Glutamatergic Neurometabolite Levels in Patients With Ultra-Treatment-Resistant Schizophrenia: A Cross-Sectional 3T Proton Magnetic Resonance Spectroscopy Study
In terms of antipsychotic treatment response, patients with schizophrenia can be classified into three groups: 1) treatment resistant to both non-clozapine (non-CLZ) antipsychotics and CLZ (ultra-treatment-resistant schizophrenia [URS]), 2) treatment resistant to non-CLZ antipsychotics but CLZ-respo...
Saved in:
Published in | Biological psychiatry (1969) Vol. 85; no. 7; pp. 596 - 605 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.04.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0006-3223 1873-2402 1873-2402 |
DOI | 10.1016/j.biopsych.2018.09.009 |
Cover
Abstract | In terms of antipsychotic treatment response, patients with schizophrenia can be classified into three groups: 1) treatment resistant to both non-clozapine (non-CLZ) antipsychotics and CLZ (ultra-treatment-resistant schizophrenia [URS]), 2) treatment resistant to non-CLZ antipsychotics but CLZ-responsive schizophrenia [non-URS]), and 3) responsive to first-line antipsychotics (non-treatment-resistant schizophrenia). This study aimed to compare glutamatergic neurometabolite levels among these three patient groups and healthy control subjects using proton magnetic resonance spectroscopy.
Glutamate and glutamate+glutamine levels were assessed in the caudate, the dorsal anterior cingulate cortex (dACC), and the dorsolateral prefrontal cortex using 3T proton magnetic resonance spectroscopy (point-resolved spectroscopy, echo time = 35 ms). Glutamatergic neurometabolite levels were compared between the groups.
A total of 100 participants were included, consisting of 26 patients with URS, 27 patients with non-URS, 21 patients with non-treatment-resistant schizophrenia, and 26 healthy control subjects. Group differences were detected in ACC glutamate+glutamine levels (F3,96 = 2.93, p = .038); patients with URS showed higher dACC glutamate+glutamine levels than healthy control subjects (p = .038). There were no group differences in the caudate or dorsolateral prefrontal cortex.
Taken together with previous studies that demonstrated higher ACC glutamate levels in patients with treatment-resistant schizophrenia, this study suggests that higher levels of ACC glutamatergic metabolites may be among the shared biological characteristics of treatment resistance to antipsychotics, including CLZ. |
---|---|
AbstractList | AbstractBackgroundIn terms of antipsychotic treatment response, patients with schizophrenia can be classified into three groups: 1) treatment resistant to both non-clozapine (non-CLZ) antipsychotics and CLZ (ultra-treatment-resistant schizophrenia [URS]), 2) treatment resistant to non-CLZ antipsychotics but CLZ-responsive schizophrenia [non-URS]), and 3) responsive to first-line antipsychotics (non-treatment-resistant schizophrenia). This study aimed to compare glutamatergic neurometabolite levels among these three patient groups and healthy control subjects using proton magnetic resonance spectroscopy. MethodsGlutamate and glutamate+glutamine levels were assessed in the caudate, the dorsal anterior cingulate cortex (dACC), and the dorsolateral prefrontal cortex using 3T proton magnetic resonance spectroscopy (point-resolved spectroscopy, echo time = 35 ms). Glutamatergic neurometabolite levels were compared between the groups. ResultsA total of 100 participants were included, consisting of 26 patients with URS, 27 patients with non-URS, 21 patients with non-treatment-resistant schizophrenia, and 26 healthy control subjects. Group differences were detected in ACC glutamate+glutamine levels ( F3,96 = 2.93, p = .038); patients with URS showed higher dACC glutamate+glutamine levels than healthy control subjects ( p = .038). There were no group differences in the caudate or dorsolateral prefrontal cortex. ConclusionsTaken together with previous studies that demonstrated higher ACC glutamate levels in patients with treatment-resistant schizophrenia, this study suggests that higher levels of ACC glutamatergic metabolites may be among the shared biological characteristics of treatment resistance to antipsychotics, including CLZ. In terms of antipsychotic treatment response, patients with schizophrenia can be classified into three groups: 1) treatment resistant to both non-clozapine (non-CLZ) antipsychotics and CLZ (ultra-treatment-resistant schizophrenia [URS]), 2) treatment resistant to non-CLZ antipsychotics but CLZ-responsive schizophrenia [non-URS]), and 3) responsive to first-line antipsychotics (non-treatment-resistant schizophrenia). This study aimed to compare glutamatergic neurometabolite levels among these three patient groups and healthy control subjects using proton magnetic resonance spectroscopy. Glutamate and glutamate+glutamine levels were assessed in the caudate, the dorsal anterior cingulate cortex (dACC), and the dorsolateral prefrontal cortex using 3T proton magnetic resonance spectroscopy (point-resolved spectroscopy, echo time = 35 ms). Glutamatergic neurometabolite levels were compared between the groups. A total of 100 participants were included, consisting of 26 patients with URS, 27 patients with non-URS, 21 patients with non-treatment-resistant schizophrenia, and 26 healthy control subjects. Group differences were detected in ACC glutamate+glutamine levels (F3,96 = 2.93, p = .038); patients with URS showed higher dACC glutamate+glutamine levels than healthy control subjects (p = .038). There were no group differences in the caudate or dorsolateral prefrontal cortex. Taken together with previous studies that demonstrated higher ACC glutamate levels in patients with treatment-resistant schizophrenia, this study suggests that higher levels of ACC glutamatergic metabolites may be among the shared biological characteristics of treatment resistance to antipsychotics, including CLZ. In terms of antipsychotic treatment response, patients with schizophrenia can be classified into three groups: 1) treatment resistant to both non-clozapine (non-CLZ) antipsychotics and CLZ (ultra-treatment-resistant schizophrenia [URS]), 2) treatment resistant to non-CLZ antipsychotics but CLZ-responsive schizophrenia [non-URS]), and 3) responsive to first-line antipsychotics (non-treatment-resistant schizophrenia). This study aimed to compare glutamatergic neurometabolite levels among these three patient groups and healthy control subjects using proton magnetic resonance spectroscopy.BACKGROUNDIn terms of antipsychotic treatment response, patients with schizophrenia can be classified into three groups: 1) treatment resistant to both non-clozapine (non-CLZ) antipsychotics and CLZ (ultra-treatment-resistant schizophrenia [URS]), 2) treatment resistant to non-CLZ antipsychotics but CLZ-responsive schizophrenia [non-URS]), and 3) responsive to first-line antipsychotics (non-treatment-resistant schizophrenia). This study aimed to compare glutamatergic neurometabolite levels among these three patient groups and healthy control subjects using proton magnetic resonance spectroscopy.Glutamate and glutamate+glutamine levels were assessed in the caudate, the dorsal anterior cingulate cortex (dACC), and the dorsolateral prefrontal cortex using 3T proton magnetic resonance spectroscopy (point-resolved spectroscopy, echo time = 35 ms). Glutamatergic neurometabolite levels were compared between the groups.METHODSGlutamate and glutamate+glutamine levels were assessed in the caudate, the dorsal anterior cingulate cortex (dACC), and the dorsolateral prefrontal cortex using 3T proton magnetic resonance spectroscopy (point-resolved spectroscopy, echo time = 35 