A rules based algorithm to generate problem lists using emergency department medication reconciliation

•We examined an algorithm to determine medical problems from medications.•We compared the algorithm to attending physicians and a standardized hospital list.•The algorithm was more sensitive for detecting all of the conditions.•The algorithm was less specific for conditions treated with more varied...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of medical informatics (Shannon, Ireland) Vol. 94; pp. 117 - 122
Main Authors Joseph, Joshua W., Chiu, David T., Nathanson, Larry A., Horng, Steven
Format Journal Article
LanguageEnglish
Published Ireland Elsevier B.V 01.10.2016
Subjects
Online AccessGet full text
ISSN1386-5056
1872-8243
DOI10.1016/j.ijmedinf.2016.06.008

Cover

Abstract •We examined an algorithm to determine medical problems from medications.•We compared the algorithm to attending physicians and a standardized hospital list.•The algorithm was more sensitive for detecting all of the conditions.•The algorithm was less specific for conditions treated with more varied medications. To evaluate the sensitivity and specificity of a problem list automatically generated from the emergency department (ED) medication reconciliation. We performed a retrospective cohort study of patients admitted via the ED who also had a prior inpatient admission within the past year of an academic tertiary hospital. Our algorithm used the First Databank ontology to group medications into therapeutic classes, and applied a set of clinically derived rules to them to predict obstructive lung disease, hypertension, diabetes, congestive heart failure (CHF), and thromboembolism (TE) risk. This prediction was compared to problem lists in the last discharge summary in the electronic health record (EHR) as well as the emergency attending note. A total of 603 patients were enrolled from 03/29/2013–04/30/2013. The algorithm had superior sensitivity for all five conditions versus the attending problem list at the 99% confidence level (Obstructive Lung Disease 0.93 vs 0.47, Hypertension 0.93 vs 0.56, Diabetes 0.97 vs 0.73, TE Risk 0.82 vs 0.36, CHF 0.85 vs 0.38), while the attending problem list had superior specificity for both hypertension (0.76 vs 0.94) and CHF (0.87 vs 0.98). The algorithm had superior sensitivity for all conditions versus the EHR problem list (Obstructive Lung Disease 0.93 vs 0.34, Hypertension 0.93 vs 0.30, Diabetes 0.97 vs 0.67, TE Risk 0.82 vs 0.23, CHF 0.85 vs 0.32), while the EHR problem list also had superior specificity for detecting hypertension (0.76 vs 0.95) and CHF (0.87 vs 0.99). The algorithm was more sensitive than clinicians for all conditions, but less specific for conditions that are not treated with a specific class of medications. This suggests similar algorithms may help identify critical conditions, and facilitate thorough documentation, but further investigation, potentially adding alternate sources of information, may be needed to reliably detect more complex conditions.
AbstractList Highlights • We examined an algorithm to determine medical problems from medications. • We compared the algorithm to attending physicians and a standardized hospital list. • The algorithm was more sensitive for detecting all of the conditions. • The algorithm was less specific for conditions treated with more varied medications.
To evaluate the sensitivity and specificity of a problem list automatically generated from the emergency department (ED) medication reconciliation. We performed a retrospective cohort study of patients admitted via the ED who also had a prior inpatient admission within the past year of an academic tertiary hospital. Our algorithm used the First Databank ontology to group medications into therapeutic classes, and applied a set of clinically derived rules to them to predict obstructive lung disease, hypertension, diabetes, congestive heart failure (CHF), and thromboembolism (TE) risk. This prediction was compared to problem lists in the last discharge summary in the electronic health record (EHR) as well as the emergency attending note. A total of 603 patients were enrolled from 03/29/2013-04/30/2013. The algorithm had superior sensitivity for all five conditions versus the attending problem list at the 99% confidence level (Obstructive Lung Disease 0.93 vs 0.47, Hypertension 0.93 vs 0.56, Diabetes 0.97 vs 0.73, TE Risk 0.82 vs 0.36, CHF 0.85 vs 0.38), while the attending problem list had superior specificity for both hypertension (0.76 vs 0.94) and CHF (0.87 vs 0.98). The algorithm had superior sensitivity for all conditions versus the EHR problem list (Obstructive Lung Disease 0.93 vs 0.34, Hypertension 0.93 vs 0.30, Diabetes 0.97 vs 0.67, TE Risk 0.82 vs 0.23, CHF 0.85 vs 0.32), while the EHR problem list also had superior specificity for detecting hypertension (0.76 vs 0.95) and CHF (0.87 vs 0.99). The algorithm was more sensitive than clinicians for all conditions, but less specific for conditions that are not treated with a specific class of medications. This suggests similar algorithms may help identify critical conditions, and facilitate thorough documentation, but further investigation, potentially adding alternate sources of information, may be needed to reliably detect more complex conditions.
