8908
DOI10.3233/JAD-160850

Cover

Abstract Automatic computer-aided diagnosis (CAD) systems have been widely used in classification of patients who suffer from Alzheimer's disease (AD). This paper presents an automatic CAD system based on histogram feature extraction from single-subject gray matter similarity-matrix for classifying the AD patients from healthy controls (HC) using structural magnetic resonance imaging (MRI) data. The proposed CAD system is composed of five stages. In the first stage, segmentation is employed to perform pre-processing on the MRI images, and segment into gray matter, white matter, and cerebrospinal fluid using the voxel-based morphometric toolbox procedure. In the second stage, gray matter MRI scans are used to construct similarity-matrices. In the third stage, a novel statistical feature-generation process is proposed, utilizing the histogram of the individual similarity-matrix to represent statistical patterns of the respective similarity-matrices of different size and order into fixed-size feature-vectors. In the fourth stage, we propose to combine MRI measures with a neuropsychological test, the Functional Assessment Questionnaire (FAQ), to improve the classification accuracy. Finally, the classification is performed using a support vector machine and evaluated with the 10-fold cross-validation strategy. We evaluated the proposed method on 99 AD and 102 HC subjects from the J-ADNI. The proposed CAD system yields an 84.07% classification accuracy using MRI measures and 97.01% for combining MRI measures with FAQ scores, respectively. The experimental results indicate that the performance of the proposed system is competitive with respect to state-of-the-art techniques reported in the literature.
AbstractList Automatic computer-aided diagnosis (CAD) systems have been widely used in classification of patients who suffer from Alzheimer's disease (AD). This paper presents an automatic CAD system based on histogram feature extraction from single-subject gray matter similarity-matrix for classifying the AD patients from healthy controls (HC) using structural magnetic resonance imaging (MRI) data. The proposed CAD system is composed of five stages. In the first stage, segmentation is employed to perform pre-processing on the MRI images, and segment into gray matter, white matter, and cerebrospinal fluid using the voxel-based morphometric toolbox procedure. In the second stage, gray matter MRI scans are used to construct similarity-matrices. In the third stage, a novel statistical feature-generation process is proposed, utilizing the histogram of the individual similarity-matrix to represent statistical patterns of the respective similarity-matrices of different size and order into fixed-size feature-vectors. In the fourth stage, we propose to combine MRI measures with a neuropsychological test, the Functional Assessment Questionnaire (FAQ), to improve the classification accuracy. Finally, the classification is performed using a support vector machine and evaluated with the 10-fold cross-validation strategy. We evaluated the proposed method on 99 AD and 102 HC subjects from the J-ADNI. The proposed CAD system yields an 84.07% classification accuracy using MRI measures and 97.01% for combining MRI measures with FAQ scores, respectively. The experimental results indicate that the performance of the proposed system is competitive with respect to state-of-the-art techniques reported in the literature.
Author Maikusa, Norihide
Anbarjafari, Gholamreza
Matsuda, Hiroshi
Beheshti, Iman
Demirel, Hasan
Author_xml – sequence: 1
  givenname: Iman
  surname: Beheshti
  fullname: Beheshti, Iman
  organization: Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
– sequence: 2
  givenname: Norihide
  surname: Maikusa
  fullname: Maikusa, Norihide
  organization: Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
– sequence: 3
  givenname: Hiroshi
  surname: Matsuda
  fullname: Matsuda, Hiroshi