ms). Glutamatergic neurometabolite levels were compared between the groups.A total of 100 participants were included, consisting of 26 patients with URS, 27 patients with non-URS, 21 patients with non-treatment-resistant schizophrenia, and 26 healthy control subjects. Group differences were detected in ACC glutamate+glutamine levels (F3,96 = 2.93, p = .038); patients with URS showed higher dACC glutamate+glutamine levels than healthy control subjects (p = .038). There were no group differences in the caudate or dorsolateral prefrontal cortex.RESULTSA total of 100 participants were included, consisting of 26 patients with URS, 27 patients with non-URS, 21 patients with non-treatment-resistant schizophrenia, and 26 healthy control subjects. Group differences were detected in ACC glutamate+glutamine levels (F3,96 = 2.93, p = .038); patients with URS showed higher dACC glutamate+glutamine levels than healthy control subjects (p = .038). There were no group differences in the caudate or dorsolateral prefrontal cortex.Taken together with previous studies that demonstrated higher ACC glutamate levels in patients with treatment-resistant schizophrenia, this study suggests that higher levels of ACC glutamatergic metabolites may be among the shared biological characteristics of treatment resistance to antipsychotics, including CLZ.CONCLUSIONSTaken together with previous studies that demonstrated higher ACC glutamate levels in patients with treatment-resistant schizophrenia, this study suggests that higher levels of ACC glutamatergic metabolites may be among the shared biological characteristics of treatment resistance to antipsychotics, including CLZ. In terms of antipsychotic treatment response, patients with schizophrenia can be classified into three groups: 1) treatment resistant to both non-clozapine (non-CLZ) antipsychotics and CLZ (ultra-treatment-resistant schizophrenia [URS]), 2) treatment resistant to non-CLZ antipsychotics but CLZ-responsive schizophrenia [non-URS]), and 3) responsive to first-line antipsychotics (non-treatment-resistant schizophrenia). This study aimed to compare glutamatergic neurometabolite levels among these three patient groups and healthy control subjects using proton magnetic resonance spectroscopy. Glutamate and glutamate+glutamine levels were assessed in the caudate, the dorsal anterior cingulate cortex (dACC), and the dorsolateral prefrontal cortex using 3T proton magnetic resonance spectroscopy (point-resolved spectroscopy, echo time = 35 ms). Glutamatergic neurometabolite levels were compared between the groups. A total of 100 participants were included, consisting of 26 patients with URS, 27 patients with non-URS, 21 patients with non-treatment-resistant schizophrenia, and 26 healthy control subjects. Group differences were detected in ACC glutamate+glutamine levels (F = 2.93, p = .038); patients with URS showed higher dACC glutamate+glutamine levels than healthy control subjects (p = .038). There were no group differences in the caudate or dorsolateral prefrontal cortex. Taken together with previous studies that demonstrated higher ACC glutamate levels in patients with treatment-resistant schizophrenia, this study suggests that higher levels of ACC glutamatergic metabolites may be among the shared biological characteristics of treatment resistance to antipsychotics, including CLZ. |
Author | Nakajima, Shinichiro Iwata, Yusuke De Luca, Vincenzo Chavez, Sofia Mimura, Masaru Shah, Parita Remington, Gary Graff-Guerrero, Ariel Caravaggio, Fernando Mar, Wanna Plitman, Eric Kim, Julia Gerretsen, Philip |
Author_xml | – sequence: 1 givenname: Yusuke surname: Iwata fullname: Iwata, Yusuke organization: Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada – sequence: 2 givenname: Shinichiro surname: Nakajima fullname: Nakajima, Shinichiro organization: Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada – sequence: 3 givenname: Eric surname: Plitman fullname: Plitman, Eric organization: Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada – sequence: 4 givenname: Fernando surname: Caravaggio fullname: Caravaggio, Fernando organization: Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada – sequence: 5 givenname: Julia surname: Kim fullname: Kim, Julia organization: Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada – sequence: 6 givenname: Parita surname: Shah fullname: Shah, Parita organization: Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada – sequence: 7 givenname: Wanna surname: Mar fullname: Mar, Wanna organization: Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada – sequence: 8 givenname: Sofia surname: Chavez fullname: Chavez, Sofia organization: Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada – sequence: 9 givenname: Vincenzo surname: De Luca fullname: De Luca, Vincenzo organization: Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada – sequence: 10 givenname: Masaru surname: Mimura fullname: Mimura, Masaru organization: Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan – sequence: 11 givenname: Gary surname: Remington fullname: Remington, Gary organization: Schizophrenia Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada – sequence: 12 givenname: Philip surname: Gerretsen fullname: Gerretsen, Philip organization: Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada – sequence: 13 givenname: Ariel orcidid: 0000-0001-9301-2171 surname: Graff-Guerrero fullname: Graff-Guerrero, Ariel email: ariel_graff@yahoo.com.mx organization: Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30389132$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUttuEzEUtFARTQO_UPmRlw2-ZG8IIaoIClKAiqTi0fLaZxuHXXuxvZXC1_CpeJWWhz5QJEuW7Zk5PjPnDJ1YZwGhc0oWlNDi1X7RGDeEg9otGKHVgtQLQuonaEarkmdsSdgJmhFCiowzxk_RWQj7dCwZo8_QKSe8qilnM_T7shuj7GUEf2MU_gKjdz1E2bjORMBruIUuYGPxlYwGbAz4u4k7fN1FL7OtBxn7dJt9g2BClDbijdqZX27YebBGvsYXeOVdCNkGVDTOyg7zLb7yLjqLP8sbCzFVTez0ZBXgzZBwiaDccMCbOOrDc_S0lV2AF3f7HF1_eL9dfczWXy8_rS7WmVqWVcxy1ZZaNpqUqa22rOuWaEklV0umWaPbSucVqFqThlV5SYs8rzXI5EhFG1XkBZ-jl0fdwbufI4QoehMUdJ204MYgGGV1zjlL9s7R-R10bHrQYvCml_4g7l1NgOIIUFPvHtq_EErEFJ_Yi_v4xBSfILVI8SXimwdEZaKcjEt2m-5x-rsjPWUGtwa8CCqFpkAbn3wV2pnHJd4-kFCdsUbJ7gccIOzd6FOIQVARmCBiM43YNGG0Sitn_N8C__ODP8jW6Nc |
CitedBy_id | crossref_primary_10_1038_s41398_021_01477_6 crossref_primary_10_1007_s00406_019_01053_6 crossref_primary_10_1038_s41380_023_02065_4 crossref_primary_10_1016_j_biopsych_2019_07_011 crossref_primary_10_1111_pcn_13482 crossref_primary_10_1016_j_inffus_2020_07_006 crossref_primary_10_1016_j_schres_2020_03_069 crossref_primary_10_1016_j_schres_2023_01_011 crossref_primary_10_1016_j_bionps_2022_100048 crossref_primary_10_1017_S0033291719002277 crossref_primary_10_1038_s41537_024_00535_4 crossref_primary_10_1038_s41537_023_00381_w crossref_primary_10_1016_j_pnpbp_2021_110473 crossref_primary_10_2463_mrms_rev_2021_0050 crossref_primary_10_2174_1389450120666191011163539 crossref_primary_10_1186_s12888_023_05397_1 crossref_primary_10_3390_ijms24065945 crossref_primary_10_1038_s41537_022_00230_2 crossref_primary_10_1093_schbul_sbae060 crossref_primary_10_1017_ipm_2018_47 crossref_primary_10_1016_j_scog_2020_100186 crossref_primary_10_1038_s41537_023_00347_y crossref_primary_10_1007_s12031_021_01866_y crossref_primary_10_1016_j_pnpbp_2020_109871 crossref_primary_10_3389_fpsyt_2019_00314 crossref_primary_10_1016_j_bbr_2020_113099 crossref_primary_10_1038_s41398_020_0700_6 crossref_primary_10_1002_npr2_12103 crossref_primary_10_1038_s41386_019_0589_z crossref_primary_10_1016_j_neulet_2021_136410 crossref_primary_10_1177_02698811221078751 crossref_primary_10_3390_biomedicines9040372 crossref_primary_10_1016_j_neubiorev_2022_105010 crossref_primary_10_1111_bcp_15260 