iFeatureOmega: an integrative platform for engineering, visualization and analysis of features from molecular sequences, structural and ligand data sets

Abstract The rapid accumulation of molecular data motivates development of innovative approaches to computationally characterize sequences, structures and functions of biological and chemical molecules in an efficient, accessible and accurate manner. Notwithstanding several computational tools that...

Full description

Saved in:
Bibliographic Details
Published inNucleic acids research Vol. 50; no. W1; pp. W434 - W447
Main Authors Chen, Zhen, Liu, Xuhan, Zhao, Pei, Li, Chen, Wang, Yanan, Li, Fuyi, Akutsu, Tatsuya, Bain, Chris, Gasser, Robin B, Li, Junzhou, Yang, Zuoren, Gao, Xin, Kurgan, Lukasz, Song, Jiangning
Format Journal Article
LanguageEnglish
Published England Oxford University Press 05.07.2022
Subjects
Online AccessGet full text
ISSN0305-1048
1362-4962
1362-4954
1362-4962
DOI10.1093/nar/gkac351

Cover

Abstract Abstract The rapid accumulation of molecular data motivates development of innovative approaches to computationally characterize sequences, structures and functions of biological and chemical molecules in an efficient, accessible and accurate manner. Notwithstanding several computational tools that characterize protein or nucleic acids data, there are no one-stop computational toolkits that comprehensively characterize a wide range of biomolecules. We address this vital need by developing a holistic platform that generates features from sequence and structural data for a diverse collection of molecule types. Our freely available and easy-to-use iFeatureOmega platform generates, analyzes and visualizes 189 representations for biological sequences, structures and ligands. To the best of our knowledge, iFeatureOmega provides the largest scope when directly compared to the current solutions, in terms of the number of feature extraction and analysis approaches and coverage of different molecules. We release three versions of iFeatureOmega including a webserver, command line interface and graphical interface to satisfy needs of experienced bioinformaticians and less computer-savvy biologists and biochemists. With the assistance of iFeatureOmega, users can encode their molecular data into representations that facilitate construction of predictive models and analytical studies. We highlight benefits of iFeatureOmega based on three research applications, demonstrating how it can be used to accelerate and streamline research in bioinformatics, computational biology, and cheminformatics areas. The iFeatureOmega webserver is freely available at http://ifeatureomega.erc.monash.edu and the standalone versions can be downloaded from https://github.com/Superzchen/iFeatureOmega-GUI/ and https://github.com/Superzchen/iFeatureOmega-CLI/. Graphical Abstract Graphical Abstract iFeatureOmega provides three interfaces including the web server, locally executable command line interface and graphical user interface, to perform feature extraction, analysis and visualization of biological sequences, structures and ligands.
AbstractList Abstract The rapid accumulation of molecular data motivates development of innovative approaches to computationally characterize sequences, structures and functions of biological and chemical molecules in an efficient, accessible and accurate manner. Notwithstanding several computational tools that characterize protein or nucleic acids data, there are no one-stop computational toolkits that comprehensively characterize a wide range of biomolecules. We address this vital need by developing a holistic platform that generates features from sequence and structural data for a diverse collection of molecule types. Our freely available and easy-to-use iFeatureOmega platform generates, analyzes and visualizes 189 representations for biological sequences, structures and ligands. To the best of our knowledge, iFeatureOmega provides the largest scope when directly compared to the current solutions, in terms of the number of feature extraction and analysis approaches and coverage of different molecules. We release three versions of iFeatureOmega including a webserver, command line interface and graphical interface to satisfy needs of experienced bioinformaticians and less computer-savvy biologists and biochemists. With the assistance of iFeatureOmega, users can encode their molecular data into representations that facilitate construction of predictive models and analytical studies. We highlight benefits of iFeatureOmega based on three research applications, demonstrating how it can be used to accelerate and streamline research in bioinformatics, computational biology, and cheminformatics areas. The iFeatureOmega webserver is freely available at http://ifeatureomega.erc.monash.edu and the standalone versions can be downloaded from https://github.com/Superzchen/iFeatureOmega-GUI/ and https://github.com/Superzchen/iFeatureOmega-CLI/. Graphical Abstract Graphical Abstract iFeatureOmega provides three interfaces including the web server, locally executable command line interface and graphical user interface, to perform feature extraction, analysis and visualization of biological sequences, structures and ligands.
The rapid accumulation of molecular data motivates development of innovative approaches to computationally characterize sequences, structures and functions of biological and chemical molecules in an efficient, accessible and accurate manner. Notwithstanding several computational tools that characterize protein or nucleic acids data, there are no one-stop computational toolkits that comprehensively characterize a wide range of biomolecules. We address this vital need by developing a holistic platform that generates features from sequence and structural data for a diverse collection of molecule types. Our freely available and easy-to-use iFeatureOmega platform generates, analyzes and visualizes 189 representations for biological sequences, structures and ligands. To the best of our knowledge, iFeatureOmega provides the largest scope when directly compared to the current solutions, in terms of the number of feature extraction and analysis approaches and coverage of different molecules. We release three versions of iFeatureOmega including a webserver, command line interface and graphical interface to satisfy needs of experienced bioinformaticians and less computer-savvy biologists and biochemists. With the assistance of iFeatureOmega, users can encode their molecular data into representations that facilitate construction of predictive models and analytical studies. We highlight benefits of iFeatureOmega based on three research applications, demonstrating how it can be used to accelerate and streamline research in bioinformatics, computational biology, and cheminformatics areas. The iFeatureOmega webserver is freely available at http://ifeatureomega.erc.monash.edu and the standalone versions can be downloaded from https://github.com/Superzchen/iFeatureOmega-GUI/ and https://github.com/Superzchen/iFeatureOmega-CLI/.The rapid accumulation of molecular data motivates development of innovative approaches to computationally characterize sequences, structures and functions of biological and chemical molecules in an efficient, accessible and accurate manner. Notwithstanding several computational tools that characterize protein or nucleic acids data, there are no one-stop computational toolkits that comprehensively characterize a wide range of biomolecules. We address this vital need by developing a holistic platform that generates features from sequence and structural data for a diverse collection of molecule types. Our freely available and easy-to-use iFeatureOmega platform generates, analyzes and visualizes 189 representations for biological sequences, structures and ligands. To the best of our knowledge, iFeatureOmega provides the largest scope when directly compared to the current solutions, in terms of the number of feature extraction and analysis approaches and coverage of different molecules. We release three versions of iFeatureOmega including a webserver, command line interface and graphical interface to satisfy needs of experienced bioinformaticians and less computer-savvy biologists and biochemists. With the assistance of iFeatureOmega, users can encode their molecular data into representations that facilitate construction of predictive models and analytical studies. We highlight benefits of iFeatureOmega based on three research applications, demonstrating how it can be used to accelerate and streamline research in bioinformatics, computational biology, and cheminformatics areas. The iFeatureOmega webserver is freely available at http://ifeatureomega.erc.monash.edu and the standalone versions can be downloaded from https://github.com/Superzchen/iFeatureOmega-GUI/ and https://github.com/Superzchen/iFeatureOmega-CLI/.
