Supervised Learning Based Systemic Inflammatory Markers Enable Accurate Additional Surgery for pT1NxM0 Colorectal Cancer: A Comparative Analysis of Two Practical Prediction Models for Lymph Node Metastasis
Predicting lymph node metastasis (LNM) after endoscopic resection is crucial in determining whether patients with pT1NxM0 colorectal cancer (CRC) should undergo additional surgery. This study was aimed to develop a predictive model that can be used to reduce the current likelihood of overtreatment....
Saved in:
| Published in | Cancer management and research Vol. 13; pp. 8967 - 8977 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New Zealand
Taylor & Francis Ltd
01.01.2021
Dove Dove Medical Press |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1179-1322 1179-1322 |
| DOI | 10.2147/CMAR.S337516 |
Cover
| Abstract | Predicting lymph node metastasis (LNM) after endoscopic resection is crucial in determining whether patients with pT1NxM0 colorectal cancer (CRC) should undergo additional surgery. This study was aimed to develop a predictive model that can be used to reduce the current likelihood of overtreatment.
We recruited a total of 1194 consecutive CRC patients with pT1NxM0 who underwent endoscopic or surgical resection at the Gezhouba Central Hospital of Sinopharm between January 1, 2006, and August 31, 2021. The random forest classifier (RFC) and generalized linear algorithm (GLM) were used to screen out the variables that greatly affected the LNM prediction, respectively. The area under the curve (AUC) and decision curve analysis (DCA) were applied to assess the accuracy of predictive models.
Analysis identified the top 10 candidate factors including depth of submucosal invasion, neutrophil-lymphocyte ratio (NLR), platelet lymphocyte ratio (PLR), platelet-to-neutrophil ratio(PNR), venous invasion, poorly differentiated clusters, tumor budding, grade, lymphatic vascular invasion, and background adenoma. The performance of the GLM achieved the highest AUC of 0.79 (95% confidence interval [CI]: 0.30 to 1.28) in the training cohort and robust AUC of 0.80 (95% confidence interval [CI]: 0.36 to 1.24) in the validation cohort. Meanwhile, the RFC exhibited a robust AUC of 0.84 (95% confidence interval [CI]: 0.40 to 1.28) in the training cohort and a high AUC of 0.85 (95% CI: 0.41 to 1.29) in the validation cohort. DCAs also showed that the RFC had superior predictive ability.
Our supervised learning-based model incorporating histopathologic parameters and inflammatory markers showed a more accurate predictive performance compared to the GLM. This newly supervised learning-based predictive model can be used to determine an individually tailored treatment strategy. |
|---|---|
| AbstractList | Jinlian Jin, Haiyan Zhou, Shulin Sun, Zhe Tian, Haibing Ren, Jinwu Feng Department of Gastroenterology, The Third Clinical Medical College of China Three Gorges University, Gezhouba Central Hospital of Sinopharm, Yichang, Hubei, 443002, People’s Republic of ChinaCorrespondence: Jinlian JinDepartment of Gastroenterology, The Third Clinical Medical College of China Three Gorges University, Gezhouba Central Hospital of Sinopharm, No. 60, Qiaohu 1st Road, Xiling District, Yichang, Hubei, 443002, People’s Republic of ChinaTel +8613986746553Email jjl7475@163.comPurpose: Predicting lymph node metastasis (LNM) after endoscopic resection is crucial in determining whether patients with pT1NxM0 colorectal cancer (CRC) should undergo additional surgery. This study was aimed to develop a predictive model that can be used to reduce the current likelihood of overtreatment.Patients and Methods: We recruited a total of 1194 consecutive CRC patients with pT1NxM0 who underwent endoscopic or surgical resection at the Gezhouba Central Hospital of Sinopharm between January 1, 2006, and August 31, 2021. The random forest classifier (RFC) and generalized linear algorithm (GLM) were used to screen out the variables that greatly affected the LNM prediction, respectively. The area under the curve (AUC) and decision curve analysis (DCA) were applied to assess the accuracy of predictive models.Results: Analysis identified the top 10 candidate factors including