An oral microbiota-based deep neural network model for risk stratification and prognosis prediction in gastric cancer

This study aims to develop an oral microbiota-based model for gastric cancer (GC) risk stratification and prognosis prediction. Oral microbial markers for GC prognosis and risk stratification were identified from 99 GC patients, and their predictive potential was validated on an external dataset of...

Full description

Saved in:
Bibliographic Details
Published inJournal of oral microbiology Vol. 17; no. 1; p. 2451921
Main Authors Gao, Xue-Feng, Zhang, Can-Gui, Huang, Kun, Zhao, Xiao-Lin, Liu, Ying-Qiao, Wang, Zi-Kai, Ren, Rong-Rong, Mai, Geng-Hui, Yang, Ke-Ren, Chen, Ye
Format Journal Article
LanguageEnglish
Published United States Taylor & Francis 2025
Taylor & Francis Group
Subjects
Online AccessGet full text
ISSN2000-2297
2000-2297
DOI10.1080/20002297.2025.2451921

Cover

Abstract This study aims to develop an oral microbiota-based model for gastric cancer (GC) risk stratification and prognosis prediction. Oral microbial markers for GC prognosis and risk stratification were identified from 99 GC patients, and their predictive potential was validated on an external dataset of 111 GC patients. The identified bacterial markers were used to construct a Deep Neural Network (DNN) model, a Random Forest (RF) model, and a Support Vector Machine (SVM) model for predicting GC prognosis. GC patients with <3 years of survival showed a higher abundance of and diminished abundances of and Moryella than those who survived ≥3 years. The Boruta algorithm unearthed Leptotrichia as another significant marker for GC prognosis. Consequently, a DNN model was constructed based on the relative abundances of these bacteria, predicting 3-year and 5-year survival in GC patients with Area Under Curve of 0.814 and 0.912, respectively. Notably, the DNN model outperformed the TNM staging system, SVM and RF models. The prognostic value of these bacterial markers was further reinforced by external validation. The oral microbiota-based DNN model may advance GC prognosis. The biological functions of these oral bacterial markers warrant further investigation from the perspective of GC progression.
AbstractList Background This study aims to develop an oral microbiota-based model for gastric cancer (GC) risk stratification and prognosis prediction.Methods Oral microbial markers for GC prognosis and risk stratification were identified from 99 GC patients, and their predictive potential was validated on an external dataset of 111 GC patients. The identified bacterial markers were used to construct a Deep Neural Network (DNN) model, a Random Forest (RF) model, and a Support Vector Machine (SVM) model for predicting GC prognosis.Results GC patients with <3 years of survival showed a higher abundance of Aggregatibacter and diminished abundances of Filifactor and Moryella than those who survived ≥3 years. The Boruta algorithm unearthed Leptotrichia as another significant marker for GC prognosis. Consequently, a DNN model was constructed based on the relative abundances of these bacteria, predicting 3-year and 5-year survival in GC patients with Area Under Curve of 0.814 and 0.912, respectively. Notably, the DNN model outperformed the TNM staging system, SVM and RF models. The prognostic value of these bacterial markers was further reinforced by external validation.Conclusion The oral microbiota-based DNN model may advance GC prognosis. The biological functions of these oral bacterial markers warrant further investigation from the perspective of GC progression.
This study aims to develop an oral microbiota-based model for gastric cancer (GC) risk stratification and prognosis prediction.BackgroundThis study aims to develop an oral microbiota-based model for gastric cancer (GC) risk stratification and prognosis prediction.Oral microbial markers for GC prognosis and risk stratification were identified from 99 GC patients, and their predictive potential was validated on an external dataset of 111 GC patients. The identified bacterial markers were used to construct a Deep Neural Network (DNN) model, a Random Forest (RF) model, and a Support Vector Machine (SVM) model for predicting GC prognosis.MethodsOral microbial markers for GC prognosis and risk stratification were identified from 99 GC patients, and their predictive potential was validated on an external dataset of 111 GC patients. The identified bacterial markers were used to construct a Deep Neural Network (DNN) model, a Random Forest (RF) model, and a Support Vector Machine (SVM) model for predicting GC prognosis.GC patients with <3 years of survival showed a higher abundance of Aggregatibacter and diminished abundances of Filifactor and Moryella than those who survived ≥3 years. The Boruta algorithm unearthed Leptotrichia as another significant marker for GC prognosis. Consequently, a DNN model was constructed based on the relative abundances of these bacteria, predicting 3-year and 5-year survival in GC patients with Area Under Curve of 0.814 and 0.912, respectively. Notably, the DNN model outperformed the TNM staging system, SVM and RF models. The prognostic value of these bacterial markers was further reinforced by external validation.ResultsGC patients with <3 years of survival showed a higher abundance of Aggregatibacter and diminished abundances of Filifactor and Moryella than those who survived ≥3 years. The Boruta algorithm unearthed Leptotrichia as another significant marker for GC prognosis. Consequently, a DNN model was constructed based on the relative abundances of these bacteria, predicting 3-year and 5-year survival in GC patients with Area Under Curve of 0.814 and 0.912, respectively. Notably, the DNN model outperformed the TNM staging system, SVM and RF models. The prognostic value of these bacterial markers was further reinforced by external validation.The oral microbiota-based DNN model may advance GC prognosis. The biological functions of these oral bacterial markers warrant further investigation from the perspective of GC progression.ConclusionThe oral microbiota-based DNN model may advance GC prognosis. The biological functions of these oral bacterial markers warrant further investigation from the perspective of GC progression.
