Supervised Learning Based Systemic Inflammatory Markers Enable Accurate Additional Surgery for pT1NxM0 Colorectal Cancer: A Comparative Analysis of Two Practical Prediction Models for Lymph Node Metastasis

Predicting lymph node metastasis (LNM) after endoscopic resection is crucial in determining whether patients with pT1NxM0 colorectal cancer (CRC) should undergo additional surgery. This study was aimed to develop a predictive model that can be used to reduce the current likelihood of overtreatment....

Full description

Saved in:
Bibliographic Details
Published inCancer management and research Vol. 13; pp. 8967 - 8977
Main Authors Jin, Jinlian, Zhou, Haiyan, Sun, Shulin, Tian, Zhe, Ren, Haibing, Feng, Jinwu
Format Journal Article
LanguageEnglish
Published New Zealand Taylor & Francis Ltd 01.01.2021
Dove
Dove Medical Press
Subjects
Online AccessGet full text
ISSN1179-1322
1179-1322
DOI10.2147/CMAR.S337516

Cover

Abstract Predicting lymph node metastasis (LNM) after endoscopic resection is crucial in determining whether patients with pT1NxM0 colorectal cancer (CRC) should undergo additional surgery. This study was aimed to develop a predictive model that can be used to reduce the current likelihood of overtreatment. We recruited a total of 1194 consecutive CRC patients with pT1NxM0 who underwent endoscopic or surgical resection at the Gezhouba Central Hospital of Sinopharm between January 1, 2006, and August 31, 2021. The random forest classifier (RFC) and generalized linear algorithm (GLM) were used to screen out the variables that greatly affected the LNM prediction, respectively. The area under the curve (AUC) and decision curve analysis (DCA) were applied to assess the accuracy of predictive models. Analysis identified the top 10 candidate factors including depth of submucosal invasion, neutrophil-lymphocyte ratio (NLR), platelet lymphocyte ratio (PLR), platelet-to-neutrophil ratio(PNR), venous invasion, poorly differentiated clusters, tumor budding, grade, lymphatic vascular invasion, and background adenoma. The performance of the GLM achieved the highest AUC of 0.79 (95% confidence interval [CI]: 0.30 to 1.28) in the training cohort and robust AUC of 0.80 (95% confidence interval [CI]: 0.36 to 1.24) in the validation cohort. Meanwhile, the RFC exhibited a robust AUC of 0.84 (95% confidence interval [CI]: 0.40 to 1.28) in the training cohort and a high AUC of 0.85 (95% CI: 0.41 to 1.29) in the validation cohort. DCAs also showed that the RFC had superior predictive ability. Our supervised learning-based model incorporating histopathologic parameters and inflammatory markers showed a more accurate predictive performance compared to the GLM. This newly supervised learning-based predictive model can be used to determine an individually tailored treatment strategy.
AbstractList Jinlian Jin, Haiyan Zhou, Shulin Sun, Zhe Tian, Haibing Ren, Jinwu Feng Department of Gastroenterology, The Third Clinical Medical College of China Three Gorges University, Gezhouba Central Hospital of Sinopharm, Yichang, Hubei, 443002, People’s Republic of ChinaCorrespondence: Jinlian JinDepartment of Gastroenterology, The Third Clinical Medical College of China Three Gorges University, Gezhouba Central Hospital of Sinopharm, No. 60, Qiaohu 1st Road, Xiling District, Yichang, Hubei, 443002, People’s Republic of ChinaTel +8613986746553Email jjl7475@163.comPurpose: Predicting lymph node metastasis (LNM) after endoscopic resection is crucial in determining whether patients with pT1NxM0 colorectal cancer (CRC) should undergo additional surgery. This study was aimed to develop a predictive model that can be used to reduce the current likelihood of overtreatment.Patients and Methods: We recruited a total of 1194 consecutive CRC patients with pT1NxM0 who underwent endoscopic or surgical resection at the Gezhouba Central Hospital of Sinopharm between January 1, 2006, and August 31, 2021. The random forest classifier (RFC) and generalized linear algorithm (GLM) were used to screen out the variables that greatly affected the LNM prediction, respectively. The area under the curve (AUC) and decision curve analysis (DCA) were applied to assess the accuracy of predictive models.Results: Analysis identified the top 10 candidate factors including depth of submucosal invasion, neutrophil-lymphocyte ratio (NLR), platelet lymphocyte ratio (PLR), platelet-to-neutrophil ratio(PNR), venous invasion, poorly differentiated clusters, tumor budding, grade, lymphatic vascular invasion, and background adenoma. The performance of the GLM achieved the highest AUC of 0.79 (95% confidence interval [CI]: 0.30 to 1.28) in the training cohort and robust AUC of 0.80 (95% confidence interval [CI]: 0.36 to 1.24) in the validation cohort. Meanwhile, the RFC exhibited a robust AUC of 0.84 (95% confidence interval [CI]: 0.40 to 1.28) in the training cohort and a high AUC of 0.85 (95% CI: 0.41 to 1.29) in the validation cohort. DCAs also showed that the RFC had superior predictive ability.Conclusion: Our supervised learning-based model incorporating histopathologic parameters and inflammatory markers showed a more accurate predictive performance compared to the GLM. This newly supervised learning-based predictive model can be used to determine an individually tailored treatment strategy.Keywords: colorectal cancer, pT1NxM0, lymph nodes metastasis, prediction model, machine learning, random forest classifier, generalized linear model