depth of submucosal invasion, neutrophil-lymphocyte ratio (NLR), platelet lymphocyte ratio (PLR), platelet-to-neutrophil ratio(PNR), venous invasion, poorly differentiated clusters, tumor budding, grade, lymphatic vascular invasion, and background adenoma. The performance of the GLM achieved the highest AUC of 0.79 (95% confidence interval [CI]: 0.30 to 1.28) in the training cohort and robust AUC of 0.80 (95% confidence interval [CI]: 0.36 to 1.24) in the validation cohort. Meanwhile, the RFC exhibited a robust AUC of 0.84 (95% confidence interval [CI]: 0.40 to 1.28) in the training cohort and a high AUC of 0.85 (95% CI: 0.41 to 1.29) in the validation cohort. DCAs also showed that the RFC had superior predictive ability.Conclusion: Our supervised learning-based model incorporating histopathologic parameters and inflammatory markers showed a more accurate predictive performance compared to the GLM. This newly supervised learning-based predictive model can be used to determine an individually tailored treatment strategy.Keywords: colorectal cancer, pT1NxM0, lymph nodes metastasis, prediction model, machine learning, random forest classifier, generalized linear model Predicting lymph node metastasis (LNM) after endoscopic resection is crucial in determining whether patients with pT1NxM0 colorectal cancer (CRC) should undergo additional surgery. This study was aimed to develop a predictive model that can be used to reduce the current likelihood of overtreatment.PURPOSEPredicting lymph node metastasis (LNM) after endoscopic resection is crucial in determining whether patients with pT1NxM0 colorectal cancer (CRC) should undergo additional surgery. This study was aimed to develop a predictive model that can be used to reduce the current likelihood of overtreatment.We recruited a total of 1194 consecutive CRC patients with pT1NxM0 who underwent endoscopic or surgical resection at the Gezhouba Central Hospital of Sinopharm between January 1, 2006, and August 31, 2021. The random forest classifier (RFC) and generalized linear algorithm (GLM) were used to screen out the variables that greatly affected the LNM prediction, respectively. The area under the curve (AUC) and decision curve analysis (DCA) were applied to assess the accuracy of predictive models.PATIENTS AND METHODSWe recruited a total of 1194 consecutive CRC patients with pT1NxM0 who underwent endoscopic or surgical resection at the Gezhouba Central Hospital of Sinopharm between January 1, 2006, and August 31, 2021. The random forest classifier (RFC) and generalized linear algorithm (GLM) were used to screen out the variables that greatly affected the LNM prediction, respectively. The area under the curve (AUC) and decision curve analysis (DCA) were applied to assess the accuracy of predictive models.Analysis identified the top 10 candidate factors including depth of submucosal invasion, neutrophil-lymphocyte ratio (NLR), platelet lymphocyte ratio (PLR), platelet-to-neutrophil ratio(PNR), venous invasion, poorly differentiated clusters, tumor budding, grade, lymphatic vascular invasion, and background adenoma. The performance of the GLM achieved the highest AUC of 0.79 (95% confidence interval [CI]: 0.30 to 1.28) in the training cohort and robust AUC of 0.80 (95% confidence interval [CI]: 0.36 to 1.24) in the validation cohort. Meanwhile, the RFC exhibited a robust AUC of 0.84 (95% confidence interval [CI]: 0.40 to 1.28) in the training cohort and a high AUC of 0.85 (95% CI: 0.41 to 1.29) in the validation cohort. DCAs also showed that the RFC had superior predictive ability.RESULTSAnalysis identified the top 10 candidate factors including depth of submucosal invasion, neutrophil-lymphocyte ratio (NLR), platelet lymphocyte ratio (PLR), platelet-to-neutrophil ratio(PNR), venous invasion, poorly differentiated clusters, tumor budding, grade, lymphatic vascular invasion, and background adenoma. The performance of the GLM achieved the highest AUC of 0.79 (95% confidence interval [CI]: 0.30 to 1.28) in the training cohort and robust AUC of 0.80 (95% confidence interval [CI]: 0.36 to 1.24) in the validation cohort. Meanwhile, the RFC exhibited a robust AUC of 0.84 (95% confidence