The rapid accumulation of molecular data motivates development of innovative approaches to computationally characterize sequences, structures and functions of biological and chemical molecules in an efficient, accessible and accurate manner. Notwithstanding several computational tools that characterize protein or nucleic acids data, there are no one-stop computational toolkits that comprehensively characterize a wide range of biomolecules. We address this vital need by developing a holistic platform that generates features from sequence and structural data for a diverse collection of molecule types. Our freely available and easy-to-use iFeatureOmega platform generates, analyzes and visualizes 189 representations for biological sequences, structures and ligands. To the best of our knowledge, iFeatureOmega provides the largest scope when directly compared to the current solutions, in terms of the number of feature extraction and analysis approaches and coverage of different molecules. We release three versions of iFeatureOmega including a webserver, command line interface and graphical interface to satisfy needs of experienced bioinformaticians and less computer-savvy biologists and biochemists. With the assistance of iFeatureOmega, users can encode their molecular data into representations that facilitate construction of predictive models and analytical studies. We highlight benefits of iFeatureOmega based on three research applications, demonstrating how it can be used to accelerate and streamline research in bioinformatics, computational biology, and cheminformatics areas. The iFeatureOmega webserver is freely available at http://ifeatureomega.erc.monash.edu and the standalone versions can be downloaded from https://github.com/Superzchen/iFeatureOmega-GUI/ and https://github.com/Superzchen/iFeatureOmega-CLI/.
The rapid accumulation of molecular data motivates development of innovative approaches to computationally characterize sequences, structures and functions of biological and chemical molecules in an efficient, accessible and accurate manner. Notwithstanding several computational tools that characterize protein or nucleic acids data, there are no one-stop computational toolkits that comprehensively characterize a wide range of biomolecules. We address this vital need by developing a holistic platform that generates features from sequence and structural data for a diverse collection of molecule types. Our freely available and easy-to-use iFeatureOmega platform generates, analyzes and visualizes 189 representations for biological sequences, structures and ligands. To the best of our knowledge, iFeatureOmega provides the largest scope when directly compared to the current solutions, in terms of the number of feature extraction and analysis approaches and coverage of different molecules. We release three versions of iFeatureOmega including a webserver, command line interface and graphical interface to satisfy needs of experienced bioinformaticians and less computer-savvy biologists and biochemists. With the assistance of iFeatureOmega, users can encode their molecular data into representations that facilitate construction of predictive models and analytical studies. We highlight benefits of iFeatureOmega based on three research applications, demonstrating how it can be used to accelerate and streamline research in bioinformatics, computational biology, and cheminformatics areas. The iFeatureOmega webserver is freely available at http://ifeatureomega.erc.monash.edu and the standalone versions can be downloaded from https://github.com/Superzchen/iFeatureOmega-GUI/ and https://github.com/Superzchen/iFeatureOmega-CLI/. Graphical Abstract iFeatureOmega provides three interfaces including the web server, locally executable command line interface and graphical user interface, to perform feature extraction, analysis and visualization of biological sequences, structures and ligands.
Author Li, Chen
Gao, Xin
Kurgan, Lukasz
Song, Jiangning
Liu, Xuhan
Yang, Zuoren
Li, Junzhou
Zhao, Pei
Li, Fuyi
Wang, Yanan
Gasser, Robin B
Bain, Chris
Chen, Zhen
Akutsu, Tatsuya
Author_xml – sequence: 1
  givenname: Zhen
  surname: Chen
  fullname: Chen, Zhen
– sequence: 2
  givenname: Xuhan
  orcidid: 0000-0003-2368-4655
  surname: Liu
  fullname: Liu, Xuhan
– sequence: 3
  givenname: Pei
  surname: Zhao
  fullname: Zhao, Pei
– sequence: 4
  givenname: Chen
  orcidid: 0000-0002-1847-754X
  surname: Li
  fullname: Li, Chen
– sequence: 5
  givenname: Yanan
  surname: Wang
  fullname: Wang, Yanan
– sequence: 6
  givenname: Fuyi
  orcidid: 0000-0001-5216-3213
  surname: Li
  fullname: Li, Fuyi
– sequence: 7
  givenname: Tatsuya
  surname: Akutsu
  fullname: Akutsu, Tatsuya
– sequence: 8
  givenname: Chris
  surname: Bain
  fullname: Bain, Chris
– sequence: 9
  givenname: Robin B
  orcidid: 0000-0002-4423-1690
  surname: Gasser
  fullname: Gasser, Robin B
– sequence: 10
  givenname: Junzhou
  surname: Li
  fullname: Li, Junzhou
– sequence: 11
  givenname: Zuoren
  surname: Yang
  fullname: Yang, Zuoren
  email: yangzuoren@caas.cn
– sequence: 12
  givenname: Xin
  orcidid: 0000-0002-7108-3574
  surname: Gao
