Bhlhe40 is an essential repressor of IL-10 during Mycobacterium tuberculosis infection
The cytokine IL-10 antagonizes pathways that control Mycobacterium tuberculosis (Mtb) infection. Nevertheless, the impact of IL-10 during Mtb infection has been difficult to decipher because loss-of-function studies in animal models have yielded only mild phenotypes. We have discovered that the tran...
Saved in:
Published in | The Journal of experimental medicine Vol. 215; no. 7; pp. 1823 - 1838 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Rockefeller University Press
02.07.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-1007 1540-9538 1540-9538 |
DOI | 10.1084/jem.20171704 |
Cover
Abstract | The cytokine IL-10 antagonizes pathways that control Mycobacterium tuberculosis (Mtb) infection. Nevertheless, the impact of IL-10 during Mtb infection has been difficult to decipher because loss-of-function studies in animal models have yielded only mild phenotypes. We have discovered that the transcription factor basic helix-loop-helix family member e40 (Bhlhe40) is required to repress Il10 expression during Mtb infection. Loss of Bhlhe40 in mice results in higher Il10 expression, higher bacterial burden, and early susceptibility similar to that observed in mice lacking IFN-γ. Deletion of Il10 in Bhlhe40−/− mice reverses these phenotypes. Bhlhe40 deletion in T cells or CD11c+ cells is sufficient to cause susceptibility to Mtb. Bhlhe40 represents the first transcription factor found to be essential during Mtb infection to specifically regulate Il10 expression, revealing the importance of strict control of IL-10 production by innate and adaptive immune cells during infection. Our findings uncover a previously elusive but significant role for IL-10 in Mtb pathogenesis. |
---|---|
AbstractList | This study demonstrates that the transcription factor basic helix-loop-helix family member e40 (Bhlhe40) is essential during Mycobacterium tuberculosis infection to specifically regulate Il10 expression, revealing the importance of strict control of IL-10 production by innate and adaptive immune cells during infection.The cytokine IL-10 antagonizes pathways that control Mycobacterium tuberculosis (Mtb) infection. Nevertheless, the impact of IL-10 during Mtb infection has been difficult to decipher because loss-of-function studies in animal models have yielded only mild phenotypes. We have discovered that the transcription factor basic helix-loop-helix family member e40 (Bhlhe40) is required to repress Il10 expression during Mtb infection. Loss of Bhlhe40 in mice results in higher Il10 expression, higher bacterial burden, and early susceptibility similar to that observed in mice lacking IFN-γ. Deletion of Il10 in Bhlhe40−/− mice reverses these phenotypes. Bhlhe40 deletion in T cells or CD11c+ cells is sufficient to cause susceptibility to Mtb. Bhlhe40 represents the first transcription factor found to be essential during Mtb infection to specifically regulate Il10 expression, revealing the importance of strict control of IL-10 production by innate and adaptive immune cells during infection. Our findings uncover a previously elusive but significant role for IL-10 in Mtb pathogenesis.Graphical Abstract[Figure] This study demonstrates that the transcription factor basic helix-loop-helix family member e40 (Bhlhe40) is essential during Mycobacterium tuberculosis infection to specifically regulate Il10 expression, revealing the importance of strict control of IL-10 production by innate and adaptive immune cells during infection. The cytokine IL-10 antagonizes pathways that control Mycobacterium tuberculosis ( Mtb ) infection. Nevertheless, the impact of IL-10 during Mtb infection has been difficult to decipher because loss-of-function studies in animal models have yielded only mild phenotypes. We have discovered that the transcription factor basic helix-loop-helix family member e40 (Bhlhe40) is required to repress Il10 expression during Mtb infection. Loss of Bhlhe40 in mice results in higher Il10 expression, higher bacterial burden, and early susceptibility similar to that observed in mice lacking IFN-γ. Deletion of Il10 in Bhlhe40 −/− mice reverses these phenotypes. Bhlhe40 deletion in T cells or CD11c + cells is sufficient to cause susceptibility to Mtb . Bhlhe40 represents the first transcription factor found to be essential during Mtb infection to specifically regulate Il10 expression, revealing the importance of strict control of IL-10 production by innate and adaptive immune cells during infection. Our findings uncover a previously elusive but significant role for IL-10 in Mtb pathogenesis. The cytokine IL-10 antagonizes pathways that control ( ) infection. Nevertheless, the impact of IL-10 during infection has been difficult to decipher because loss-of-function studies in animal models have yielded only mild phenotypes. We have discovered that the transcription factor basic helix-loop-helix family member e40 (Bhlhe40) is required to repress expression during infection. Loss of Bhlhe40 