interval [CI]: 0.40 to 1.28) in the training cohort and a high AUC of 0.85 (95% CI: 0.41 to 1.29) in the validation cohort. DCAs also showed that the RFC had superior predictive ability.Our supervised learning-based model incorporating histopathologic parameters and inflammatory markers showed a more accurate predictive performance compared to the GLM. This newly supervised learning-based predictive model can be used to determine an individually tailored treatment strategy.CONCLUSIONOur supervised learning-based model incorporating histopathologic parameters and inflammatory markers showed a more accurate predictive performance compared to the GLM. This newly supervised learning-based predictive model can be used to determine an individually tailored treatment strategy. Purpose: Predicting lymph node metastasis (LNM) after endoscopic resection is crucial in determining whether patients with pT1NxM0 colorectal cancer (CRC) should undergo additional surgery. This study was aimed to develop a predictive model that can be used to reduce the current likelihood of overtreatment. Patients and Methods: We recruited a total of 1194 consecutive CRC patients with pT1NxM0 who underwent endoscopic or surgical resection at the Gezhouba Central Hospital of Sinopharm between January 1, 2006, and August 31, 2021. The random forest classifier (RFC) and generalized linear algorithm (GLM) were used to screen out the variables that greatly affected the LNM prediction, respectively. The area under the curve (AUC) and decision curve analysis (DCA) were applied to assess the accuracy of predictive models. Results: Analysis identified the top 10 candidate factors including depth of submucosal invasion, neutrophil-lymphocyte ratio (NLR), platelet lymphocyte ratio (PLR), platelet-to-neutrophil ratio(PNR), venous invasion, poorly differentiated clusters, tumor budding, grade, lymphatic vascular invasion, and background adenoma. The performance of the GLM achieved the highest AUC of 0.79 (95% confidence interval [CI]: 0.30 to 1.28) in the training cohort and robust AUC of 0.80 (95% confidence interval [CI]: 0.36 to 1.24) in the validation cohort. Meanwhile, the RFC exhibited a robust AUC of 0.84 (95% confidence interval [CI]: 0.40 to 1.28) in the training cohort and a high AUC of 0.85 (95% CI: 0.41 to 1.29) in the validation cohort. DCAs also showed that the RFC had superior predictive ability. Conclusion: Our supervised learning-based model incorporating histopathologic parameters and inflammatory markers showed a more accurate predictive performance compared to the GLM. This newly supervised learning-based predictive model can be used to determine an individually tailored treatment strategy. Predicting lymph node metastasis (LNM) after endoscopic resection is crucial in determining whether patients with pT1NxM0 colorectal cancer (CRC) should undergo additional surgery. This study was aimed to develop a predictive model that can be used to reduce the current likelihood of overtreatment. We recruited a total of 1194 consecutive CRC patients with pT1NxM0 who underwent endoscopic or surgical resection at the Gezhouba Central Hospital of Sinopharm between January 1, 2006, and August 31, 2021. The random forest classifier (RFC) and generalized linear algorithm (GLM) were used to screen out the variables that greatly affected the LNM prediction, respectively. The area under the curve (AUC) and decision curve analysis (DCA) were applied to assess the accuracy of predictive models. Analysis identified the top 10 candidate factors including depth of submucosal invasion, neutrophil-lymphocyte ratio (NLR), platelet lymphocyte ratio (PLR), platelet-to-neutrophil ratio(PNR), venous invasion, poorly differentiated clusters, tumor budding, grade, lymphatic vascular invasion, and background adenoma. The performance of the GLM achieved the highest AUC of 0.79 (95% confidence interval [CI]: 0.30 to 1.28) in the training cohort and robust AUC of 0.80 (95% confidence interval [CI]: 0.36 to 1.24) in the validation cohort. Meanwhile, the RFC exhibited a robust AUC of 0.84 (95% confidence interval [CI]: 0.40 to 1.28) in the training cohort and a high AUC of 0.85 (95% CI: 0.41 to 1.29) in the validation cohort. DCAs also showed that the RFC had superior predictive ability. Our supervised learning-based model incorporating histopathologic parameters and inflammatory markers showed a more accurate predictive performance compared to the GLM. This newly supervised learning-based predictive model can be used to determine an individually tailored treatment strategy. |