  organization: Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
– sequence: 4
  givenname: Hasan
  surname: Demirel
  fullname: Demirel, Hasan
  organization: Biomedical Image Processing Group, Department of Electrical & Electronic Engineering, Eastern Mediterranean University, Famagusta, Mersin 10, Turkey
– sequence: 5
  givenname: Gholamreza
  surname: Anbarjafari
  fullname: Anbarjafari, Gholamreza
  organization: Department of Electrical and Electronic Engineering, Hasan Kalyoncu University, Gaziantep, Turkey
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27886012$$D View this record in MEDLINE/PubMed
BookMark eNo9kMlOwzAQQC1URBe48AHINw7I4KWNnWPpjoo4AOdoGjvgKktlO7Th60lV4DSj0dOT5vVRp6xKg9A1o_eCC_HwNJ4SFlE1omeox5QcERVT1Wl3oSThSsou6nu_pZQKGssL1OVSqYgy3kP7pfWh-nBQkEfwRuO5gVA7g2eH4CANtipx5qoCr0ptv6yuIccLBw1-hhCMw6-2sDk4GxrSXpw94KxyeJx_fxpbGHfr8dR605rxJAfvbWZTOEov0XkGuTdXv3OA3uezt8mSrF8Wq8l4TdKhVIFstDRSaQ3UaJHKmA0ZlzqKs1gZwaiOlDJp-xVIxVikGQOjNYs51yYDHXMxQHcnb13uoNlDnic7ZwtwTcJocsyXbEEnp3wtfXOid_WmMPof_eslfgBuZW7-
CitedBy_id crossref_primary_10_1016_j_jneumeth_2018_08_017
crossref_primary_10_3233_JAD_161080
crossref_primary_10_1177_1550147719831186
crossref_primary_10_3390_s22197661
crossref_primary_10_3390_diagnostics13152489
crossref_primary_10_1007_s41870_024_01833_x
crossref_primary_10_1016_j_bspc_2024_106118
crossref_primary_10_1177_1550147719826048
crossref_primary_10_3233_ADR_230118
crossref_primary_10_1016_j_irbm_2020_06_006
crossref_primary_10_1109_ACCESS_2019_2932786
crossref_primary_10_3233_JAD_190704
crossref_primary_10_1016_j_neubiorev_2020_04_026
crossref_primary_10_1007_s00521_021_05799_w
crossref_primary_10_1080_03772063_2023_2205857
crossref_primary_10_2174_1567205017666200303105016
crossref_primary_10_1007_s11548_019_02106_w
crossref_primary_10_1007_s11760_023_02878_4
crossref_primary_10_1007_s11760_023_02942_z
crossref_primary_10_1007_s11042_018_5647_8
crossref_primary_10_1016_j_ajem_2017_03_073
crossref_primary_10_1016_j_bspc_2018_02_019
crossref_primary_10_1371_journal_pone_0262722
crossref_primary_10_3389_frobt_2018_00120
ContentType Journal Article
CorporateAuthor Japanese-Alzheimer’s Disease Neuroimaging Initiative
CorporateAuthor_xml – name: Japanese-Alzheimer’s Disease Neuroimaging Initiative
DBID CGR
CUY
CVF
ECM
EIF
NPM
ADTOC
UNPAY
DOI 10.3233/JAD-160850
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 1875-8908
ExternalDocumentID oai:openaccess.hku.edu.tr:20.500.11782/757
27886012
Genre Journal Article
GroupedDBID ---
0R~
0VX
29J
36B
4.4
53G
5GY
AAFNC
AAQXI
AAWTL
ABDBF
ABIVO
ABJNI
ABUBZ
ABUJY
ACGFS
ACPQW
ACPRK
ACUHS
ADZMO
AELRD
AENEX
AFRAH
AFRHK
AGIAB
AHDMH
ALMA_UNASSIGNED_HOLDINGS
CAG
CGR
COF
CUY
CVF
DU5
EAD
EAP
EBS
ECM
EIF
EJD
EMB
EMK
EMOBN
ESX
F5P
HZ~
IL9
IOS
J8X
MET
MIO
MV1
NGNOM
NPM
O9-
P2P
Q1R
S70
SAUOL
SFC
SV3
TUS
VUG
AAEJI
AAFWJ
AAPII
ABJZC
ACARO
ADEBD
ADTOC
AEJQA
AFYTF
AIRSE
AJGYC
AJNRN
ALIRC
APPIZ
ARTOV
H13
SCNPE
UNPAY
ID FETCH-LOGICAL-c478t-bd7e78dda0ed3c7914127d69f98e310d688ec030a78116d11aedd1922defad923
IEDL.DBID UNPAY
ISSN 1387-2877
1875-8908
IngestDate Sun Oct 26 04:16:53 EDT 2025
Wed Feb 19 02:41:53 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords histogram
individual gray matter
similarity-matrix
Alzheimer’s disease
Fisher criterion
Language English
License cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c478t-bd7e78dda0ed3c7914127d69f98e310d688ec030a78116d11aedd1922defad923
OpenAccessLink https://proxy.k.utb.cz/login?url=https://hdl.handle.net/20.500.11782/757
PMID 27886012
ParticipantIDs unpaywall_primary_10_3233_jad_160850
pubmed_primary_27886012
PublicationCentury 2000
PublicationDate 2017-01-01
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of Alzheimer's disease
PublicationTitleAlternate J Alzheimers Dis
PublicationYear 2017
SSID ssj0003097
Score 2.378337
Snippet Automatic computer-aided diagnosis (CAD) systems have been widely used in classification of patients who suffer from Alzheimer's disease (AD). This paper...