This study aims to develop an oral microbiota-based model for gastric cancer (GC) risk stratification and prognosis prediction. Oral microbial markers for GC prognosis and risk stratification were identified from 99 GC patients, and their predictive potential was validated on an external dataset of 111 GC patients. The identified bacterial markers were used to construct a Deep Neural Network (DNN) model, a Random Forest (RF) model, and a Support Vector Machine (SVM) model for predicting GC prognosis. GC patients with <3 years of survival showed a higher abundance of and diminished abundances of and Moryella than those who survived ≥3 years. The Boruta algorithm unearthed Leptotrichia as another significant marker for GC prognosis. Consequently, a DNN model was constructed based on the relative abundances of these bacteria, predicting 3-year and 5-year survival in GC patients with Area Under Curve of 0.814 and 0.912, respectively. Notably, the DNN model outperformed the TNM staging system, SVM and RF models. The prognostic value of these bacterial markers was further reinforced by external validation. The oral microbiota-based DNN model may advance GC prognosis. The biological functions of these oral bacterial markers warrant further investigation from the perspective of GC progression.
Author Yang, Ke-Ren
Ren, Rong-Rong
Gao, Xue-Feng
Zhao, Xiao-Lin
Liu, Ying-Qiao
Zhang, Can-Gui
Wang, Zi-Kai
Chen, Ye
Mai, Geng-Hui
Huang, Kun
Author_xml – sequence: 1
  givenname: Xue-Feng
  surname: Gao
  fullname: Gao, Xue-Feng
  organization: Integrative Microecology Clinical Center, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, The Clinical Innovation & Research Center, Shenzhen Key Laboratory of Viral Oncology, Department of Clinical Nutrition, Shenzhen Hospital, Southern Medical University, Shenzhen, China
– sequence: 2
  givenname: Can-Gui
  surname: Zhang
  fullname: Zhang, Can-Gui
  organization: Integrative Microecology Clinical Center, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, The Clinical Innovation & Research Center, Shenzhen Key Laboratory of Viral Oncology, Department of Clinical Nutrition, Shenzhen Hospital, Southern Medical University, Shenzhen, China, Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
– sequence: 3
  givenname: Kun
  surname: Huang
  fullname: Huang, Kun
  organization: Department of Gastroenterology, Civil Aviation General Hospital, Beijing, China
– sequence: 4
  givenname: Xiao-Lin
  surname: Zhao
  fullname: Zhao, Xiao-Lin
  organization: Department of Gastroenterology, Civil Aviation General Hospital, Beijing, China
– sequence: 5
  givenname: Ying-Qiao
  surname: Liu
  fullname: Liu, Ying-Qiao
  organization: Department of Oral and Maxillofacial Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
– sequence: 6
  givenname: Zi-Kai
  surname: Wang
  fullname: Wang, Zi-Kai
  organization: Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
– sequence: 7
  givenname: Rong-Rong
  surname: Ren
  fullname: Ren, Rong-Rong
  organization: Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
– sequence: 8
  givenname: Geng-Hui
  surname: Mai
  fullname: Mai, Geng-Hui
  organization: Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
– sequence: 9
  givenname: Ke-Ren
  surname: Yang
  fullname: Yang, Ke-Ren
  organization: Integrative Microecology Clinical Center, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, The Clinical Innovation & Research Center, Shenzhen Key Laboratory of Viral Oncology, Department of Clinical Nutrition, Shenzhen Hospital, Southern Medical University, Shenzhen, China, Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