in mice results in higher expression, higher bacterial burden, and early susceptibility similar to that observed in mice lacking IFN-γ. Deletion of in mice reverses these phenotypes. Bhlhe40 deletion in T cells or CD11c cells is sufficient to cause susceptibility to Bhlhe40 represents the first transcription factor found to be essential during infection to specifically regulate expression, revealing the importance of strict control of IL-10 production by innate and adaptive immune cells during infection. Our findings uncover a previously elusive but significant role for IL-10 in pathogenesis. The cytokine IL-10 antagonizes pathways that control Mycobacterium tuberculosis (Mtb) infection. Nevertheless, the impact of IL-10 during Mtb infection has been difficult to decipher because loss-of-function studies in animal models have yielded only mild phenotypes. We have discovered that the transcription factor basic helix-loop-helix family member e40 (Bhlhe40) is required to repress Il10 expression during Mtb infection. Loss of Bhlhe40 in mice results in higher Il10 expression, higher bacterial burden, and early susceptibility similar to that observed in mice lacking IFN-γ. Deletion of Il10 in Bhlhe40-/- mice reverses these phenotypes. Bhlhe40 deletion in T cells or CD11c+ cells is sufficient to cause susceptibility to Mtb Bhlhe40 represents the first transcription factor found to be essential during Mtb infection to specifically regulate Il10 expression, revealing the importance of strict control of IL-10 production by innate and adaptive immune cells during infection. Our findings uncover a previously elusive but significant role for IL-10 in Mtb pathogenesis.The cytokine IL-10 antagonizes pathways that control Mycobacterium tuberculosis (Mtb) infection. Nevertheless, the impact of IL-10 during Mtb infection has been difficult to decipher because loss-of-function studies in animal models have yielded only mild phenotypes. We have discovered that the transcription factor basic helix-loop-helix family member e40 (Bhlhe40) is required to repress Il10 expression during Mtb infection. Loss of Bhlhe40 in mice results in higher Il10 expression, higher bacterial burden, and early susceptibility similar to that observed in mice lacking IFN-γ. Deletion of Il10 in Bhlhe40-/- mice reverses these phenotypes. Bhlhe40 deletion in T cells or CD11c+ cells is sufficient to cause susceptibility to Mtb Bhlhe40 represents the first transcription factor found to be essential during Mtb infection to specifically regulate Il10 expression, revealing the importance of strict control of IL-10 production by innate and adaptive immune cells during infection. Our findings uncover a previously elusive but significant role for IL-10 in Mtb pathogenesis. The cytokine IL-10 antagonizes pathways that control Mycobacterium tuberculosis (Mtb) infection. Nevertheless, the impact of IL-10 during Mtb infection has been difficult to decipher because loss-of-function studies in animal models have yielded only mild phenotypes. We have discovered that the transcription factor basic helix-loop-helix family member e40 (Bhlhe40) is required to repress Il10 expression during Mtb infection. Loss of Bhlhe40 in mice results in higher Il10 expression, higher bacterial burden, and early susceptibility similar to that observed in mice lacking IFN-γ. Deletion of Il10 in Bhlhe40−/− mice reverses these phenotypes. Bhlhe40 deletion in T cells or CD11c+ cells is sufficient to cause susceptibility to Mtb. Bhlhe40 represents the first transcription factor found to be essential during Mtb infection to specifically regulate Il10 expression, revealing the importance of strict control of IL-10 production by innate and adaptive immune cells during infection. Our findings uncover a previously elusive but significant role for IL-10 in Mtb pathogenesis. |
Author | Kimmey, Jacqueline M. Artyomov, Maxim N. Stallings, Christina L. Schwarzkopf, Elizabeth A. Shchukina, Irina Huynh, Jeremy P. Weaver, Casey T. Edelson, Brian T. Jarjour, Nicholas N. Taneja, Reshma Shpynov, Oleg Lin, Chih-Chung Bradstreet, Tara R. |
AuthorAffiliation | 1 Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 3 JetBrains Research, Saint Petersburg, Russia 5 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 2 Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 4 Department of Pathology, University of Alabama at Birmingham, Birmingham, AL |
AuthorAffiliation_xml | – name: 2 Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO – name: 3 JetBrains Research, Saint Petersburg, Russia – name: 4 Department of Pathology, University of Alabama at Birmingham, Birmingham, AL – name: 5 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore – name: 1 Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO |
Author_xml | – sequence: 1 givenname: Jeremy P. surname: Huynh fullname: Huynh, Jeremy P. – sequence: 2 givenname: Chih-Chung surname: Lin fullname: Lin, Chih-Chung – sequence: 3 givenname: Jacqueline M. surname: Kimmey fullname: Kimmey, Jacqueline M. – sequence: 4 givenname: Nicholas N. orcidid: 0000-0001-9400-4448 surname: Jarjour fullname: Jarjour, Nicholas N. – sequence: 5 givenname: Elizabeth A. surname: Schwarzkopf fullname: Schwarzkopf, Elizabeth A. – sequence: 6 givenname: Tara R. surname: Bradstreet fullname: Bradstreet, Tara R. – sequence: 7 givenname: Irina surname: Shchukina fullname: Shchukina, Irina – sequence: 8 givenname: Oleg surname: Shpynov fullname: Shpynov, Oleg – sequence: 9 givenname: Casey T. orcidid: 0000-0002-2180-1793 surname: Weaver fullname: Weaver, Casey T. – sequence: 10 givenname: Reshma orcidid: 0000-0002-2151-2094 surname: Taneja fullname: Taneja, Reshma – sequence: 11 givenname: Maxim N. surname: Artyomov fullname: Artyomov, Maxim N. – sequence: 12 givenname: Brian T. surname: Edelson fullname: Edelson, Brian T. – sequence: 13 givenname: Christina L. orcidid: 0000-0002-2747-5618 surname: Stallings fullname: Stallings, Christina L. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29773644$$D View this record in MEDLINE/PubMed |
BookMark | eNptkc1rFTEUxYNU7Gt151oCblw49eZjJpmNUIsfhSdu1G3IZG768phJnsmM0P_elH6gxdUl3F8O59xzQo5iikjISwZnDLR8t8f5jANTTIF8QjasldD0rdBHZAPAecMA1DE5KWUPwKRsu2fkmPdKiU7KDfn5YTftUAINhdpIsRSMS7ATzXjI9ZUyTZ5ebqsMHdcc4hX9eu3SYN2COawzXdYBs1unVKpCiB7dElJ8Tp56OxV8cTdPyY9PH79ffGm23z5fXpxvGyeVXhrLei_QMcF9C_2gx-rJIgjkoKQeva7BxlEL14rWj1xYwVF3bef8oIUAK07J-1vdwzrMOLpqPtvJHHKYbb42yQbz7yaGnblKv00HXLeMVYE3dwI5_VqxLGYOxeE02YhpLYaDZJ1gSqqKvn6E7tOaY41XqY5rpnoFlXr1t6MHK_cnr8DbW8DlVEpG_4AwMDeNmtqouW-04vwR7sJib25c84Tp_5_-ABdwo4E |
CitedBy_id | crossref_primary_10_1084_jem_20190418 crossref_primary_10_3389_fimmu_2022_818814 crossref_primary_10_1016_j_coi_2024_102495 crossref_primary_10_1038_s41401_023_01217_0 crossref_primary_10_1038_s41467_021_27862_9 crossref_primary_10_1126_science_ado5088 crossref_primary_10_1038_s41590_020_0800_8 crossref_primary_10_1002_art_41188 crossref_primary_10_3389_fimmu_2024_1467016 crossref_primary_10_4049_jimmunol_1900940 crossref_primary_10_1038_s41590_018_0225_9 crossref_primary_10_1111_jcmm_17219 crossref_primary_10_1002_ppul_24907 crossref_primary_10_1084_jem_20222090 crossref_primary_10_1146_annurev_pathol_042120_032916 crossref_primary_10_1136_gutjnl_2022_327953 crossref_primary_10_3389_fcvm_2022_957903 crossref_primary_10_3389_fimmu_2021_693105 crossref_primary_10_4049_jimmunol_2300355 crossref_primary_10_1128_iai_00367_23 crossref_primary_10_1590_0001_3765202120201708 crossref_primary_10_1172_JCI150143 crossref_primary_10_1016_j_intimp_2021_107892 crossref_primary_10_4049_jimmunol_2100671 crossref_primary_10_1007_s00018_019_03277_0 crossref_primary_10_1371_journal_ppat_1011187 crossref_primary_10_1016_j_mucimm_2024_07_002 crossref_primary_10_1016_j_imbio_2023_152333 crossref_primary_10_1371_journal_ppat_1011983 crossref_primary_10_1016_j_immuni_2019_03_020 crossref_primary_10_2174_1570163817666200121143036 crossref_primary_10_3389_fimmu_2021_705646 crossref_primary_10_3389_fvets_2021_662002 crossref_primary_10_1016_j_cell_2018_11_044 crossref_primary_10_3390_biomedicines10092067 crossref_primary_10_1016_j_chom_2024_11_008 crossref_primary_10_1158_2326_6066_CIR_21_0129 crossref_primary_10_1016_j_immuni_2024_08_002 crossref_primary_10_1038_s41467_025_57348_x crossref_primary_10_1111_imr_12932 crossref_primary_10_3389_fimmu_2019_00229 crossref_primary_10_1016_j_smim_2019_101324 crossref_primary_10_1002_eji_202048797 crossref_primary_10_1016_j_coi_2023_102296 crossref_primary_10_1016_j_jep_2024_118924 crossref_primary_10_1371_journal_ppat_1008567 crossref_primary_10_4049_immunohorizons_2300042 crossref_primary_10_1158_2326_6066_CIR_18_0658 crossref_primary_10_4049_jimmunol_1901211 crossref_primary_10_1073_pnas_2122170119 crossref_primary_10_1016_j_isci_2023_107706 crossref_primary_10_1016_j_celrep_2020_107857 crossref_primary_10_1084_jem_20180824 crossref_primary_10_1016_j_smim_2019_101335 crossref_primary_10_1096_fj_201900464RR crossref_primary_10_1016_j_immuni_2019_08_013 crossref_primary_10_1172_jci_insight_126533 crossref_primary_10_4049_jimmunol_2200819 crossref_primary_10_4049_jimmunol_1900978 crossref_primary_10_1089_hum_2023_223 crossref_primary_10_4049_jimmunol_2300402 crossref_primary_10_1016_j_celrep_2023_113607 crossref_primary_10_3390_v14020361 crossref_primary_10_1038_s41564_024_01608_x crossref_primary_10_1016_j_celrep_2020_108433 crossref_primary_10_1016_j_immuni_2019_09_021 crossref_primary_10_1084_jem_20230707 crossref_primary_10_1016_j_it_2020_09_002 crossref_primary_10_1038_s41590_019_0382_5 crossref_primary_10_1371_journal_pbio_3002159 crossref_primary_10_1084_jem_20211406 crossref_primary_10_3390_ijms23010382 crossref_primary_10_3389_fcimb_2022_901590 crossref_primary_10_1016_j_immuni_2022_04_004 crossref_primary_10_3389_fimmu_2021_683680 crossref_primary_10_1038_s41418_022_01092_y crossref_primary_10_1096_fj_202100944R crossref_primary_10_1038_s41590_020_0622_8 crossref_primary_10_1002_JLB_4MA0120_115RR crossref_primary_10_1016_j_smim_2019_101344 crossref_primary_10_1038_s41467_018_07581_4 crossref_primary_10_1038_s41586_018_0694_x |