Predicting lymph node metastasis (LNM) after endoscopic resection is crucial in determining whether patients with pT1NxM0 colorectal cancer (CRC) should undergo additional surgery. This study was aimed to develop a predictive model that can be used to reduce the current likelihood of overtreatment.PURPOSEPredicting lymph node metastasis (LNM) after endoscopic resection is crucial in determining whether patients with pT1NxM0 colorectal cancer (CRC) should undergo additional surgery. This study was aimed to develop a predictive model that can be used to reduce the current likelihood of overtreatment.We recruited a total of 1194 consecutive CRC patients with pT1NxM0 who underwent endoscopic or surgical resection at the Gezhouba Central Hospital of Sinopharm between January 1, 2006, and August 31, 2021. The random forest classifier (RFC) and generalized linear algorithm (GLM) were used to screen out the variables that greatly affected the LNM prediction, respectively. The area under the curve (AUC) and decision curve analysis (DCA) were applied to assess the accuracy of predictive models.PATIENTS AND METHODSWe recruited a total of 1194 consecutive CRC patients with pT1NxM0 who underwent endoscopic or surgical resection at the Gezhouba Central Hospital of Sinopharm between January 1, 2006, and August 31, 2021. The random forest classifier (RFC) and generalized linear algorithm (GLM) were used to screen out the variables that greatly affected the LNM prediction, respectively. The area under the curve (AUC) and decision curve analysis (DCA) were applied to assess the accuracy of predictive models.Analysis identified the top 10 candidate factors including depth of submucosal invasion, neutrophil-lymphocyte ratio (NLR), platelet lymphocyte ratio (PLR), platelet-to-neutrophil ratio(PNR), venous invasion, poorly differentiated clusters, tumor budding, grade, lymphatic vascular invasion, and background adenoma. The performance of the GLM achieved the highest AUC of 0.79 (95% confidence interval [CI]: 0.30 to 1.28) in the training cohort and robust AUC of 0.80 (95% confidence interval [CI]: 0.36 to 1.24) in the validation cohort. Meanwhile, the RFC exhibited a robust AUC of 0.84 (95% confidence interval [CI]: 0.40 to 1.28) in the training cohort and a high AUC of 0.85 (95% CI: 0.41 to 1.29) in the validation cohort. DCAs also showed that the RFC had superior predictive ability.RESULTSAnalysis identified the top 10 candidate factors including depth of submucosal invasion, neutrophil-lymphocyte ratio (NLR), platelet lymphocyte ratio (PLR), platelet-to-neutrophil ratio(PNR), venous invasion, poorly differentiated clusters, tumor budding, grade, lymphatic vascular invasion, and background adenoma. The performance of the GLM achieved the highest AUC of 0.79 (95% confidence interval [CI]: 0.30 to 1.28) in the training cohort and robust AUC of 0.80 (95% confidence interval [CI]: 0.36 to 1.24) in the validation cohort. Meanwhile, the RFC exhibited a robust AUC of 0.84 (95% confidence interval [CI]: 0.40 to 1.28) in the training cohort and a high AUC of 0.85 (95% CI: 0.41 to 1.29) in the validation cohort. DCAs also showed that the RFC had superior predictive ability.Our supervised learning-based model incorporating histopathologic parameters and inflammatory markers showed a more accurate predictive performance compared to the GLM. This newly supervised learning-based predictive model can be used to determine an individually tailored treatment strategy.CONCLUSIONOur supervised learning-based model incorporating histopathologic parameters and inflammatory markers showed a more accurate predictive performance compared to the GLM. This newly supervised learning-based predictive model can be used to determine an individually tailored treatment strategy.
Purpose: Predicting lymph node metastasis (LNM) after endoscopic resection is crucial in determining whether patients with pT1NxM0 colorectal cancer (CRC) should undergo additional surgery. This study was aimed to develop a predictive model that can be used to reduce the current likelihood of overtreatment. Patients and Methods: We recruited a total of 1194 consecutive CRC patients with pT1NxM0 who underwent endoscopic or surgical resection at the Gezhouba Central Hospital of Sinopharm between January 1, 2006, and August 31, 2021. The random forest classifier (RFC) and generalized linear algorithm (GLM) were used to screen out the variables that greatly affected the LNM prediction, respectively. The area under the curve (AUC) and decision curve analysis (DCA) were applied to assess the accuracy of predictive models. Results: Analysis identified the top 10 candidate factors including depth of submucosal invasion, neutrophil-lymphocyte ratio (NLR), platelet lymphocyte ratio (PLR), platelet-to-neutrophil ratio(PNR), venous invasion, poorly differentiated clusters, tumor budding, grade, lymphatic vascular invasion, and background adenoma. The performance of the GLM achieved the highest AUC of 0.79 (95% confidence interval [CI]: 0.30 to 1.28) in the training cohort and robust AUC of 0.80 (95% confidence interval [CI]: 0.36 to 1.24) in the validation cohort. Meanwhile, the RFC exhibited a robust AUC of 0.84 (95% confidence interval [CI]: 0.40 to 1.28) in the training cohort and a high AUC of 0.85 (95% CI: 0.41 to 1.29) in the validation cohort. DCAs also showed that the RFC had superior predictive ability. Conclusion: Our supervised learning-based model incorporating histopathologic parameters and inflammatory markers showed a more accurate predictive performance compared to the GLM. This newly supervised learning-based predictive model can be used to determine an individually tailored treatment strategy.