– sequence: 10
  givenname: Ye
  surname: Chen
  fullname: Chen, Ye
  organization: Integrative Microecology Clinical Center, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, The Clinical Innovation & Research Center, Shenzhen Key Laboratory of Viral Oncology, Department of Clinical Nutrition, Shenzhen Hospital, Southern Medical University, Shenzhen, China, Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39840394$$D View this record in MEDLINE/PubMed
BookMark eNqFUk1v1DAQjVARLaU_AeQjlyz-SDa2OKCq4qNSJS5wtsb2eHGb2IudBfHvcXa3VcuFiz0z780bW_NeNicxRWya14yuGJX0HaeUcq6GFae8X_GuZ4qzZ83ZUm8X4ORRfNpclHJbMyq4lB1_0ZwKJTsqVHfW7C4jSRlGMgWbkwlphtZAQUcc4pZE3C1gxPl3yndkSg5H4lMmOZQ7UuYMc_DB1jNFAtGRbU6bmEooNUIX7B4IkWygkoMlFqLF_Kp57mEseHG8z5vvnz5-u_rS3nz9fH11edPabpBzK_1gpWcAyoL3TvFhbaTzKDqOnJs1NdxwDyClkA7B9q5ClCE4MwxWeXHeXB90XYJbvc1hgvxHJwh6X0h5oyHPwY6oQTEqpBIerOokF3U2cMEMKON7uzZV68NBa7szEzqLsf5-fCL6FInhh96kX5qxoVO8E1Xh7VEhp587LLOeQrE4jhAx7YoWrJeM8nXHK_XN42EPU-4XVwn9gVC3VkpG_0BhVC8e0fce0YtH9NEjte_9P302zPv11TeH8T_dfwFiz8Pd
CitedBy_id crossref_primary_10_3389_fonc_2025_1524887
Cites_doi 10.1136/gutjnl-2016-312580
10.1136/bmj.l5016
10.1038/s41388-024-02974-w
10.3390/jcm8071079
10.1016/S2589-7500(22)00040-1
10.1016/j.chom.2020.12.001
10.1016/j.micpath.2020.104479
10.1186/1472-6947-8-53
10.1016/j.semcancer.2023.04.009
10.1038/s41587-019-0209-9
10.1002/ijc.33848
10.1038/s41467-022-28437-y
10.1016/j.micpath.2017.11.001
10.1002/mco2.344
10.1099/ijs.0.64705-0
10.1038/s41579-023-00984-1
10.1016/j.cmpb.2022.106924
10.1111/1751-2980.12705
10.1136/gutjnl-2024-332815
10.1186/s13045-023-01451-3
10.3322/caac.21388
10.1038/s41467-020-20260-7
10.3389/fcimb.2021.640309
10.1161/CIRCULATIONAHA.120.047829
10.1016/j.eclinm.2023.101834
10.1186/gb-2011-12-6-r60
10.1016/j.cell.2023.01.035
10.1902/jop.2017.160829
10.1056/NEJMc2306877
10.3322/caac.21660
10.3390/cancers14153742
10.1053/j.gastro.2019.10.019
10.1080/20002297.2017.1368848
10.1177/0272989X06295361
10.1038/s41591-022-01981-2
10.1038/nature13480
10.1016/j.ijbiomac.2022.04.133
10.1126/science.abc4552
10.1016/j.neuron.2020.09.005
10.1016/j.cell.2024.01.004
10.7150/jca.25280
10.1016/j.ebiom.2023.104616
10.1021/acs.chemrev.2c00431
10.1136/gutjnl-2017-314281
10.1093/jnci/95.9.634
10.1038/s41591-019-0377-7
10.1038/s41392-022-00974-4
10.3389/fcimb.2018.00433
10.1016/S2468-1253(19)30328-0
10.1016/S1470-2045(18)30131-1
10.1504/IJCISTUDIES.2021.113826
10.1016/j.ebiom.2018.12.028
ContentType Journal Article
Copyright 2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2025 The Author(s)
Copyright_xml – notice: 2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
– notice: 2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2025 The Author(s)
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1080/20002297.2025.2451921
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Dentistry
DocumentTitleAlternate X.-F. GAO ET AL
EISSN 2000-2297
ExternalDocumentID oai_doaj_org_article_a9103893fac948238f7a231ba9bf5c6b
PMC11749243
39840394
10_1080_20002297_2025_2451921
Genre Journal Article
GroupedDBID 0YH
34H
5VS
7X7
8FE
8FH
8FI
8FJ
AAYXX
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
AEUYN
AFKRA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DIK
E3Z
EAP
EBD
EBS
ESX
FRP
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
KQ8
LK8
M7P
MM.