Cites_doi | 10.1002/1521-4141(200204)32:4<994::AID-IMMU994>3.0.CO;2-6 10.1038/nbt.1630 10.1128/IAI.69.11.7100-7105.2001 10.1371/journal.pone.0070630 10.4049/jimmunol.1402506 10.1128/iai.61.8.3482-3489.1993 10.1074/jbc.M111652200 10.1128/IAI.71.12.6871-6883.2003 10.4049/jimmunol.169.11.6343 10.1038/ni.1673 10.1038/ni.1990 10.1038/ni1008-1091 10.1038/nature16451 10.1084/jem.20150568 10.1016/j.immuni.2016.07.023 10.4049/jimmunol.0903613 10.4049/jimmunol.175.11.7437 10.4049/jimmunol.174.3.1222 10.4049/jimmunol.1003304 10.1016/B978-0-12-405943-6.00009-9 10.4049/jimmunol.158.1.315 10.1084/jem.174.5.1209 10.4049/jimmunol.181.8.5545 10.1046/j.1365-3083.2001.00844.x 10.1093/bioinformatics/btr189 10.1371/journal.pone.0026938 10.1084/jem.20110919 10.1128/IAI.72.5.2628-2634.2004 10.1038/nri2711 10.1126/science.1088063 10.1084/jem.178.6.2243 10.4049/jimmunol.167.12.6957 10.1046/j.1365-3083.2001.00952.x 10.4049/jimmunol.0801212 10.1016/j.smim.2014.09.008 10.1038/ni721 10.1046/j.1365-2249.1999.00783.x 10.1016/j.jim.2014.05.009 10.4049/jimmunol.175.6.3560 10.1128/IAI.70.12.6672-6679.2002 10.4049/jimmunol.148.6.1792 10.1084/jem.178.6.2249 10.1038/mi.2011.7 10.1038/ni.3052 10.4049/jimmunol.0803567 10.1084/jem.20122387 10.4049/jimmunol.1601340 10.1002/eji.201040433 10.1016/j.immuni.2015.05.018 10.1101/pdb.top073692 10.1073/pnas.070526297 10.1615/CritRevImmunol.v32.i1.30 10.1038/ncomms4551 10.1186/gb-2008-9-9-r137 10.1038/ni1504 10.1074/jbc.M116.718825 10.1038/nature09247 |
ContentType | Journal Article |
Copyright | Copyright Rockefeller University Press Jul 2, 2018 |
Copyright_xml | – notice: Copyright Rockefeller University Press Jul 2, 2018 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QP 7T5 7TK 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1084/jem.20171704 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Immunology Abstracts Neurosciences Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Virology and AIDS Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Genetics Abstracts MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | Bhlhe40 represses IL-10 during M. tuberculosis infection |
EISSN | 1540-9538 |
EndPage | 1838 |
ExternalDocumentID | PMC6028511 29773644 10_1084_jem_20171704 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R01 AI113118 – fundername: NIGMS NIH HHS grantid: T32 GM007067 – fundername: NCATS NIH HHS grantid: UL1 TR002345 – fundername: NIAID NIH HHS grantid: T32 AI007163 – fundername: NCATS NIH HHS grantid: UL1 TR000448 – fundername: NINDS NIH HHS grantid: N01 NS002331 – fundername: ; – fundername: Mutant Mouse Regional Resource Center – fundername: ; grantid: N01NS02331 – fundername: ; grantid: R01 AI113118 – fundername: ; grantid: 5T32AI007163 – fundername: ; grantid: DGE-1143954 – fundername: ; grantid: GM007067 – fundername: ; grantid: UL1 TR000448 |
GroupedDBID | --- -~X 18M 29K 2WC 36B 4.4 53G 5GY 5RE 5VS AAYXX ABOCM ABZEH ACGFO ACNCT ACPRK ADBBV AENEX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C45 CITATION CS3 D-I DIK DU5 E3Z EBS EJD EMB F5P F9R GX1 H13 HYE IH2 K-O KQ8 L7B N9A O5R O5S OK1 P2P P6G R.V RHI SJN TR2 TRP UHB W8F WOQ CGR CUY CVF ECM EIF NPM 7QL 7QP 7T5 7TK 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c478t-a19f3ec132f509b8d644ae03e20748df8201dd83c535fd23a32e8656cfb8330a3 |
ISSN | 0022-1007 1540-9538 |
IngestDate | Thu Aug 21 18:23:58 EDT 2025 Thu Sep 04 23:03:04 EDT 2025 Mon Jun 30 16:40:50 EDT 2025 Sat May 31 02:07:47 EDT 2025 Thu Apr 24 23:02:44 EDT 2025 Tue Jul 01 00:41:11 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c478t-a19f3ec132f509b8d644ae03e20748df8201dd83c535fd23a32e8656cfb8330a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 J.P. Huynh and C.-C. Lin contributed equally to this paper. |
ORCID | 0000-0002-2180-1793 0000-0002-2747-5618 0000-0001-9400-4448 0000-0002-2151-2094 |
OpenAccessLink | https://escholarship.org/uc/item/3xt3c8gt |
PMID | 29773644 |
PQID | 2062817970 |
PQPubID | 2046203 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6028511 proquest_miscellaneous_2041631747 proquest_journals_2062817970 pubmed_primary_29773644 crossref_primary_10_1084_jem_20171704 crossref_citationtrail_10_1084_jem_20171704 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180702 |
PublicationDateYYYYMMDD | 2018-07-02 |
PublicationDate_xml | – month: 7 year: 2018 text: 20180702 day: 2 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | The Journal of experimental medicine |
PublicationTitleAlternate | J Exp Med |
PublicationYear | 2018 |
Publisher | Rockefeller University Press |
Publisher_xml | – name: Rockefeller University Press |