SourceID unpaywall
pubmed
SourceType Open Access Repository
Index Database
StartPage 1571
SubjectTerms Aged
Aged, 80 and over
Alzheimer Disease - classification
Alzheimer Disease - diagnosis
Diagnosis, Computer-Assisted
Female
Humans
Magnetic Resonance Imaging
Male
Middle Aged
Neurologic Examination
ROC Curve
White Matter - diagnostic imaging
White Matter - pathology
Title Histogram-Based Feature Extraction from Individual Gray Matter Similarity-Matrix for Alzheimer's Disease Classification
URI https://www.ncbi.nlm.nih.gov/pubmed/27886012
https://hdl.handle.net/20.500.11782/757
UnpaywallVersion submittedVersion
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgHODCIval8qFXlzpOYudY1oKUCgkqwaly4qkotKEKqWh74jf4Pb6EcVKqCi49OwdLb-x5L555Q0hFYtjESti6sEgzN4g9FoEHTIAJHGm46EjbOxw2_UbLvX30HqcmSe___QWcWtWr5S-LyjmVnlwmK76HpLtEVlrNu_pTLqfwmCDvz8eoIPtmKqipwohUOEKcvmjDuG-d2eaSzOowGejxh-715rLJ1QZp_O6jKCJ5rQ6zqBpP_lg0LrDRTbI-ZZS0XoTAFlmCZJuMc_sPW3nFzjBPGWqp3jAFejnK0qKXgdrOEnoza8ii16ke0zD326T33X4XNS9SdBZaE_8RRXJL673JM3T7kH5_fr3Ti-Jth-ZzNW3FUQ7yDmldXT6cN9h0ygKLXakyFhkJUhmja2BELAPucgTJDzqBAuR-xlcKYrwKtO1J9Q3nGoxBXugY6GgEVOySUvKWwD6hHG9WD7hBEYfCK-JRpAKDCi1WUoEW8QHZKwBoDworjbaDChwloXNAKjNEZouoTyyCbUSwXSB4uNhnR2TNsdk3_1NyTEpZOoQT5A5ZVCbLzbuwPI2eH-R_wz8
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTwIxEG0UDnrxI37hV3rgWqBbdts9ooJoAjFREjyR7naIKCBZlgic_Bv-PX-J010kRC-cu4cmb9p5bzvzhpC8xLAJlbB1YYFmZT90WQAuMAHGd6Thoitt73Cj6dVb5fu2216YJI3_-ws4pYJbSl4WlVOUrtwkWc9F0p0h2VbzofKcyCk8Jsj7kzEqyL6Z8ksqNSIVjhDFV20Y96wz20qS2ZoMR3r2ofv9lWxS2yX1332kRSRvhUkcFML5H4vGNTa6R3YWjJJW0hDYJxswPCCzxP7DVl6xK8xThlqqN4mAVqdxlPYyUNtZQu-WDVn0NtIz2kj8Nuljb9BDzYsUnTWsif-UIrmllf78BXoDiL4_v8b0Jn3boclcTVtxlIB8SFq16tN1nS2mLLCwLFXMAiNBKmN0CYwIpc_LHEHy_K6vALmf8ZSCEK8CbXtSPcO5BmOQFzoGuhoBFUckM3wfwgmhHG9WF7hBEYfCK-BBoHyDCi1UUoEWYY4cpwB0RqmVRsdBBY6S0MmR_BKR5SLqE4tgBxHspAiervfZGdl2bPZN_pSck0wcTeACuUMcXC7i5gdWOsIz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Histogram-Based+Feature+Extraction+from+Individual+Gray+Matter+Similarity-Matrix+for+Alzheimer%E2%80%99s+Disease+Classification&rft.jtitle=Journal+of+Alzheimer%27s+disease&rft.date=2017-01-01&rft.issn=1387-2877&rft_id=info:doi/10.3233%2Fjad-160850&rft.externalDocID=oai%3Aopenaccess.hku.edu.tr%3A20.500.11782%2F757
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1387-2877&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1387-2877&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1387-2877&client=summon