| Author | Zhou, Haiyan Ren, Haibing Tian, Zhe Feng, Jinwu Sun, Shulin Jin, Jinlian |
| Author_xml | – sequence: 1 givenname: Jinlian orcidid: 0000-0002-8615-5251 surname: Jin fullname: Jin, Jinlian – sequence: 2 givenname: Haiyan surname: Zhou fullname: Zhou, Haiyan – sequence: 3 givenname: Shulin surname: Sun fullname: Sun, Shulin – sequence: 4 givenname: Zhe surname: Tian fullname: Tian, Zhe – sequence: 5 givenname: Haibing surname: Ren fullname: Ren, Haibing – sequence: 6 givenname: Jinwu surname: Feng fullname: Feng, Jinwu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34880677$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkktvEzEQx1eoiD7gxhlZ4sKBFD_2FQ6VQlSgUlIqkrs1scepi3e92Lst-ZB8J5ymVG1BsuTxzG_-mvHMYbbX-haz7DWjx5zl1YfpfPL9eCFEVbDyWXbAWDUeMcH53gN7PzuM8YrScsxE_iLbF3ld07KqDrLfi6HDcG0jajJDCK1t1-QTbJ-LTeyxsYqctcZB00Dvw4bMIfzAEMlpCyuHZKLUEKBPhta2t74FRxZDWGNCjQ-kW7LzX3NKpt75gKpP4Sm0CsNHMknOpoOUba9TfsrcRBuJN2R548lFANVblfiLgNqqrTaZe40u3grPNk13Sc6Tg8yxh5iOjS-z5wZcxFd391G2_Hy6nH4dzb59OZtOZiOVV3U_AtClEYVWWptCFBR5XpSKFQpYXfGCMaoLyDWva4ZQp3_iK1NDzegYDQUQR9nZTlZ7uJJdsA2EjfRg5a3Dh7WEkIp3KAU3JZS5qNGYHPhqXJm6QiqKXCvBVlXSGu20hraDzQ04dy_IqNxOWKr0knE34cSf7PhuWDWoFbZ9APeoiMeR1l7Ktb-WdZkX44IngXd3AsH_HDD2srFRoXPQoh-i5CUXtBoXgib07RP0yg8hDWpLpd-oyrRHiXrzsKL7Uv4uWQLe7wAVfIwBzT8dbndYLu475E9wZXvYzj_1Y93_k_4ALtD3Lg |
| CitedBy_id | crossref_primary_10_33878_2073_7556_2024_23_2_184_193 |
| Cites_doi | 10.1007/s00384-020-03687-8 10.1002/pst.1963 10.1007/s13277-015-3667-9 10.1111/den.12503 10.4103/aam.aam_56_18 10.1007/s00464-013-2835-5 10.4143/crt.2018.569 10.3390/jcm9082451 10.1007/s00384-020-03738-0 10.1016/j.idm.2019.12.010 10.1093/annonc/mdx224 10.1097/01.DCR.0000083525.97708.B5 10.1055/s-0043-122385 10.1155/2019/6036979 10.1021/acs.est.0c06595 10.2147/CIA.S109285 10.1055/s-0031-1291665 10.1093/carcin/bgp127 10.2147/OTT.S265580 10.1016/S0140-6736(13)61649-9 10.1136/bmj.g7594 10.1177/2374289519873088 10.1007/s00535-015-1057-0 10.1515/ijb-2019-0063 10.1002/sim.8588 10.1007/s00384-020-03752-2 10.1007/s00384-015-2473-6 10.1093/jnci/djp436 10.1016/j.jval.2019.02.012 10.1038/nature01322 10.1111/opo.12131 10.1007/s10350-004-6147-7 10.1038/nature07205 10.1016/j.beth.2020.05.002 10.1023/A:1010933404324 |
| ContentType | Journal Article |
| Copyright | 2021 Jin et al. 2021. This work is licensed under https://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 Jin et al. 2021 Jin et al. |
| Copyright_xml | – notice: 2021 Jin et al. – notice: 2021. This work is licensed under https://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 Jin et al. 2021 Jin et al. |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH K9. M0S M2O MBDVC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.2147/CMAR.S337516 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| DocumentTitleAlternate | Jin et al |
| EISSN | 1179-1322 |
| EndPage | 8977 |
| ExternalDocumentID | oai_doaj_org_article_32f6a6438eff4a2b97f87e0354dc31b7 10.2147/cmar.s337516 PMC8645952 34880677 10_2147_CMAR_S337516 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: ; |
| GroupedDBID | --- 0YH 29B 2WC 53G 5VS 7X7 8FI 8FJ 8G5 AAYXX ABUWG ACGFO ADBBV ADRAZ AFKRA ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ BVXVI C1A CCPQU CITATION DIK DWQXO E3Z EBD F5P FYUFA GNUQQ GROUPED_DOAJ GUQSH GX1 HMCUK HYE IAO IHR IPNFZ ITC KQ8 M2O M48 M~E O5R O5S OK1 P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PUEGO RIG RNS RPM TDBHL TR2 UKHRP VDV ALIPV NPM 3V. 7XB 8FK K9. MBDVC PJZUB PKEHL PPXIY PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC AQTUD UNPAY |
| ID | FETCH-LOGICAL-c478t-aad6f35dcddf5350e2456c15ca18725110d5a4d2881ea86772bf8a8109ef0aa3 |
| IEDL.DBID | M48 |
| ISSN | 1179-1322 |