References | Almeida (2023072821441879000_bib2) 2009; 183 Redford (2023072821441879000_bib44) 2011; 4 Redford (2023072821441879000_bib43) 2010; 40 Turner (2023072821441879000_bib53) 2002; 169 Martínez-Llordella (2023072821441879000_bib34) 2013; 210 St-Pierre (2023072821441879000_bib50) 2002; 277 Heng (2023072821441879000_bib19) 2008; 9 Cooper (2023072821441879000_bib11) 1993; 178 Bustamante (2023072821441879000_bib9) 2014; 26 Roach (2023072821441879000_bib46) 2001; 54 Kang (2023072821441879000_bib25) 2010; 184 Barnes (2023072821441879000_bib4) 1993; 61 Schreiber (2023072821441879000_bib49) 2009; 183 Machanick (2023072821441879000_bib31) 2011; 27 Sun (2023072821441879000_bib51) 2000; 97 Flynn (2023072821441879000_bib15) 1993; 178 Poon (2023072821441879000_bib42) 2015; 195 McLean (2023072821441879000_bib36) 2010; 28 Olobo (2023072821441879000_bib40) 2001; 53 Berry (2023072821441879000_bib6) 2010; 466 Huard (2023072821441879000_bib22) 2003; 71 Bloom (2023072821441879000_bib7) 2013; 8 Moreira-Teixeira (2023072821441879000_bib37) 2017; 199 Schmidt (2023072821441879000_bib48) 2013; 2013 Gazzinelli (2023072821441879000_bib17) 1992; 148 Verbon (2023072821441879000_bib54) 1999; 115 Kopf (2023072821441879000_bib27) 2015; 16 Gabryšová (2023072821441879000_bib16) 2014; 380 Hölscher (2023072821441879000_bib20) 2001; 167 Villagra (2023072821441879000_bib55) 2009; 10 Riemann (2023072821441879000_bib45) 2005; 175 Yee (2023072821441879000_bib57) 2005; 174 Iyer (2023072821441879000_bib23) 2012; 32 Lin (2023072821441879000_bib29) 2014; 5 Maertzdorf (2023072821441879000_bib33) 2011; 6 Bonecini-Almeida (2023072821441879000_bib8) 2004; 72 Feng (2023072821441879000_bib14) 2002; 70 Nandi (2023072821441879000_bib39) 2011; 208 Helft (2023072821441879000_bib18) 2015; 42 Murray (2023072821441879000_bib38) 1997; 158 Zhang (2023072821441879000_bib58) 2008; 9 Yamada (2023072821441879000_bib56) 2001; 69 Saraiva (2023072821441879000_bib47) 2010; 10 Hörber (2023072821441879000_bib21) 2016; 291 Beamer (2023072821441879000_bib5) 2008; 181 de Waal Malefyt (2023072821441879000_bib13) 1991; 174 Lin (2023072821441879000_bib30) 2016; 213 Jones (2023072821441879000_bib24) 2005; 175 Barber (2023072821441879000_bib3) 2011; 186 MacMicking (2023072821441879000_bib32) 2003; 302 Abram (2023072821441879000_bib1) 2014; 408 Kimmey (2023072821441879000_bib26) 2015; 528 Demangel (2023072821441879000_bib12) 2002; 32 Krausgruber (2023072821441879000_bib28) 2011; 12 Maynard (2023072821441879000_bib35) 2007; 8 Sun (2023072821441879000_bib52) 2001; 2 Chou (2023072821441879000_bib10) 2016; 45 Ow (2023072821441879000_bib41) 2014; 110 29880485 - J Exp Med. 2018 Jul 2;215(7):1767-1769. doi: 10.1084/jem.20180824. |
References_xml | – volume: 32 start-page: 994 year: 2002 ident: 2023072821441879000_bib12 article-title: Autocrine IL-10 impairs dendritic cell (DC)-derived immune responses to mycobacterial infection by suppressing DC trafficking to draining lymph nodes and local IL-12 production publication-title: Eur. J. Immunol. doi: 10.1002/1521-4141(200204)32:4<994::AID-IMMU994>3.0.CO;2-6 – volume: 28 start-page: 495 year: 2010 ident: 2023072821441879000_bib36 article-title: GREAT improves functional interpretation of cis-regulatory regions publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1630 – volume: 69 start-page: 7100 year: 2001 ident: 2023072821441879000_bib56 article-title: Relative importance of NF-kappaB p50 in mycobacterial infection publication-title: Infect. Immun. doi: 10.1128/IAI.69.11.7100-7105.2001 – volume: 8 start-page: e70630 year: 2013 ident: 2023072821441879000_bib7 article-title: Transcriptional blood signatures distinguish pulmonary tuberculosis, pulmonary sarcoidosis, pneumonias and lung cancers publication-title: PLoS One. doi: 10.1371/journal.pone.0070630 – volume: 195 start-page: 632 year: 2015 ident: 2023072821441879000_bib42 article-title: Hyaluronan Binding Identifies a Functionally Distinct Alveolar Macrophage-like Population in Bone Marrow-Derived Dendritic Cell Cultures publication-title: J. Immunol. doi: 10.4049/jimmunol.1402506 – volume: 61 start-page: 3482 year: 1993 ident: 2023072821441879000_bib4 article-title: Cytokine production at the site of disease in human tuberculosis publication-title: Infect. Immun. doi: 10.1128/iai.61.8.3482-3489.1993 – volume: 277 start-page: 46544 year: 2002 ident: 2023072821441879000_bib50 article-title: Stra13 homodimers repress transcription through class B E-box elements publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111652200 – volume: 71 start-page: 6871 year: 2003 ident: 2023072821441879000_bib22 article-title: The Mycobacterium tuberculosis complex-restricted gene cfp32 encodes an expressed protein that is detectable in tuberculosis patients and is positively correlated with pulmonary interleukin-10 publication-title: Infect. Immun. doi: 10.1128/IAI.71.12.6871-6883.2003 – volume: 169 start-page: 6343 year: 2002 ident: 2023072821441879000_bib53 article-title: In vivo IL-10 production reactivates chronic pulmonary tuberculosis in C57BL/6 mice publication-title: J. Immunol. doi: 10.4049/jimmunol.169.11.6343 – volume: 10 start-page: 92 year: 2009 ident: 2023072821441879000_bib55 article-title: The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance publication-title: Nat. Immunol. doi: 10.1038/ni.1673 – volume: 12 start-page: 231 year: 2011 ident: 2023072821441879000_bib28 article-title: IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses publication-title: Nat. Immunol. doi: 10.1038/ni.1990 – volume: 9 start-page: 1091 year: 2008 ident: 2023072821441879000_bib19 article-title: The Immunological Genome Project: networks of gene expression in immune cells publication-title: Nat. Immunol. doi: 10.1038/ni1008-1091 – volume: 528 start-page: 565 year: 2015 ident: 2023072821441879000_bib26 article-title: Unique role for ATG5 in neutrophil-mediated immunopathology during M. tuberculosis infection publication-title: Nature. doi: 10.1038/nature16451 – volume: 213 start-page: 251 year: 2016 ident: 2023072821441879000_bib30 article-title: IL-1-induced Bhlhe40 identifies pathogenic T helper cells in a model of autoimmune neuroinflammation publication-title: J. Exp. Med. doi: 10.1084/jem.20150568 – volume: 45 start-page: 570 year: 2016 ident: 2023072821441879000_bib10 article-title: The Transcription Factor AP4 Mediates Resolution of Chronic Viral Infection through Amplification of Germinal Center B Cell Responses publication-title: Immunity. doi: 10.1016/j.immuni.2016.07.023 – volume: 184 start-page: 3718 year: 2010 ident: 2023072821441879000_bib25 article-title: The septic shock-associated IL-10 -1082 A > G polymorphism mediates allele-specific transcription via poly(ADP-Ribose) polymerase 1 in macrophages engulfing apoptotic cells publication-title: J. Immunol. doi: 10.4049/jimmunol.0903613 – volume: 175 start-page: 7437 year: 2005 ident: 2023072821441879000_bib24 article-title: Distal enhancer elements transcribe intergenic RNA in the IL-10 family gene cluster publication-title: J. Immunol. doi: 10.4049/jimmunol.175.11.7437 – volume: 174 start-page: 1222 year: 2005 ident: 2023072821441879000_bib57 article-title: Enhanced production of IL-10 by dendritic cells deficient in CIITA publication-title: J. Immunol. doi: 10.4049/jimmunol.174.3.1222 – volume: 186 start-page: 1598 year: 2011 ident: 2023072821441879000_bib3 article-title: CD4 T cells promote rather than control tuberculosis in the absence of PD-1-mediated inhibition publication-title: J. Immunol. doi: 10.4049/jimmunol.1003304 – volume: 110 start-page: 317 year: 2014 ident: 2023072821441879000_bib41 article-title: Stra13 and Sharp-1, the non-grouchy regulators of development and disease publication-title: Curr. Top. Dev. Biol. doi: 10.1016/B978-0-12-405943-6.00009-9 – volume: 158 start-page: 315 year: 1997 ident: 2023072821441879000_bib38 article-title: T cell-derived IL-10 antagonizes macrophage function in mycobacterial infection publication-title: J. Immunol. doi: 10.4049/jimmunol.158.1.315 – volume: 174 start-page: 1209 year: 1991 ident: 2023072821441879000_bib13 article-title: Interleukin 10(IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes publication-title: J. Exp. Med. doi: 10.1084/jem.174.5.1209 – volume: 181 start-page: 5545 year: 2008 ident: 2023072821441879000_bib5 article-title: Interleukin-10 promotes Mycobacterium tuberculosis disease progression in CBA/J mice publication-title: J. Immunol. doi: 10.4049/jimmunol.181.8.5545 – volume: 53 start-page: 85 year: 2001 ident: 2023072821441879000_bib40 article-title: Circulating TNF-α, TGF-β, and IL-10 in tuberculosis patients and healthy contacts publication-title: Scand. J. Immunol. doi: 10.1046/j.1365-3083.2001.00844.x – volume: 27 start-page: 1696 year: 2011 ident: 2023072821441879000_bib31 article-title: MEME-ChIP: motif analysis of large DNA datasets publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btr189 – volume: 6 start-page: e26938 year: 2011 ident: 2023072821441879000_bib33 article-title: Functional correlations of pathogenesis-driven gene expression signatures in tuberculosis publication-title: PLoS One. doi: 10.1371/journal.pone.0026938 – volume: 208 start-page: 2251 year: 2011 ident: 2023072821441879000_bib39 article-title: Regulation of neutrophils by interferon-γ limits lung inflammation during tuberculosis infection publication-title: J. Exp. Med. doi: 10.1084/jem.20110919 – volume: 72 start-page: 2628 year: 2004 ident: 2023072821441879000_bib8 article-title: Down-modulation of lung immune responses by interleukin-10 and transforming growth factor β (TGF-β) and analysis of TGF-β receptors I and II in active tuberculosis publication-title: Infect. Immun. doi: 10.1128/IAI.72.5.2628-2634.2004 – volume: 10 start-page: 170 year: 2010 ident: 2023072821441879000_bib47 article-title: The regulation of IL-10 production by immune cells publication-title: Nat. Rev. Immunol. doi: 10.1038/nri2711 – volume: 302 start-page: 654 year: 2003 ident: 2023072821441879000_bib32 article-title: Immune control of tuberculosis by IFN-γ-inducible LRG-47 publication-title: Science. doi: 10.1126/science.1088063 – volume: 178 start-page: 2243 year: 1993 ident: 2023072821441879000_bib11 article-title: Disseminated tuberculosis in interferon gamma gene-disrupted mice publication-title: J. Exp. Med. doi: 10.1084/jem.178.6.2243 – volume: 167 start-page: 6957 year: 2001 ident: 2023072821441879000_bib20 article-title: A protective and agonistic function of IL-12p40 in mycobacterial infection publication-title: J. Immunol. doi: 