M~E
O5R
O5S
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RPM
TDBHL
TFW
TUS
UKHRP
3V.
8WT
ADRAZ
EAD
EJD
H13
HYE
IPNFZ
M48
M4Z
NPM
RIG
7X8
PQGLB
PUEGO
5PM
ID FETCH-LOGICAL-c478t-8f7c8f1aa9caffd9276b8dfe342e22b60b2b2faa8838deac5de3401eadb77c9f3
IEDL.DBID M48
ISSN 2000-2297
IngestDate Wed Aug 27 00:53:27 EDT 2025
Thu Aug 21 18:41:20 EDT 2025
Thu Sep 04 19:10:32 EDT 2025
Thu Jan 30 12:28:10 EST 2025
Tue Jul 01 00:59:35 EDT 2025
Thu Apr 24 22:57:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords risk stratification
oral microbiota
Gastric cancer
prognosis
deep neural network
Language English
License 2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c478t-8f7c8f1aa9caffd9276b8dfe342e22b60b2b2faa8838deac5de3401eadb77c9f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Co-first authors with equal contribution.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1080/20002297.2025.2451921
PMID 39840394
PQID 3158102642
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_a9103893fac948238f7a231ba9bf5c6b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11749243
proquest_miscellaneous_3158102642
pubmed_primary_39840394
crossref_primary_10_1080_20002297_2025_2451921
crossref_citationtrail_10_1080_20002297_2025_2451921
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of oral microbiology
PublicationTitleAlternate J Oral Microbiol
PublicationYear 2025
Publisher Taylor & Francis
Taylor & Francis Group
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Group
References e_1_3_8_49_1
e_1_3_8_28_1
e_1_3_8_47_1
e_1_3_8_26_1
e_1_3_8_22_1
e_1_3_8_45_1
e_1_3_8_24_1
e_1_3_8_43_1
e_1_3_8_41_1
e_1_3_8_20_1
e_1_3_8_18_1
e_1_3_8_14_1
e_1_3_8_39_1
e_1_3_8_16_1
e_1_3_8_37_1
e_1_3_8_8_1
e_1_3_8_6_1
e_1_3_8_2_1
e_1_3_8_10_1
e_1_3_8_35_1
e_1_3_8_12_1
e_1_3_8_33_1
e_1_3_8_31_1
e_1_3_8_52_1
e_1_3_8_50_1
e_1_3_8_29_1
e_1_3_8_27_1
e_1_3_8_25_1
e_1_3_8_48_1
e_1_3_8_21_1
e_1_3_8_46_1
e_1_3_8_23_1
e_1_3_8_44_1
e_1_3_8_42_1
e_1_3_8_40_1
e_1_3_8_19_1
e_1_3_8_15_1
e_1_3_8_38_1
e_1_3_8_17_1
e_1_3_8_36_1
Usui Y (e_1_3_8_4_1) 2023; 389
e_1_3_8_9_1
e_1_3_8_7_1
e_1_3_8_5_1
e_1_3_8_3_1
e_1_3_8_11_1
e_1_3_8_34_1
e_1_3_8_13_1
e_1_3_8_32_1
e_1_3_8_30_1
e_1_3_8_53_1
e_1_3_8_51_1
References_xml – ident: e_1_3_8_42_1
  doi: 10.1136/gutjnl-2016-312580
– ident: e_1_3_8_6_1
  doi: 10.1136/bmj.l5016
– ident: e_1_3_8_31_1
  doi: 10.1038/s41388-024-02974-w
– ident: e_1_3_8_38_1
  doi: 10.3390/jcm8071079
– ident: e_1_3_8_48_1
  doi: 10.1016/S2589-7500(22)00040-1
– ident: e_1_3_8_30_1
  doi: 10.1016/j.chom.2020.12.001
– ident: e_1_3_8_44_1
  doi: 10.1016/j.micpath.2020.104479
– ident: e_1_3_8_34_1
  doi: 10.1186/1472-6947-8-53
– ident: e_1_3_8_19_1
  doi: 10.1016/j.semcancer.2023.04.009
– ident: e_1_3_8_27_1
  doi: 10.1038/s41587-019-0209-9
– ident: e_1_3_8_15_1
  doi: 10.1002/ijc.33848