  fullname: Gao, Xin
  email: xin.gao@kaust.edu.sa
– sequence: 13
  givenname: Lukasz
  orcidid: 0000-0002-7749-0314
  surname: Kurgan
  fullname: Kurgan, Lukasz
  email: lkurgan@vcu.edu
– sequence: 14
  givenname: Jiangning
  orcidid: 0000-0001-8031-9086
  surname: Song
  fullname: Song, Jiangning
  email: Jiangning.Song@monash.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35524557$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFv1DAQhS1URLeFE3fkE0JiQ-04TpwekFBFAalSL3C2HGcSDI4dbGfR8kv4ubjNUgESPdgjy997o3lzgo6cd4DQU0peUdKyM6fC2fhVacbpA7ShrC6Lqq3LI7QhjPCCkkoco5MYvxBCK8qrR-iYcV5WnDcb9NNcgkpLgOsJRnWOlcPGJRiDSmYHeLYqDT5MOF8Y3GgcQDBu3OKdiYuy5kfmvMuyPh9l99FE7Ac8rKYRD8FPePIW9GJVwBG-LeA0xC2OKSw6Q8reqq0Zb0qvkspUio_Rw0HZCE8O9RR9unz78eJ9cXX97sPFm6tCV41IRVfWrGO9gGpgDe1K0XUNJQDQdEKIoYFB8JqLhvCS94wqVlHdd1V-tRpEx9kp2q6-i5vV_ruyVs7BTCrsJSXyJmCZA5aHgDP-esXnpZug1-BSnuBO4pWRf_8481mOfifbkpdN2WaDFweD4HMWMcnJRA3WKgd-ibKsa0oEp63I6LM_e901-b29DNAV0MHHGGCQ2qTbheTWxv5ngJf_aO4f9_lK-2W-F_wFAojQMA
CitedBy_id crossref_primary_10_1016_j_biortech_2024_131556
crossref_primary_10_1016_j_compbiomed_2024_109297
crossref_primary_10_1016_j_jmb_2025_168977
crossref_primary_10_1093_bib_bbad170
crossref_primary_10_5812_ijpr_138704
crossref_primary_10_2339_politeknik_1511303
crossref_primary_10_3390_horticulturae11010044
crossref_primary_10_3390_ijms252413674
crossref_primary_10_1093_bib_bbad433
crossref_primary_10_1016_j_jmb_2024_168856
crossref_primary_10_1016_j_ymeth_2024_04_021
crossref_primary_10_1016_j_ijbiomac_2022_12_315
crossref_primary_10_3390_ijms232113493
crossref_primary_10_1016_j_ijbiomac_2024_133085
crossref_primary_10_1016_j_foodchem_2023_137162
crossref_primary_10_1016_j_omtn_2024_102192
crossref_primary_10_1016_j_compbiomed_2023_107386
crossref_primary_10_1016_j_isci_2024_110718
crossref_primary_10_71150_jm_2408001
crossref_primary_10_1016_j_ejmech_2023_115500
crossref_primary_10_1093_bib_bbad063
crossref_primary_10_1038_s41598_024_76148_9
crossref_primary_10_1093_bib_bbae033
crossref_primary_10_1016_j_ymeth_2025_01_003
crossref_primary_10_1093_nargab_lqad087
crossref_primary_10_1093_bib_bbad288
crossref_primary_10_1016_j_compbiomed_2024_108339
crossref_primary_10_1016_j_csbj_2022_12_044
crossref_primary_10_1016_j_csbj_2025_03_005
crossref_primary_10_1016_j_ijbiomac_2024_135741
crossref_primary_10_1093_bfgp_elae043
crossref_primary_10_1093_bib_bbad065
crossref_primary_10_1021_acs_jcim_4c02079
crossref_primary_10_1016_j_ymeth_2024_11_007
crossref_primary_10_1016_j_ijbiomac_2024_137668
crossref_primary_10_1093_bib_bbac467
crossref_primary_10_1089_cmb_2022_0241
crossref_primary_10_1093_bib_bbae469
crossref_primary_10_1186_s12864_024_10201_9
crossref_primary_10_1093_bib_bbae208
crossref_primary_10_1109_JBHI_2024_3425716
crossref_primary_10_1093_nar_gkad055
crossref_primary_10_1016_j_celrep_2023_113048
crossref_primary_10_1177_11779322241263671
Cites_doi 10.1093/bioinformatics/bty140
10.1093/nar/28.1.374
10.1093/nar/28.1.235
10.3390/ijms15033495
10.1021/jm9700575
10.1093/bioinformatics/btz408
10.2174/157016409789973707
10.1093/bib/bbz112
10.1093/bioinformatics/btn222
10.1093/nar/gkm423
10.1186/s13321-016-0146-2
10.1093/bioinformatics/btw564
10.1517/17460441.2016.1117070
10.1093/bib/bbab434
10.1016/0303-2647(90)90013-Q
10.1093/bib/bby061
10.1016/j.ab.2019.113507
10.1093/bioinformatics/btp163
10.1093/nar/gkt006
10.1093/nar/gkab122
10.1093/bioinformatics/btt072
10.1039/c3mb70100j
10.1016/j.ab.2012.03.015
10.1016/j.sbi.2008.05.007
10.1016/j.ymeth.2016.08.014
10.1093/bfgp/elaa030
10.1093/nar/gkaa942
10.1093/nar/gkr284
10.1093/nar/gkz383
10.1016/j.gpb.2018.08.004
10.1016/j.patrec.2009.09.011
10.1016/j.ab.2007.10.012
10.1093/bioinformatics/btx302
10.1093/nar/gkt646
10.2174/1568026618666180813152921
10.1038/srep34595
10.1021/ci400127q
10.1002/pro.5560040404
10.1006/jmbi.1998.2511
10.1038/nrd3955
10.1101/599126
10.3390/cells8111332
10.1021/acs.jcim.8b00749
10.1093/bioinformatics/btu820
10.1007/s00018-020-03654-0
10.1093/bib/bbz041
10.1093/nar/gkv458
10.1007/s00438-015-1078-7
10.1186/s12918-018-0665-8
10.1093/bib/bbaa076
10.1093/nar/gkz740
10.1002/minf.202000006
10.1002/bip.360221211
10.1093/nar/gky1075
10.1038/s41586-020-2649-2
10.4137/BBI.S38423
10.1093/bib/bbz170
10.3390/ncrna6040049
10.1002/prot.21135
10.1109/RBME.2010.2083647
10.1073/pnas.89.22.10915
10.1186/s13321-019-0355-6
10.1093/bioinformatics/btv345
10.1093/bioinformatics/btz165
10.1093/bib/bbz050
10.1002/(SICI)1097-0282(199603)38:3<305::AID-BIP4>3.0.CO;2-Y
10.1109/MCSE.2007.55
10.25080/TCWV9851
10.1093/bib/bbaa099
10.1093/bioinformatics/btz689
10.1016/j.csbj.2021.05.039
10.2174/1574893615999200503030350
10.1093/nar/gku1028
10.1093/bioinformatics/bth261
10.1021/bi963091e
10.1093/nar/gkaa1100
10.1093/bioinformatics/btu624
10.1093/bib/bby065
10.1093/nar/gkaa931
10.1093/bioinformatics/btt105
10.1093/bib/bby089
10.25080/Majora-92bf1922-00a
10.1038/s41467-021-23303-9
10.1093/bioinformatics/btv042
10.1093/bioinformatics/btz432
10.1186/s12859-019-3084-y
10.1007/s00018-014-1661-9
10.1093/nar/gkab1061
10.1080/14786440109462720
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. 2022
The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research.