10.4049/jimmunol.167.12.6957 – volume: 54 start-page: 163 year: 2001 ident: 2023072821441879000_bib46 article-title: Endogenous inhibition of antimycobacterial immunity by IL-10 varies between mycobacterial species publication-title: Scand. J. Immunol. doi: 10.1046/j.1365-3083.2001.00952.x – volume: 380 start-page: 157 year: 2014 ident: 2023072821441879000_bib16 article-title: The regulation of IL-10 expression publication-title: Curr. Top. Microbiol. Immunol. – volume: 183 start-page: 718 year: 2009 ident: 2023072821441879000_bib2 article-title: Tuberculosis is associated with a down-modulatory lung immune response that impairs Th1-type immunity publication-title: J. Immunol. doi: 10.4049/jimmunol.0801212 – volume: 26 start-page: 454 year: 2014 ident: 2023072821441879000_bib9 article-title: Mendelian susceptibility to mycobacterial disease: genetic, immunological, and clinical features of inborn errors of IFN-γ immunity publication-title: Semin. Immunol. doi: 10.1016/j.smim.2014.09.008 – volume: 2 start-page: 1040 year: 2001 ident: 2023072821441879000_bib52 article-title: Defective T cell activation and autoimmune disorder in Stra13-deficient mice publication-title: Nat. Immunol. doi: 10.1038/ni721 – volume: 115 start-page: 110 year: 1999 ident: 2023072821441879000_bib54 article-title: Serum concentrations of cytokines in patients with active tuberculosis (TB) and after treatment publication-title: Clin. Exp. Immunol. doi: 10.1046/j.1365-2249.1999.00783.x – volume: 408 start-page: 89 year: 2014 ident: 2023072821441879000_bib1 article-title: Comparative analysis of the efficiency and specificity of myeloid-Cre deleting strains using ROSA-EYFP reporter mice publication-title: J. Immunol. Methods. doi: 10.1016/j.jim.2014.05.009 – volume: 175 start-page: 3560 year: 2005 ident: 2023072821441879000_bib45 article-title: The IkappaB protein Bcl-3 negatively regulates transcription of the IL-10 gene in macrophages publication-title: J. Immunol. doi: 10.4049/jimmunol.175.6.3560 – volume: 70 start-page: 6672 year: 2002 ident: 2023072821441879000_bib14 article-title: Transgenic mice expressing human interleukin-10 in the antigen-presenting cell compartment show increased susceptibility to infection with Mycobacterium avium associated with decreased macrophage effector function and apoptosis publication-title: Infect. Immun. doi: 10.1128/IAI.70.12.6672-6679.2002 – volume: 148 start-page: 1792 year: 1992 ident: 2023072821441879000_bib17 article-title: IL-10 inhibits parasite killing and nitrogen oxide production by IFN-gamma-activated macrophages publication-title: J. Immunol. doi: 10.4049/jimmunol.148.6.1792 – volume: 178 start-page: 2249 year: 1993 ident: 2023072821441879000_bib15 article-title: An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection publication-title: J. Exp. Med. doi: 10.1084/jem.178.6.2249 – volume: 4 start-page: 261 year: 2011 ident: 2023072821441879000_bib44 article-title: The role of IL-10 in immune regulation during M. tuberculosis infection publication-title: Mucosal Immunol. doi: 10.1038/mi.2011.7 – volume: 16 start-page: 36 year: 2015 ident: 2023072821441879000_bib27 article-title: The development and function of lung-resident macrophages and dendritic cells publication-title: Nat. Immunol. doi: 10.1038/ni.3052 – volume: 183 start-page: 1301 year: 2009 ident: 2023072821441879000_bib49 article-title: Autocrine IL-10 induces hallmarks of alternative activation in macrophages and suppresses antituberculosis effector mechanisms without compromising T cell immunity publication-title: J. Immunol. doi: 10.4049/jimmunol.0803567 – volume: 210 start-page: 1603 year: 2013 ident: 2023072821441879000_bib34 article-title: CD28-inducible transcription factor DEC1 is required for efficient autoreactive CD4+ T cell response publication-title: J. Exp. Med. doi: 10.1084/jem.20122387 – volume: 199 start-page: 613 year: 2017 ident: 2023072821441879000_bib37 article-title: T Cell-Derived IL-10 Impairs Host Resistance to Mycobacterium tuberculosis Infection publication-title: J. Immunol. doi: 10.4049/jimmunol.1601340 – volume: 40 start-page: 2200 year: 2010 ident: 2023072821441879000_bib43 article-title: Enhanced protection to Mycobacterium tuberculosis infection in IL-10-deficient mice is accompanied by early and enhanced Th1 responses in the lung publication-title: Eur. J. Immunol. doi: 10.1002/eji.201040433 – volume: 42 start-page: 1197 year: 2015 ident: 2023072821441879000_bib18 article-title: GM-CSF Mouse Bone Marrow Cultures Comprise a Heterogeneous Population of CD11c(+)MHCII(+) Macrophages and Dendritic Cells publication-title: Immunity. doi: 10.1016/j.immuni.2015.05.018 – volume: 2013 start-page: 200 year: 2013 ident: 2023072821441879000_bib48 article-title: BAC transgenic mice and the GENSAT database of engineered mouse strains publication-title: Cold Spring Harb. Protoc. doi: 10.1101/pdb.top073692 – volume: 97 start-page: 4058 year: 2000 ident: 2023072821441879000_bib51 article-title: Stra13 expression is associated with growth arrest and represses