| IngestDate | Fri Oct 03 12:53:22 EDT 2025 Sun Oct 26 03:22:37 EDT 2025 Tue Sep 30 16:58:33 EDT 2025 Thu Sep 04 18:05:25 EDT 2025 Tue Oct 07 06:52:32 EDT 2025 Mon Jul 21 05:44:09 EDT 2025 Wed Oct 01 03:22:53 EDT 2025 Thu Apr 24 23:04:14 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | generalized linear model lymph nodes metastasis pT1NxM0 colorectal cancer prediction model random forest classifier machine learning |
| Language | English |
| License | http://creativecommons.org/licenses/by-nc/3.0 2021 Jin et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php). cc-by-nc |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c478t-aad6f35dcddf5350e2456c15ca18725110d5a4d2881ea86772bf8a8109ef0aa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-8615-5251 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.2147/CMAR.S337516 |
| PMID | 34880677 |
| PQID | 2610976488 |
| PQPubID | 3933196 |
| PageCount | 11 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_32f6a6438eff4a2b97f87e0354dc31b7 unpaywall_primary_10_2147_cmar_s337516 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8645952 proquest_miscellaneous_2623079530 proquest_journals_2610976488 pubmed_primary_34880677 crossref_primary_10_2147_CMAR_S337516 crossref_citationtrail_10_2147_CMAR_S337516 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-01-01 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New Zealand |
| PublicationPlace_xml | – name: New Zealand – name: Macclesfield |
| PublicationTitle | Cancer management and research |
| PublicationTitleAlternate | Cancer Manag Res |
| PublicationYear | 2021 |
| Publisher | Taylor & Francis Ltd Dove Dove Medical Press |
| Publisher_xml | – name: Taylor & Francis Ltd – name: Dove – name: Dove Medical Press |
| References | Collins (ref14) 2015; 350 Park (ref21) 2020; 9 Colotta (ref31) 2009; 30 Mou (ref25) 2013; 27 Brenner (ref1) 2014; 383 Wen (ref3) 2020; 13 Ichimasa (ref12) 2018; 50 Buri (ref16) 2020; 16 Nascimbeni (ref5) 2002; 45 Stojkovic Lalosevic (ref27) 2019; 2019 Saitoh (ref18) 2016; 28 Coussens (ref29) 2002; 420 Brenner (ref7) 2010; 102 Portet (ref17) 2020; 5 Doupe (ref32) 2019; 22 Armstrong (ref15) 2014; 34 Sande (ref36) 2020; 39 Pedersen (ref19) 2020; 35 Breiman (ref34) 2001; 45 Asayama (ref22) 2016; 31 Mantovani (ref30) 2008; 454 Ichimasa (ref10) 2020; 2 Oh (ref20) 2019; 51 Jia (ref26) 2015; 36 Glynne-Jones (ref6) 2017; 28 Muto (ref4) 2003; 46 Suh (ref9) 2012; 44 Chen (ref33) 2020; 54 Cracco (ref24) 2021; 36 Simon (ref2) 2016; 11 Tian (ref8) 2021; 36 Lendrem (ref35) 2019; 18 Rashidi (ref13) 2019; 6 Wada (ref23) 2015; 50 Singh (ref28) 2019; 18 Jiang (ref11) 2020; 51 |
| References_xml | – volume: 35 start-page: 1663 year: 2020 ident: ref19 publication-title: Int J Colorectal Dis doi: 10.1007/s00384-020-03687-8 – volume: 18 start-page: 632 year: 2019 ident: ref35 publication-title: Pharm Stat doi: 10.1002/pst.1963 – volume: 36 start-page: 9319 year: 2015 ident: ref26 publication-title: Tumour Biol doi: 10.1007/s13277-015-3667-9 – volume: 28 start-page: 324 year: 2016 ident: ref18 publication-title: Digestive Endoscopy doi: 10.1111/den.12503 – volume: 18 start-page: 121 year: 2019 ident: ref28 publication-title: Ann Afr Med doi: 10.4103/aam.aam_56_18 – volume: 27 start-page: 2692 year: 2013 ident: ref25 publication-title: Surg Endosc doi: 10.1007/s00464-013-2835-5 – volume: 51 start-page: 1275 year: 2019 ident: ref20 publication-title: Cancer Res Treatment doi: 10.4143/crt.2018.569 – volume: 9 start-page: 2451 year: 2020 ident: ref21 publication-title: J Clin Med doi: 10.3390/jcm9082451 – volume: 36 start-page: 41 year: 2021 ident: ref24 publication-title: Int J Colorectal Dis doi: 10.1007/s00384-020-03738-0 – volume: 5 start-page: 111 year: 2020 ident: ref17 publication-title: Infect Dis Modelling doi: 10.1016/j.idm.2019.12.010 – volume: 2 start-page: 548 year: 2020 ident: ref10 publication-title: Gut Liver – volume: 28 start-page: iv22 year: 2017 ident: ref6 publication-title: Ann Oncol doi: 10.1093/annonc/mdx224 – volume: 46 start-page: S89 year: 2003 ident: ref4 publication-title: Dis Colon Rectum doi: 10.1097/01.DCR.0000083525.97708.B5 – volume: 50 start-page: 230 year: 2018 ident: ref12 publication-title: Endoscopy doi: 10.1055/s-0043-122385 – volume: 2019 start-page: 6036979 year: 2019 ident: ref27 