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. 2022
– notice: The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1093/nar/gkac351
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1362-4962
EndPage W447
ExternalDocumentID 10.1093/nar/gkac351
PMC9252729
35524557
10_1093_nar_gkac351
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01 AI111965
– fundername: ;
  grantid: 32170677; 32101797
– fundername: ;
– fundername: ;
  grantid: 20180550307
– fundername: ;
  grantid: APP1127948; APP1144652
– fundername: ;
  grantid: B21HJ0001
– fundername: ;
  grantid: R01 AI111965
– fundername: ;
  grantid: 1143366
– fundername: ;
  grantid: LP110200333; DP120104460
– fundername: ;
  grantid: 3132020170; 3132019323
GroupedDBID ---
-DZ
-~X
.55
.GJ
.I3
0R~
123
18M
1TH
29N
2WC
3O-
4.4
482
53G
5VS
5WA
70E
85S
A8Z
AAFWJ
AAHBH
AAMVS
AAOGV
AAPXW
AAUQX
AAVAP
AAWDT
AAYJJ
ABEJV
ABGNP
ABIME
ABNGD
ABPIB
ABPTD
ABQLI
ABQTQ
ABSMQ
ABXVV
ABZEO
ACFRR
ACGFO
ACGFS
ACIPB
ACIWK
ACNCT
ACPQN
ACPRK
ACUKT
ACUTJ
ACVCV
ACZBC
ADBBV
ADHZD
AEGXH
AEHUL
AEKPW
AENEX
AENZO
AFFNX
AFPKN
AFRAH
AFSHK
AFYAG
AGKRT
AGMDO
AHMBA
AIAGR
AJDVS
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AMNDL
ANFBD
AOIJS
APJGH
AQDSO
ASAOO
ASPBG
ATDFG
ATTQO
AVWKF
AZFZN
BAWUL
BAYMD
BCNDV
BEYMZ
C1A
CAG
CIDKT
COF
CS3
CXTWN
CZ4
D0S
DFGAJ
DIK
DU5
D~K
E3Z
EBD
EBS
EJD
ELUNK
EMOBN
F5P
FEDTE
GROUPED_DOAJ
GX1
H13
HH5
HVGLF
HYE
HZ~
H~9
IH2
KAQDR
KQ8
KSI
M49
MBTAY
MVM
NTWIH
OAWHX
OBC
OBS
OEB
OES
OJQWA
OVD
O~Y
P2P
PB-
PEELM
PQQKQ
QBD
R44
RD5
RNI
RNS
ROL
ROZ
RPM
RXO
RZF
RZO
SJN
SV3
TCN
TEORI
TN5
TOX
TR2
UHB
WG7
WOQ
X7H
X7M
XSB
XSW
YSK
ZKX
ZXP
~91
~D7
~KM
AAYXX
CITATION
ESTFP
OVT
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
AGQPQ
UNPAY
ID FETCH-LOGICAL-c478t-b263b3d8e4f371b28bb710eee7b888f7ef8565870525d31a341cdb45259ce8b53
IEDL.DBID UNPAY
ISSN 0305-1048
1362-4962
1362-4954
IngestDate Sun Oct 26 01:36:12 EDT 2025
Tue Sep 30 16:49:35 EDT 2025
Mon Sep 29 06:39:09 EDT 2025
Thu Apr 03 07:04:34 EDT 2025
Thu Apr 24 23:07:06 EDT 2025
Wed Oct 01 03:39:21 EDT 2025
Wed Apr 02 07:03:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue W1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c478t-b263b3d8e4f371b28bb710eee7b888f7ef8565870525d31a341cdb45259ce8b53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The authors wish it to be known that, in their opinion, the first four authors should be regarded as Joint First Authors.
ORCID 0000-0002-7749-0314
0000-0003-2368-4655
0000-0002-1847-754X
0000-0001-8031-9086
0000-0002-4423-1690
0000-0001-5216-3213
0000-0002-7108-3574
OpenAccessLink https://proxy.k.utb.cz/login?url=https://academic.oup.com/nar/article-pdf/50/W1/W434/44378856/gkac351.pdf
PMID 35524557
PQID 2661085198
PQPubID 23479
ParticipantIDs unpaywall_primary_10_1093_nar_gkac351
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9252729
proquest_miscellaneous_2661085198
pubmed_primary_35524557
crossref_citationtrail_10_1093_nar_gkac351
crossref_primary_10_1093_nar_gkac351
oup_primary_10_1093_nar_gkac351
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-05
PublicationDateYYYYMMDD 2022-07-05
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-05
  day: 05
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nucleic acids research
PublicationTitleAlternate Nucleic Acids Res
PublicationYear 2022
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Berman (2022070423592761700_B86) 2000; 28
Landrum (2022070423592761700_B18) 2013
Chen (2022070423592761700_B44) 2019; 20
Du (2022070423592761700_B19) 2014; 15
Nagarajan (2022070423592761700_B47) 2016; 10
Chen (2022070423592761700_B5) 2021; 49
McKinney (2022070423592761700_B78) 2010
Xiang (2022070423592761700_B88) 1997; 36
Chen (2022070423592761700_B43) 2020; 21
Dong (2022070423592761700_B23) 2016; 8
Zhu (2022070423592761700_B39) 2019; 59
Cao (2022070423592761700_B15) 2013; 53
Wang (2022070423592761700_B25) 2017; 33
Shen (2022070423592761700_B12) 2008; 373
Passerini (2022070423592761700_B82) 2006; 65
Cao (2022070423592761700_B20) 2015; 31
Liu (2022070423592761700_B32) 2019; 47
Bonidia (2022070423592761700_B31) 2022; 23
He (2022070423592761700_B30); 15
Zhu (2022070423592761700_B38) 2021; 22
Kawashima (2022070423592761700_B58) 2000; 28
Wang (2022070423592761700_B56) 2020; 36
Li (2022070423592761700_B52) 2020; 18
Lalović (2022070423592761700_B61) 1990; 23
Xu (2022070423592761700_B53) 2010; 3
Han (2022070423592761700_B83) 2019; 20
Gligorijević (2022070423592761700_B49) 2021; 12
Hagberg (2022070423592761700_B80) 2008
Chou (2022070423592761700_B57) 2009; 6
Jain (2022070423592761700_B74) 2010; 31
Cao (2022070423592761700_B16) 2013; 29
Zhao (2022070423592761700_B10) 2020; 78
Cui (2022070423592761700_B7) 2021; 20
Wang (2022070423592761700_B48) 2018; 18
Manavalan (2022070423592761700_B63) 2019; 8
Zhao (2022070423592761700_B8) 2021; 49
Du (2022070423592761700_B14) 2012; 425
Kabsch (2022070423592761700_B70) 1983; 22
Sanner (2022070423592761700_B73) 1996; 38
Muhammod (2022070423592761700_B28) 2019; 35
Liu (2022070423592761700_B84) 2019; 11
Wang (2022070423592761700_B93) 2013; 41
Wang (2022070423592761700_B55) 2016; 111
Peng (2022070423592761700_B9) 2015; 72
Pedregosa (2022070423592761700_B85) 2011; 12
Mahmud (2022070423592761700_B37) 2020; 589
Sun (2022070423592761700_B92) 2013; 41
Zhang (2022070423592761700_B41) 2019; 20
Li (2022070423592761700_B50) 2016; 6
Liu (2022070423592761700_B66) 2015; 43
Liu (2022070423592761700_B65) 2015; 31
Liu (2022070423592761700_B24) 2016; 291
Ploom (2022070423592761700_B89) 1999; 286
Ofer (2022070423592761700_B21) 2015; 31
Nikam (2022070423592761700_B29) 2019; 35
Chen (2022070423592761700_B34) 2020; 21
Chen (2022070423592761700_B45) 2018; 16
Bagley (2022070423592761700_B69) 1995; 4
Cao (2022070423592761700_B17) 2013; 29
Karim (2022070423592761700_B54) 2021; 22
Pande (2022070423592761700_B33) 2019
Zhou (2022070423592761700_B40) 2020; 39
Hunter (2022070423592761700_B77) 2007; 9
Muegge (2022070423592761700_B67) 2016; 11
Touw (2022070423592761700_B81) 2015; 43
Zuo (2022070423592761700_B26) 2017; 33
Tina (2022070423592761700_B46) 2007; 35
Nair (2022070423592761700_B62) 2006; 1
Li (2022070423592761700_B51) 2020; 21
Rodrigues (2022070423592761700_B35) 2019; 47
Redfern (2022070423592761700_B68) 2008; 18
UniProt (2022070423592761700_B2) 2021; 49
Rao (2022070423592761700_B13) 2011; 39
Cock (2022070423592761700_B71) 2009; 25
Ester (2022070423592761700_B75) 1996
Chen (2022070423592761700_B27) 2018; 34
Xu (2022070423592761700_B42) 2021; 22
Howe (2022070423592761700_B1) 2021; 49
Mendez (2022070423592761700_B3) 2019; 47
Iuchi (2022070423592761700_B4) 2021; 19
Pinkney (2022070423592761700_B91) 2020; 6