crossref_primary_10_1038_s41386_022_01508_w crossref_primary_10_1016_j_pscychresns_2020_111080 crossref_primary_10_3389_fnimg_2023_1127508 crossref_primary_10_1038_s41537_022_00265_5 crossref_primary_10_1093_schbul_sbad160 crossref_primary_10_1038_s41537_019_0080_1 crossref_primary_10_1093_schbul_sbad164 crossref_primary_10_1016_j_schres_2022_08_008 crossref_primary_10_1016_j_pscychresns_2024_111926 crossref_primary_10_1093_schizbullopen_sgab006 crossref_primary_10_1016_j_bpsc_2023_10_008 crossref_primary_10_1038_s41380_023_01991_7 crossref_primary_10_1093_schbul_sbaa128 crossref_primary_10_1016_j_schres_2020_12_002 crossref_primary_10_1111_pcn_13463 crossref_primary_10_3389_fcell_2021_664535 crossref_primary_10_3390_biomedicines11041072 crossref_primary_10_1016_j_ab_2023_115227 crossref_primary_10_1016_j_schres_2023_08_020 crossref_primary_10_1001_jamapsychiatry_2021_0380 crossref_primary_10_1016_j_biopsych_2021_06_008 crossref_primary_10_2217_pgs_2022_0006 crossref_primary_10_1038_s41386_023_01741_x crossref_primary_10_1093_psyrad_kkad020 crossref_primary_10_1016_j_schres_2022_12_040 crossref_primary_10_1038_s41380_022_01572_0 crossref_primary_10_1016_j_pnpbp_2021_110493 crossref_primary_10_1016_j_bbr_2024_115338 crossref_primary_10_1016_j_schres_2024_06_020 crossref_primary_10_1016_j_nicl_2023_103461 crossref_primary_10_1016_j_neubiorev_2020_10_001 crossref_primary_10_1016_j_jpsychires_2021_07_019 crossref_primary_10_3390_biomedicines11030895 crossref_primary_10_1016_j_neubiorev_2024_105699 crossref_primary_10_3390_ijms232415846 crossref_primary_10_1093_cercor_bhae465 crossref_primary_10_1016_j_euroneuro_2022_01_003 crossref_primary_10_1016_j_biopsych_2020_09_001 crossref_primary_10_3390_jpm10030089 crossref_primary_10_1016_j_pnpbp_2019_109839 crossref_primary_10_1016_j_psychres_2019_112683 crossref_primary_10_1016_j_schres_2020_09_013 crossref_primary_10_1055_a_2299_0927 crossref_primary_10_1016_j_bbi_2023_05_005 crossref_primary_10_1016_j_schres_2024_01_025 crossref_primary_10_1016_j_schres_2024_05_002 crossref_primary_10_1093_schbul_sbaa156 crossref_primary_10_3389_fpsyt_2023_1334335 crossref_primary_10_1038_s41537_023_00392_7 crossref_primary_10_1016_j_biopsych_2019_02_003 crossref_primary_10_1016_j_nicl_2021_102852 crossref_primary_10_1016_j_biopsych_2019_09_004 crossref_primary_10_1007_s00213_022_06138_0 crossref_primary_10_1093_schizbullopen_sgaa057 crossref_primary_10_1002_wps_21078 crossref_primary_10_1080_14656566_2022_2145884 crossref_primary_10_1038_s41380_021_01297_6 crossref_primary_10_1016_j_mehy_2020_110159 crossref_primary_10_1038_s41598_020_64277_w |
Cites_doi | 10.1016/j.biopsych.2017.08.022 10.1038/s41386-018-0072-2 10.1016/j.schres.2011.09.016 10.1016/j.mpmed.2008.05.007 10.1016/j.biopsych.2013.06.011 10.1176/appi.ajp.2016.16050503 10.1001/archpsyc.1994.03950030035004 10.1176/ajp.151.12.1744 10.3389/fpsyt.2013.00151 10.1176/appi.ajp.159.11.1944 10.1093/schbul/sbx190 10.1093/schbul/13.2.261 10.1038/npp.2016.172 10.1016/j.schres.2017.07.021 10.1038/npp.2016.258 10.1093/ijnp/pyu117 10.1016/j.neuroimage.2008.10.055 10.1002/mrm.20901 10.1176/appi.ajp.2009.09060802 10.1001/archpsyc.1997.01830220085012 10.1038/sj.mp.4000880 10.1093/schbul/sbv151 10.1016/0893-133X(94)00131-I 10.1016/j.schres.2015.01.043 10.1111/j.1476-5381.2011.01638.x 10.1176/appi.ajp.161.6.1116 10.1016/j.neuroimage.2011.02.046 10.1038/npp.2011.65 10.1016/j.biopsych.2009.05.006 10.1038/s41380-018-0082-9 10.1002/nbm.698 10.1126/science.1145194 10.1001/archgenpsychiatry.2011.1519 10.1038/npp.2012.113 10.1176/appi.ajp.2012.12010144 10.1001/archpsyc.60.12.1187 10.1016/j.pnpbp.2018.03.016 10.1016/j.schres.2008.11.014 10.1001/archpsyc.1988.01800330013001 10.1016/j.biopsych.2017.09.028 10.1001/jamapsychiatry.2016.0442 10.1016/S0140-6736(95)91801-9 10.1176/appi.ajp.158.3.360 10.1017/S1461145712000314 10.1093/ijnp/pyv105 10.1016/j.schres.2015.07.013 10.1192/bjp.bp.110.079608 10.1093/schbul/sbv124 10.1001/jamapsychiatry.2015.2680 10.1093/schbul/sbx180 10.3389/fpsyt.2017.00066 10.1016/j.schres.2005.02.010 |
ContentType | Journal Article |
Copyright | 2018 Society of Biological Psychiatry Society of Biological Psychiatry Copyright © 2018 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2018 Society of Biological Psychiatry – notice: Society of Biological Psychiatry – notice: Copyright © 2018 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.biopsych.2018.09.009 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Biology |
EISSN | 1873-2402 |
EndPage | 605 |
ExternalDocumentID | 30389132 10_1016_j_biopsych_2018_09_009 S0006322318318523 1_s2_0_S0006322318318523 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: CIHR grantid: MOP-141968 – fundername: CIHR grantid: MOP-142493 |
GroupedDBID | --- --K --M -DZ .1- .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 5GY 5RE 5VS 6J9 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABCQX ABFNM ABFRF ABIVO ABJNI ABLJU ABMAC ABMZM ACDAQ ACGFO ACIEU ACIUM ACNCT ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGUBO AGWIK AGYEJ AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM L7B M29 M2V M39 M41 MO0 MOBAO N9A O-L O9- OAUVE OH0 OU- OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAE SCC SDF SDG SDP SEL SES SPCBC SSH SSN SSZ T5K UNMZH UPT UV1 WH7 Z5R ZCA ~G- .GJ 3O- 53G AAQXK ABDPE ABWVN ABXDB ACRPL ADMUD ADNMO AFFNX AFJKZ AGQPQ AHHHB AIGII APXCP ASPBG AVWKF AZFZN EFLBG FEDTE FGOYB G-2 HEG HMK HMO HMQ HVGLF HZ~ H~9 R2- SNS UAP WUQ XJT XOL ZGI ZKB ZXP ~HD AACTN AADPK AAIAV ABLVK ABYKQ AFCTW AFKWA AJOXV AMFUW LCYCR RIG ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ACLOT |
ID | FETCH-LOGICAL-c478t-5cf7dabd07132f799f0da1a3c42d2bdf8d58ec9d0b285716559dea00081bc6563 |
IEDL.DBID | AIKHN |
ISSN | 0006-3223 1873-2402 |
IngestDate | Sat Sep 27 17:17:36 EDT 2025 Thu Apr 03 07:09:24 EDT 2025 Thu Apr 24 23:10:00 EDT 2025 Thu Sep 18 00:20:07 EDT 2025 Fri Feb 23 02:33:08 EST 2024 Sun Sep 14 23:55:44 EDT 2025 Tue Aug 26 17:00:47 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Treatment-resistant Schizophrenia 1H-MRS Antipsychotic Clozapine Glutamate H-MRS |
Language | English |
License | Copyright © 2018 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c478t-5cf7dabd07132f799f0da1a3c42d2bdf8d58ec9d0b285716559dea00081bc6563 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9301-2171 |
PMID | 30389132 |
PQID | 2129533287 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2129533287 pubmed_primary_30389132 crossref_primary_10_1016_j_biopsych_2018_09_009 crossref_citationtrail_10_1016_j_biopsych_2018_09_009 elsevier_sciencedirect_doi_10_1016_j_biopsych_2018_09_009 elsevier_clinicalkeyesjournals_1_s2_0_S0006322318318523 elsevier_clinicalkey_doi_10_1016_j_biopsych_2018_09_009 |
PublicationCentury | 2000 |
PublicationDate | 2019-04-01 |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Biological psychiatry (1969) |
PublicationTitleAlternate | Biol Psychiatry |