Predicting lymph node metastasis (LNM) after endoscopic resection is crucial in determining whether patients with pT1NxM0 colorectal cancer (CRC) should undergo additional surgery. This study was aimed to develop a predictive model that can be used to reduce the current likelihood of overtreatment. We recruited a total of 1194 consecutive CRC patients with pT1NxM0 who underwent endoscopic or surgical resection at the Gezhouba Central Hospital of Sinopharm between January 1, 2006, and August 31, 2021. The random forest classifier (RFC) and generalized linear algorithm (GLM) were used to screen out the variables that greatly affected the LNM prediction, respectively. The area under the curve (AUC) and decision curve analysis (DCA) were applied to assess the accuracy of predictive models. Analysis identified the top 10 candidate factors including depth of submucosal invasion, neutrophil-lymphocyte ratio (NLR), platelet lymphocyte ratio (PLR), platelet-to-neutrophil ratio(PNR), venous invasion, poorly differentiated clusters, tumor budding, grade, lymphatic vascular invasion, and background adenoma. The performance of the GLM achieved the highest AUC of 0.79 (95% confidence interval [CI]: 0.30 to 1.28) in the training cohort and robust AUC of 0.80 (95% confidence interval [CI]: 0.36 to 1.24) in the validation cohort. Meanwhile, the RFC exhibited a robust AUC of 0.84 (95% confidence interval [CI]: 0.40 to 1.28) in the training cohort and a high AUC of 0.85 (95% CI: 0.41 to 1.29) in the validation cohort. DCAs also showed that the RFC had superior predictive ability. Our supervised learning-based model incorporating histopathologic parameters and inflammatory markers showed a more accurate predictive performance compared to the GLM. This newly supervised learning-based predictive model can be used to determine an individually tailored treatment strategy.
Author Zhou, Haiyan
Ren, Haibing
Tian, Zhe
Feng, Jinwu
Sun, Shulin
Jin, Jinlian
Author_xml – sequence: 1
  givenname: Jinlian
  orcidid: 0000-0002-8615-5251
  surname: Jin
  fullname: Jin, Jinlian
– sequence: 2
  givenname: Haiyan
  surname: Zhou
  fullname: Zhou, Haiyan
– sequence: 3
  givenname: Shulin
  surname: Sun
  fullname: Sun, Shulin
– sequence: 4
  givenname: Zhe
  surname: Tian
  fullname: Tian, Zhe
– sequence: 5
  givenname: Haibing
  surname: Ren
  fullname: Ren, Haibing
– sequence: 6
  givenname: Jinwu
  surname: Feng
  fullname: Feng, Jinwu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34880677$$D View this record in MEDLINE/PubMed
BookMark eNptkktvEzEQx1eoiD7gxhlZ4sKBFD_2FQ6VQlSgUlIqkrs1scepi3e92Lst-ZB8J5ymVG1BsuTxzG_-mvHMYbbX-haz7DWjx5zl1YfpfPL9eCFEVbDyWXbAWDUeMcH53gN7PzuM8YrScsxE_iLbF3ld07KqDrLfi6HDcG0jajJDCK1t1-QTbJ-LTeyxsYqctcZB00Dvw4bMIfzAEMlpCyuHZKLUEKBPhta2t74FRxZDWGNCjQ-kW7LzX3NKpt75gKpP4Sm0CsNHMknOpoOUba9TfsrcRBuJN2R548lFANVblfiLgNqqrTaZe40u3grPNk13Sc6Tg8yxh5iOjS-z5wZcxFd391G2_Hy6nH4dzb59OZtOZiOVV3U_AtClEYVWWptCFBR5XpSKFQpYXfGCMaoLyDWva4ZQp3_iK1NDzegYDQUQR9nZTlZ7uJJdsA2EjfRg5a3Dh7WEkIp3KAU3JZS5qNGYHPhqXJm6QiqKXCvBVlXSGu20hraDzQ04dy_IqNxOWKr0knE34cSf7PhuWDWoFbZ9APeoiMeR1l7Ktb-WdZkX44IngXd3AsH_HDD2srFRoXPQoh-i5CUXtBoXgib07RP0yg8hDWpLpd-oyrRHiXrzsKL7Uv4uWQLe7wAVfIwBzT8dbndYLu475E9wZXvYzj_1Y93_k_4ALtD3Lg
CitedBy_id crossref_primary_10_33878_2073_7556_2024_23_2_184_193
Cites_doi 10.1007/s00384-020-03687-8
10.1002/pst.1963
10.1007/s13277-015-3667-9
10.1111/den.12503
10.4103/aam.aam_56_18
10.1007/s00464-013-2835-5
10.4143/crt.2018.569
10.3390/jcm9082451
10.1007/s00384-020-03738-0
10.1016/j.idm.2019.12.010
10.1093/annonc/mdx224
10.1097/01.DCR.0000083525.97708.B5
10.1055/s-0043-122385
10.1155/2019/6036979
10.1021/acs.est.0c06595
10.2147/CIA.S109285
10.1055/s-0031-1291665
10.1093/carcin/bgp127
10.2147/OTT.S265580
10.1016/S0140-6736(13)61649-9
10.1136/bmj.g7594
10.1177/2374289519873088
10.1007/s00535-015-1057-0
10.1515/ijb-2019-0063
10.1002/sim.8588
10.1007/s00384-020-03752-2
10.1007/s00384-015-2473-6
10.1093/jnci/djp436
10.1016/j.jval.2019.02.012
10.1038/nature01322
10.1111/opo.12131
10.1007/s10350-004-6147-7
10.1038/nature07205
10.1016/j.beth.2020.05.002
10.1023/A:1010933404324
ContentType Journal Article
Copyright 2021 Jin et al.