transcription through histone deacetylase (HDAC)-dependent and HDAC-independent mechanisms publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.070526297 – volume: 32 start-page: 23 year: 2012 ident: 2023072821441879000_bib23 article-title: Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease publication-title: Crit. Rev. Immunol. doi: 10.1615/CritRevImmunol.v32.i1.30 – volume: 5 start-page: 3551 year: 2014 ident: 2023072821441879000_bib29 article-title: Bhlhe40 controls cytokine production by T cells and is essential for pathogenicity in autoimmune neuroinflammation publication-title: Nat. Commun. doi: 10.1038/ncomms4551 – volume: 9 start-page: R137 year: 2008 ident: 2023072821441879000_bib58 article-title: Model-based analysis of ChIP-Seq (MACS) publication-title: Genome Biol. doi: 10.1186/gb-2008-9-9-r137 – volume: 8 start-page: 931 year: 2007 ident: 2023072821441879000_bib35 article-title: Regulatory T cells expressing interleukin 10 develop from Foxp3+ and Foxp3- precursor cells in the absence of interleukin 10 publication-title: Nat. Immunol. doi: 10.1038/ni1504 – volume: 291 start-page: 12851 year: 2016 ident: 2023072821441879000_bib21 article-title: The atypical inhibitor of NF-κB, IκBζ, controls macrophage interleukin-10 expression publication-title: J. Biol. Chem. doi: 10.1074/jbc.M116.718825 – volume: 466 start-page: 973 year: 2010 ident: 2023072821441879000_bib6 article-title: An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis publication-title: Nature. doi: 10.1038/nature09247 – reference: 29880485 - J Exp Med. 2018 Jul 2;215(7):1767-1769. doi: 10.1084/jem.20180824. |
SSID | ssj0014456 |
Score | 2.5532618 |
Snippet | The cytokine IL-10 antagonizes pathways that control Mycobacterium tuberculosis (Mtb) infection. Nevertheless, the impact of IL-10 during Mtb infection has... The cytokine IL-10 antagonizes pathways that control ( ) infection. Nevertheless, the impact of IL-10 during infection has been difficult to decipher because... This study demonstrates that the transcription factor basic helix-loop-helix family member e40 (Bhlhe40) is essential during Mycobacterium tuberculosis... This study demonstrates that the transcription factor basic helix-loop-helix family member e40 (Bhlhe40) is essential during Mycobacterium tuberculosis... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1823 |
SubjectTerms | Adaptive control Adaptive Immunity Animal models Animals Base Sequence Basic Helix-Loop-Helix Transcription Factors - deficiency Basic Helix-Loop-Helix Transcription Factors - metabolism CD11c antigen Clonal deletion Genetic Loci Helix-loop-helix proteins (basic) Homeodomain Proteins - metabolism Immune system Immunity, Innate Infections Inflammation - pathology Interleukin 1 Interleukin 10 Interleukin-10 - deficiency Interleukin-10 - metabolism Lymphocytes Lymphocytes - metabolism Lymphocytes T Mice Mice, Inbred C57BL Models, Biological Mycobacterium tuberculosis Myeloid Cells - metabolism Neutrophils - metabolism Pathogenesis Phenotypes Protein Binding Repressor Proteins - metabolism Th1 Cells - metabolism Transcription factors Tuberculosis Tuberculosis - immunology Tuberculosis - prevention & control γ-Interferon |
Title | Bhlhe40 is an essential repressor of IL-10 during Mycobacterium tuberculosis infection |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29773644 https://www.proquest.com/docview/2062817970 https://www.proquest.com/docview/2041631747 https://pubmed.ncbi.nlm.nih.gov/PMC6028511 |
Volume | 215 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZgkRAXxHsDCzISnFaB1M7DPcIKVCqW0y7qLXIcW4nUJqs2OSy_nvEjblJ2JeASVbGbKP7G4288DyP0TgLMouQszFIptJtRhXPOKchyAautSqkqTbTFj3RxGS9XyWq_p2uyS7rig_h1Y17J_6AK9wBXnSX7D8j6h8IN-A34whUQhutfYfy5WlcyjvSh5DBNdRXwpqtNpX4T3toaD8C376AEh3TE82sBE9gUaO43p11fyK3o162uSjKEZTVjvrrPHDOcdXIewKFbftFfN5WNmNnqJJX9uci18-zXVXhW9W6tNI7_zcZumS-5gAXKUF6_FbTkWz0KTl61Db5zjiO3SzFjJqLVqlnpNGscaV8xG6teYlM5nYxlI0UKZg-9UcNHLNYaXuoqAjOwRe3hxSOwrzYGbQLElqa2tuRBRe2h6S66RzJgXDpFfOUDg8DCTFKXIgEv-zh-lS4d7f485TF_GCeHMbYj0nLxCD10yOFPVnQeozuyeYLunzvgnqKfToJwvcO8wV6CsJcg3CpsJAhbCcITCcJjCcJegp6hy69fLs4WoTtpIxRxxrqQwxylUswoUUAgC1bCB3IZUUmAYbJSaZpYloyKhCaqJJRTIhlYAkIVjNKI0-foqGkbeYywUpmK56qkSQbMcZ7OWSpECTwaHqIEIwE6HcYtF64MvT4NZZ2bcAgW5zDg-TDgAXrve1_Z8iu39DsZIMjdBN1BY0oYLDhZFKC3vhnUp_aJ8Ua2ve6jLRIwy7MAvbCI-RcNUAcom2DpO-jS7NOWpq5MifYUaDuYMi9vfeYr9GA_TU7QUbft5Wugt13xxkjjb0mGp1k |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bhlhe40+is+an+essential+repressor+of+IL-10+during+Mycobacterium+tuberculosis+infection&rft.jtitle=The+Journal+of+experimental+medicine&rft.au=Huynh%2C+Jeremy+P&rft.au=Lin%2C+Chih-Chung&rft.au=Kimmey%2C+Jacqueline+M&rft.au=Jarjour%2C+Nicholas+N&rft.date=2018-07-02&rft.eissn=1540-9538&rft.volume=215&rft.issue=7&rft.spage=1823&rft_id=info:doi/10.1084%2Fjem.20171704&rft_id=info%3Apmid%2F29773644&rft.externalDocID=29773644 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1007&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1007&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1007&client=summon |