PublicationYear | 2019 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Woolrich, Jbabdi, Patenaude, Chappell, Makni, Behrens (bib28) 2009; 45 Lahti, Koffel, LaPorte, Tamminga (bib10) 1995; 13 Krystal, Karper, Seibyl, Freeman, Delaney, Bremner (bib9) 1994; 51 Chiappelli, Rowland, Notarangelo, Wijtenburg, Thomas, Pocivavsek (bib52) 2018; 43 Shukla, Wijtenburg, Chen, Chiappelli, Kochunov, Hong, Rowland (bib53) 2018 Egerton, Bhachu, Merritt, McQueen, Szulc, McGuire (bib31) 2017; 8 Mouchlianitis, Bloomfield, Law, Beck, Selvaraj, Rasquinha (bib13) 2016; 42 Iwata, Nakajima, Plitman, Mihashi, Caravaggio, Chung (bib30) 2018; 86 Frangou (bib2) 2008; 36 Egerton, Brugger, Raffin, Barker, Lythgoe, McGuire (bib29) 2012; 37 Gardner, Murphy, O’Donnell, Centorrino, Baldessarini (bib22) 2010; 167 de la Fuente-Sandoval, Leon-Ortiz, Favila, Stephano, Mamo, Ramirez-Bermudez (bib19) 2011; 36 Goldstein, Anderson, Pillai, Kydd, Russell (bib16) 2015; 18 Tibbo, Hanstock, Valiakalayil, Allen (bib50) 2004; 161 de la Fuente-Sandoval, Reyes-Madrigal, Mao, Leon-Ortiz, Rodriguez-Mayoral, Solis-Vivanco (bib48) 2015; 19 Stone, Day, Tsagaraki, Valli, McLean, Lythgoe (bib49) 2009; 66 Smesny, Gussew, Biesel, Schack, Walther, Rzanny (bib45) 2015; 168 Bartha, Williamson, Drost, Malla, Carr, Cortese (bib47) 1997; 54 Aoyama, Theberge, Drost, Manchanda, Northcott, Neufeld (bib33) 2011; 198 Demjaha, Murray, McGuire, Kapur, Howes (bib7) 2012; 169 Gallinat, McMahon, Kuhn, Schubert, Schaefer (bib55) 2016; 42 Merritt, McGuire, Egerton (bib39) 2013; 4 McCutcheon, Beck, Jauhar, Howes (bib18) 2018; 44 Sheehan, Lecrubier, Sheehan, Amorim, Janavs, Weiller (bib25) 1998; 59 Reid, Salibi, White, Gawne, Denney, Lahti (bib51) 2019; 45 Patenaude, Smith, Kennedy, Jenkinson (bib27) 2011; 56 Goto, Yoshimura, Kakeda, Nishimura, Moriya, Hayashi (bib32) 2012; 8 Merritt, Egerton, Kempton, Taylor, McGuire (bib11) 2016; 73 Hietala, Syvalahti, Vuorio, Rakkolainen, Bergman, Haaparanta (bib4) 1995; 346 Kim, Kaufman, Cohen, Jensen, Coyle, Du (bib43) 2018; 83 Kay, Fiszbein, Opler (bib24) 1987; 13 Howes, McCutcheon, Agid, de Bartolomeis, van Beveren, Birnbaum (bib17) 2017; 174 Seeman, Lee (bib3) 1975; 188 Suzuki, Remington, Mulsant, Rajji, Uchida, Graff-Guerrero (bib5) 2011; 133 (bib21) 1994 Chen, Wang, Zhang, Wang, Xu, Li (bib44) 2017; 29 Tayoshi, Sumitani, Taniguchi, Shibuya-Tayoshi, Numata, Iga (bib57) 2009; 108 Provencher (bib26) 2001; 14 Kapur, Seeman (bib6) 2001; 158 Nakajima, Takeuchi, Plitman, Fervaha, Gerretsen, Caravaggio (bib58) 2015; 164 Kane, Honigfeld, Singer, Meltzer (bib15) 1988; 45 Theberge, Bartha, Drost, Menon, Malla, Takhar (bib46) 2002; 159 de la Fuente-Sandoval, Leon-Ortiz, Azcarraga, Favila, Stephano, Graff-Guerrero (bib20) 2013; 16 Egerton, Broberg, Van Haren, Merritt, Barker, Lythgoe (bib35) 2018; 23 de Leon, Diaz (bib40) 2005; 76 Gasparovic, Song, Devier, Bockholt, Caprihan, Mullins (bib41) 2006; 55 Kim, Howes, Veronese, Beck, Seo, Park (bib8) 2017; 42 Melone, Vitellaro-Zuccarello, Vallejo-Illarramendi, Perez-Samartin, Matute, Cozzi (bib37) 2001; 6 Rowland, Summerfelt, Wijtenburg, Du, Chiappelli, Krishna (bib56) 2016; 73 Demjaha, Egerton, Murray, Kapur, Howes, Stone (bib12) 2014; 75 Kegeles, Mao, Stanford, Girgis, Ojeil, Xu (bib36) 2012; 69 Tanahashi, Yamamura, Nakagawa, Motomura, Okada (bib38) 2012; 165 Wijtenburg, Wright, Korenic, Gaston, Ndubuizu, Chiappelli (bib54) 2017; 42 de la Fuente-Sandoval, Reyes-Madrigal, Mao, Leon-Ortiz, Rodriguez-Mayoral, Jung-Cook (bib34) 2018; 83 Chiu, Lui, Hung, Chan, Chan, Sham (bib42) 2018; 193 Guy (bib23) 1976 Sullivan, Kendler, Neale (bib1) 2003; 60 Lieberman, Safferman, Pollack, Szymanski, Johns, Howard (bib14) 1994; 151 Patenaude (10.1016/j.biopsych.2018.09.009_bib27) 2011; 56 de la Fuente-Sandoval (10.1016/j.biopsych.2018.09.009_bib34) 2018; 83 Bartha (10.1016/j.biopsych.2018.09.009_bib47) 1997; 54 Theberge (10.1016/j.biopsych.2018.09.009_bib46) 2002; 159 Chen (10.1016/j.biopsych.2018.09.009_bib44) 2017; 29 Nakajima (10.1016/j.biopsych.2018.09.009_bib58) 2015; 164 Kim (10.1016/j.biopsych.2018.09.009_bib8) 2017; 42 Merritt (10.1016/j.biopsych.2018.09.009_bib11) 2016; 73 Tanahashi (10.1016/j.biopsych.2018.09.009_bib38) 2012; 165 Gallinat (10.1016/j.biopsych.2018.09.009_bib55) 2016; 42 Egerton (10.1016/j.biopsych.2018.09.009_bib29) 2012; 37 Kapur (10.1016/j.biopsych.2018.09.009_bib6) 2001; 158 Melone (10.1016/j.biopsych.2018.09.009_bib37) 2001; 6 Kim (10.1016/j.biopsych.2018.09.009_bib43) 2018; 83 Reid (10.1016/j.biopsych.2018.09.009_bib51) 2019; 45 Egerton (10.1016/j.biopsych.2018.09.009_bib31) 2017; 8 Suzuki (10.1016/j.biopsych.2018.09.009_bib5) 2011; 133 Lahti (10.1016/j.biopsych.2018.09.009_bib10) 1995; 13 Sullivan (10.1016/j.biopsych.2018.09.009_bib1) 2003; 60 Mouchlianitis (10.1016/j.biopsych.2018.09.009_bib13) 2016; 42 Merritt (10.1016/j.biopsych.2018.09.009_bib39) 2013; 4 Kegeles (10.1016/j.biopsych.2018.09.009_bib36) 2012; 69 Smesny (10.1016/j.biopsych.2018.09.009_bib45) 2015; 168 de la Fuente-Sandoval (10.1016/j.biopsych.2018.09.009_bib48) 2015; 19 Egerton (10.1016/j.biopsych.2018.09.009_bib35) 2018; 23 Hietala (10.1016/j.biopsych.2018.09.009_bib4) 1995; 346 Krystal (10.1016/j.biopsych.2018.09.009_bib9) 1994; 51 Aoyama (10.1016/j.biopsych.2018.09.009_bib33) 2011; 198 de la Fuente-Sandoval (10.1016/j.biopsych.2018.09.009_bib19) 2011; 36 Goto (10.1016/j.biopsych.2018.09.009_bib32) 2012; 8 Tayoshi (10.1016/j.biopsych.2018.09.009_bib57) 2009; 108 Seeman (10.1016/j.biopsych.2018.09.009_bib3) 1975; 188 Tibbo (10.1016/j.biopsych.2018.09.009_bib50) 2004; 161 Goldstein (10.1016/j.biopsych.2018.09.009_bib16) 2015; 18 Sheehan (10.1016/j.biopsych.2018.09.009_bib25) 1998; 59 Kane (10.1016/j.biopsych.2018.09.009_bib15) 1988; 45 Demjaha (10.1016/j.biopsych.2018.09.009_bib7) 2012; 169 Lieberman (10.1016/j.biopsych.2018.09.009_bib14) 1994; 151 Iwata (10.1016/j.biopsych.2018.09.009_bib30) 2018; 86 Howes (10.1016/j.biopsych.2018.09.009_bib17) 2017; 174 McCutcheon (10.1016/j.biopsych.2018.09.009_bib18) 2018; 44 Guy (10.1016/j.biopsych.2018.09.009_bib23) 1976 de la Fuente-Sandoval (10.1016/j.biopsych.2018.09.009_bib20) 2013; 16 (10.1016/j.biopsych.2018.09.009_bib21) 1994 Provencher (10.1016/j.biopsych.2018.09.009_bib26) 2001; 14 Chiu (10.1016/j.biopsych.2018.09.009_bib42) 2018; 193 Frangou (10.1016/j.biopsych.2018.09.009_bib2) 2008; 36 Gardner (10.1016/j.biopsych.2018.09.009_bib22) 2010; 167 Gasparovic (10.1016/j.biopsych.2018.09.009_bib41) 2006; 55 Chiappelli (10.1016/j.biopsych.2018.09.009_bib52) 2018; 43 de Leon (10.1016/j.biopsych.2018.09.009_bib40) 2005; 76 Kay (10.1016/j.biopsych.2018.09.009_bib24) 1987; 13 Woolrich (10.1016/j.biopsych.2018.09.009_bib28) 2009; 45 Shukla (10.1016/j.biopsych.2018.09.009_bib53) 2018 Stone (10.1016/j.biopsych.2018.09.009_bib49) 2009; 66 Wijtenburg (10.1016/j.biopsych.2018.09.009_bib54) 2017; 42 Rowland (10.1016/j.biopsych.2018.09.009_bib56) 2016; 73 Demjaha (10.1016/j.biopsych.2018.09.009_bib12) 2014; 75 30871691 - Biol Psychiatry. 2019 Apr 1;85(7):e31-e32 |
References_xml | – volume: 159 start-page: 1944 year: 2002 end-page: 1946 ident: bib46 article-title: Glutamate and glutamine measured with 4.0 T proton MRS in never-treated patients with schizophrenia and healthy volunteers publication-title: Am J Psychiatry – volume: 43 start-page: 1706 year: 2018 end-page: 1711 ident: bib52 article-title: Salivary kynurenic acid response to psychological stress: Inverse relationship to cortical glutamate in schizophrenia publication-title: Neuropsychopharmacology – volume: 36 start-page: 1781 year: 2011 end-page: 1791 ident: bib19 article-title: Higher levels of glutamate in the associative-striatum of subjects with prodromal symptoms of schizophrenia and patients with first-episode psychosis publication-title: Neuropsychopharmacology – volume: 346 start-page: 1130 year: 1995 end-page: 1131 ident: bib4 article-title: Presynaptic dopamine function in striatum of neuroleptic-naive schizophrenic patients publication-title: Lancet – volume: 29 start-page: 277 year: 2017 end-page: 286 ident: bib44 article-title: Abnormal concentration of GABA and glutamate in the prefrontal cortex in schizophrenia—An in vivo publication-title: Shanghai Arch Psychiatry – volume: 44 start-page: 1301 year: 2018 end-page: 1311 ident: bib18 article-title: Defining the locus of dopaminergic dysfunction in schizophrenia: A meta-analysis and test of the mesolimbic hypothesis publication-title: Schizophr Bull – volume: 19 start-page: pyv105 year: 2015 ident: bib48 article-title: Cortico-striatal GABAergic and glutamatergic dysregulations in subjects at ultra-high risk for psychosis investigated with proton magnetic resonance spectroscopy publication-title: Int J Neuropsychopharmacol – volume: 23 start-page: 2145 year: 2018 end-page: 2155 ident: bib35 article-title: Response to initial antipsychotic treatment in first episode psychosis is related to anterior cingulate glutamate levels: A multicentre publication-title: Mol Psychiatry – volume: 188 start-page: 1217 year: 1975 end-page: 1219 ident: bib3 article-title: Antipsychotic drugs: Direct correlation between clinical potency and presynaptic action on dopamine neurons publication-title: Science – volume: 51 start-page: 199 year: 1994 end-page: 214 ident: bib9 article-title: Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans: Psychotomimetic, perceptual, cognitive, and neuroendocrine responses publication-title: Arch Gen Psychiatry – volume: 59 start-page: 22 year: 1998 end-page: 33 ident: bib25 article-title: The Mini-International Neuropsychiatric Interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10 publication-title: J Clin Psychiatry – volume: 42 start-page: 744 year: 2016 end-page: 752 ident: bib13 article-title: Treatment-resistant schizophrenia patients show elevated anterior cingulate cortex glutamate compared to treatment-responsive publication-title: Schizophr Bull – year: 1976 ident: bib23 article-title: ECDEU Assessment Manual for Psychopharmacology – volume: 76 start-page: 135 year: 2005 end-page: 157 ident: bib40 article-title: A meta-analysis of worldwide studies demonstrates an association between schizophrenia and tobacco smoking behaviors publication-title: Schizophr Res – year: 1994 ident: bib21 article-title: Diagnostic and Statistical Manual of Mental Disorders – volume: 60 start-page: 1187 year: 2003 end-page: 1192 ident: bib1 article-title: Schizophrenia as a complex trait: Evidence from a meta-analysis of twin studies publication-title: Arch Gen Psychiatry – volume: 193 start-page: 295 year: 2018 end-page: 303 ident: bib42 article-title: In vivo gamma-aminobutyric acid and glutamate levels in people with first-episode schizophrenia: A proton magnetic resonance spectroscopy study publication-title: Schizophr Res – volume: 54 start-page: 959 year: 1997 end-page: 965 ident: bib47 article-title: Measurement of glutamate and glutamine in the medial prefrontal cortex of never-treated schizophrenic patients and healthy controls by proton magnetic resonance spectroscopy publication-title: Arch Gen Psychiatry – volume: 86 start-page: 340 year: 2018 end-page: 352 ident: bib30 article-title: Neurometabolite levels in antipsychotic-naive/free patients with schizophrenia: A systematic review and meta-analysis of publication-title: Prog Neuropsychopharmacol Biol Psychiatry – volume: 8 start-page: 66 year: 2017 ident: bib31 article-title: Effects of antipsychotic administration on brain glutamate in schizophrenia: A systematic review of longitudinal publication-title: Front Psychiatry – volume: 45 start-page: 789 year: 1988 end-page: 796 ident: bib15 article-title: Clozapine for the treatment-resistant schizophrenic: A double-blind comparison with chlorpromazine publication-title: Arch Gen Psychiatry – volume: 18 start-page: pyu117 year: 2015 ident: bib16 article-title: Glutamatergic neurometabolites in clozapine-responsive and -resistant schizophrenia publication-title: Int J Neuropsychopharmacol – volume: 133 start-page: 54 year: 2011 end-page: 62 ident: bib5 article-title: Treatment resistant schizophrenia and response to antipsychotics: A review publication-title: Schizophr Res – volume: 56 start-page: 907 year: 2011 end-page: 922 ident: bib27 article-title: A Bayesian model of shape and appearance for subcortical brain segmentation publication-title: NeuroImage – volume: 16 start-page: 471 year: 2013 end-page: 475 ident: bib20 article-title: Striatal glutamate and the conversion to psychosis: A prospective publication-title: Int J Neuropsychopharmacol – volume: 55 start-page: 1219 year: 2006 end-page: 1226 ident: bib41 article-title: Use of tissue water as a concentration reference for proton spectroscopic imaging publication-title: Magn Reson Med – volume: 164 start-page: 164 year: 2015 end-page: 175 ident: bib58 article-title: Neuroimaging findings in treatment-resistant schizophrenia: A systematic review: Lack of neuroimaging correlates of treatment-resistant schizophrenia publication-title: Schizophr Res – volume: 6 start-page: 380 year: 2001 end-page: 386 ident: bib37 article-title: The expression of glutamate transporter GLT-1 in the rat cerebral cortex is down-regulated by the antipsychotic drug clozapine publication-title: Mol Psychiatry – volume: 42 start-page: 941 year: 2017 end-page: 950 ident: bib8 article-title: Presynaptic dopamine capacity in patients with treatment-resistant schizophrenia taking clozapine: An [ publication-title: Neuropsychopharmacology – volume: 83 start-page: 475 year: 2018 end-page: 483 ident: bib34 article-title: Prefrontal and striatal gamma-aminobutyric acid levels and the effect of antipsychotic treatment in first-episode psychosis patients publication-title: Biol Psychiatry – volume: 37 start-page: 2515 year: 2012 end-page: 2521 ident: bib29 article-title: Anterior cingulate glutamate levels related to clinical status following treatment in first-episode schizophrenia publication-title: Neuropsychopharmacology – volume: 42 start-page: 562 year: 2017 end-page: 571 ident: bib54 article-title: Altered glutamate and regional cerebral blood flow levels in schizophrenia: A publication-title: Neuropsychopharmacology – volume: 8 start-page: 119 year: 2012 end-page: 122 ident: bib32 article-title: Six-month treatment with atypical antipsychotic drugs decreased frontal-lobe levels of glutamate plus glutamine in early-stage first-episode schizophrenia publication-title: Neuropsychiatr Dis Treat – volume: 69 start-page: 449 year: 2012 end-page: 459 ident: bib36 article-title: Elevated prefrontal cortex gamma-aminobutyric acid and glutamate-glutamine levels in schizophrenia measured in vivo with proton magnetic resonance spectroscopy publication-title: Arch Gen Psychiatry – year: 2018 ident: bib53 article-title: Anterior cingulate glutamate and GABA associations on functional connectivity in schizophrenia publication-title: Schizophr Bull – volume: 73 start-page: 665 year: 2016 end-page: 674 ident: bib11 article-title: Nature of glutamate alterations in schizophrenia: A meta-analysis of proton magnetic resonance spectroscopy studies publication-title: JAMA Psychiatry – volume: 169 start-page: 1203 year: 2012 end-page: 1210 ident: bib7 article-title: Dopamine synthesis capacity in patients with treatment-resistant schizophrenia publication-title: Am J Psychiatry – volume: 13 start-page: 261 year: 1987 end-page: 276 ident: bib24 article-title: The Positive and Negative Syndrome Scale (PANSS) for schizophrenia publication-title: Schizophr Bull – volume: 73 start-page: 166 year: 2016 end-page: 174 ident: bib56 article-title: Frontal glutamate and gamma-aminobutyric acid levels and their associations with mismatch negativity and digit sequencing task performance in schizophrenia publication-title: JAMA Psychiatry – volume: 158 start-page: 360 year: 2001 end-page: 369 ident: bib6 article-title: Does fast dissociation from the dopamine D publication-title: Am J Psychiatry – volume: 45 start-page: 180 year: 2019 end-page: 189 ident: bib51 article-title: 7T proton magnetic resonance spectroscopy of the anterior cingulate cortex in first-episode schizophrenia publication-title: Schizophr Bull – volume: 