2021. This work is licensed under https://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 Jin et al. 2021 Jin et al.
Copyright_xml – notice: 2021 Jin et al.
– notice: 2021. This work is licensed under https://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 Jin et al. 2021 Jin et al.
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
K9.
M0S
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.2147/CMAR.S337516
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Publicly Available Content Database
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate Jin et al
EISSN 1179-1322
EndPage 8977
ExternalDocumentID oai_doaj_org_article_32f6a6438eff4a2b97f87e0354dc31b7
10.2147/cmar.s337516
PMC8645952
34880677
10_2147_CMAR_S337516
Genre Journal Article
GrantInformation_xml – fundername: ;
GroupedDBID ---
0YH
29B
2WC
53G
5VS
7X7
8FI
8FJ
8G5
AAYXX
ABUWG
ACGFO
ADBBV
ADRAZ
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
C1A
CCPQU
CITATION
DIK
DWQXO
E3Z
EBD
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GUQSH
GX1
HMCUK
HYE
IAO
IHR
IPNFZ
ITC
KQ8
M2O
M48
M~E
O5R
O5S
OK1
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PUEGO
RIG
RNS
RPM
TDBHL
TR2
UKHRP
VDV
ALIPV
NPM
3V.
7XB
8FK
K9.
MBDVC
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
AQTUD
UNPAY
ID FETCH-LOGICAL-c478t-aad6f35dcddf5350e2456c15ca18725110d5a4d2881ea86772bf8a8109ef0aa3
IEDL.DBID M48
ISSN 1179-1322
IngestDate Fri Oct 03 12:53:22 EDT 2025
Sun Oct 26 03:22:37 EDT 2025
Tue Sep 30 16:58:33 EDT 2025
Thu Sep 04 18:05:25 EDT 2025
Tue Oct 07 06:52:32 EDT 2025
Mon Jul 21 05:44:09 EDT 2025
Wed Oct 01 03:22:53 EDT 2025
Thu Apr 24 23:04:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords generalized linear model
lymph nodes metastasis
pT1NxM0
colorectal cancer
prediction model
random forest classifier
machine learning
Language English
License http://creativecommons.org/licenses/by-nc/3.0
2021 Jin et al.
This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).
cc-by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c478t-aad6f35dcddf5350e2456c15ca18725110d5a4d2881ea86772bf8a8109ef0aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8615-5251
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.2147/CMAR.S337516
PMID 34880677
PQID 2610976488
PQPubID 3933196
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_32f6a6438eff4a2b97f87e0354dc31b7
unpaywall_primary_10_2147_cmar_s337516
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8645952
proquest_miscellaneous_2623079530
proquest_journals_2610976488
pubmed_primary_34880677
crossref_primary_10_2147_CMAR_S337516
crossref_citationtrail_10_2147_CMAR_S337516
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New Zealand
PublicationPlace_xml – name: New Zealand
– name: Macclesfield
PublicationTitle Cancer management and research
PublicationTitleAlternate Cancer Manag Res
PublicationYear 2021
Publisher Taylor & Francis Ltd
Dove
Dove Medical Press
Publisher_xml – name: Taylor & Francis Ltd
– name: Dove
– name: Dove Medical Press
References Collins (ref14) 2015; 350
Park (ref21) 2020; 9
Colotta (ref31) 2009; 30
Mou (ref25) 2013; 27
Brenner (ref1) 2014; 383
Wen (ref3) 2020; 13
Ichimasa (ref12) 2018; 50
Buri (ref16) 2020; 16
Nascimbeni (ref5) 2002; 45
Stojkovic Lalosevic (ref27) 2019; 2019
Saitoh (ref18) 2016; 28
Coussens (ref29) 2002; 420
Brenner (ref7) 2010; 102
Portet (ref17) 2020; 5
Doupe (ref32) 2019; 22
Armstrong (ref15) 2014; 34
Sande (ref36) 2020; 39
Pedersen (ref19) 2020; 35
Breiman (ref34) 2001; 45
Asayama (ref22) 2016; 31
Mantovani (ref30) 2008; 454
Ichimasa (ref10) 2020; 2
Oh (ref20) 2019; 51
Jia (ref26) 2015; 36
Glynne-Jones (ref6) 2017; 28
Muto (ref4) 2003; 46
Suh (ref9) 2012; 44
Chen (ref33) 2020; 54
Cracco (ref24) 2021; 36
Simon (ref2) 2016; 11
Tian (ref8) 2021; 36
Lendrem (ref35) 2019; 18
Rashidi (ref13) 2019; 6
Wada (ref23) 2015; 50
Singh (ref28) 2019; 18
Jiang (ref11) 2020; 51
References_xml – volume: 35
  start-page: 1663
  year: 2020
  ident: ref19
  publication-title: Int J Colorectal Dis
  doi: 10.1007/s00384-020-03687-8
– volume: 18
  start-page: 632
  year: 2019
  ident: ref35
  publication-title: Pharm Stat
  doi: 10.1002/pst.1963
– volume: 36
  start-page: 9319
  year: 2015
  ident: ref26
  publication-title: Tumour Biol
  doi: 10.1007/s13277-015-3667-9
– volume: 28
  start-page: 324
  year: 2016
  ident: ref18