•We examined an algorithm to determine medical problems from medications.•We compared the algorithm to attending physicians and a standardized hospital list.•The algorithm was more sensitive for detecting all of the conditions.•The algorithm was less specific for conditions treated with more varied medications. To evaluate the sensitivity and specificity of a problem list automatically generated from the emergency department (ED) medication reconciliation. We performed a retrospective cohort study of patients admitted via the ED who also had a prior inpatient admission within the past year of an academic tertiary hospital. Our algorithm used the First Databank ontology to group medications into therapeutic classes, and applied a set of clinically derived rules to them to predict obstructive lung disease, hypertension, diabetes, congestive heart failure (CHF), and thromboembolism (TE) risk. This prediction was compared to problem lists in the last discharge summary in the electronic health record (EHR) as well as the emergency attending note. A total of 603 patients were enrolled from 03/29/2013–04/30/2013. The algorithm had superior sensitivity for all five conditions versus the attending problem list at the 99% confidence level (Obstructive Lung Disease 0.93 vs 0.47, Hypertension 0.93 vs 0.56, Diabetes 0.97 vs 0.73, TE Risk 0.82 vs 0.36, CHF 0.85 vs 0.38), while the attending problem list had superior specificity for both hypertension (0.76 vs 0.94) and CHF (0.87 vs 0.98). The algorithm had superior sensitivity for all conditions versus the EHR problem list (Obstructive Lung Disease 0.93 vs 0.34, Hypertension 0.93 vs 0.30, Diabetes 0.97 vs 0.67, TE Risk 0.82 vs 0.23, CHF 0.85 vs 0.32), while the EHR problem list also had superior specificity for detecting hypertension (0.76 vs 0.95) and CHF (0.87 vs 0.99). The algorithm was more sensitive than clinicians for all conditions, but less specific for conditions that are not treated with a specific class of medications. This suggests similar algorithms may help identify critical conditions, and facilitate thorough documentation, but further investigation, potentially adding alternate sources of information, may be needed to reliably detect more complex conditions.
OBJECTIVESTo evaluate the sensitivity and specificity of a problem list automatically generated from the emergency department (ED) medication reconciliation.METHODSWe performed a retrospective cohort study of patients admitted via the ED who also had a prior inpatient admission within the past year of an academic tertiary hospital. Our algorithm used the First Databank ontology to group medications into therapeutic classes, and applied a set of clinically derived rules to them to predict obstructive lung disease, hypertension, diabetes, congestive heart failure (CHF), and thromboembolism (TE) risk. This prediction was compared to problem lists in the last discharge summary in the electronic health record (EHR) as well as the emergency attending note.RESULTSA total of 603 patients were enrolled from 03/29/2013-04/30/2013. The algorithm had superior sensitivity for all five conditions versus the attending problem list at the 99% confidence level (Obstructive Lung Disease 0.93 vs 0.47, Hypertension 0.93 vs 0.56, Diabetes 0.97 vs 0.73, TE Risk 0.82 vs 0.36, CHF 0.85 vs 0.38), while the attending problem list had superior specificity for both hypertension (0.76 vs 0.94) and CHF (0.87 vs 0.98). The algorithm had superior sensitivity for all conditions versus the EHR problem list (Obstructive Lung Disease 0.93 vs 0.34, Hypertension 0.93 vs 0.30, Diabetes 0.97 vs 0.67, TE Risk 0.82 vs 0.23, CHF 0.85 vs 0.32), while the EHR problem list also had superior specificity for detecting hypertension (0.76 vs 0.95) and CHF (0.87 vs 0.99).CONCLUSIONThe algorithm was more sensitive than clinicians for all conditions, but less specific for conditions that are not treated with a specific class of medications. This suggests similar algorithms may help identify critical conditions, and facilitate thorough documentation, but further investigation, potentially adding alternate sources of information, may be needed to reliably detect more complex conditions.
Author Joseph, Joshua W.
Horng, Steven
Nathanson, Larry A.
Chiu, David T.