198 start-page: 448 year: 2011 end-page: 456 ident: bib33 article-title: Grey matter and social functioning correlates of glutamatergic metabolite loss in schizophrenia publication-title: Br J Psychiatry – volume: 83 start-page: 484 year: 2018 end-page: 491 ident: bib43 article-title: In vivo brain glycine and glutamate concentrations in patients with first-episode psychosis measured by echo time-averaged proton magnetic resonance spectroscopy at 4T publication-title: Biol Psychiatry – volume: 108 start-page: 69 year: 2009 end-page: 77 ident: bib57 article-title: Metabolite changes and gender differences in schizophrenia using 3-Tesla proton magnetic resonance spectroscopy ( publication-title: Schizophr Res – volume: 165 start-page: 1543 year: 2012 end-page: 1555 ident: bib38 article-title: Clozapine, but not haloperidol, enhances glial D-serine and L-glutamate release in rat frontal cortex and primary cultured astrocytes publication-title: Br J Pharmacol – volume: 168 start-page: 322 year: 2015 end-page: 329 ident: bib45 article-title: Glutamatergic dysfunction linked to energy and membrane lipid metabolism in frontal and anterior cingulate cortices of never treated first-episode schizophrenia patients publication-title: Schizophr Res – volume: 75 start-page: e11 year: 2014 end-page: e13 ident: bib12 article-title: Antipsychotic treatment resistance in schizophrenia associated with elevated glutamate levels but normal dopamine function publication-title: Biol Psychiatry – volume: 14 start-page: 260 year: 2001 end-page: 264 ident: bib26 article-title: Automatic quantitation of localized in vivo publication-title: NMR Biomed – volume: 4 start-page: 151 year: 2013 ident: bib39 article-title: Relationship between glutamate dysfunction and symptoms and cognitive function in psychosis publication-title: Front Psychiatry – volume: 161 start-page: 1116 year: 2004 end-page: 1118 ident: bib50 article-title: 3-T proton MRS investigation of glutamate and glutamine in adolescents at high genetic risk for schizophrenia publication-title: Am J Psychiatry – volume: 66 start-page: 533 year: 2009 end-page: 539 ident: bib49 article-title: Glutamate dysfunction in people with prodromal symptoms of psychosis: Relationship to gray matter volume publication-title: Biol Psychiatry – volume: 13 start-page: 9 year: 1995 end-page: 19 ident: bib10 article-title: Subanesthetic doses of ketamine stimulate psychosis in schizophrenia publication-title: Neuropsychopharmacology – volume: 167 start-page: 686 year: 2010 end-page: 693 ident: bib22 article-title: International consensus study of antipsychotic dosing publication-title: Am J Psychiatry – volume: 42 start-page: 425 year: 2016 end-page: 433 ident: bib55 article-title: Cross-sectional study of glutamate in the anterior cingulate and hippocampus in schizophrenia publication-title: Schizophr Bull – volume: 151 start-page: 1744 year: 1994 end-page: 1752 ident: bib14 article-title: Clinical effects of clozapine in chronic schizophrenia: Response to treatment and predictors of outcome publication-title: Am J Psychiatry – volume: 174 start-page: 216 year: 2017 end-page: 229 ident: bib17 article-title: Treatment-resistant schizophrenia: Treatment Response and Resistance in Psychosis (TRRIP) Working Group Consensus Guidelines on Diagnosis and Terminology publication-title: Am J Psychiatry – volume: 45 start-page: S173 year: 2009 end-page: S186 ident: bib28 article-title: Bayesian analysis of neuroimaging data in FSL publication-title: NeuroImage – volume: 36 start-page: 405 year: 2008 end-page: 409 ident: bib2 article-title: Schizophrenia publication-title: Medicine – volume: 83 start-page: 484 year: 2018 ident: 10.1016/j.biopsych.2018.09.009_bib43 article-title: In vivo brain glycine and glutamate concentrations in patients with first-episode psychosis measured by echo time-averaged proton magnetic resonance spectroscopy at 4T publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2017.08.022 – volume: 43 start-page: 1706 year: 2018 ident: 10.1016/j.biopsych.2018.09.009_bib52 article-title: Salivary kynurenic acid response to psychological stress: Inverse relationship to cortical glutamate in schizophrenia publication-title: Neuropsychopharmacology doi: 10.1038/s41386-018-0072-2 – volume: 133 start-page: 54 year: 2011 ident: 10.1016/j.biopsych.2018.09.009_bib5 article-title: Treatment resistant schizophrenia and response to antipsychotics: A review publication-title: Schizophr Res doi: 10.1016/j.schres.2011.09.016 – volume: 36 start-page: 405 year: 2008 ident: 10.1016/j.biopsych.2018.09.009_bib2 article-title: Schizophrenia publication-title: Medicine doi: 10.1016/j.mpmed.2008.05.007 – volume: 75 start-page: e11 year: 2014 ident: 10.1016/j.biopsych.2018.09.009_bib12 article-title: Antipsychotic treatment resistance in schizophrenia associated with elevated glutamate levels but normal dopamine function publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2013.06.011 – volume: 174 start-page: 216 year: 2017 ident: 10.1016/j.biopsych.2018.09.009_bib17 article-title: Treatment-resistant schizophrenia: Treatment Response and Resistance in Psychosis (TRRIP) Working Group Consensus Guidelines on Diagnosis and Terminology publication-title: Am J Psychiatry doi: 10.1176/appi.ajp.2016.16050503 – volume: 51 start-page: 199 year: 1994 ident: 10.1016/j.biopsych.2018.09.009_bib9 article-title: Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans: Psychotomimetic, perceptual, cognitive, and neuroendocrine responses publication-title: Arch Gen Psychiatry doi: 10.1001/archpsyc.1994.03950030035004 – volume: 151 start-page: 1744 year: 1994 ident: 10.1016/j.biopsych.2018.09.009_bib14 article-title: Clinical effects of clozapine in chronic schizophrenia: Response to treatment and predictors of outcome publication-title: Am J Psychiatry doi: 10.1176/ajp.151.12.1744 – volume: 4 start-page: 151 year: 2013 ident: 10.1016/j.biopsych.2018.09.009_bib39 article-title: Relationship between glutamate dysfunction and symptoms and cognitive function in psychosis publication-title: Front Psychiatry doi: 10.3389/fpsyt.2013.00151 – volume: 159 start-page: 1944 year: 2002 ident: 10.1016/j.biopsych.2018.09.009_bib46 article-title: Glutamate and glutamine measured with 4.0 T proton MRS in never-treated patients with schizophrenia and healthy volunteers publication-title: Am J Psychiatry doi: 10.1176/appi.ajp.159.11.1944 – volume: 45 start-page: 180 year: 2019 ident: 10.1016/j.biopsych.2018.09.009_bib51 article-title: 7T proton magnetic resonance spectroscopy of the anterior cingulate cortex in first-episode schizophrenia publication-title: Schizophr Bull doi: 10.1093/schbul/sbx190 – volume: 13 start-page: 261 year: 1987 ident: 10.1016/j.biopsych.2018.09.009_bib24 article-title: The Positive and Negative Syndrome Scale (PANSS) for schizophrenia publication-title: Schizophr Bull doi: 10.1093/schbul/13.2.261 – volume: 42 start-page: 562 year: 2017 ident: 10.1016/j.biopsych.2018.09.009_bib54 article-title: Altered glutamate and regional cerebral blood flow levels in schizophrenia: A 1H-MRS and pCASL study publication-title: Neuropsychopharmacology doi: 10.1038/npp.2016.172 – volume: 193 start-page: 295 year: 2018 ident: 10.1016/j.biopsych.2018.09.009_bib42 article-title: In vivo gamma-aminobutyric acid and glutamate levels in people with first-episode schizophrenia: A proton magnetic resonance spectroscopy study publication-title: Schizophr Res doi: 10.1016/j.schres.2017.07.021 – volume: 42 start-page: 941 year: 2017 ident: 10.1016/j.biopsych.2018.09.009_bib8 article-title: Presynaptic dopamine capacity in patients with treatment-resistant schizophrenia taking clozapine: An [18F]DOPA PET study publication-title: Neuropsychopharmacology doi: 10.1038/npp.2016.258 – volume: 18 start-page: pyu117 year: 2015 ident: 10.1016/j.biopsych.2018.09.009_bib16 article-title: Glutamatergic neurometabolites in clozapine-responsive and -resistant schizophrenia publication-title: Int J Neuropsychopharmacol doi: 10.1093/ijnp/pyu117 – volume: 45 start-page: S173 year: 2009 ident: 10.1016/j.biopsych.2018.09.009_bib28 article-title: Bayesian analysis of neuroimaging data in FSL publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.10.055 – volume: 55 start-page: 1219 year: 2006 ident: 10.1016/j.biopsych.2018.09.009_bib41 article-title: Use of tissue water as a concentration reference for proton spectroscopic imaging publication-title: Magn Reson Med doi: 10.1002/mrm.20901 – volume: 167 start-page: 686 year: 2010 ident: 10.1016/j.biopsych.2018.09.009_bib22 article-title: International consensus study of antipsychotic dosing publication-title: Am J Psychiatry doi: 10.1176/appi.ajp.2009.09060802 – year: 1994 ident: 10.1016/j.biopsych.2018.09.009_bib21 – volume: 54 start-page: 959 year: 1997 ident: 10.1016/j.biopsych.2018.09.009_bib47 article-title: Measurement of glutamate and glutamine in the medial prefrontal cortex of never-treated schizophrenic patients and healthy controls by proton magnetic resonance spectroscopy publication-title: Arch Gen Psychiatry doi: 10.1001/archpsyc.1997.01830220085012 – volume: 6 start-page: 380 year: 2001 ident: 10.1016/j.biopsych.2018.09.009_bib37 article-title: The expression of glutamate transporter GLT-1 in the rat cerebral cortex is down-regulated by the antipsychotic drug clozapine publication-title: Mol Psychiatry doi: 10.1038/sj.mp.4000880 – volume: 42 start-page: 744 year: 2016 ident: 10.1016/j.biopsych.2018.09.009_bib13 article-title: Treatment-resistant schizophrenia patients show elevated anterior cingulate cortex glutamate compared to treatment-responsive publication-title: Schizophr Bull doi: 10.1093/schbul/sbv151 – volume: 13 start-page: 9 year: 1995 ident: 10.1016/j.biopsych.2018.09.009_bib10 article-title: Subanesthetic doses of ketamine stimulate psychosis in schizophrenia publication-title: Neuropsychopharmacology doi: 10.1016/0893-133X(94)00131-I – volume: 164 start-page: 164 year: 2015 ident: 10.1016/j.biopsych.2018.09.009_bib58 article-title: Neuroimaging findings in treatment-resistant schizophrenia: A systematic review: Lack of neuroimaging correlates of treatment-resistant schizophrenia publication-title: Schizophr Res doi: 10.1016/j.schres.2015.01.043 – volume: 165 start-page: 1543 year: 2012 ident: 10.1016/j.biopsych.2018.09.009_bib38 article-title: Clozapine, but not haloperidol, enhances glial D-serine and L-glutamate release in rat frontal cortex and primary cultured astrocytes publication-title: Br J Pharmacol doi: 10.1111/j.1476-5381.2011.01638.x – volume: 161 start-page: 1116 year: 2004 ident: 10.1016/j.biopsych.2018.09.009_bib50 article-title: 3-T proton MRS investigation of glutamate and glutamine in adolescents at high genetic risk for schizophrenia publication-title: Am J Psychiatry doi: 10.1176/appi.ajp.161.6.1116 – volume: 56 start-page: 907 year: 2011 ident: 10.1016/j.biopsych.2018.09.009_bib27 article-title: A Bayesian model of shape and appearance for subcortical brain segmentation publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.02.046 – volume: 36 start-page: 1781 year: 2011 ident: 10.1016/j.biopsych.2018.09.009_bib19 article-title: Higher levels of glutamate in the associative-striatum of subjects with prodromal symptoms of schizophrenia and patients with first-episode psychosis publication-title: Neuropsychopharmacology doi: 10.1038/npp.2011.65 – volume: 66 start-page: 533 year: 2009 ident: 10.1016/j.biopsych.2018.09.009_bib49 article-title: Glutamate dysfunction in people with prodromal symptoms of psychosis: Relationship to gray matter volume publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2009.05.006 – year: 2018 ident: 10.1016/j.biopsych.2018.09.009_bib53 article-title: Anterior cingulate glutamate and GABA associations on functional connectivity in schizophrenia publication-title: Schizophr Bull – volume: 23 start-page: 2145 year: 2018 ident: 10.1016/j.biopsych.2018.09.009_bib35 article-title: Response to initial antipsychotic treatment in first episode psychosis is related to anterior cingulate glutamate levels: A multicentre 1H-MRS study (OPTiMiSE) publication-title: Mol Psychiatry doi: 10.1038/s41380-018-0082-9 – volume: 14 start-page: 260 year: 2001 ident: 10.1016/j.biopsych.2018.09.009_bib26 article-title: Automatic quantitation of localized in vivo 1H spectra with LCModel publication-title: NMR Biomed doi: 10.1002/nbm.698 – volume: 8 start-page: 119 year: 2012 ident: 10.1016/j.biopsych.2018.09.009_bib32 article-title: Six-month treatment with atypical antipsychotic drugs decreased frontal-lobe levels of glutamate plus glutamine in early-stage first-episode schizophrenia publication-title: Neuropsychiatr Dis Treat – volume: 188 start-page: 1217 year: 1975 ident: 10.1016/j.biopsych.2018.09.009_bib3 article-title: Antipsychotic drugs: Direct correlation between clinical potency and presynaptic action on dopamine neurons publication-title: Science doi: 10.1126/science.1145194 – volume: 69 start-page: 449 year: 2012 ident: 10.1016/j.biopsych.2018.09.009_bib36 article-title: Elevated prefrontal cortex gamma-aminobutyric acid and glutamate-glutamine levels in schizophrenia measured in vivo with proton magnetic resonance spectroscopy publication-title: Arch Gen Psychiatry doi: 10.1001/archgenpsychiatry.2011.1519 – volume: 37 start-page: 2515 year: 2012 ident: 10.1016/j.biopsych.2018.09.009_bib29 article-title: Anterior cingulate glutamate levels related to clinical status following treatment in first-episode schizophrenia publication-title: Neuropsychopharmacology doi: 10.1038/npp.2012.113 – volume: 169 start-page: 1203 year: 2012 ident: 10.1016/j.biopsych.2018.09.009_bib7 article-title: Dopamine synthesis capacity in patients with treatment-resistant schizophrenia publication-title: Am J Psychiatry doi: 10.1176/appi.ajp.2012.12010144 – volume: 59 start-page: 22 issue: Suppl 20 year: 1998 ident: 10.1016/j.biopsych.2018.09.009_bib25 article-title: The Mini-International Neuropsychiatric Interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10 publication-title: J Clin Psychiatry – volume: 60 start-page: 1187 year: 2003 ident: 10.1016/j.biopsych.2018.09.009_bib1 article-title: Schizophrenia as a complex trait: Evidence from a meta-analysis of twin studies publication-title: Arch Gen Psychiatry doi: 10.1001/archpsyc.60.12.1187 – volume: 86 start-page: 340 year: 2018 ident: 10.1016/j.biopsych.2018.09.009_bib30 article-title: Neurometabolite levels in antipsychotic-naive/free patients with schizophrenia: A systematic review and meta-analysis of 1H-MRS studies publication-title: Prog Neuropsychopharmacol Biol Psychiatry doi: 10.1016/j.pnpbp.2018.03.016 – volume: 108 start-page: 69 year: 2009 ident: 10.1016/j.biopsych.2018.09.009_bib57 article-title: Metabolite changes and gender differences in schizophrenia using 3-Tesla proton magnetic resonance spectroscopy (1H-MRS) publication-title: Schizophr Res doi: 10.1016/j.schres.2008.11.014 – volume: 45 start-page: 789 year: 1988 ident: 10.1016/j.biopsych.2018.09.009_bib15 article-title: Clozapine for the treatment-resistant schizophrenic: A double-blind comparison with chlorpromazine publication-title: Arch Gen Psychiatry doi: 10.1001/archpsyc.1988.01800330013001 – volume: 83 start-page: 475 year: 2018 ident: 10.1016/j.biopsych.2018.09.009_bib34 article-title: Prefrontal and striatal gamma-aminobutyric acid levels and