  publication-title: Digestive Endoscopy
  doi: 10.1111/den.12503
– volume: 18
  start-page: 121
  year: 2019
  ident: ref28
  publication-title: Ann Afr Med
  doi: 10.4103/aam.aam_56_18
– volume: 27
  start-page: 2692
  year: 2013
  ident: ref25
  publication-title: Surg Endosc
  doi: 10.1007/s00464-013-2835-5
– volume: 51
  start-page: 1275
  year: 2019
  ident: ref20
  publication-title: Cancer Res Treatment
  doi: 10.4143/crt.2018.569
– volume: 9
  start-page: 2451
  year: 2020
  ident: ref21
  publication-title: J Clin Med
  doi: 10.3390/jcm9082451
– volume: 36
  start-page: 41
  year: 2021
  ident: ref24
  publication-title: Int J Colorectal Dis
  doi: 10.1007/s00384-020-03738-0
– volume: 5
  start-page: 111
  year: 2020
  ident: ref17
  publication-title: Infect Dis Modelling
  doi: 10.1016/j.idm.2019.12.010
– volume: 2
  start-page: 548
  year: 2020
  ident: ref10
  publication-title: Gut Liver
– volume: 28
  start-page: iv22
  year: 2017
  ident: ref6
  publication-title: Ann Oncol
  doi: 10.1093/annonc/mdx224
– volume: 46
  start-page: S89
  year: 2003
  ident: ref4
  publication-title: Dis Colon Rectum
  doi: 10.1097/01.DCR.0000083525.97708.B5
– volume: 50
  start-page: 230
  year: 2018
  ident: ref12
  publication-title: Endoscopy
  doi: 10.1055/s-0043-122385
– volume: 2019
  start-page: 6036979
  year: 2019
  ident: ref27
  publication-title: Dis Markers
  doi: 10.1155/2019/6036979
– volume: 54
  start-page: 15698
  year: 2020
  ident: ref33
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.0c06595
– volume: 11
  start-page: 967
  year: 2016
  ident: ref2
  publication-title: Clin Interv Aging
  doi: 10.2147/CIA.S109285
– volume: 44
  start-page: 590
  year: 2012
  ident: ref9
  publication-title: Endoscopy
  doi: 10.1055/s-0031-1291665
– volume: 30
  start-page: 1073
  year: 2009
  ident: ref31
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgp127
– volume: 13
  start-page: 10851
  year: 2020
  ident: ref3
  publication-title: Onco Targets Ther
  doi: 10.2147/OTT.S265580
– volume: 383
  start-page: 1490
  year: 2014
  ident: ref1
  publication-title: Lancet
  doi: 10.1016/S0140-6736(13)61649-9
– volume: 350
  start-page: g7594
  year: 2015
  ident: ref14
  publication-title: BMJ
  doi: 10.1136/bmj.g7594
– volume: 6
  start-page: 2374289519873088
  year: 2019
  ident: ref13
  publication-title: Acad Pathol
  doi: 10.1177/2374289519873088
– volume: 50
  start-page: 727
  year: 2015
  ident: ref23
  publication-title: J Gastroenterol
  doi: 10.1007/s00535-015-1057-0
– volume: 16
  year: 2020
  ident: ref16
  publication-title: Int J Biostat
  doi: 10.1515/ijb-2019-0063
– volume: 39
  start-page: 2980
  year: 2020
  ident: ref36
  publication-title: Stat Med
  doi: 10.1002/sim.8588
– volume: 36
  start-page: 457
  year: 2021
  ident: ref8
  publication-title: Int J Colorectal Dis
  doi: 10.1007/s00384-020-03752-2
– volume: 31
  start-page: 571
  year: 2016
  ident: ref22
  publication-title: Int J Colorectal Dis
  doi: 10.1007/s00384-015-2473-6
– volume: 102
  start-page: 89
  year: 2010
  ident: ref7
  publication-title: J Natl Cancer Inst
  doi: 10.1093/jnci/djp436
– volume: 22
  start-page: 808
  year: 2019
  ident: ref32
  publication-title: Value Health
  doi: 10.1016/j.jval.2019.02.012
– volume: 420
  start-page: 860
  year: 2002
  ident: ref29
  publication-title: Nature
  doi: 10.1038/nature01322
– volume: 34
  start-page: 502
  year: 2014
  ident: ref15
  publication-title: Ophthalmic Physiol Optics
  doi: 10.1111/opo.12131
– volume: 45
  start-page: 200
  year: 2002
  ident: ref5
  publication-title: Dis Colon Rectum
  doi: 10.1007/s10350-004-6147-7
– volume: 454
  start-page: 436
  year: 2008
  ident: ref30
  publication-title: Nature
  doi: 10.1038/nature07205
– volume: 51
  start-page: 675
  year: 2020
  ident: ref11
  publication-title: Behav Ther
  doi: 10.1016/j.beth.2020.05.002
– volume: 45
  start-page: 5
  year: 2001
  ident: ref34
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
SSID ssj0069134
Score 2.2108264
Snippet Predicting lymph node metastasis (LNM) after endoscopic resection is crucial in determining whether patients with pT1NxM0 colorectal cancer (CRC) should...
Purpose: Predicting lymph node metastasis (LNM) after endoscopic resection is crucial in determining whether patients with pT1NxM0 colorectal cancer (CRC)...