Chen (2022070423592761700_B90) 2013; 9
Song (2022070423592761700_B72) 2008; 24
Henikoff (2022070423592761700_B59) 1992; 89
Wei (2022070423592761700_B64) 2019; 35
Chen (2022070423592761700_B94) 2013; 12
Xiao (2022070423592761700_B22) 2015; 31
Sandberg (2022070423592761700_B60) 1998; 41
Varadi (2022070423592761700_B11) 2021; 50
Harris (2022070423592761700_B79) 2020; 585
Frank (2022070423592761700_B87) 2004; 20
Pearson (2022070423592761700_B76) 1901; 2
Rifaioglu (2022070423592761700_B6) 2019; 20
Liu (2022070423592761700_B36) 2018; 12
References_xml – volume: 34
  start-page: 2499
  year: 2018
  ident: 2022070423592761700_B27
  article-title: iFeature: a python package and web server for features extraction and selection from protein and peptide sequences
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty140
– volume: 28
  start-page: 374
  year: 2000
  ident: 2022070423592761700_B58
  article-title: AAindex: amino acid index database
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/28.1.374
– volume: 28
  start-page: 235
  year: 2000
  ident: 2022070423592761700_B86
  article-title: The protein data bank
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/28.1.235
– volume: 15
  start-page: 3495
  year: 2014
  ident: 2022070423592761700_B19
  article-title: PseAAC-General: fast building various modes of general form of chou's pseudo-amino acid composition for large-scale protein datasets
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms15033495
– volume: 12
  start-page: 2825
  year: 2011
  ident: 2022070423592761700_B85
  publication-title: Scikit-learn: Machine Learning in Python
– volume: 41
  start-page: 2481
  year: 1998
  ident: 2022070423592761700_B60
  article-title: New chemical descriptors relevant for the design of biologically active peptides. A multivariate characterization of 87 amino acids
  publication-title: J. Med. Chem.
  doi: 10.1021/jm9700575
– volume: 1
  start-page: 197
  year: 2006
  ident: 2022070423592761700_B62
  article-title: A coding measure scheme employing electron-ion interaction pseudopotential (EIIP)
  publication-title: Bioinformation
– volume-title: RDKit: A Software Suit for Cheminformatics, Computational Chemistry, and Oredictive Modeling
  year: 2013
  ident: 2022070423592761700_B18
– volume: 35
  start-page: 4930
  year: 2019
  ident: 2022070423592761700_B64
  article-title: Iterative feature representations improve N4-methylcytosine site prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz408
– volume: 6
  start-page: 262
  year: 2009
  ident: 2022070423592761700_B57
  article-title: Pseudo amino acid composition and its applications in bioinformatics, proteomics and system biology
  publication-title: Current Proteomics
  doi: 10.2174/157016409789973707
– volume: 21
  start-page: 1676
  year: 2020
  ident: 2022070423592761700_B43
  article-title: Comprehensive review and assessment of computational methods for predicting RNA post-transcriptional modification sites from RNA sequences
  publication-title: Brief Bioinform.
  doi: 10.1093/bib/bbz112
– volume: 24
  start-page: 1489
  year: 2008
  ident: 2022070423592761700_B72
  article-title: HSEpred: predict half-sphere exposure from protein sequences
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn222
– volume: 35
  start-page: W473
  year: 2007
  ident: 2022070423592761700_B46
  article-title: PIC: protein interactions calculator
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkm423
– volume: 8
  start-page: 34
  year: 2016
  ident: 2022070423592761700_B23
  article-title: BioTriangle: a web-accessible platform for generating various molecular representations for chemicals, proteins, DNAs/RNAs and their interactions
  publication-title: J. Cheminform.
  doi: 10.1186/s13321-016-0146-2
– volume: 33
  start-page: 122
  year: 2017
  ident: 2022070423592761700_B26
  article-title: PseKRAAC: a flexible web server for generating pseudo K-tuple reduced amino acids composition
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw564
– volume: 11
  start-page: 137
  year: 2016
  ident: 2022070423592761700_B67
  article-title: An overview of molecular fingerprint similarity search in virtual screening
  publication-title: Expert Opin. Drug Discov.
  doi: 10.1517/17460441.2016.1117070
– volume: 23
  start-page: 1
  year: 2022
  ident: 2022070423592761700_B31
  article-title: MathFeature: feature extraction package for DNA, RNA and protein sequences based on mathematical descriptors
  publication-title: Brief Bioinform.
  doi: 10.1093/bib/bbab434
– volume: 23
  start-page: 311
  year: 1990
  ident: 2022070423592761700_B61
  article-title: The global average DNA base composition of coding regions may be determined by the electron-ion interaction potential
  publication-title: Biosystems
  doi: 10.1016/0303-2647(90)90013-Q
– volume: 20
  start-page: 1878
  year: 2019
  ident: 2022070423592761700_B6
  article-title: Recent applications of deep learning and machine intelligence on in silico drug discovery: methods, tools and databases
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bby061
– volume: 589
  start-page: 113507
  year: 2020
  ident: 2022070423592761700_B37
  article-title: Prediction of drug-target interaction based on protein features using undersampling and feature selection techniques with boosting
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2019.113507
– volume: 25
  start-page: 1422
  year: 2009
  ident: 2022070423592761700_B71
  article-title: Biopython: freely available python tools for computational molecular biology and bioinformatics
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp163
– volume: 41
  start-page: e74
  year: 2013
  ident: 2022070423592761700_B93
  article-title: CPAT: coding-potential assessment tool using an alignment-free logistic regression model
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt006
– volume: 49
  start-page: e60
  year: 2021
  ident: 2022070423592761700_B5
  article-title: iLearnPlus: a comprehensive and automated machine-learning platform for nucleic acid and protein sequence analysis, prediction and visualization
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkab122
– volume: 29
  start-page: 960
  year: 2013
  ident: 2022070423592761700_B17
  article-title: propy: a tool to generate various modes of chou's PseAAC
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt072
– volume: 9
  start-page: 2213
  year: 2013
  ident: 2022070423592761700_B90
  article-title: ZincExplorer: an accurate hybrid method to improve the prediction of zinc-binding sites from protein sequences
  publication-title: Mol. Biosyst.