the effect of antipsychotic treatment in first-episode psychosis patients publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2017.09.028 – volume: 73 start-page: 665 year: 2016 ident: 10.1016/j.biopsych.2018.09.009_bib11 article-title: Nature of glutamate alterations in schizophrenia: A meta-analysis of proton magnetic resonance spectroscopy studies publication-title: JAMA Psychiatry doi: 10.1001/jamapsychiatry.2016.0442 – volume: 346 start-page: 1130 year: 1995 ident: 10.1016/j.biopsych.2018.09.009_bib4 article-title: Presynaptic dopamine function in striatum of neuroleptic-naive schizophrenic patients publication-title: Lancet doi: 10.1016/S0140-6736(95)91801-9 – volume: 158 start-page: 360 year: 2001 ident: 10.1016/j.biopsych.2018.09.009_bib6 article-title: Does fast dissociation from the dopamine D2 receptor explain the action of atypical antipsychotics? A new hypothesis publication-title: Am J Psychiatry doi: 10.1176/appi.ajp.158.3.360 – volume: 29 start-page: 277 year: 2017 ident: 10.1016/j.biopsych.2018.09.009_bib44 article-title: Abnormal concentration of GABA and glutamate in the prefrontal cortex in schizophrenia—An in vivo 1H-MRS study publication-title: Shanghai Arch Psychiatry – volume: 16 start-page: 471 year: 2013 ident: 10.1016/j.biopsych.2018.09.009_bib20 article-title: Striatal glutamate and the conversion to psychosis: A prospective 1H-MRS imaging study publication-title: Int J Neuropsychopharmacol doi: 10.1017/S1461145712000314 – volume: 19 start-page: pyv105 year: 2015 ident: 10.1016/j.biopsych.2018.09.009_bib48 article-title: Cortico-striatal GABAergic and glutamatergic dysregulations in subjects at ultra-high risk for psychosis investigated with proton magnetic resonance spectroscopy publication-title: Int J Neuropsychopharmacol doi: 10.1093/ijnp/pyv105 – volume: 168 start-page: 322 year: 2015 ident: 10.1016/j.biopsych.2018.09.009_bib45 article-title: Glutamatergic dysfunction linked to energy and membrane lipid metabolism in frontal and anterior cingulate cortices of never treated first-episode schizophrenia patients publication-title: Schizophr Res doi: 10.1016/j.schres.2015.07.013 – volume: 198 start-page: 448 year: 2011 ident: 10.1016/j.biopsych.2018.09.009_bib33 article-title: Grey matter and social functioning correlates of glutamatergic metabolite loss in schizophrenia publication-title: Br J Psychiatry doi: 10.1192/bjp.bp.110.079608 – volume: 42 start-page: 425 year: 2016 ident: 10.1016/j.biopsych.2018.09.009_bib55 article-title: Cross-sectional study of glutamate in the anterior cingulate and hippocampus in schizophrenia publication-title: Schizophr Bull doi: 10.1093/schbul/sbv124 – volume: 73 start-page: 166 year: 2016 ident: 10.1016/j.biopsych.2018.09.009_bib56 article-title: Frontal glutamate and gamma-aminobutyric acid levels and their associations with mismatch negativity and digit sequencing task performance in schizophrenia publication-title: JAMA Psychiatry doi: 10.1001/jamapsychiatry.2015.2680 – volume: 44 start-page: 1301 year: 2018 ident: 10.1016/j.biopsych.2018.09.009_bib18 article-title: Defining the locus of dopaminergic dysfunction in schizophrenia: A meta-analysis and test of the mesolimbic hypothesis publication-title: Schizophr Bull doi: 10.1093/schbul/sbx180 – volume: 8 start-page: 66 year: 2017 ident: 10.1016/j.biopsych.2018.09.009_bib31 article-title: Effects of antipsychotic administration on brain glutamate in schizophrenia: A systematic review of longitudinal 1H-MRS studies publication-title: Front Psychiatry doi: 10.3389/fpsyt.2017.00066 – volume: 76 start-page: 135 year: 2005 ident: 10.1016/j.biopsych.2018.09.009_bib40 article-title: A meta-analysis of worldwide studies demonstrates an association between schizophrenia and tobacco smoking behaviors publication-title: Schizophr Res doi: 10.1016/j.schres.2005.02.010 – year: 1976 ident: 10.1016/j.biopsych.2018.09.009_bib23 – reference: 30871691 - Biol Psychiatry. 2019 Apr 1;85(7):e31-e32 |
SSID | ssj0007221 |
Score | 2.573646 |
Snippet | In terms of antipsychotic treatment response, patients with schizophrenia can be classified into three groups: 1) treatment resistant to both non-clozapine... AbstractBackgroundIn terms of antipsychotic treatment response, patients with schizophrenia can be classified into three groups: 1) treatment resistant to both... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 596 |
SubjectTerms | 1H-MRS Adult Antipsychotic Antipsychotic Agents - pharmacology Caudate Nucleus - diagnostic imaging Caudate Nucleus - metabolism Clozapine Cross-Sectional Studies Female Glutamate Glutamic Acid - metabolism Glutamine - metabolism Gyrus Cinguli - diagnostic imaging Gyrus Cinguli - metabolism Humans Male Middle Aged Prefrontal Cortex - diagnostic imaging Prefrontal Cortex - metabolism Proton Magnetic Resonance Spectroscopy Psychiatric/Mental Health Schizophrenia Schizophrenia - diagnostic imaging Schizophrenia - drug therapy Schizophrenia - metabolism Treatment-resistant |
Title | Glutamatergic Neurometabolite Levels in Patients With Ultra-Treatment-Resistant Schizophrenia: A Cross-Sectional 3T Proton Magnetic Resonance Spectroscopy Study |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0006322318318523 https://www.clinicalkey.es/playcontent/1-s2.0-S0006322318318523 https://dx.doi.org/10.1016/j.biopsych.2018.09.009 https://www.ncbi.nlm.nih.gov/pubmed/30389132 https://www.proquest.com/docview/2129533287 |
Volume | 85 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9NAEB21qfi4VBAohJZqkbhu46ztrN1bFLWEj1YVSURvq7V3Da6KE8XuIRd-S38qM_Y6KgIEglOUSBM7npeZt5o3MwCvrRdYGVjNZZQIHgjrcYyBtENjaPB1SMU3UlucDyfz4N1leLkF47YXhmSVLvY3Mb2O1u6Tvnua_WWeU48vplfMbghK6gD2t2FHYLaPOrAzevt-cr4JyFIItzhvyMngTqPw1VGSL2pdMam8onrkKWkTf52jfsdB61x0-gh2HYlko-Y-H8OWLbpwr1krue7Cg3G7xa0L989c8fwJ3L5BlGlkqHaF4Y7VYzm-2gpRQH3I7APJh0qWF-yimbVask959YXNr6uV5rNWkM4_2pI4Z1Gx6V3B3jEbsTH9HD6t1V10g_6MXawWyC7Zmf5cULsko3IBzfiwbLqsF_BQW8yakZxx_RTmpyez8YS7BQ08DWRU8TDNpNGJoZOuyGQcZ57RA-2ngTAiMVlkwsimsfESEYV4MMPTi7G6piFJikTS34NOsSjsc2AiS9NIZhaRo4NMSj1Ap4U-klP8RiFlD8LWJSp108tpica1amVqV6p1pSJXKi9W6Moe9Dd2y2Z-xx8tZOtx1XanYjxVmGL-zdKWLiyUaqBKoTz1E3R7EG8sf0D_X131VQtLhdiieo8u7OKmVMhKSDyMZ-IePGvwunkGvlcXqMWL_7jyPjzEd3GjYzqATrW6sS-RolXJIWwffRscuj_idwRRPWQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6VIiiXCsIrlMcicd3GWdtZm1sVUQIkVUUT0dtqba_BVbGj2D3kwm_hpzKzXqetAIHgFCnJ-jWfZ77VfDMD8Mp4gZGB0VxGieCBMB5HH0gzNEYZfo4o-UZqi6PRZBG8Pw1Pt2Dc1cKQrNL5_tanW2_tvhm4pzlYFgXV-GJ4xeiGoKQKYP8G3AxozAGCev_bpc5DCuHG5o04_f1KmfDZflJUVlVMGq_INjwlZeKvI9TvGKiNRId3YddRSHbQXuU92DJlD261QyXXPdgZdzPcenB75lLn9-H7W8SYRn5qVujsmG3K8dU0iAGqQmZTEg_VrCjZcdtptWafiuYLW5w3K83nnRydfzQ1Mc6yYSdX5Xqv2QEb0-3wE6vtogv05-x4VSG3ZDP9uaRiSUbJAurwYRjNvW-ok2a1XDMSM64fwOLwzXw84W48A08DGTU8THOZ6SSjfa7IZRznXqaH2k8DkYkky6MsjEwaZ14iohC3Zbh3yYy2JCRJkUb6D2G7rErzGJjI0zSSuUHc6CCXUg_RaKGP1BSPKKTsQ9iZRKWudzmN0DhXnUjtTHWmVGRK5cUKTdmHwWbdsu3e8ccVsrO46mpT0ZsqDDD_ttLUzinUaqhqoTz1E3D7EG9WXsP-X531ZQdLhdiibI8uTXVRK-QkJB3GHXEfHrV43TwD37PpafHkP878AnYm89lUTd8dfdiDO_hL3CqansJ2s7owz5CsNclz-zL-AKL8PiY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Glutamatergic+Neurometabolite+Levels+in+Patients+With+Ultra-Treatment-Resistant+Schizophrenia%3A+A+Cross-Sectional+3T+Proton+Magnetic+Resonance+Spectroscopy+Study&rft.jtitle=Biological+psychiatry+%281969%29&rft.au=Iwata%2C+Yusuke&rft.au=Nakajima%2C+Shinichiro&rft.au=Plitman%2C+Eric&rft.au=Caravaggio%2C+Fernando&rft.date=2019-04-01&rft.issn=0006-3223&rft.volume=85&rft.issue=7&rft.spage=596&rft.epage=605&rft_id=info:doi/10.1016%2Fj.biopsych.2018.09.009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_biopsych_2018_09_009 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00063223%2FS0006322318X00079%2Fcov150h.gif |