Jinlian Jin, Haiyan Zhou, Shulin Sun, Zhe Tian, Haibing Ren, Jinwu Feng Department of Gastroenterology, The Third Clinical Medical College of China Three...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 8967
SubjectTerms Artificial intelligence
Cancer therapies
Colorectal cancer
Decision making
Dissection
Endoscopy
generalized linear model
lymph nodes metastasis
Lymphatic system
machine learning
Medical records
Metastasis
Mortality
Original Research
Patients
prediction model
pt1nxm0
random forest classifier
Statistical analysis
Surgery
Variables
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQHoAL4k1gQYMEXFDYJI4Th1s22tWCaA-0SHuLHD-gUkmrbatlfyT_iZk4Ka0WxIVbEjuRNfNlPPaMv2HslSu44y6PQo3uRogznghVYePQ6lzHrilU3EVMR-Ps7Ev68Vyc75T6opwwTw_sBXfEE5cpnDaldS5VSVPkTuY24iI1msdNd448ksWwmPI2OBviyQi3kNZbPuWdavIcVaPy87sJ57mgGuc7k1HH2f8nR_N6vuStTbtUV5dqPt-ZjE7vsju9FwmlH_09dsO299nNUR8nf8B-TjZLMgIra6BnUP0Kx4puPUX5TMOH1iEavndRdqAjO-gIwkl3lApKrTfEIQGlMTO_WwgTf4Aa0MuF5TQe_xhFUKHpJJOJzRXB5-I9lFD9JhSHgfMEFg6mlwvw9EiIC7yi0dK3geqxzVfdhz9dIbpgjA9gZNcKXVd8-SGbnp5Mq7OwL9wQ6jSX61ApkzkujDbGCS4iS9FVHQtNmqc1TWSESk0iZWwVEeoljZNKxlFhXaQUf8QO2kVrnzBw2jiN2ucqkyliSCGQeNY0QlqTcOMC9nZQYK17UnOqrTGvcXFD6q5J3XWv7oC93vZeejKPv_Q7Jixs-xAFd_cAgVn3wKz_BcyAHQ5Iqnu7sKoTYrfPM7SaAXu5bcY_msI0qrWLDfWh5PxC8Chgjz3wtiPhZG9RYAHL9yC5N9T9lnb2rWMNl0QbJJKAvdmC95oQNN7VKy-Ep_9DCM_Y7YSSgLo9q0N2sL7Y2Ofoxa2bF90P-wulu0h-
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3bbtNAEF2VVAJeEHcMBQ0S8IJMba_XdpAQSqxUBeEINUHqm7XeS4kU7JCLSj-Sf2LGl7RRgTfbu7ZGO2dnxzuzZxh7Zfvccht7rkJ3w8UVT7iyb3zXqFj5tuhLv46YZuPo-Fv4-VSc7rFxdxaG0io7m1gbal0p2iM_DIgXPI4Qbx8XP12qGkXR1a6EhmxLK-gPNcXYDbYfEDNWj-0PR-OvJ51tjijO3KS_U32ewzQbnLybcB4Lqnd-ZWGq-fv_5nRez528tSkX8uJczudXFqaju-xO61HCoIHAPbZnyvvsZtbGzB-w35PNggzCymho2VTPYCjptqErnyn4VFpExo864g50fAedQhjVx6pgoNSG-CRgoPWs2TmESXOYGtDjhcXUH__KPEjRjJL5xOaUoLR8DwNIL8nFoeM_gcrC9LyChioJMYJXJC19G6g223xVf_jLBSINxvgAMrOW6Mbiyw_Z9Gg0TY_dtoiDq8I4WbtS6shyoZXWVnDhGYq0Kl8oQgH933hayFAHSeIbSeR6QWETmaCyjfWk5I9Yr6xK84SBVdoqdKC4jJIQ8SQRVDwqCpEYHXBtHfa2U2CuWoJzqrMxz_FHh9Sdk7rzVt0Oe73tvWiIPf7Rb0hY2PYhOu76QbU8y9vZnfPARhJFS4y1oQyKfmyT2HhchFpxv4gddtAhKW9txCq_RLTDXm6bcXZTyEaWptpQH0rU7wvuOexxA7ytJJxsLw6Yw-IdSO6IuttSzr7XDOIJUQiJwGFvtuC9NggK7_JVMwhP_y__M3Y7oFSfemfqgPXWy415jr7aunjRTsA_uhBEkQ
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF5VqQRceD9cClok4IKc2l6vH9zcqFVBJEIklcrJWu-jRE3tKLEp5T_yn5jxOqGhIMHN8U6stfXN7OzOzDeEvDQpM8zEnivB3XBhxeOuSLXvahlL3xSp8NuI6XAUHR2H70_4yRYJVrUwmFapqq82C9SeJukaKYpasgi8AAMGOoFl49sRB_-7R7aPRx-zz7aLSuri9spmuGMLnj15Lhb9JWMxx5bmV9aelqL_T37l9fTIm005F5cXYja7svYc3rH1gMuWshBTTs76TV305fffCB3_77XuktudK0ozi517ZEuX98mNYRdsf0B-jJs5WpKlVrSjYT2l-wJ_Wp7zqaTvSgOQOm9D9RTrfsCbpAdtPRbNpGyQiIJmSk3tkSMd2ypsCq4ynU_80behRwdgf9HuwvAAMbh4SzM6-MVKTlfEKbQydHJRUcuxBOCCK5wtPptiU7fZsn3wh0uAKB3BDTrUtQD_F_78kEwODyaDI7fr_uDKME5qVwgVGcaVVMpwxj2NIVrpc4nwwY2Rp7gIVZAkvhbIyhcUJhGJ76XaeEKwR6RXVqV-QqiRykjwvJiIkhCAKACNLCoKnmgVMGUc8mYFi1x2zOjYoGOWww4JQZQPhtmnfGxB5JBXa-m5ZQT5i9w-Imwtgzze7Y1qcZp3ZiFngYkETC3RxoQiKNLYJLH2GA-VZH4RO2R3hc-8My7LPECK_DgC0-uQF-thMAsY6xGlrhqUwQz_lDPPIY8tnNczYWi04YM5JN4A-sZUN0fK6ZeWejxB7iEeOOT1WiWufQTUuLzTuJ1_FXxKbgWYLdQebu2SXr1o9DNw9-rieaffPwHk2lzj
  priority: 102
  providerName: Unpaywall