Author_xml – sequence: 1
  givenname: Joshua W.
  orcidid: 0000-0001-9704-6635
  surname: Joseph
  fullname: Joseph, Joshua W.
  email: jwjoseph@bidmc.harvard.edu
– sequence: 2
  givenname: David T.
  surname: Chiu
  fullname: Chiu, David T.
  email: dtchiu@bidmc.harvard.edu
– sequence: 3
  givenname: Larry A.
  surname: Nathanson
  fullname: Nathanson, Larry A.
  email: lnathans@bidmc.harvard.edu
– sequence: 4
  givenname: Steven
  surname: Horng
  fullname: Horng, Steven
  email: shorng@bidmc.harvard.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27573319$$D View this record in MEDLINE/PubMed
BookMark eNqNUktr3DAYNCWlebR_IejYi7d6WLIMpTSEviDQQ9uzkOTPW21laSvJgf33lbNJDzk0BYH0wcwwmvnOm5MQAzTNJcEbgol4s9u43QyjC9OG1nmD68HyWXNGZE9bSTt2Ut9MipZjLk6b85x3GJMe8-5Fc0p73jNGhrNmukJp8ZCR0RlGpP02Jld-zqhEtIUASRdA-xSNhxl5l0tGS3Zhi2CGVAH2gEbY61RmCAWtjqwuLgaUwMZgnXd348vm-aR9hlf390Xz4-OH79ef25uvn75cX920tutlaYeOwsgFsURLOZmRUkKZMHZgVuBuHCnnFLAehtHK-re-N7IfhBm4MdgwMOyieX3UrZZ_L5CLml224L0OEJesiCRcyBrCUKGX99DFVN9qn9ys00E9ZFMB4giwKeacYPoLIVitJaideihBrSUoXA-Wlfj2EdG6chdDSdr5p-nvj3SoQd06SCpbV5OuyBpqUWN0T0u8eyRhvQu1Gv8LDpB3cUmh1qCIylRh9W1dlHVPiGCYMC7-LfA_Dv4AF97Szg
CitedBy_id crossref_primary_10_2146_ajhp170455
crossref_primary_10_1542_hpeds_2024_007737
crossref_primary_10_1093_jamia_ocaa125
Cites_doi 10.7326/0003-4819-129-6-199809150-00012
10.7326/0003-4819-131-2-199907200-00008
10.1016/0735-6757(95)90080-2
10.11613/BM.2012.031
10.1016/j.ijmedinf.2007.12.001
10.1186/1472-6947-11-36
10.1016/S0196-0644(95)70202-4
10.1016/S0895-4356(00)00314-0
10.1016/j.ijmedinf.2003.08.002
10.1016/j.ijmedinf.2015.06.011
10.1111/j.1525-1497.2005.40206.x
10.1145/2145204.2145340
10.1056/NEJM196803212781204
10.1016/j.ijmedinf.2013.07.003
10.1016/j.ijmedinf.2008.05.005
10.1136/bmj.322.7281.283
ContentType Journal Article
Copyright 2016 Elsevier Ireland Ltd
Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Copyright_xml – notice: 2016 Elsevier Ireland Ltd
– notice: Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.ijmedinf.2016.06.008
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-8243
EndPage 122
ExternalDocumentID 27573319
10_1016_j_ijmedinf_2016_06_008
S1386505616301356
1_s2_0_S1386505616301356
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29J
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABBQC
ABDPE
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACJTP
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXBA
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SCC
SDF
SDG
SDP
SEL
SES
SEW
SNG
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
Z5R
~G-
~HD
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AAIAV
ABLVK
ABYKQ
AISVY
AJBFU
G8K
LCYCR
NAHTW
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c478t-942ed561c1a88fbd221236bc93c604dd2552e0a99dc838677b8796b95bb0b3eb3
IEDL.DBID .~1
ISSN 1386-5056
IngestDate Sun Sep 28 12:11:30 EDT 2025
Wed Feb 19 02:42:47 EST 2025
Wed Oct 01 03:30:01 EDT 2025
Thu Apr 24 22:52:06 EDT 2025
Fri Feb 23 02:18:33 EST 2024
Tue Feb 25 20:11:26 EST 2025
Tue Oct 14 19:33:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Quality assurance
Clinical decision support
Emergency medicine
Meaningful use
clinical decision support
emergency medicine
quality assurance
meaningful use
Language English
License Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c478t-942ed561c1a88fbd221236bc93c604dd2552e0a99dc838677b8796b95bb0b3eb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9704-6635
PMID 27573319
PQID 1815680549
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_1815680549
pubmed_primary_27573319
crossref_primary_10_1016_j_ijmedinf_2016_06_008
crossref_citationtrail_10_1016_j_ijmedinf_2016_06_008
elsevier_sciencedirect_doi_10_1016_j_ijmedinf_2016_06_008
elsevier_clinicalkeyesjournals_1_s2_0_S1386505616301356
elsevier_clinicalkey_doi_10_1016_j_ijmedinf_2016_06_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-10-01
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle International journal of medical informatics (Shannon, Ireland)
PublicationTitleAlternate Int J Med Inform
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Mandl, Markwell, MacDonald, Szolovits, Kohane (bib0080) 2001; 322
Bender, Lange (bib0045) 2001; 54
Burton, Simonaitis, Schadow (bib0095) 2008; vol. 2008
Wright, Maloney, Feblowitz (bib0100) 2011; 11
Eligible Professional Meaningful Use Core Measures Measure 3 of 13.