publication-title: Dis Markers doi: 10.1155/2019/6036979 – volume: 54 start-page: 15698 year: 2020 ident: ref33 publication-title: Environ Sci Technol doi: 10.1021/acs.est.0c06595 – volume: 11 start-page: 967 year: 2016 ident: ref2 publication-title: Clin Interv Aging doi: 10.2147/CIA.S109285 – volume: 44 start-page: 590 year: 2012 ident: ref9 publication-title: Endoscopy doi: 10.1055/s-0031-1291665 – volume: 30 start-page: 1073 year: 2009 ident: ref31 publication-title: Carcinogenesis doi: 10.1093/carcin/bgp127 – volume: 13 start-page: 10851 year: 2020 ident: ref3 publication-title: Onco Targets Ther doi: 10.2147/OTT.S265580 – volume: 383 start-page: 1490 year: 2014 ident: ref1 publication-title: Lancet doi: 10.1016/S0140-6736(13)61649-9 – volume: 350 start-page: g7594 year: 2015 ident: ref14 publication-title: BMJ doi: 10.1136/bmj.g7594 – volume: 6 start-page: 2374289519873088 year: 2019 ident: ref13 publication-title: Acad Pathol doi: 10.1177/2374289519873088 – volume: 50 start-page: 727 year: 2015 ident: ref23 publication-title: J Gastroenterol doi: 10.1007/s00535-015-1057-0 – volume: 16 year: 2020 ident: ref16 publication-title: Int J Biostat doi: 10.1515/ijb-2019-0063 – volume: 39 start-page: 2980 year: 2020 ident: ref36 publication-title: Stat Med doi: 10.1002/sim.8588 – volume: 36 start-page: 457 year: 2021 ident: ref8 publication-title: Int J Colorectal Dis doi: 10.1007/s00384-020-03752-2 – volume: 31 start-page: 571 year: 2016 ident: ref22 publication-title: Int J Colorectal Dis doi: 10.1007/s00384-015-2473-6 – volume: 102 start-page: 89 year: 2010 ident: ref7 publication-title: J Natl Cancer Inst doi: 10.1093/jnci/djp436 – volume: 22 start-page: 808 year: 2019 ident: ref32 publication-title: Value Health doi: 10.1016/j.jval.2019.02.012 – volume: 420 start-page: 860 year: 2002 ident: ref29 publication-title: Nature doi: 10.1038/nature01322 – volume: 34 start-page: 502 year: 2014 ident: ref15 publication-title: Ophthalmic Physiol Optics doi: 10.1111/opo.12131 – volume: 45 start-page: 200 year: 2002 ident: ref5 publication-title: Dis Colon Rectum doi: 10.1007/s10350-004-6147-7 – volume: 454 start-page: 436 year: 2008 ident: ref30 publication-title: Nature doi: 10.1038/nature07205 – volume: 51 start-page: 675 year: 2020 ident: ref11 publication-title: Behav Ther doi: 10.1016/j.beth.2020.05.002 – volume: 45 start-page: 5 year: 2001 ident: ref34 publication-title: Mach Learn doi: 10.1023/A:1010933404324 |
| SSID | ssj0069134 |
| Score | 2.2108264 |
| Snippet | Predicting lymph node metastasis (LNM) after endoscopic resection is crucial in determining whether patients with pT1NxM0 colorectal cancer (CRC) should... Purpose: Predicting lymph node metastasis (LNM) after endoscopic resection is crucial in determining whether patients with pT1NxM0 colorectal cancer (CRC)... Jinlian Jin, Haiyan Zhou, Shulin Sun, Zhe Tian, Haibing Ren, Jinwu Feng Department of Gastroenterology, The Third Clinical Medical College of China Three... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 8967 |
| SubjectTerms | Artificial intelligence Cancer therapies Colorectal cancer Decision making Dissection Endoscopy generalized linear model lymph nodes metastasis Lymphatic system machine learning Medical records Metastasis Mortality Original Research Patients prediction model pt1nxm0 random forest classifier Statistical analysis Surgery Variables |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQHoAL4k1gQYMEXFDYJI4Th1s22tWCaA-0SHuLHD-gUkmrbatlfyT_iZk4Ka0WxIVbEjuRNfNlPPaMv2HslSu44y6PQo3uRogznghVYePQ6lzHrilU3EVMR-Ps7Ev68Vyc75T6opwwTw_sBXfEE5cpnDaldS5VSVPkTuY24iI1msdNd448ksWwmPI2OBviyQi3kNZbPuWdavIcVaPy87sJ57mgGuc7k1HH2f8nR_N6vuStTbtUV5dqPt-ZjE7vsju9FwmlH_09dsO299nNUR8nf8B-TjZLMgIra6BnUP0Kx4puPUX5TMOH1iEavndRdqAjO-gIwkl3lApKrTfEIQGlMTO_WwgTf4Aa0MuF5TQe_xhFUKHpJJOJzRXB5-I9lFD9JhSHgfMEFg6mlwvw9EiIC7yi0dK3geqxzVfdhz9dIbpgjA9gZNcKXVd8-SGbnp5Mq7OwL9wQ6jSX61ApkzkujDbGCS4iS9FVHQtNmqc1TWSESk0iZWwVEeoljZNKxlFhXaQUf8QO2kVrnzBw2jiN2ucqkyliSCGQeNY0QlqTcOMC9nZQYK17UnOqrTGvcXFD6q5J3XWv7oC93vZeejKPv_Q7Jixs-xAFd_cAgVn3wKz_BcyAHQ5Iqnu7sKoTYrfPM7SaAXu5bcY_msI0qrWLDfWh5PxC8Chgjz3wtiPhZG9RYAHL9yC5N9T9lnb2rWMNl0QbJJKAvdmC95oQNN7VKy-Ep_9DCM_Y7YSSgLo9q0N2sL7Y2Ofoxa