  doi: 10.1039/c3mb70100j
– volume: 425
  start-page: 117
  year: 2012
  ident: 2022070423592761700_B14
  article-title: PseAAC-Builder: a cross-platform stand-alone program for generating various special chou's pseudo-amino acid compositions
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2012.03.015
– volume: 18
  start-page: 394
  year: 2008
  ident: 2022070423592761700_B68
  article-title: Exploring the structure and function paradigm
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2008.05.007
– volume: 111
  start-page: 21
  year: 2016
  ident: 2022070423592761700_B55
  article-title: Feature selection methods for big data bioinformatics: a survey from the search perspective
  publication-title: Methods
  doi: 10.1016/j.ymeth.2016.08.014
– volume: 20
  start-page: 61
  year: 2021
  ident: 2022070423592761700_B7
  article-title: Sequence representation approaches for sequence-based protein prediction tasks that use deep learning
  publication-title: Brief. Funct. Genomics.
  doi: 10.1093/bfgp/elaa030
– volume: 49
  start-page: D884
  year: 2021
  ident: 2022070423592761700_B1
  article-title: Ensembl 2021
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa942
– volume: 39
  start-page: W385
  year: 2011
  ident: 2022070423592761700_B13
  article-title: Update of PROFEAT: a web server for computing structural and physicochemical features of proteins and peptides from amino acid sequence
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr284
– volume: 47
  start-page: W338
  year: 2019
  ident: 2022070423592761700_B35
  article-title: mCSM-PPI2: predicting the effects of mutations on protein–protein interactions
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkz383
– volume: 16
  start-page: 451
  year: 2018
  ident: 2022070423592761700_B45
  article-title: Integration of a deep learning classifier with a random forest approach for predicting malonylation sites
  publication-title: Genomics Proteomics Bioinformatics
  doi: 10.1016/j.gpb.2018.08.004
– volume: 31
  start-page: 651
  year: 2010
  ident: 2022070423592761700_B74
  article-title: Data clustering: 50 years beyond K-means
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2009.09.011
– volume: 373
  start-page: 386
  year: 2008
  ident: 2022070423592761700_B12
  article-title: PseAAC: a flexible web server for generating various kinds of protein pseudo amino acid composition
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2007.10.012
– volume: 33
  start-page: 2756
  year: 2017
  ident: 2022070423592761700_B25
  article-title: POSSUM: a bioinformatics toolkit for generating numerical sequence feature descriptors based on PSSM profiles
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx302
– volume: 41
  start-page: e166
  year: 2013
  ident: 2022070423592761700_B92
  article-title: Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt646
– start-page: 226
  volume-title: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining
  year: 1996
  ident: 2022070423592761700_B75
– volume: 18
  start-page: 998
  year: 2018
  ident: 2022070423592761700_B48
  article-title: Structure-Based drug design strategies and challenges
  publication-title: Curr. Top Med. Chem.
  doi: 10.2174/1568026618666180813152921
– volume: 6
  start-page: 34595
  year: 2016
  ident: 2022070423592761700_B50
  article-title: GlycoMine(struct): a new bioinformatics tool for highly accurate mapping of the human N-linked and O-linked glycoproteomes by incorporating structural features
  publication-title: Sci. Rep.
  doi: 10.1038/srep34595
– volume: 53
  start-page: 3086
  year: 2013
  ident: 2022070423592761700_B15
  article-title: PyDPI: freely available python package for chemoinformatics, bioinformatics, and chemogenomics studies
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci400127q
– volume: 4
  start-page: 622
  year: 1995
  ident: 2022070423592761700_B69
  article-title: Characterizing the microenvironment surrounding protein sites
  publication-title: Protein Sci
  doi: 10.1002/pro.5560040404
– volume: 286
  start-page: 851
  year: 1999
  ident: 2022070423592761700_B89
  article-title: Crystallographic and kinetic investigations on the mechanism of 6-pyruvoyl tetrahydropterin synthase
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1998.2511
– volume: 12
  start-page: 265
  year: 2013
  ident: 2022070423592761700_B94
  article-title: Adenosine receptors as drug targets–what are the challenges?
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd3955
– year: 2019
  ident: 2022070423592761700_B33
  article-title: Computing wide range of protein/peptide features from their sequence and structure
  doi: 10.1101/599126
– volume: 8
  start-page: 1332
  year: 2019
  ident: 2022070423592761700_B63
  article-title: 4mCpred-EL: An ensemble learning framework for identification of DNA N(4)-methylcytosine sites in the mouse genome
  publication-title: Cells
  doi: 10.3390/cells8111332
– volume: 59
  start-page: 3057
  year: 2019
  ident: 2022070423592761700_B39
  article-title: DNAPred: accurate identification of DNA-Binding sites from protein sequence by ensembled hyperplane-distance-based support vector machines
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.8b00749
– volume: 31
  start-page: 1307
  year: 2015
  ident: 2022070423592761700_B65
  article-title: repDNA: a python package to generate various modes of feature vectors for DNA sequences by incorporating user-defined physicochemical properties and sequence-order effects
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu820
– volume: 78
  start-page: 2371
  year: 2020
  ident: 2022070423592761700_B10
  article-title: IDPology of the living cell: intrinsic disorder in the subcellular compartments of the human cell
  publication-title: Cell Mol. Life Sci.
  doi: 10.1007/s00018-020-03654-0
– volume: 21
  start-page: 1047
  year: 2020
  ident: 2022070423592761700_B34
  article-title: iLearn: an integrated platform and meta-learner for feature engineering, machine-learning analysis and modeling of DNA, RNA and protein sequence data
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbz041
– volume: 43
  start-page: W65
  year: 2015
  ident: 2022070423592761700_B66
  article-title: Pse-in-One: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv458
– volume: 291
  start-page: 473
  year: 2016
  ident: 2022070423592761700_B24
  article-title: repRNA: a web server for generating various feature vectors of RNA sequences
  publication-title: Mol. Genet. Genomics.
  doi: 10.1007/s00438-015-1078-7
– volume: 12
  start-page: 132
  year: 2018
  ident: 2022070423592761700_B36
  article-title: Hot spot prediction in protein–protein interactions by an ensemble system
  publication-title: BMC Syst. Biol.
  doi: 10.1186/s12918-018-0665-8
– volume: 22
  start-page: bbaa076
  year: 2021
  ident: 2022070423592761700_B38
  article-title: Accurate multistage prediction of protein crystallization propensity using deep-cascade forest with sequence-based features
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbaa076
– volume: 47
  start-page: e127
  year: 2019
  ident: 2022070423592761700_B32
  article-title: BioSeq-Analysis2.0: an updated platform for analyzing DNA, RNA and protein sequences at sequence level and residue level based on machine learning approaches
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkz740
– volume: 39
  start-page: e2000006
  year: 2020
  ident: 2022070423592761700_B40
  article-title: Sequence-based detection of DNA-binding proteins using multiple-view features allied with feature selection
  publication-title: Mol. Inform.