– ident: e_1_3_8_50_1
  doi: 10.1038/s41467-022-28437-y
– ident: e_1_3_8_39_1
  doi: 10.1016/j.micpath.2017.11.001
– ident: e_1_3_8_45_1
  doi: 10.1002/mco2.344
– ident: e_1_3_8_46_1
  doi: 10.1099/ijs.0.64705-0
– ident: e_1_3_8_24_1
  doi: 10.1038/s41579-023-00984-1
– ident: e_1_3_8_51_1
  doi: 10.1016/j.cmpb.2022.106924
– ident: e_1_3_8_26_1
  doi: 10.1111/1751-2980.12705
– ident: e_1_3_8_37_1
  doi: 10.1136/gutjnl-2024-332815
– ident: e_1_3_8_10_1
  doi: 10.1186/s13045-023-01451-3
– ident: e_1_3_8_8_1
  doi: 10.3322/caac.21388
– ident: e_1_3_8_49_1
  doi: 10.1038/s41467-020-20260-7
– ident: e_1_3_8_18_1
  doi: 10.3389/fcimb.2021.640309
– ident: e_1_3_8_23_1
  doi: 10.1161/CIRCULATIONAHA.120.047829
– ident: e_1_3_8_25_1
  doi: 10.1016/j.eclinm.2023.101834
– ident: e_1_3_8_28_1
  doi: 10.1186/gb-2011-12-6-r60
– ident: e_1_3_8_21_1
  doi: 10.1016/j.cell.2023.01.035
– ident: e_1_3_8_41_1
  doi: 10.1902/jop.2017.160829
– volume: 389
  start-page: 379
  issue: 4
  year: 2023
  ident: e_1_3_8_4_1
  article-title: Helicobacter pylori, homologous-recombination genes, and gastric cancer. Reply
  publication-title: N Engl J Med
  doi: 10.1056/NEJMc2306877
– ident: e_1_3_8_2_1
  doi: 10.3322/caac.21660
– ident: e_1_3_8_52_1
  doi: 10.3390/cancers14153742
– ident: e_1_3_8_7_1
  doi: 10.1053/j.gastro.2019.10.019
– ident: e_1_3_8_43_1
  doi: 10.1080/20002297.2017.1368848
– ident: e_1_3_8_33_1
  doi: 10.1177/0272989X06295361
– ident: e_1_3_8_20_1
  doi: 10.1038/s41591-022-01981-2
– ident: e_1_3_8_47_1
  doi: 10.1038/nature13480
– ident: e_1_3_8_16_1
  doi: 10.1016/j.ijbiomac.2022.04.133
– ident: e_1_3_8_14_1
  doi: 10.1126/science.abc4552
– ident: e_1_3_8_22_1
  doi: 10.1016/j.neuron.2020.09.005
– ident: e_1_3_8_35_1
  doi: 10.1016/j.cell.2024.01.004
– ident: e_1_3_8_36_1
  doi: 10.7150/jca.25280
– ident: e_1_3_8_5_1
  doi: 10.1016/j.ebiom.2023.104616
– ident: e_1_3_8_11_1
  doi: 10.1021/acs.chemrev.2c00431
– ident: e_1_3_8_17_1
  doi: 10.1136/gutjnl-2017-314281
– ident: e_1_3_8_32_1
  doi: 10.1093/jnci/95.9.634
– ident: e_1_3_8_13_1
  doi: 10.1038/s41591-019-0377-7
– ident: e_1_3_8_12_1
  doi: 10.1038/s41392-022-00974-4
– ident: e_1_3_8_40_1
  doi: 10.3389/fcimb.2018.00433
– ident: e_1_3_8_3_1
  doi: 10.1016/S2468-1253(19)30328-0
– ident: e_1_3_8_9_1
  doi: 10.1016/S1470-2045(18)30131-1
– ident: e_1_3_8_29_1
  doi: 10.1504/IJCISTUDIES.2021.113826
– ident: e_1_3_8_53_1
  doi: 10.1016/j.ebiom.2018.12.028
SSID ssj0000328842
Score 2.3409305
Snippet This study aims to develop an oral microbiota-based model for gastric cancer (GC) risk stratification and prognosis prediction. Oral microbial markers for GC...
This study aims to develop an oral microbiota-based model for gastric cancer (GC) risk stratification and prognosis prediction.BackgroundThis study aims to...