2bF90P-wulu0h- priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3bbtNAEF2VVAJeEHcMBQ0S8IJMba_XdpAQSqxUBeEINUHqm7XeS4kU7JCLSj-Sf2LGl7RRgTfbu7ZGO2dnxzuzZxh7Zfvccht7rkJ3w8UVT7iyb3zXqFj5tuhLv46YZuPo-Fv4-VSc7rFxdxaG0io7m1gbal0p2iM_DIgXPI4Qbx8XP12qGkXR1a6EhmxLK-gPNcXYDbYfEDNWj-0PR-OvJ51tjijO3KS_U32ewzQbnLybcB4Lqnd-ZWGq-fv_5nRez528tSkX8uJczudXFqaju-xO61HCoIHAPbZnyvvsZtbGzB-w35PNggzCymho2VTPYCjptqErnyn4VFpExo864g50fAedQhjVx6pgoNSG-CRgoPWs2TmESXOYGtDjhcXUH__KPEjRjJL5xOaUoLR8DwNIL8nFoeM_gcrC9LyChioJMYJXJC19G6g223xVf_jLBSINxvgAMrOW6Mbiyw_Z9Gg0TY_dtoiDq8I4WbtS6shyoZXWVnDhGYq0Kl8oQgH933hayFAHSeIbSeR6QWETmaCyjfWk5I9Yr6xK84SBVdoqdKC4jJIQ8SQRVDwqCpEYHXBtHfa2U2CuWoJzqrMxz_FHh9Sdk7rzVt0Oe73tvWiIPf7Rb0hY2PYhOu76QbU8y9vZnfPARhJFS4y1oQyKfmyT2HhchFpxv4gddtAhKW9txCq_RLTDXm6bcXZTyEaWptpQH0rU7wvuOexxA7ytJJxsLw6Yw-IdSO6IuttSzr7XDOIJUQiJwGFvtuC9NggK7_JVMwhP_y__M3Y7oFSfemfqgPXWy415jr7aunjRTsA_uhBEkQ priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF5VqQRceD9cClok4IKc2l6vH9zcqFVBJEIklcrJWu-jRE3tKLEp5T_yn5jxOqGhIMHN8U6stfXN7OzOzDeEvDQpM8zEnivB3XBhxeOuSLXvahlL3xSp8NuI6XAUHR2H70_4yRYJVrUwmFapqq82C9SeJukaKYpasgi8AAMGOoFl49sRB_-7R7aPRx-zz7aLSuri9spmuGMLnj15Lhb9JWMxx5bmV9aelqL_T37l9fTIm005F5cXYja7svYc3rH1gMuWshBTTs76TV305fffCB3_77XuktudK0ozi517ZEuX98mNYRdsf0B-jJs5WpKlVrSjYT2l-wJ_Wp7zqaTvSgOQOm9D9RTrfsCbpAdtPRbNpGyQiIJmSk3tkSMd2ypsCq4ynU_80behRwdgf9HuwvAAMbh4SzM6-MVKTlfEKbQydHJRUcuxBOCCK5wtPptiU7fZsn3wh0uAKB3BDTrUtQD_F_78kEwODyaDI7fr_uDKME5qVwgVGcaVVMpwxj2NIVrpc4nwwY2Rp7gIVZAkvhbIyhcUJhGJ76XaeEKwR6RXVqV-QqiRykjwvJiIkhCAKACNLCoKnmgVMGUc8mYFi1x2zOjYoGOWww4JQZQPhtmnfGxB5JBXa-m5ZQT5i9w-Imwtgzze7Y1qcZp3ZiFngYkETC3RxoQiKNLYJLH2GA-VZH4RO2R3hc-8My7LPECK_DgC0-uQF-thMAsY6xGlrhqUwQz_lDPPIY8tnNczYWi04YM5JN4A-sZUN0fK6ZeWejxB7iEeOOT1WiWufQTUuLzTuJ1_FXxKbgWYLdQebu2SXr1o9DNw9-rieaffPwHk2lzj priority: 102 providerName: Unpaywall |
| Title | Supervised Learning Based Systemic Inflammatory Markers Enable Accurate Additional Surgery for pT1NxM0 Colorectal Cancer: A Comparative Analysis of Two Practical Prediction Models for Lymph Node Metastasis |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/34880677 https://www.proquest.com/docview/2610976488 https://www.proquest.com/docview/2623079530 https://pubmed.ncbi.nlm.nih.gov/PMC8645952 https://www.dovepress.com/getfile.php?fileID=76371 https://doaj.org/article/32f6a6438eff4a2b97f87e0354dc31b7 |
| UnpaywallVersion | publishedVersion |
| Volume | 13 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1179-1322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0069134 issn: 1179-1322 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) customDbUrl: eissn: 1179-1322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0069134 issn: 1179-1322 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1179-1322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0069134 issn: 1179-1322 databaseCode: DIK dateStart: 20090101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1179-1322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0069134 issn: 1179-1322 databaseCode: GX1 dateStart: 20090101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1179-1322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0069134 issn: 1179-1322 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1179-1322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0069134 issn: 1179-1322 databaseCode: RPM dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1179-1322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0069134 issn: 1179-1322 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1179-1322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0069134 issn: 1179-1322 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1179-1322 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0069134 issn: 1179-1322 databaseCode: M48 dateStart: 20090901 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAWR databaseName: Taylor & Francis Open Access customDbUrl: eissn: 1179-1322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0069134 issn: 1179-1322 databaseCode: 0YH dateStart: 20090601 