Title Supervised Learning Based Systemic Inflammatory Markers Enable Accurate Additional Surgery for pT1NxM0 Colorectal Cancer: A Comparative Analysis of Two Practical Prediction Models for Lymph Node Metastasis
URI https://www.ncbi.nlm.nih.gov/pubmed/34880677
https://www.proquest.com/docview/2610976488
https://www.proquest.com/docview/2623079530
https://pubmed.ncbi.nlm.nih.gov/PMC8645952
https://www.dovepress.com/getfile.php?fileID=76371
https://doaj.org/article/32f6a6438eff4a2b97f87e0354dc31b7
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1179-1322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0069134
  issn: 1179-1322
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 1179-1322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0069134
  issn: 1179-1322
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1179-1322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0069134
  issn: 1179-1322
  databaseCode: DIK
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1179-1322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0069134
  issn: 1179-1322
  databaseCode: GX1
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1179-1322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0069134
  issn: 1179-1322
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1179-1322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0069134
  issn: 1179-1322
  databaseCode: RPM
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1179-1322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0069134
  issn: 1179-1322
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1179-1322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0069134
  issn: 1179-1322
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1179-1322
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0069134
  issn: 1179-1322
  databaseCode: M48
  dateStart: 20090901
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAWR
  databaseName: Taylor & Francis Open Access
  customDbUrl:
  eissn: 1179-1322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0069134
  issn: 1179-1322
  databaseCode: 0YH
  dateStart: 20090601
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFLZ2kYAXxJ3AqIwEe0EZSZzECRJCadUxEKmmtZXKU-T4MiqVtOtFW38k_4lzkjRQdfBSJbFrHdmfj499jr9DyBsTM8MMd2wJ5oYNK15gi1i7tpZcuiaPhVt6TNNeeDb0v46C0R7ZxM_XHbi4dWuH-aSG88nJzdX6E0z4jxjG7Pr8fSdNLk76jPHADY9nVzamlELXa51fY58cwrIVY16H1G9cDCG6nKtI-J1Gttaoksr_NvtzN4zy7qqYifW1mEz-WqNOH5D7tXFJkwoND8meLh6RO2ntPn9MfvVXM9QNC61oTax6SdsCXyvm8rGkXwoDIPlZOt8p3uQB-5B2yxtWNJFyhdQSNFFqXB0i0n51r5qC8UtnA7d3kzq0AxoVNSkUdxBV8w80oZ0_PON0Q4VCp4YOrqe0Yk0CuMATSottU0zTNlmUDX9bA-hoDz7QVC8FWLTw5ydkcNoddM7sOp-DLX0eLW0hVGhYoKRSJmCBo9HpKt1AIiBwq-OoQPjKiyJXC-TZ83ITich1Ym0cIdhTclBMC_2cUCOVkWBLMRFGPkBLAL5YmOdBpJXHlLHIu80AZrLmOseUG5MM9jw43BkOd1YPt0XeNrVnFcfHP-q1EQtNHWTmLj9M55dZPdEz5plQgGiRNsYXXh5zE3HtsMBXkrk5t8jRBknZBu2Zh6T3PARlapHXTTFMdPTeiEJPV1gHY_bjgDkWeVYBr5GEoRqGDrMI34LklqjbJcX4R0kmHiGbUOBZ5LgB704nSHjLFlUnvPi__C_JPQ-jfspDqiNysJyv9Csw25Z5i-zzEW-Rw3a3d37RKg8_4PfzyG2VExNKhr3z5PtvFNFN2A