FDB MedKnowledge (NDDF) | Drug Database | FDB (First Databank).
Szeto, Coleman, Gholami, Hoffman, Goldstein (bib0090) 2002; 8
(accessed 6.07.15).
(accessed 3.05.16).
Naughton, Moran, Kadah, Heman-Ackah, Longano (bib0065) 1995; 25
Falck, Adimadhyam, Meltzer, Walton, Galanter (bib0110) 2013; 82
Wang, Bates, Chueh (bib0125) 2003; 72
Mandl, Kohane, Brandt (bib0075) 1998; 129
Lewis, Miller, Morley, Nork, Lasater (bib0070) 1995; 13
Tarone (bib0050) 1990; 51
Zhou, Zheng, Ackerman, Hanauer (bib0015) 2012
Galanter, Hier, Jao, Sarne (bib0035) 2010; 79
McHugh (bib0055) 2012; 22
Hartung, Hunt, Siemienczuk, Miller, Touchette (bib0010) 2005; 20
Brown, Miller, Camp, Guise, Walker (bib0085) 1999; 131
Eligible Professional Meaningful Use Core Measures Measure 10 of 13.
Meystre, Haug (bib0115) 2008; 77
Pacheco, Thompson, Kho (bib0030) 2011; vol. 2011
Wright, McCoy, Hickman (bib0105) 2015; 84
Kessels (bib0060) 2003; 96
Zelingher, Rind, Caraballo, Tuttle, Olson, Safran (bib0120) 1995
Weed (bib0005) 1968; 278
Weed (10.1016/j.ijmedinf.2016.06.008_bib0005) 1968; 278
Wright (10.1016/j.ijmedinf.2016.06.008_bib0105) 2015; 84
Falck (10.1016/j.ijmedinf.2016.06.008_bib0110) 2013; 82
Wang (10.1016/j.ijmedinf.2016.06.008_bib0125) 2003; 72
10.1016/j.ijmedinf.2016.06.008_bib0025
Mandl (10.1016/j.ijmedinf.2016.06.008_bib0080) 2001; 322
Zelingher (10.1016/j.ijmedinf.2016.06.008_bib0120) 1995
McHugh (10.1016/j.ijmedinf.2016.06.008_bib0055) 2012; 22
Szeto (10.1016/j.ijmedinf.2016.06.008_bib0090) 2002; 8
Hartung (10.1016/j.ijmedinf.2016.06.008_bib0010) 2005; 20
Pacheco (10.1016/j.ijmedinf.2016.06.008_bib0030) 2011; vol. 2011
Tarone (10.1016/j.ijmedinf.2016.06.008_bib0050) 1990; 51
Kessels (10.1016/j.ijmedinf.2016.06.008_bib0060) 2003; 96
Galanter (10.1016/j.ijmedinf.2016.06.008_bib0035) 2010; 79
Burton (10.1016/j.ijmedinf.2016.06.008_bib0095) 2008; vol. 2008
Zhou (10.1016/j.ijmedinf.2016.06.008_bib0015) 2012
Mandl (10.1016/j.ijmedinf.2016.06.008_bib0075) 1998; 129
Lewis (10.1016/j.ijmedinf.2016.06.008_bib0070) 1995; 13
Naughton (10.1016/j.ijmedinf.2016.06.008_bib0065) 1995; 25
10.1016/j.ijmedinf.2016.06.008_bib0020
Brown (10.1016/j.ijmedinf.2016.06.008_bib0085) 1999; 131
10.1016/j.ijmedinf.2016.06.008_bib0040
Bender (10.1016/j.ijmedinf.2016.06.008_bib0045) 2001; 54
Wright (10.1016/j.ijmedinf.2016.06.008_bib0100) 2011; 11
Meystre (10.1016/j.ijmedinf.2016.06.008_bib0115) 2008; 77
References_xml – volume: 131
  start-page: 117
  year: 1999
  end-page: 126
  ident: bib0085
  article-title: Empirical derivation of an electronic clinically useful problem statement system
  publication-title: Ann. Intern. Med.