Background This study aims to develop an oral microbiota-based model for gastric cancer (GC) risk stratification and prognosis prediction.Methods Oral...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2451921
SubjectTerms deep neural network
Gastric cancer
oral microbiota
prognosis
risk stratification
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhUJJLaZI-tm2KArk6sfWwpWPaNIRCe0ogN6PXpAutNmR3D_n3nbG8y24p5NKbsSwsz3yWZqSZbxg71TFF66CrGoC2UsqnyihXV02gzMY6SQOUjfz9R3t9q77d6buNUl8UE1bogYvgzp0lCm8rwQWrDC4w0Dm0SbyzHnRoPc2-ta03nKlhDpbCGCVWKTumPhcD1Yvt0CUU-kwQq4pothajgbP_X4bm3_GSGwvQ1Sv2crQc-UUZ8QHbSfmQvSi1JJ8O2d4lxf1Q6bYjtrzInDLv-e9p4VlauIqWq8hjSg-cOCyxMZcIcD4Uw-FovHKKM-eFSBfGvTzucuQUxJVn8-kcr-hgZ2iYZn7vqOpH4IGg8_ia3V59vflyXY31FaqgOrOoUJTBQOOcDQ4gWtG13kRIUokkhG9rL7wA54yRJuIEjXqV6I4h9nzXBQvyDdvNs5zeMW4gmRSdBgHo76FytHBobEStwZpGiQlTK0H3YSQfpxoYv_pm5Chd6acn_fSjfibsbN3tobBvPNfhM2lx_TCRZw83EFL9CKn-OUhN2MkKAz3-bHSC4nKaLee9bLRBi6ylD3pbMLF-lbToK0urJsxsoWVrLNstefpzIPRu0C1EP1i-_x-j_8D2SSJlm-gj2108LtMxGk4L_2n4R_4AICEWIQ
  priority: 102
  providerName: Directory of Open Access Journals
Title An oral microbiota-based deep neural network model for risk stratification and prognosis prediction in gastric cancer
URI https://www.ncbi.nlm.nih.gov/pubmed/39840394
https://www.proquest.com/docview/3158102642
https://pubmed.ncbi.nlm.nih.gov/PMC11749243
https://doaj.org/article/a9103893fac948238f7a231ba9bf5c6b
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA-1ReyLaP06P44Ivu55m2Q3yYNIq61FaBHx4N6WfNaDmmvvA-x_78xu9vCkIviyLJsNm81Mkt8kM78h5E3lg9cmyqKMsS6EsKFQwoyL0mFk4zhwFTEa-ey8Pp2Iz9NqukN6QoXcgctbTTvMJzVZXI5-Xt-8hwH_LnvIvWUti4uWYO2xasSQMAVDy_dgcarRHjvLiL-dnDlTSrA-ludvtbdWqZbM_zYE-qcj5W8r08kDcj9DSnrY6cBDshPSAbnbJZm8OSD3PqJDEOZ0e0TWh4liSD79MesImFamwHXMUx_CFUVySyhMnWs4bbPkUEC1FB3QacewG_MmHzXJU_TuSvPlbAl3eOLTFswSvTCYDsRRhzq1eEwmJ8ffPpwWOfFC4YRUq0JF6VQsjdHOxOg1k7VVPgYuWGDM1mPLLIvGKMWVh5kbBM7BTgOltFI6HfkTspvmKTwjVMWggjdVZBEMQWt0xQygEF9VUatSsAERfUc3LrOSY3KMy6bM5KW9fBqUT5PlMyCjTbWrjpbjXxWOUIqbl5FVu30wX1w0eZA2RiNdvObROC0UgJkoDeBfaLWNlavtgLzudaCBUYhHKyaF-XrZ8LJSANVq_KGnnU5sPsU1GNFciwFRW9qy1ZbtkjT73jJ9l2AvgoHMn_9_1RdkH_uh2zV6SXZXi3V4BThqZYfkjpzKIdk7Oj7_8nXY7kbA9dO0HLZj5hcneCFA
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+oral+microbiota-based+deep+neural+network+model+for+risk+stratification+and+prognosis+prediction+in+gastric+cancer&rft.jtitle=Journal+of+oral+microbiology&rft.au=Gao%2C+Xue-Feng&rft.au=Zhang%2C+Can-Gui&rft.au=Huang%2C+Kun&rft.au=Zhao%2C+Xiao-Lin&rft.date=2025&rft.pub=Taylor+%26+Francis&rft.eissn=2000-2297&rft.volume=17&rft.issue=1&rft_id=info:doi/10.1080%2F20002297.2025.2451921&rft.externalDocID=PMC11749243
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2000-2297&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2000-2297&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2000-2297&client=summon