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFLZ2kYAXxJ3AqIwEe0EZSZzECRJCadUxEKmmtZXKU-T4MiqVtOtFW38k_4lzkjRQdfBSJbFrHdmfj499jr9DyBsTM8MMd2wJ5oYNK15gi1i7tpZcuiaPhVt6TNNeeDb0v46C0R7ZxM_XHbi4dWuH-aSG88nJzdX6E0z4jxjG7Pr8fSdNLk76jPHADY9nVzamlELXa51fY58cwrIVY16H1G9cDCG6nKtI-J1Gttaoksr_NvtzN4zy7qqYifW1mEz-WqNOH5D7tXFJkwoND8meLh6RO2ntPn9MfvVXM9QNC61oTax6SdsCXyvm8rGkXwoDIPlZOt8p3uQB-5B2yxtWNJFyhdQSNFFqXB0i0n51r5qC8UtnA7d3kzq0AxoVNSkUdxBV8w80oZ0_PON0Q4VCp4YOrqe0Yk0CuMATSottU0zTNlmUDX9bA-hoDz7QVC8FWLTw5ydkcNoddM7sOp-DLX0eLW0hVGhYoKRSJmCBo9HpKt1AIiBwq-OoQPjKiyJXC-TZ83ITich1Ym0cIdhTclBMC_2cUCOVkWBLMRFGPkBLAL5YmOdBpJXHlLHIu80AZrLmOseUG5MM9jw43BkOd1YPt0XeNrVnFcfHP-q1EQtNHWTmLj9M55dZPdEz5plQgGiRNsYXXh5zE3HtsMBXkrk5t8jRBknZBu2Zh6T3PARlapHXTTFMdPTeiEJPV1gHY_bjgDkWeVYBr5GEoRqGDrMI34LklqjbJcX4R0kmHiGbUOBZ5LgB704nSHjLFlUnvPi__C_JPQ-jfspDqiNysJyv9Csw25Z5i-zzEW-Rw3a3d37RKg8_4PfzyG2VExNKhr3z5PtvFNFN2A |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEF2VVqK8IO4YCiwS5QWZ2l6vL0gVSkKqhCYRaoLUN2u9lxIp2CEXhXwcn8A_MeNL2qjAW99i78Ya7Zydnd3ZOUPIGxMzw0zo2BLcDRtWPG6LWLu2lqF0TRoLt4iY9gdB56v_-Zyf75BfdS4MXqusbWJhqFUu8Yz8yENe8DAAvH2c_rCxahRGV-sSGqIqraCOC4qxKrHjVK9XsIWbH3c_gb4PPe-kPWp17KrKgC39MFrYQqjAMK6kUoYz7mgMBUqXSxQTHXBHceErL4pcLZD9zUtNJCKQRhtHCAafvUX2fObHsPfba7YHX87qpSDAsHZ52x7LAR21-o2z90PGQo7l1a-sg0W5gL_5uNevau4vs6lYr8RkcmUdPLlH7lYOLG2UiLtPdnT2gNzuVyH6h-T3cDlF-zPXilbkrRe0KfCxZEcfS9rNDADxexHgp5gtBD4obRdZXLQh5RLpK2hDqXF5UEmHZe42BQebTkfu4GffoS2w2mitobmFyJ19oA3auuQypzXdCs0NHa1yWjIzASThF0qL36ZYCm4yLz7cWwOw6QBe0L5eCPCa4c-PyOgmtPmY7GZ5pp8SaqQyEvw1JoLIB_gKwDAL0pRHWnlMGYu8qxWYyIpPHct6TBLYV6G6E1R3UqnbIoeb3tOSR-Qf_ZqIhU0fZP8uXuSzi6QyJgnzTCBAtEgb4wsvjUMThdph3FeSuWlokYMaSUllkubJ5QSyyOtNMxgTjBCJTOdL7IN5ATFnjkWelMDbSMLQ1MOAWSTcguSWqNst2fhbQVgeIWMR9yzydgPea4Mg4SmZl4Pw7P_yvyL7nVG_l_S6g9Pn5I6Ht4yKQ7EDsruYLfULcBMX6ctqMlKS3PD0_wMaooEz |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkAYviDuBAUZivKDQJI6TFAmhrlu1srVCtEh9ixxfRqWShF5U-tP4Efwnzsltqwa87a2JXevE5_PxsY_9HUJemzYzzISOLcHdsGHG47Zoa9fWMpSuSdrCLSKmg2Fw8tX_NOGTHfKrvguDxyprm1gYapVJ3CNvecgLHgaAt5apjkV8Pup9zH_YmEEKI611Oo0SIqd6s4bl2-JD_wh0feB5veNx98SuMgzY0g-jpS2ECgzjSiplOOOOxjCgdLlEEdH5dhQXvvKiyNUCmd-8xEQiAkm0cYRg0OwNcjNk8IkwlMJJs9YLMKBdnrPHRECt7qDz5d2IsZBjYvVLM2CRKOBv3u3VQ5q3VmkuNmsxm12aAXt3yZ3KdaWdEmv3yI5O75O9QRWcf0B-j1Y5Wp6FVrSibT2nhwIfS170qaT91AAEvxehfYr3hMD7pMfF_S3akXKFxBW0o9S03KKko_LWNgXXmuZjd_hz4NAu2Gu001DcRczO39MO7V6wmNOaaIVmho7XGS05mQCM8AulxbYpJoGbLYqGzzYAaTqEF3SglwL8ZfjzQzK-Dl0-IrtpluonhBqpjARPjYkg8gG4AtDLgiThkVYeU8Yib2sFxrJiUseEHrMYVlSo7hjVHVfqtshBUzsvGUT-Ue8QsdDUQd7v4kU2P48rMxIzzwQCRIu0Mb7wknZoolA7jPtKMjcJLbJfIymujNEivhg6FnnVFIMZwdiQSHW2wjp4I6DNmWORxyXwGkkYGnnoMIuEW5DcEnW7JJ1-K6jKI-Qq4p5F3jTgvdIJEp7iRdkJT_8v_0uyB4M-PusPT5-R2x4eLyp2w_bJ7nK-0s_BP1wmL4qRSEl8zSP_D6ryfs0 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF5VqQRceD9cClok4IKc2l6vH9zcqFVBJEIklcrJWu-jRE3tKLEp5T_yn5jxOqGhIMHN8U6stfXN7OzOzDeEvDQpM8zEnivB3XBhxeOuSLXvahlL3xSp8NuI6XAUHR2H70_4yRYJVrUwmFapqq82C9SeJukaKYpasgi8AAMGOoFl49sRB_-7R7aPRx-zz7aLSuri9spmuGMLnj15Lhb9JWMxx5bmV9aelqL_T37l9fTIm005F5cXYja7svYc3rH1gMuWshBTTs76TV305fffCB3_77XuktudK0ozi517ZEuX98mNYRdsf0B-jJs5WpKlVrSjYT2l-wJ_Wp7zqaTvSgOQOm9D9RTrfsCbpAdtPRbNpGyQiIJmSk3tkSMd2ypsCq4ynU_80behRwdgf9HuwvAAMbh4SzM6-MVKTlfEKbQydHJRUcuxBOCCK5wtPptiU7fZsn3wh0uAKB3BDTrUtQD_F_78kEwODyaDI7fr_uDKME5qVwgVGcaVVMpwxj2NIVrpc4nwwY2Rp7gIVZAkvhbIyhcUJhGJ76XaeEKwR6RXVqV-QqiRykjwvJiIkhCAKACNLCoKnmgVMGUc8mYFi1x2zOjYoGOWww4JQZQPhtmnfGxB5JBXa-m5ZQT5i9w-Imwtgzze7Y1qcZp3ZiFngYkETC3RxoQiKNLYJLH2GA-VZH4RO2R3hc-8My7LPECK_DgC0-uQF-thMAsY6xGlrhqUwQz_lDPPIY8tnNczYWi04YM5JN4A-sZUN0fK6ZeWejxB7iEeOOT1WiWufQTUuLzTuJ1_FXxKbgWYLdQebu2SXr1o9DNw9-rieaffPwHk2lzj |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Supervised+Learning+Based+Systemic+Inflammatory+Markers+Enable+Accurate+Additional+Surgery+for+pT1NxM0+Colorectal+Cancer%3A+A+Comparative+Analysis+of+Two+Practical+Prediction+Models+for+Lymph+Node+Metastasis&rft.jtitle=Cancer+management+and+research&rft.au=Jin%2C+Jinlian&rft.au=Zhou%2C+Haiyan&rft.au=Sun%2C+Shulin&rft.au=Tian%2C+Zhe&rft.date=2021-01-01&rft.pub=Taylor+%26+Francis+Ltd&rft.eissn=1179-1322&rft.volume=13&rft.spage=8967&rft_id=info:doi/10.2147%2FCMAR.S337516&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1179-1322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1179-1322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1179-1322&client=summon |