  doi: 10.1002/minf.202000006
– volume: 22
  start-page: 2577
  year: 1983
  ident: 2022070423592761700_B70
  article-title: Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features
  publication-title: Biopolymers
  doi: 10.1002/bip.360221211
– volume: 47
  start-page: D930
  year: 2019
  ident: 2022070423592761700_B3
  article-title: ChEMBL: towards direct deposition of bioassay data
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky1075
– volume: 585
  start-page: 357
  year: 2020
  ident: 2022070423592761700_B79
  article-title: Array programming with NumPy
  publication-title: Nature
  doi: 10.1038/s41586-020-2649-2
– volume: 10
  start-page: 73
  year: 2016
  ident: 2022070423592761700_B47
  article-title: PDBparam: online resource for computing structural parameters of proteins
  publication-title: Bioinform. Biol. Insights
  doi: 10.4137/BBI.S38423
– volume: 22
  start-page: 393
  year: 2021
  ident: 2022070423592761700_B54
  article-title: Deep learning-based clustering approaches for bioinformatics
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbz170
– volume: 6
  start-page: 49
  year: 2020
  ident: 2022070423592761700_B91
  article-title: The lncRNA toolkit: databases and in silico tools for lncRNA analysis
  publication-title: Noncoding RNA
  doi: 10.3390/ncrna6040049
– volume: 65
  start-page: 305
  year: 2006
  ident: 2022070423592761700_B82
  article-title: Identifying cysteines and histidines in transition-metal-binding sites using support vector machines and neural networks
  publication-title: Proteins
  doi: 10.1002/prot.21135
– volume: 3
  start-page: 120
  year: 2010
  ident: 2022070423592761700_B53
  article-title: Clustering algorithms in biomedical research: a review
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2010.2083647
– volume: 89
  start-page: 10915
  year: 1992
  ident: 2022070423592761700_B59
  article-title: Amino acid substitution matrices from protein blocks
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.89.22.10915
– volume: 11
  start-page: 35
  year: 2019
  ident: 2022070423592761700_B84
  article-title: An exploration strategy improves the diversity of de novo ligands using deep reinforcement learning: a case for the adenosine A2A receptor
  publication-title: J. Cheminform.
  doi: 10.1186/s13321-019-0355-6
– volume: 31
  start-page: 3429
  year: 2015
  ident: 2022070423592761700_B21
  article-title: ProFET: feature engineering captures high-level protein functions
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv345
– volume: 35
  start-page: 3831
  year: 2019
  ident: 2022070423592761700_B28
  article-title: PyFeat: a Python-based effective feature generation tool for DNA, RNA and protein sequences
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz165
– volume: 21
  start-page: 1069
  year: 2020
  ident: 2022070423592761700_B51
  article-title: PRISMOID: a comprehensive 3D structure database for post-translational modifications and mutations with functional impact
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbz050
– volume: 38
  start-page: 305
  year: 1996
  ident: 2022070423592761700_B73
  article-title: Reduced surface: an efficient way to compute molecular surfaces
  publication-title: Biopolymers
  doi: 10.1002/(SICI)1097-0282(199603)38:3<305::AID-BIP4>3.0.CO;2-Y
– volume: 9
  start-page: 90
  year: 2007
  ident: 2022070423592761700_B77
  article-title: Matplotlib: a 2D graphics environment
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2007.55
– volume-title: Exploring Network Structure, Dynamics, and Function Using NetworkX
  year: 2008
  ident: 2022070423592761700_B80
  doi: 10.25080/TCWV9851
– volume: 22
  start-page: bbaa099
  year: 2021
  ident: 2022070423592761700_B42
  article-title: Deep4mC: systematic assessment and computational prediction for DNA N4-methylcytosine sites by deep learning
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbaa099
– volume: 36
  start-page: 1277
  year: 2020
  ident: 2022070423592761700_B56
  article-title: VisFeature: a stand-alone program for visualizing and analyzing statistical features of biological sequences
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz689
– volume: 19
  start-page: 3198
  year: 2021
  ident: 2022070423592761700_B4
  article-title: Representation learning applications in biological sequence analysis
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2021.05.039
– volume: 15
  start-page: 1213
  ident: 2022070423592761700_B30
  article-title: 2020) MRMD2. 0: a python tool for machine learning with feature ranking and reduction
  publication-title: J. Curr. Bioinformatics
  doi: 10.2174/1574893615999200503030350
– volume: 43
  start-page: D364
  year: 2015
  ident: 2022070423592761700_B81
  article-title: A series of PDB-related databanks for everyday needs
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku1028
– volume: 20
  start-page: 2479
  year: 2004
  ident: 2022070423592761700_B87
  article-title: Data mining in bioinformatics using weka
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth261
– volume: 36
  start-page: 4768
  year: 1997
  ident: 2022070423592761700_B88
  article-title: The structure of the cytidine deaminase-product complex provides evidence for efficient proton transfer and ground-state destabilization
  publication-title: Biochemistry
  doi: 10.1021/bi963091e
– volume: 18
  start-page: 52
  year: 2020
  ident: 2022070423592761700_B52
  article-title: Procleave: predicting Protease-specific substrate cleavage sites by combining sequence and structural information
  publication-title: Genomics Proteomics Bioinformatics
– volume: 49
  start-page: D480
  year: 2021
  ident: 2022070423592761700_B2
  article-title: UniProt: the universal protein knowledgebase in 2021
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa1100
– volume: 31
  start-page: 279
  year: 2015
  ident: 2022070423592761700_B20
  article-title: Rcpi: R/Bioconductor package to generate various descriptors of proteins, compounds and their interactions
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu624
– volume: 20
  start-page: 2009
  year: 2019
  ident: 2022070423592761700_B83
  article-title: LncFinder: an integrated platform for long non-coding RNA identification utilizing sequence intrinsic composition, structural information and physicochemical property
  publication-title: Brief Bioinform.
  doi: 10.1093/bib/bby065
– volume: 49
  start-page: D298
  year: 2021
  ident: 2022070423592761700_B8
  article-title: DescribePROT: database of amino acid-level protein structure and function predictions
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa931
– volume: 29
  start-page: 1092
  year: 2013
  ident: 2022070423592761700_B16
  article-title: ChemoPy: freely available python package for computational biology and chemoinformatics
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt105
– volume: 20
  start-page: 2267
  year: 2019
  ident: 2022070423592761700_B44
  article-title: Large-scale comparative assessment of computational predictors for lysine post-translational modification sites
  publication-title: Brief Bioinform.
  doi: 10.1093/bib/bby089
– start-page: 51
  volume-title: Proceedings of the 9th Python in Science Conference
  year: 2010
  ident: 2022070423592761700_B78
  article-title: Data structures for statistical computing in python
  doi: 10.25080/Majora-92bf1922-00a
– volume: 12
  start-page: 3168
  year: 2021
  ident: 2022070423592761700_B49
  article-title: Structure-based protein function prediction using graph convolutional networks
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23303-9
– volume: 31
  start-page: 1857
  year: 2015
  ident: 2022070423592761700_B22
  article-title: protr/ProtrWeb: r package and web server for generating various numerical representation schemes of protein sequences
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv042
– volume: 35
  start-page: 4797
  year: 2019
  ident: 2022070423592761700_B29
  article-title: Seq2Feature: a comprehensive web-based feature extraction tool
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz432
– volume: 20
  start-page: 531
  year: 2019
  ident: 2022070423592761700_B41
  article-title: Multimodal deep representation learning for protein interaction identification and protein family classification
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-019-3084-y
– volume: 72
  start-page: 137
  year: 2015
  ident: 2022070423592761700_B9
  article-title: Exceptionally abundant exceptions: comprehensive characterization of intrinsic disorder in all domains of life
  publication-title: Cell Mol. Life Sci.
  doi: 10.1007/s00018-014-1661-9
– volume: 50
  start-page: D439
  year: 2021
  ident: 2022070423592761700_B11
  article-title: AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkab1061
– volume: 2
  start-page: 559
  year: 1901
  ident: 2022070423592761700_B76
  article-title: LIII. On lines and planes of closest fit to systems of points in space
  publication-title: London Edinburgh Dublin Philos. Mag. J. Sci.
  doi: 10.1080/14786440109462720
SSID ssj0014154
Score 2.5966163
Snippet Abstract The rapid accumulation of molecular data motivates development of innovative approaches to computationally characterize sequences, structures and...