– volume: 82
  start-page: 996
  year: 2013
  end-page: 1003
  ident: bib0110
  article-title: A trial of indication based prescribing of antihypertensive medications during computerized order entry to improve problem list documentation
  publication-title: Int. J. Med. Inf.
– volume: 8
  start-page: 37
  year: 2002
  end-page: 43
  ident: bib0090
  article-title: Accuracy of computerized outpatient diagnoses in a veterans affairs general medicine clinic
  publication-title: Am. J. Manag. Care
– reference: Eligible Professional Meaningful Use Core Measures Measure 10 of 13.
– volume: 278
  start-page: 652
  year: 1968
  end-page: 657
  ident: bib0005
  article-title: Medical records that guide and teach
  publication-title: N. Engl. J. Med.
– reference: FDB MedKnowledge (NDDF) | Drug Database | FDB (First Databank).
– reference: Eligible Professional Meaningful Use Core Measures Measure 3 of 13.
– volume: 72
  start-page: 17
  year: 2003
  end-page: 28
  ident: bib0125
  article-title: Automated coded ambulatory problem lists: evaluation of a vocabulary and a data entry tool
  publication-title: Int. J. Med. Inf.
– volume: 54
  start-page: 343
  year: 2001
  end-page: 349
  ident: bib0045
  article-title: Adjusting for multiple testing—when and how?
  publication-title: J. Clin. Epidemiol.
– volume: 51
  start-page: 5
  year: 1990
  end-page: 522
  ident: bib0050
  article-title: A modified Bonferroni method for discrete data
  publication-title: Biometrics
– volume: 96
  start-page: 219
  year: 2003
  end-page: 222
  ident: bib0060
  article-title: Patients’ memory for medical information
  publication-title: J. R. Soc. Med.
– volume: 84
  start-page: 784
  year: 2015
  end-page: 790
  ident: bib0105
  article-title: Problem list completeness in electronic health records: a multi-site study and assessment of success factors
  publication-title: Int. J. Med. Inf.
– volume: 77
  start-page: 602
  year: 2008
  end-page: 612
  ident: bib0115
  article-title: Randomized controlled trial of an automated problem list with improved sensitivity
  publication-title: Int. J. Med. Inf.
– volume: 322
  start-page: 283
  year: 2001
  end-page: 287
  ident: bib0080
  article-title: Public standards and patients’ control: how to keep electronic medical records accessible but private: a patient’s viewpoint
  publication-title: BMJ
– start-page: 911
  year: 2012
  end-page: 920
  ident: bib0015
  article-title: Cooperative documentation: the patient problem list as a nexus in electronic health records
  publication-title: Proceedings of the ACM 2012 Conference on Computer Supported Cooperative Work. ACM
– reference: (accessed 6.07.15).
– volume: 20
  start-page: 143
  year: 2005
  end-page: 147
  ident: bib0010
  article-title: Clinical implications of an accurate problem list on heart failure treatment
  publication-title: J. Gen. Intern. Med.
– start-page: 416
  year: 1995
  ident: bib0120
  article-title: Categorization of free-text problem lists: an effective method of capturing clinical data
  publication-title: Proceedings of the Annual Symposium on Computer Application in Medical Care. American Medical Informatics Association
– volume: 129
  start-page: 495
  year: 1998
  end-page: 500
  ident: bib0075
  article-title: Electronic patient-physician communication: problems and promise
  publication-title: Ann. Intern. Med.
– volume: vol. 2011
  start-page: 1062
  year: 2011
  ident: bib0030
  article-title: Automatically detecting problem list omissions of type 2 diabetes cases using electronic medical records
  publication-title: AMIA Annual Symposium Proceedings
– volume: 22
  start-page: 276
  year: 2012
  end-page: 282
  ident: bib0055
  article-title: Interrater reliability: the kappa statistic
  publication-title: Biochem. Med.
– reference: (accessed 3.05.16).
– volume: 13
  start-page: 142
  year: 1995
  end-page: 145
  ident: bib0070
  article-title: Unrecognized delirium in ED geriatric patients
  publication-title: Am. J. Emerg. Med.
– volume: 25
  start-page: 751
  year: 1995
  end-page: 755
  ident: bib0065
  article-title: Delirium and other cognitive impairment in older adults in an emergency department
  publication-title: Ann. Emerg. Med.
– volume: vol. 2008
  start-page: 86
  year: 2008
  ident: bib0095
  article-title: Medication and indication linkage: a practical therapy for the problem list?
  publication-title: AMIA Annual Symposium Proceedings
– volume: 11
  start-page: 36
  year: 2011
  ident: bib0100
  article-title: Clinician attitudes toward and use of electronic problem lists: a thematic analysis
  publication-title: BMC Med. Inf. Decis. Mak.
– volume: 79
  start-page: 332
  year: 2010
  end-page: 338
  ident: bib0035
  article-title: Computerized physician order entry of medications and clinical decision support can improve problem list documentation compliance
  publication-title: Int. J. Med. Inf.
– volume: 8
  start-page: 37
  issue: 1
  year: 2002
  ident: 10.1016/j.ijmedinf.2016.06.008_bib0090
  article-title: Accuracy of computerized outpatient diagnoses in a veterans affairs general medicine clinic
  publication-title: Am. J. Manag. Care
– volume: 129
  start-page: 495
  issue: 6
  year: 1998
  ident: 10.1016/j.ijmedinf.2016.06.008_bib0075
  article-title: Electronic patient-physician communication: problems and promise
  publication-title: Ann. Intern. Med.
  doi: 10.7326/0003-4819-129-6-199809150-00012
– volume: 131
  start-page: 117
  issue: 2
  year: 1999
  ident: 10.1016/j.ijmedinf.2016.06.008_bib0085
  article-title: Empirical derivation of an electronic clinically useful problem statement system
  publication-title: Ann. Intern. Med.
  doi: 10.7326/0003-4819-131-2-199907200-00008
– ident: 10.1016/j.ijmedinf.2016.06.008_bib0020
– volume: 51
  start-page: 5
  year: 1990
  ident: 10.1016/j.ijmedinf.2016.06.008_bib0050
  article-title: A modified Bonferroni method for discrete data
  publication-title: Biometrics
– volume: 13
  start-page: 142
  issue: 2
  year: 1995
  ident: 10.1016/j.ijmedinf.2016.06.008_bib0070
  article-title: Unrecognized delirium in ED geriatric patients
  publication-title: Am. J. Emerg. Med.
  doi: 10.1016/0735-6757(95)90080-2
– volume: 22
  start-page: 276
  issue: 3
  year: 2012
  ident: 10.1016/j.ijmedinf.2016.06.008_bib0055
  article-title: Interrater reliability: the kappa statistic
  publication-title: Biochem. Med.
  doi: 10.11613/BM.2012.031
– volume: 77
  start-page: 602
  issue: 9
  year: 2008
  ident: 10.1016/j.ijmedinf.2016.06.008_bib0115
  article-title: Randomized controlled trial of an automated problem list with improved sensitivity
  publication-title: Int. J. Med. Inf.
  doi: 10.1016/j.ijmedinf.2007.12.001
– volume: 11
  start-page: 36
  issue: 1
  year: 2011
  ident: 10.1016/j.ijmedinf.2016.06.008_bib0100
  article-title: Clinician attitudes toward and use of electronic problem lists: a thematic analysis
  publication-title: BMC Med. Inf. Decis. Mak.
  doi: 10.1186/1472-6947-11-36
– volume: 96
  start-page: 219
  issue: 5
  year: 2003
  ident: 10.1016/j.ijmedinf.2016.06.008_bib0060
  article-title: Patients’ memory for medical information
  publication-title: J. R. Soc. Med.
– volume: 25
  start-page: 751
  issue: 6
  year: 1995
  ident: 10.1016/j.ijmedinf.2016.06.008_bib0065
  article-title: Delirium and other cognitive impairment in older adults in an emergency department
  publication-title: Ann. Emerg. Med.
  doi: 10.1016/S0196-0644(95)70202-4
– ident: 10.1016/j.ijmedinf.2016.06.008_bib0040
– volume: 54
  start-page: 343
  issue: 4
  year: 2001
  ident: 10.1016/j.ijmedinf.2016.06.008_bib0045
  article-title: Adjusting for multiple testing—when and how?
  publication-title: J. Clin. Epidemiol.
  doi: 10.1016/S0895-4356(00)00314-0
– volume: 72
  start-page: 17
  issue: 1
  year: 2003
  ident: 10.1016/j.ijmedinf.2016.06.008_bib0125
  article-title: Automated coded ambulatory problem lists: evaluation of a vocabulary and a data entry tool
  publication-title: Int. J. Med. Inf.
  doi: 10.1016/j.ijmedinf.2003.08.002
– volume: 84
  start-page: 784
  issue: 10
  year: 2015
  ident: 10.1016/j.ijmedinf.2016.06.008_bib0105
  article-title: Problem list completeness in electronic health records: a multi-site study and assessment of success factors
  publication-title: Int. J. Med. Inf.
  doi: 10.1016/j.ijmedinf.2015.06.011
– start-page: 416
  year: 1995
  ident: 10.1016/j.ijmedinf.2016.06.008_bib0120
  article-title: Categorization of free-text problem lists: an effective method of capturing clinical data
  publication-title: Proceedings of the Annual Symposium on Computer Application in Medical Care. American Medical Informatics Association
– ident: 10.1016/j.ijmedinf.2016.06.008_bib0025
– volume: 20
  start-page: 143
  issue: 2
  year: 2005
  ident: 10.1016/j.ijmedinf.2016.06.008_bib0010
  article-title: Clinical implications of an accurate problem list on heart failure treatment
  publication-title: J. Gen. Intern. Med.
  doi: 10.1111/j.1525-1497.2005.40206.x
– volume: vol. 2011
  start-page: 1062
  year: 2011
  ident: 10.1016/j.ijmedinf.2016.06.008_bib0030
  article-title: Automatically detecting problem list omissions of type 2 diabetes cases using electronic medical records
– start-page: 911
  year: 2012
  ident: 10.1016/j.ijmedinf.2016.06.008_bib0015
  article-title: Cooperative documentation: the patient problem list as a nexus in electronic health records
  publication-title: Proceedings of the ACM 2012 Conference on Computer Supported Cooperative Work. ACM
  doi: 10.1145/2145204.2145340
– volume: 278
  start-page: 652
  issue: 12
  year: 1968
  ident: 10.1016/j.ijmedinf.2016.06.008_bib0005
  article-title: Medical records that guide and teach
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJM196803212781204
– volume: 82
  start-page: 996
  issue: 10
  year: 2013
  ident: 10.1016/j.ijmedinf.2016.06.008_bib0110
  article-title: A trial of indication based prescribing of antihypertensive medications during computerized order entry to improve problem list documentation
  publication-title: Int. J. Med. Inf.
  doi: 10.1016/j.ijmedinf.2013.07.003
– volume: 79
  start-page: 332
  issue: 5
  year: 2010
  ident: 10.1016/j.ijmedinf.2016.06.008_bib0035
  article-title: Computerized physician order entry of medications and clinical decision support can improve problem list documentation compliance
  publication-title: Int. J. Med. Inf.
  doi: 10.1016/j.ijmedinf.2008.05.005
– volume: 322
  start-page: 283
  issue: 7281
  year: 2001
  ident: 10.1016/j.ijmedinf.2016.06.008_bib0080
  article-title: Public standards and patients’ control: how to keep electronic medical records accessible but private: a patient’s viewpoint
  publication-title: BMJ
  doi: 10.1136/bmj.322.7281.283
– volume: vol. 2008
  start-page: 86
  year: 2008
  ident: 10.1016/j.ijmedinf.2016.06.008_bib0095
  article-title: Medication and indication linkage: a practical therapy for the problem list?
SSID ssj0017054
Score 2.1585453
Snippet •We examined an algorithm to determine medical problems from medications.•We compared the algorithm to attending physicians and a standardized hospital...
Highlights • We examined an algorithm to determine medical problems from medications. • We compared the algorithm to attending physicians and a standardized...
To evaluate the sensitivity and specificity of a problem list automatically generated from the emergency department (ED) medication reconciliation. We...
OBJECTIVESTo evaluate the sensitivity and specificity of a problem list automatically generated from the emergency department (ED) medication...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 117
SubjectTerms Aged
Algorithms
Clinical decision support
Databases, Factual
Electronic Health Records
Emergency medicine
Emergency Service, Hospital
Female
Heart Failure
Humans
Hypertension
Inpatients
Internal Medicine
Male
Meaningful use
Medication Errors - prevention & control
Medication Reconciliation
Middle Aged
Other
Quality assurance
Retrospective Studies
Title A rules based algorithm to generate problem lists using emergency department medication reconciliation
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1386505616301356
https://www.clinicalkey.es/playcontent/1-s2.0-S1386505616301356
https://dx.doi.org/10.1016/j.ijmedinf.2016.06.008
https://www.ncbi.nlm.nih.gov/pubmed/27573319
https://www.proquest.com/docview/1815680549
Volume 94
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-8243
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017054
  issn: 1386-5056
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection
  customDbUrl:
  eissn: 1872-8243
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017054
  issn: 1386-5056
  databaseCode: ACRLP
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-8243
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017054
  issn: 1386-5056
  databaseCode: .~1
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1872-8243
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017054
  issn: 1386-5056
  databaseCode: AIKHN
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-8243
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017054
  issn: 1386-5056
  databaseCode: AKRWK
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS-QwEB9EQXwR7_xaPSWCr3X73eRxWZS9OxXxA3wLTZOuXWpXtt1X_3YzaboonijnU2npNGVmMjNhZn4DcMzyLM9zIRyBle2hK1MnpSx2pNTBduoK4RskpovLeHQX_rmP7pdg2PXCYFmltf2tTTfW2j7pW272n4qif-PhuEoMgGOtpEGEsNthmOAUg5PnRZkHosW0g21p7ODbr7qEJyfFBDPYlYHyjA2OJ46Z_LeD-igANY7obAPWbQRJBu1P_oAlVf2E1QubI9-EfEBm81LVBB2UJGk5ns6K5uGRNFMyNiDTjSJ2jgwptZRrgsXvY6K6TkwitY-amfJzYnLvRnrEnJ2zomyFuQV3Z6e3w5Fjpyk4WZjQxmGhr6TmVuallOZC-ui0YpGxIIvdUEp9tvCVmzImMxogyp2gCYsFi4RwRaDP3NuwXE0rtQtEUF9GaUBd5fkGQDAPEv0xbRyoDmdo2IOoYyHPLNQ4TrwoeVdTNuEd6zmynpviOtqD_oLuqQXb-JQi6STEu1ZSbfy49gf_R6lqu4dr7vHa5y5_p2c9YAvKN6r6pVWPOjXieh9jciat1HSuV0PYHqqVlfVgp9WvBQ_8BFErPbb3jZX3YQ3v2jrEX7DczObqQMdTjTg0G-YQVgbD6_MrvP7-O7p8ARkuIco
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED8xJo29IPYFHWwz0l5DEydx7EeEQN1GeQEk3qw4dkqqkKImfd3fPp_jVEwwbWKvTS-O7s73obv7HcBXURZlWSoVKOxsT0KdBzkXLNDaBtt5qBR1SEzTCza5Tr7fpDcbcDLMwmBbpbf9vU131tr_MvbcHN9X1fgywnWVGAAzq6Rxyl7AyySlGWZgRz_XfR4IF9NvtuUswL8_GBOeH1VzLGE3DsuTOSBP3DP5tIf6UwTqPNHZDmz7EJIc91_5BjZM8xZeTX2R_B2Ux2S5qk1L0ENpktezxbLqbu9ItyAzhzLdGeIXyZDairkl2P0-I2YYxSTaOqml6z8nrvjuxEdc8lxUdS_N93B9dnp1Mgn8OoWgSDLeBSKhRlt2FVHOeak0Ra_FVCHigoWJ1ja5oCbMhdAFjxHmTvFMMCVSpUIV26T7A2w2i8bsAVGc6jSPeWgi6hAEyzizL7PWgdt4hicjSAcWysJjjePKi1oOTWVzObBeIuul667jIxiv6e57tI2_UmSDhOQwS2qtn7QO4XmUpvWXuJWRbKkM5SNFG4FYU_6mq_906uGgRtJeZKzO5I1ZrOxpiNvDrbKKEez2-rXmAc0QtjISH__j5C-wNbmansvzbxc_9uE1PumbEg9gs1uuzCcbXHXqs7s8vwCHWSHK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+rules+based+algorithm+to+generate+problem+lists+using+emergency+department+medication+reconciliation&rft.jtitle=International+journal+of+medical+informatics+%28Shannon%2C+Ireland%29&rft.au=Joseph%2C+Joshua+W.&rft.au=Chiu%2C+David+T.&rft.au=Nathanson%2C+Larry+A.&rft.au=Horng%2C+Steven&rft.date=2016-10-01&rft.issn=1386-5056&rft.volume=94&rft.spage=117&rft.epage=122&rft_id=info:doi/10.1016%2Fj.ijmedinf.2016.06.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijmedinf_2016_06_008
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-5056&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-5056&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-5056&client=summon