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEF2VVqK8IO4YCiwS5QWZ2l6vL0gVSkKqhCYRaoLUN2u9lxIp2CEXhXwcn8A_MeNL2qjAW99i78Ya7Zydnd3ZOUPIGxMzw0zo2BLcDRtWPG6LWLu2lqF0TRoLt4iY9gdB56v_-Zyf75BfdS4MXqusbWJhqFUu8Yz8yENe8DAAvH2c_rCxahRGV-sSGqIqraCOC4qxKrHjVK9XsIWbH3c_gb4PPe-kPWp17KrKgC39MFrYQqjAMK6kUoYz7mgMBUqXSxQTHXBHceErL4pcLZD9zUtNJCKQRhtHCAafvUX2fObHsPfba7YHX87qpSDAsHZ52x7LAR21-o2z90PGQo7l1a-sg0W5gL_5uNevau4vs6lYr8RkcmUdPLlH7lYOLG2UiLtPdnT2gNzuVyH6h-T3cDlF-zPXilbkrRe0KfCxZEcfS9rNDADxexHgp5gtBD4obRdZXLQh5RLpK2hDqXF5UEmHZe42BQebTkfu4GffoS2w2mitobmFyJ19oA3auuQypzXdCs0NHa1yWjIzASThF0qL36ZYCm4yLz7cWwOw6QBe0L5eCPCa4c-PyOgmtPmY7GZ5pp8SaqQyEvw1JoLIB_gKwDAL0pRHWnlMGYu8qxWYyIpPHct6TBLYV6G6E1R3UqnbIoeb3tOSR-Qf_ZqIhU0fZP8uXuSzi6QyJgnzTCBAtEgb4wsvjUMThdph3FeSuWlokYMaSUllkubJ5QSyyOtNMxgTjBCJTOdL7IN5ATFnjkWelMDbSMLQ1MOAWSTcguSWqNst2fhbQVgeIWMR9yzydgPea4Mg4SmZl4Pw7P_yvyL7nVG_l_S6g9Pn5I6Ht4yKQ7EDsruYLfULcBMX6ctqMlKS3PD0_wMaooEz
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkAYviDuBAUZivKDQJI6TFAmhrlu1srVCtEh9ixxfRqWShF5U-tP4Efwnzsltqwa87a2JXevE5_PxsY_9HUJemzYzzISOLcHdsGHG47Zoa9fWMpSuSdrCLSKmg2Fw8tX_NOGTHfKrvguDxyprm1gYapVJ3CNvecgLHgaAt5apjkV8Pup9zH_YmEEKI611Oo0SIqd6s4bl2-JD_wh0feB5veNx98SuMgzY0g-jpS2ECgzjSiplOOOOxjCgdLlEEdH5dhQXvvKiyNUCmd-8xEQiAkm0cYRg0OwNcjNk8IkwlMJJs9YLMKBdnrPHRECt7qDz5d2IsZBjYvVLM2CRKOBv3u3VQ5q3VmkuNmsxm12aAXt3yZ3KdaWdEmv3yI5O75O9QRWcf0B-j1Y5Wp6FVrSibT2nhwIfS170qaT91AAEvxehfYr3hMD7pMfF_S3akXKFxBW0o9S03KKko_LWNgXXmuZjd_hz4NAu2Gu001DcRczO39MO7V6wmNOaaIVmho7XGS05mQCM8AulxbYpJoGbLYqGzzYAaTqEF3SglwL8ZfjzQzK-Dl0-IrtpluonhBqpjARPjYkg8gG4AtDLgiThkVYeU8Yib2sFxrJiUseEHrMYVlSo7hjVHVfqtshBUzsvGUT-Ue8QsdDUQd7v4kU2P48rMxIzzwQCRIu0Mb7wknZoolA7jPtKMjcJLbJfIymujNEivhg6FnnVFIMZwdiQSHW2wjp4I6DNmWORxyXwGkkYGnnoMIuEW5DcEnW7JJ1-K6jKI-Qq4p5F3jTgvdIJEp7iRdkJT_8v_0uyB4M-PusPT5-R2x4eLyp2w_bJ7nK-0s_BP1wmL4qRSEl8zSP_D6ryfs0
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF5VqQRceD9cClok4IKc2l6vH9zcqFVBJEIklcrJWu-jRE3tKLEp5T_yn5jxOqGhIMHN8U6stfXN7OzOzDeEvDQpM8zEnivB3XBhxeOuSLXvahlL3xSp8NuI6XAUHR2H70_4yRYJVrUwmFapqq82C9SeJukaKYpasgi8AAMGOoFl49sRB_-7R7aPRx-zz7aLSuri9spmuGMLnj15Lhb9JWMxx5bmV9aelqL_T37l9fTIm005F5cXYja7svYc3rH1gMuWshBTTs76TV305fffCB3_77XuktudK0ozi517ZEuX98mNYRdsf0B-jJs5WpKlVrSjYT2l-wJ_Wp7zqaTvSgOQOm9D9RTrfsCbpAdtPRbNpGyQiIJmSk3tkSMd2ypsCq4ynU_80behRwdgf9HuwvAAMbh4SzM6-MVKTlfEKbQydHJRUcuxBOCCK5wtPptiU7fZsn3wh0uAKB3BDTrUtQD_F_78kEwODyaDI7fr_uDKME5qVwgVGcaVVMpwxj2NIVrpc4nwwY2Rp7gIVZAkvhbIyhcUJhGJ76XaeEKwR6RXVqV-QqiRykjwvJiIkhCAKACNLCoKnmgVMGUc8mYFi1x2zOjYoGOWww4JQZQPhtmnfGxB5JBXa-m5ZQT5i9w-Imwtgzze7Y1qcZp3ZiFngYkETC3RxoQiKNLYJLH2GA-VZH4RO2R3hc-8My7LPECK_DgC0-uQF-thMAsY6xGlrhqUwQz_lDPPIY8tnNczYWi04YM5JN4A-sZUN0fK6ZeWejxB7iEeOOT1WiWufQTUuLzTuJ1_FXxKbgWYLdQebu2SXr1o9DNw9-rieaffPwHk2lzj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Supervised+Learning+Based+Systemic+Inflammatory+Markers+Enable+Accurate+Additional+Surgery+for+pT1NxM0+Colorectal+Cancer%3A+A+Comparative+Analysis+of+Two+Practical+Prediction+Models+for+Lymph+Node+Metastasis&rft.jtitle=Cancer+management+and+research&rft.au=Jin%2C+Jinlian&rft.au=Zhou%2C+Haiyan&rft.au=Sun%2C+Shulin&rft.au=Tian%2C+Zhe&rft.date=2021-01-01&rft.pub=Taylor+%26+Francis+Ltd&rft.eissn=1179-1322&rft.volume=13&rft.spage=8967&rft_id=info:doi/10.2147%2FCMAR.S337516&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1179-1322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1179-1322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1179-1322&client=summon