The rapid accumulation of molecular data motivates development of innovative approaches to computationally characterize sequences, structures and functions of...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage W434
SubjectTerms Computational Biology
Ligands
Proteins
Software
Web Server Issue
Title iFeatureOmega: an integrative platform for engineering, visualization and analysis of features from molecular sequences, structural and ligand data sets
URI https://www.ncbi.nlm.nih.gov/pubmed/35524557
https://www.proquest.com/docview/2661085198
https://pubmed.ncbi.nlm.nih.gov/PMC9252729
https://academic.oup.com/nar/article-pdf/50/W1/W434/44378856/gkac351.pdf
UnpaywallVersion publishedVersion
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1362-4962
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014154
  issn: 1362-4962
  databaseCode: HH5
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1362-4962
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014154
  issn: 1362-4962
  databaseCode: KQ8
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1362-4962
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014154
  issn: 1362-4962
  databaseCode: KQ8
  dateStart: 19740101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1362-4962
  dateEnd: 20301231
  omitProxy: true
  ssIdentifier: ssj0014154
  issn: 1362-4962
  databaseCode: KQ8
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1362-4962
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014154
  issn: 1362-4962
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1362-4962
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014154
  issn: 1362-4962
  databaseCode: A8Z
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1362-4962
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014154
  issn: 1362-4962
  databaseCode: DIK
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1362-4962
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014154
  issn: 1362-4962
  databaseCode: GX1
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1362-4962
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014154
  issn: 1362-4962
  databaseCode: RPM
  dateStart: 19740101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVASL
  databaseName: Oxford Journals Free Titles 2012-2013 - NESLI2
  customDbUrl:
  eissn: 1362-4962
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014154
  issn: 1362-4962
  databaseCode: 70E
  dateStart: 0
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals
  providerName: Oxford University Press
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1362-4962
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014154
  issn: 1362-4962
  databaseCode: TOX
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB6V9FAuPFoo5lEWqXBAdRzvww9uUUUVcWg5NGo4Wbv2brCaOFHjgMof4e8y61cbQBUHDnEiebyOd8Y73-7OfANwSHEAjALlu6kZCJdnYerG0giXMRpb9xRSU0X5ngajMf80EZMtGLW5MLKJCu-3KQ2FvPKaTnSXmfHEwLvwvQvOuMe5JUMXgTe9lCkTOOZk5h5sBwJReQ-2x6efh1_qTQRLtlkV0vKrJKFY8JvfAW3S9nBuX92taW3DUW0kv93CoH-GUu6si6W8_i5ns1t-6uQh5O0T1uEpl_11qfrpj9_IH_9HFzyCBw2YJcP6qsewpYtd2BsWOJGfX5N3pAovrdbtd2HnuC0ttwc_c4s811f6bK6n8oMsSMtagWMvWc5kaaE0wQPRN3yJR-RbvrI5oHXmKJFFhp-aU4UsDDF1mytiU2bIvK37S7po8SNSs-VappHq6lk-tV82ShalytUTGJ98PD8euU2FCDflYVS6igZMsSzS3LDQVzRSChGT1jpUOLM3oTbYNwKHJEFFxnyJLjvNlN3KjVMdKcGeQq9YFPoZEEoHLIxTriMdo49WsVBS-kpJHVORGubA-9YckrShT7dVPGZJvY3PElRT0qjBgcNOeFmzhvxd7DXq-G6JN63NJagju5kjC71YrxILrCxcjiMH9msb7BpCDEm5EKED4YZ1dgKWU3zzTJF_rbjF8WEpzrcceNvZ8V3_7_k_yr2A-9Tmjdh1cfESeqht_QrRXKkOqlUQPJ6fTQ6al_YXl-JNoQ
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB6V9FAuFFoeLq9FKhxQHcf78INbVFFFHAoHopaTtWvvBquOEzUOqPwR_i6zfrUBVHHgYDuSxxt7Z7zzrXfmG4BDigNgFCjfTc1IuDwLUzeWRriM0di6p5CaOsr3NJhM-Ydzcb4Fky4XRrZR4cMupaGUl17bie4yM54YeWe-d8YZ9zi3ZOgi8GYXMmUCx5zM3IHtQCAqH8D29PTT-EuziGDJNutCWn6dJBQLfv07oG3aHs7t639rW9twVBvJbzcw6J-hlDvrcimvvsuiuOGnTnYh756wCU-5GK4rNUx__Eb--D-64D7ca8EsGTdXPYAtXe7B_rjEifz8irwhdXhp_d1-D3aOu9Jy-_Azt8hzfak_zvVMvpMl6VgrcOwly0JWFkoT3BF9zZd4RL7lK5sD2mSOEllmuDWcKmRhiGnaXBGbMkPmXd1f0keLH5GGLdcyjdRXF_nMHmyULEpVq4cwPXn_-XjithUi3JSHUeUqGjDFskhzw0Jf0UgpRExa61DhzN6E2mDfCBySBBUZ8yW67DRTdik3TnWkBHsEg3JR6idAKB2xME65jnSMPlrFQknpKyV1TEVqmANvO3NI0pY-3VbxKJJmGZ8lqKakVYMDh73wsmEN-bvYS9Tx7RKvOptLUEd2MUeWerFeJRZYWbgcRw48bmywbwgxJOVChA6EG9bZC1hO8c0zZf615hbHh6U433LgdW_Ht93fwT_KPYW71OaN2O_i4hkMUNv6OaK5Sr1oX9RfBdJLkA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=iFeatureOmega%3A+an+integrative+platform+for+engineering%2C+visualization+and+analysis+of+features+from+molecular+sequences%2C+structural+and+ligand+data+sets&rft.jtitle=Nucleic+acids+research&rft.au=Chen%2C+Zhen&rft.au=Liu%2C+Xuhan&rft.au=Zhao%2C+Pei&rft.au=Li%2C+Chen&rft.date=2022-07-05&rft.issn=0305-1048&rft.eissn=1362-4962&rft.volume=50&rft.issue=W1&rft.spage=W434&rft.epage=W447&rft_id=info:doi/10.1093%2Fnar%2Fgkac351&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_nar_gkac351
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon