Glutamatergic Neurometabolite Levels in Patients With Ultra-Treatment-Resistant Schizophrenia: A Cross-Sectional 3T Proton Magnetic Resonance Spectroscopy Study

In terms of antipsychotic treatment response, patients with schizophrenia can be classified into three groups: 1) treatment resistant to both non-clozapine (non-CLZ) antipsychotics and CLZ (ultra-treatment-resistant schizophrenia [URS]), 2) treatment resistant to non-CLZ antipsychotics but CLZ-respo...

Full description

Saved in:
Bibliographic Details
Published inBiological psychiatry (1969) Vol. 85; no. 7; pp. 596 - 605
Main Authors Iwata, Yusuke, Nakajima, Shinichiro, Plitman, Eric, Caravaggio, Fernando, Kim, Julia, Shah, Parita, Mar, Wanna, Chavez, Sofia, De Luca, Vincenzo, Mimura, Masaru, Remington, Gary, Gerretsen, Philip, Graff-Guerrero, Ariel
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.04.2019
Subjects
Online AccessGet full text
ISSN0006-3223
1873-2402
1873-2402
DOI10.1016/j.biopsych.2018.09.009

Cover

Abstract In terms of antipsychotic treatment response, patients with schizophrenia can be classified into three groups: 1) treatment resistant to both non-clozapine (non-CLZ) antipsychotics and CLZ (ultra-treatment-resistant schizophrenia [URS]), 2) treatment resistant to non-CLZ antipsychotics but CLZ-responsive schizophrenia [non-URS]), and 3) responsive to first-line antipsychotics (non-treatment-resistant schizophrenia). This study aimed to compare glutamatergic neurometabolite levels among these three patient groups and healthy control subjects using proton magnetic resonance spectroscopy. Glutamate and glutamate+glutamine levels were assessed in the caudate, the dorsal anterior cingulate cortex (dACC), and the dorsolateral prefrontal cortex using 3T proton magnetic resonance spectroscopy (point-resolved spectroscopy, echo time = 35 ms). Glutamatergic neurometabolite levels were compared between the groups. A total of 100 participants were included, consisting of 26 patients with URS, 27 patients with non-URS, 21 patients with non-treatment-resistant schizophrenia, and 26 healthy control subjects. Group differences were detected in ACC glutamate+glutamine levels (F3,96 = 2.93, p = .038); patients with URS showed higher dACC glutamate+glutamine levels than healthy control subjects (p = .038). There were no group differences in the caudate or dorsolateral prefrontal cortex. Taken together with previous studies that demonstrated higher ACC glutamate levels in patients with treatment-resistant schizophrenia, this study suggests that higher levels of ACC glutamatergic metabolites may be among the shared biological characteristics of treatment resistance to antipsychotics, including CLZ.
AbstractList AbstractBackgroundIn terms of antipsychotic treatment response, patients with schizophrenia can be classified into three groups: 1) treatment resistant to both non-clozapine (non-CLZ) antipsychotics and CLZ (ultra-treatment-resistant schizophrenia [URS]), 2) treatment resistant to non-CLZ antipsychotics but CLZ-responsive schizophrenia [non-URS]), and 3) responsive to first-line antipsychotics (non-treatment-resistant schizophrenia). This study aimed to compare glutamatergic neurometabolite levels among these three patient groups and healthy control subjects using proton magnetic resonance spectroscopy. MethodsGlutamate and glutamate+glutamine levels were assessed in the caudate, the dorsal anterior cingulate cortex (dACC), and the dorsolateral prefrontal cortex using 3T proton magnetic resonance spectroscopy (point-resolved spectroscopy, echo time = 35 ms). Glutamatergic neurometabolite levels were compared between the groups. ResultsA total of 100 participants were included, consisting of 26 patients with URS, 27 patients with non-URS, 21 patients with non-treatment-resistant schizophrenia, and 26 healthy control subjects. Group differences were detected in ACC glutamate+glutamine levels ( F3,96 = 2.93, p = .038); patients with URS showed higher dACC glutamate+glutamine levels than healthy control subjects ( p = .038). There were no group differences in the caudate or dorsolateral prefrontal cortex. ConclusionsTaken together with previous studies that demonstrated higher ACC glutamate levels in patients with treatment-resistant schizophrenia, this study suggests that higher levels of ACC glutamatergic metabolites may be among the shared biological characteristics of treatment resistance to antipsychotics, including CLZ.
In terms of antipsychotic treatment response, patients with schizophrenia can be classified into three groups: 1) treatment resistant to both non-clozapine (non-CLZ) antipsychotics and CLZ (ultra-treatment-resistant schizophrenia [URS]), 2) treatment resistant to non-CLZ antipsychotics but CLZ-responsive schizophrenia [non-URS]), and 3) responsive to first-line antipsychotics (non-treatment-resistant schizophrenia). This study aimed to compare glutamatergic neurometabolite levels among these three patient groups and healthy control subjects using proton magnetic resonance spectroscopy. Glutamate and glutamate+glutamine levels were assessed in the caudate, the dorsal anterior cingulate cortex (dACC), and the dorsolateral prefrontal cortex using 3T proton magnetic resonance spectroscopy (point-resolved spectroscopy, echo time = 35 ms). Glutamatergic neurometabolite levels were compared between the groups. A total of 100 participants were included, consisting of 26 patients with URS, 27 patients with non-URS, 21 patients with non-treatment-resistant schizophrenia, and 26 healthy control subjects. Group differences were detected in ACC glutamate+glutamine levels (F3,96 = 2.93, p = .038); patients with URS showed higher dACC glutamate+glutamine levels than healthy control subjects (p = .038). There were no group differences in the caudate or dorsolateral prefrontal cortex. Taken together with previous studies that demonstrated higher ACC glutamate levels in patients with treatment-resistant schizophrenia, this study suggests that higher levels of ACC glutamatergic metabolites may be among the shared biological characteristics of treatment resistance to antipsychotics, including CLZ.
In terms of antipsychotic treatment response, patients with schizophrenia can be classified into three groups: 1) treatment resistant to both non-clozapine (non-CLZ) antipsychotics and CLZ (ultra-treatment-resistant schizophrenia [URS]), 2) treatment resistant to non-CLZ antipsychotics but CLZ-responsive schizophrenia [non-URS]), and 3) responsive to first-line antipsychotics (non-treatment-resistant schizophrenia). This study aimed to compare glutamatergic neurometabolite levels among these three patient groups and healthy control subjects using proton magnetic resonance spectroscopy.BACKGROUNDIn terms of antipsychotic treatment response, patients with schizophrenia can be classified into three groups: 1) treatment resistant to both non-clozapine (non-CLZ) antipsychotics and CLZ (ultra-treatment-resistant schizophrenia [URS]), 2) treatment resistant to non-CLZ antipsychotics but CLZ-responsive schizophrenia [non-URS]), and 3) responsive to first-line antipsychotics (non-treatment-resistant schizophrenia). This study aimed to compare glutamatergic neurometabolite levels among these three patient groups and healthy control subjects using proton magnetic resonance spectroscopy.Glutamate and glutamate+glutamine levels were assessed in the caudate, the dorsal anterior cingulate cortex (dACC), and the dorsolateral prefrontal cortex using 3T proton magnetic resonance spectroscopy (point-resolved spectroscopy, echo time = 35 ms). Glutamatergic neurometabolite levels were compared between the groups.METHODSGlutamate and glutamate+glutamine levels were assessed in the caudate, the dorsal anterior cingulate cortex (dACC), and the dorsolateral prefrontal cortex using 3T proton magnetic resonance spectroscopy (point-resolved spectroscopy, echo time = 35 ms). Glutamatergic neurometabolite levels were compared between the groups.A total of 100 participants were included, consisting of 26 patients with URS, 27 patients with non-URS, 21 patients with non-treatment-resistant schizophrenia, and 26 healthy control subjects. Group differences were detected in ACC glutamate+glutamine levels (F3,96 = 2.93, p = .038); patients with URS showed higher dACC glutamate+glutamine levels than healthy control subjects (p = .038). There were no group differences in the caudate or dorsolateral prefrontal cortex.RESULTSA total of 100 participants were included, consisting of 26 patients with URS, 27 patients with non-URS, 21 patients with non-treatment-resistant schizophrenia, and 26 healthy control subjects. Group differences were detected in ACC glutamate+glutamine levels (F3,96 = 2.93, p = .038); patients with URS showed higher dACC glutamate+glutamine levels than healthy control subjects (p = .038). There were no group differences in the caudate or dorsolateral prefrontal cortex.Taken together with previous studies that demonstrated higher ACC glutamate levels in patients with treatment-resistant schizophrenia, this study suggests that higher levels of ACC glutamatergic metabolites may be among the shared biological characteristics of treatment resistance to antipsychotics, including CLZ.CONCLUSIONSTaken together with previous studies that demonstrated higher ACC glutamate levels in patients with treatment-resistant schizophrenia, this study suggests that higher levels of ACC glutamatergic metabolites may be among the shared biological characteristics of treatment resistance to antipsychotics, including CLZ.
In terms of antipsychotic treatment response, patients with schizophrenia can be classified into three groups: 1) treatment resistant to both non-clozapine (non-CLZ) antipsychotics and CLZ (ultra-treatment-resistant schizophrenia [URS]), 2) treatment resistant to non-CLZ antipsychotics but CLZ-responsive schizophrenia [non-URS]), and 3) responsive to first-line antipsychotics (non-treatment-resistant schizophrenia). This study aimed to compare glutamatergic neurometabolite levels among these three patient groups and healthy control subjects using proton magnetic resonance spectroscopy. Glutamate and glutamate+glutamine levels were assessed in the caudate, the dorsal anterior cingulate cortex (dACC), and the dorsolateral prefrontal cortex using 3T proton magnetic resonance spectroscopy (point-resolved spectroscopy, echo time = 35 ms). Glutamatergic neurometabolite levels were compared between the groups. A total of 100 participants were included, consisting of 26 patients with URS, 27 patients with non-URS, 21 patients with non-treatment-resistant schizophrenia, and 26 healthy control subjects. Group differences were detected in ACC glutamate+glutamine levels (F  = 2.93, p = .038); patients with URS showed higher dACC glutamate+glutamine levels than healthy control subjects (p = .038). There were no group differences in the caudate or dorsolateral prefrontal cortex. Taken together with previous studies that demonstrated higher ACC glutamate levels in patients with treatment-resistant schizophrenia, this study suggests that higher levels of ACC glutamatergic metabolites may be among the shared biological characteristics of treatment resistance to antipsychotics, including CLZ.
Author Nakajima, Shinichiro
Iwata, Yusuke
De Luca, Vincenzo
Chavez, Sofia
Mimura, Masaru
Shah, Parita
Remington, Gary
Graff-Guerrero, Ariel
Caravaggio, Fernando
Mar, Wanna
Plitman, Eric
Kim, Julia
Gerretsen, Philip
Author_xml – sequence: 1
  givenname: Yusuke
  surname: Iwata
  fullname: Iwata, Yusuke
  organization: Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
– sequence: 2
  givenname: Shinichiro
  surname: Nakajima
  fullname: Nakajima, Shinichiro
  organization: Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
– sequence: 3
  givenname: Eric
  surname: Plitman
  fullname: Plitman, Eric
  organization: Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
– sequence: 4
  givenname: Fernando
  surname: Caravaggio
  fullname: Caravaggio, Fernando
  organization: Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
– sequence: 5
  givenname: Julia
  surname: Kim
  fullname: Kim, Julia
  organization: Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
– sequence: 6
  givenname: Parita
  surname: Shah
  fullname: Shah, Parita
  organization: Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
– sequence: 7
  givenname: Wanna
  surname: Mar
  fullname: Mar, Wanna
  organization: Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
– sequence: 8
  givenname: Sofia
  surname: Chavez
  fullname: Chavez, Sofia
  organization: Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
– sequence: 9
  givenname: Vincenzo
  surname: De Luca
  fullname: De Luca, Vincenzo
  organization: Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
– sequence: 10
  givenname: Masaru
  surname: Mimura
  fullname: Mimura, Masaru
  organization: Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan
– sequence: 11
  givenname: Gary
  surname: Remington
  fullname: Remington, Gary
  organization: Schizophrenia Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
– sequence: 12
  givenname: Philip
  surname: Gerretsen
  fullname: Gerretsen, Philip
  organization: Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
– sequence: 13
  givenname: Ariel
  orcidid: 0000-0001-9301-2171
  surname: Graff-Guerrero
  fullname: Graff-Guerrero, Ariel
  email: ariel_graff@yahoo.com.mx
  organization: Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30389132$$D View this record in MEDLINE/PubMed
BookMark eNqNUttuEzEUtFARTQO_UPmRlw2-ZG8IIaoIClKAiqTi0fLaZxuHXXuxvZXC1_CpeJWWhz5QJEuW7Zk5PjPnDJ1YZwGhc0oWlNDi1X7RGDeEg9otGKHVgtQLQuonaEarkmdsSdgJmhFCiowzxk_RWQj7dCwZo8_QKSe8qilnM_T7shuj7GUEf2MU_gKjdz1E2bjORMBruIUuYGPxlYwGbAz4u4k7fN1FL7OtBxn7dJt9g2BClDbijdqZX27YebBGvsYXeOVdCNkGVDTOyg7zLb7yLjqLP8sbCzFVTez0ZBXgzZBwiaDccMCbOOrDc_S0lV2AF3f7HF1_eL9dfczWXy8_rS7WmVqWVcxy1ZZaNpqUqa22rOuWaEklV0umWaPbSucVqFqThlV5SYs8rzXI5EhFG1XkBZ-jl0fdwbufI4QoehMUdJ204MYgGGV1zjlL9s7R-R10bHrQYvCml_4g7l1NgOIIUFPvHtq_EErEFJ_Yi_v4xBSfILVI8SXimwdEZaKcjEt2m-5x-rsjPWUGtwa8CCqFpkAbn3wV2pnHJd4-kFCdsUbJ7gccIOzd6FOIQVARmCBiM43YNGG0Sitn_N8C__ODP8jW6Nc
CitedBy_id crossref_primary_10_1038_s41398_021_01477_6
crossref_primary_10_1007_s00406_019_01053_6
crossref_primary_10_1038_s41380_023_02065_4
crossref_primary_10_1016_j_biopsych_2019_07_011
crossref_primary_10_1111_pcn_13482
crossref_primary_10_1016_j_inffus_2020_07_006
crossref_primary_10_1016_j_schres_2020_03_069
crossref_primary_10_1016_j_schres_2023_01_011
crossref_primary_10_1016_j_bionps_2022_100048
crossref_primary_10_1017_S0033291719002277
crossref_primary_10_1038_s41537_024_00535_4
crossref_primary_10_1038_s41537_023_00381_w
crossref_primary_10_1016_j_pnpbp_2021_110473
crossref_primary_10_2463_mrms_rev_2021_0050
crossref_primary_10_2174_1389450120666191011163539
crossref_primary_10_1186_s12888_023_05397_1
crossref_primary_10_3390_ijms24065945
crossref_primary_10_1038_s41537_022_00230_2
crossref_primary_10_1093_schbul_sbae060
crossref_primary_10_1017_ipm_2018_47
crossref_primary_10_1016_j_scog_2020_100186
crossref_primary_10_1038_s41537_023_00347_y
crossref_primary_10_1007_s12031_021_01866_y
crossref_primary_10_1016_j_pnpbp_2020_109871
crossref_primary_10_3389_fpsyt_2019_00314
crossref_primary_10_1016_j_bbr_2020_113099
crossref_primary_10_1038_s41398_020_0700_6
crossref_primary_10_1002_npr2_12103
crossref_primary_10_1038_s41386_019_0589_z
crossref_primary_10_1016_j_neulet_2021_136410
crossref_primary_10_1177_02698811221078751
crossref_primary_10_3390_biomedicines9040372
crossref_primary_10_1016_j_neubiorev_2022_105010
crossref_primary_10_1111_bcp_15260
crossref_primary_10_1038_s41386_022_01508_w
crossref_primary_10_1016_j_pscychresns_2020_111080
crossref_primary_10_3389_fnimg_2023_1127508
crossref_primary_10_1038_s41537_022_00265_5
crossref_primary_10_1093_schbul_sbad160
crossref_primary_10_1038_s41537_019_0080_1
crossref_primary_10_1093_schbul_sbad164
crossref_primary_10_1016_j_schres_2022_08_008
crossref_primary_10_1016_j_pscychresns_2024_111926
crossref_primary_10_1093_schizbullopen_sgab006
crossref_primary_10_1016_j_bpsc_2023_10_008
crossref_primary_10_1038_s41380_023_01991_7
crossref_primary_10_1093_schbul_sbaa128
crossref_primary_10_1016_j_schres_2020_12_002
crossref_primary_10_1111_pcn_13463
crossref_primary_10_3389_fcell_2021_664535
crossref_primary_10_3390_biomedicines11041072
crossref_primary_10_1016_j_ab_2023_115227
crossref_primary_10_1016_j_schres_2023_08_020
crossref_primary_10_1001_jamapsychiatry_2021_0380
crossref_primary_10_1016_j_biopsych_2021_06_008
crossref_primary_10_2217_pgs_2022_0006
crossref_primary_10_1038_s41386_023_01741_x
crossref_primary_10_1093_psyrad_kkad020
crossref_primary_10_1016_j_schres_2022_12_040
crossref_primary_10_1038_s41380_022_01572_0
crossref_primary_10_1016_j_pnpbp_2021_110493
crossref_primary_10_1016_j_bbr_2024_115338
crossref_primary_10_1016_j_schres_2024_06_020
crossref_primary_10_1016_j_nicl_2023_103461
crossref_primary_10_1016_j_neubiorev_2020_10_001
crossref_primary_10_1016_j_jpsychires_2021_07_019
crossref_primary_10_3390_biomedicines11030895
crossref_primary_10_1016_j_neubiorev_2024_105699
crossref_primary_10_3390_ijms232415846
crossref_primary_10_1093_cercor_bhae465
crossref_primary_10_1016_j_euroneuro_2022_01_003
crossref_primary_10_1016_j_biopsych_2020_09_001
crossref_primary_10_3390_jpm10030089
crossref_primary_10_1016_j_pnpbp_2019_109839
crossref_primary_10_1016_j_psychres_2019_112683
crossref_primary_10_1016_j_schres_2020_09_013
crossref_primary_10_1055_a_2299_0927
crossref_primary_10_1016_j_bbi_2023_05_005
crossref_primary_10_1016_j_schres_2024_01_025
crossref_primary_10_1016_j_schres_2024_05_002
crossref_primary_10_1093_schbul_sbaa156
crossref_primary_10_3389_fpsyt_2023_1334335
crossref_primary_10_1038_s41537_023_00392_7
crossref_primary_10_1016_j_biopsych_2019_02_003
crossref_primary_10_1016_j_nicl_2021_102852
crossref_primary_10_1016_j_biopsych_2019_09_004
crossref_primary_10_1007_s00213_022_06138_0
crossref_primary_10_1093_schizbullopen_sgaa057
crossref_primary_10_1002_wps_21078
crossref_primary_10_1080_14656566_2022_2145884
crossref_primary_10_1038_s41380_021_01297_6
crossref_primary_10_1016_j_mehy_2020_110159
crossref_primary_10_1038_s41598_020_64277_w
Cites_doi 10.1016/j.biopsych.2017.08.022
10.1038/s41386-018-0072-2
10.1016/j.schres.2011.09.016
10.1016/j.mpmed.2008.05.007
10.1016/j.biopsych.2013.06.011
10.1176/appi.ajp.2016.16050503
10.1001/archpsyc.1994.03950030035004
10.1176/ajp.151.12.1744
10.3389/fpsyt.2013.00151
10.1176/appi.ajp.159.11.1944
10.1093/schbul/sbx190
10.1093/schbul/13.2.261
10.1038/npp.2016.172
10.1016/j.schres.2017.07.021
10.1038/npp.2016.258
10.1093/ijnp/pyu117
10.1016/j.neuroimage.2008.10.055
10.1002/mrm.20901
10.1176/appi.ajp.2009.09060802
10.1001/archpsyc.1997.01830220085012
10.1038/sj.mp.4000880
10.1093/schbul/sbv151
10.1016/0893-133X(94)00131-I
10.1016/j.schres.2015.01.043
10.1111/j.1476-5381.2011.01638.x
10.1176/appi.ajp.161.6.1116
10.1016/j.neuroimage.2011.02.046
10.1038/npp.2011.65
10.1016/j.biopsych.2009.05.006
10.1038/s41380-018-0082-9
10.1002/nbm.698
10.1126/science.1145194
10.1001/archgenpsychiatry.2011.1519
10.1038/npp.2012.113
10.1176/appi.ajp.2012.12010144
10.1001/archpsyc.60.12.1187
10.1016/j.pnpbp.2018.03.016
10.1016/j.schres.2008.11.014
10.1001/archpsyc.1988.01800330013001
10.1016/j.biopsych.2017.09.028
10.1001/jamapsychiatry.2016.0442
10.1016/S0140-6736(95)91801-9
10.1176/appi.ajp.158.3.360
10.1017/S1461145712000314
10.1093/ijnp/pyv105
10.1016/j.schres.2015.07.013
10.1192/bjp.bp.110.079608
10.1093/schbul/sbv124
10.1001/jamapsychiatry.2015.2680
10.1093/schbul/sbx180
10.3389/fpsyt.2017.00066
10.1016/j.schres.2005.02.010
ContentType Journal Article
Copyright 2018 Society of Biological Psychiatry
Society of Biological Psychiatry
Copyright © 2018 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2018 Society of Biological Psychiatry
– notice: Society of Biological Psychiatry
– notice: Copyright © 2018 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.biopsych.2018.09.009
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Biology
EISSN 1873-2402
EndPage 605
ExternalDocumentID 30389132
10_1016_j_biopsych_2018_09_009
S0006322318318523
1_s2_0_S0006322318318523
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: CIHR
  grantid: MOP-141968
– fundername: CIHR
  grantid: MOP-142493
GroupedDBID ---
--K
--M
-DZ
.1-
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
5GY
5RE
5VS
6J9
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABCQX
ABFNM
ABFRF
ABIVO
ABJNI
ABLJU
ABMAC
ABMZM
ACDAQ
ACGFO
ACIEU
ACIUM
ACNCT
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGUBO
AGWIK
AGYEJ
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
L7B
M29
M2V
M39
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OH0
OU-
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SPCBC
SSH
SSN
SSZ
T5K
UNMZH
UPT
UV1
WH7
Z5R
ZCA
~G-
.GJ
3O-
53G
AAQXK
ABDPE
ABWVN
ABXDB
ACRPL
ADMUD
ADNMO
AFFNX
AFJKZ
AGQPQ
AHHHB
AIGII
APXCP
ASPBG
AVWKF
AZFZN
EFLBG
FEDTE
FGOYB
G-2
HEG
HMK
HMO
HMQ
HVGLF
HZ~
H~9
R2-
SNS
UAP
WUQ
XJT
XOL
ZGI
ZKB
ZXP
~HD
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJOXV
AMFUW
LCYCR
RIG
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ACLOT
ID FETCH-LOGICAL-c478t-5cf7dabd07132f799f0da1a3c42d2bdf8d58ec9d0b285716559dea00081bc6563
IEDL.DBID AIKHN
ISSN 0006-3223
1873-2402
IngestDate Sat Sep 27 17:17:36 EDT 2025
Thu Apr 03 07:09:24 EDT 2025
Thu Apr 24 23:10:00 EDT 2025
Thu Sep 18 00:20:07 EDT 2025
Fri Feb 23 02:33:08 EST 2024
Sun Sep 14 23:55:44 EDT 2025
Tue Aug 26 17:00:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Treatment-resistant
Schizophrenia
1H-MRS
Antipsychotic
Clozapine
Glutamate
H-MRS
Language English
License Copyright © 2018 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c478t-5cf7dabd07132f799f0da1a3c42d2bdf8d58ec9d0b285716559dea00081bc6563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9301-2171
PMID 30389132
PQID 2129533287
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2129533287
pubmed_primary_30389132
crossref_primary_10_1016_j_biopsych_2018_09_009
crossref_citationtrail_10_1016_j_biopsych_2018_09_009
elsevier_sciencedirect_doi_10_1016_j_biopsych_2018_09_009
elsevier_clinicalkeyesjournals_1_s2_0_S0006322318318523
elsevier_clinicalkey_doi_10_1016_j_biopsych_2018_09_009
PublicationCentury 2000
PublicationDate 2019-04-01
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biological psychiatry (1969)
PublicationTitleAlternate Biol Psychiatry
PublicationYear 2019
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Woolrich, Jbabdi, Patenaude, Chappell, Makni, Behrens (bib28) 2009; 45
Lahti, Koffel, LaPorte, Tamminga (bib10) 1995; 13
Krystal, Karper, Seibyl, Freeman, Delaney, Bremner (bib9) 1994; 51
Chiappelli, Rowland, Notarangelo, Wijtenburg, Thomas, Pocivavsek (bib52) 2018; 43
Shukla, Wijtenburg, Chen, Chiappelli, Kochunov, Hong, Rowland (bib53) 2018
Egerton, Bhachu, Merritt, McQueen, Szulc, McGuire (bib31) 2017; 8
Mouchlianitis, Bloomfield, Law, Beck, Selvaraj, Rasquinha (bib13) 2016; 42
Iwata, Nakajima, Plitman, Mihashi, Caravaggio, Chung (bib30) 2018; 86
Frangou (bib2) 2008; 36
Egerton, Brugger, Raffin, Barker, Lythgoe, McGuire (bib29) 2012; 37
Gardner, Murphy, O’Donnell, Centorrino, Baldessarini (bib22) 2010; 167
de la Fuente-Sandoval, Leon-Ortiz, Favila, Stephano, Mamo, Ramirez-Bermudez (bib19) 2011; 36
Goldstein, Anderson, Pillai, Kydd, Russell (bib16) 2015; 18
Tibbo, Hanstock, Valiakalayil, Allen (bib50) 2004; 161
de la Fuente-Sandoval, Reyes-Madrigal, Mao, Leon-Ortiz, Rodriguez-Mayoral, Solis-Vivanco (bib48) 2015; 19
Stone, Day, Tsagaraki, Valli, McLean, Lythgoe (bib49) 2009; 66
Smesny, Gussew, Biesel, Schack, Walther, Rzanny (bib45) 2015; 168
Bartha, Williamson, Drost, Malla, Carr, Cortese (bib47) 1997; 54
Aoyama, Theberge, Drost, Manchanda, Northcott, Neufeld (bib33) 2011; 198
Demjaha, Murray, McGuire, Kapur, Howes (bib7) 2012; 169
Gallinat, McMahon, Kuhn, Schubert, Schaefer (bib55) 2016; 42
Merritt, McGuire, Egerton (bib39) 2013; 4
McCutcheon, Beck, Jauhar, Howes (bib18) 2018; 44
Sheehan, Lecrubier, Sheehan, Amorim, Janavs, Weiller (bib25) 1998; 59
Reid, Salibi, White, Gawne, Denney, Lahti (bib51) 2019; 45
Patenaude, Smith, Kennedy, Jenkinson (bib27) 2011; 56
Goto, Yoshimura, Kakeda, Nishimura, Moriya, Hayashi (bib32) 2012; 8
Merritt, Egerton, Kempton, Taylor, McGuire (bib11) 2016; 73
Hietala, Syvalahti, Vuorio, Rakkolainen, Bergman, Haaparanta (bib4) 1995; 346
Kim, Kaufman, Cohen, Jensen, Coyle, Du (bib43) 2018; 83
Kay, Fiszbein, Opler (bib24) 1987; 13
Howes, McCutcheon, Agid, de Bartolomeis, van Beveren, Birnbaum (bib17) 2017; 174
Seeman, Lee (bib3) 1975; 188
Suzuki, Remington, Mulsant, Rajji, Uchida, Graff-Guerrero (bib5) 2011; 133
(bib21) 1994
Chen, Wang, Zhang, Wang, Xu, Li (bib44) 2017; 29
Tayoshi, Sumitani, Taniguchi, Shibuya-Tayoshi, Numata, Iga (bib57) 2009; 108
Provencher (bib26) 2001; 14
Kapur, Seeman (bib6) 2001; 158
Nakajima, Takeuchi, Plitman, Fervaha, Gerretsen, Caravaggio (bib58) 2015; 164
Kane, Honigfeld, Singer, Meltzer (bib15) 1988; 45
Theberge, Bartha, Drost, Menon, Malla, Takhar (bib46) 2002; 159
de la Fuente-Sandoval, Leon-Ortiz, Azcarraga, Favila, Stephano, Graff-Guerrero (bib20) 2013; 16
Egerton, Broberg, Van Haren, Merritt, Barker, Lythgoe (bib35) 2018; 23
de Leon, Diaz (bib40) 2005; 76
Gasparovic, Song, Devier, Bockholt, Caprihan, Mullins (bib41) 2006; 55
Kim, Howes, Veronese, Beck, Seo, Park (bib8) 2017; 42
Melone, Vitellaro-Zuccarello, Vallejo-Illarramendi, Perez-Samartin, Matute, Cozzi (bib37) 2001; 6
Rowland, Summerfelt, Wijtenburg, Du, Chiappelli, Krishna (bib56) 2016; 73
Demjaha, Egerton, Murray, Kapur, Howes, Stone (bib12) 2014; 75
Kegeles, Mao, Stanford, Girgis, Ojeil, Xu (bib36) 2012; 69
Tanahashi, Yamamura, Nakagawa, Motomura, Okada (bib38) 2012; 165
Wijtenburg, Wright, Korenic, Gaston, Ndubuizu, Chiappelli (bib54) 2017; 42
de la Fuente-Sandoval, Reyes-Madrigal, Mao, Leon-Ortiz, Rodriguez-Mayoral, Jung-Cook (bib34) 2018; 83
Chiu, Lui, Hung, Chan, Chan, Sham (bib42) 2018; 193
Guy (bib23) 1976
Sullivan, Kendler, Neale (bib1) 2003; 60
Lieberman, Safferman, Pollack, Szymanski, Johns, Howard (bib14) 1994; 151
Patenaude (10.1016/j.biopsych.2018.09.009_bib27) 2011; 56
de la Fuente-Sandoval (10.1016/j.biopsych.2018.09.009_bib34) 2018; 83
Bartha (10.1016/j.biopsych.2018.09.009_bib47) 1997; 54
Theberge (10.1016/j.biopsych.2018.09.009_bib46) 2002; 159
Chen (10.1016/j.biopsych.2018.09.009_bib44) 2017; 29
Nakajima (10.1016/j.biopsych.2018.09.009_bib58) 2015; 164
Kim (10.1016/j.biopsych.2018.09.009_bib8) 2017; 42
Merritt (10.1016/j.biopsych.2018.09.009_bib11) 2016; 73
Tanahashi (10.1016/j.biopsych.2018.09.009_bib38) 2012; 165
Gallinat (10.1016/j.biopsych.2018.09.009_bib55) 2016; 42
Egerton (10.1016/j.biopsych.2018.09.009_bib29) 2012; 37
Kapur (10.1016/j.biopsych.2018.09.009_bib6) 2001; 158
Melone (10.1016/j.biopsych.2018.09.009_bib37) 2001; 6
Kim (10.1016/j.biopsych.2018.09.009_bib43) 2018; 83
Reid (10.1016/j.biopsych.2018.09.009_bib51) 2019; 45
Egerton (10.1016/j.biopsych.2018.09.009_bib31) 2017; 8
Suzuki (10.1016/j.biopsych.2018.09.009_bib5) 2011; 133
Lahti (10.1016/j.biopsych.2018.09.009_bib10) 1995; 13
Sullivan (10.1016/j.biopsych.2018.09.009_bib1) 2003; 60
Mouchlianitis (10.1016/j.biopsych.2018.09.009_bib13) 2016; 42
Merritt (10.1016/j.biopsych.2018.09.009_bib39) 2013; 4
Kegeles (10.1016/j.biopsych.2018.09.009_bib36) 2012; 69
Smesny (10.1016/j.biopsych.2018.09.009_bib45) 2015; 168
de la Fuente-Sandoval (10.1016/j.biopsych.2018.09.009_bib48) 2015; 19
Egerton (10.1016/j.biopsych.2018.09.009_bib35) 2018; 23
Hietala (10.1016/j.biopsych.2018.09.009_bib4) 1995; 346
Krystal (10.1016/j.biopsych.2018.09.009_bib9) 1994; 51
Aoyama (10.1016/j.biopsych.2018.09.009_bib33) 2011; 198
de la Fuente-Sandoval (10.1016/j.biopsych.2018.09.009_bib19) 2011; 36
Goto (10.1016/j.biopsych.2018.09.009_bib32) 2012; 8
Tayoshi (10.1016/j.biopsych.2018.09.009_bib57) 2009; 108
Seeman (10.1016/j.biopsych.2018.09.009_bib3) 1975; 188
Tibbo (10.1016/j.biopsych.2018.09.009_bib50) 2004; 161
Goldstein (10.1016/j.biopsych.2018.09.009_bib16) 2015; 18
Sheehan (10.1016/j.biopsych.2018.09.009_bib25) 1998; 59
Kane (10.1016/j.biopsych.2018.09.009_bib15) 1988; 45
Demjaha (10.1016/j.biopsych.2018.09.009_bib7) 2012; 169
Lieberman (10.1016/j.biopsych.2018.09.009_bib14) 1994; 151
Iwata (10.1016/j.biopsych.2018.09.009_bib30) 2018; 86
Howes (10.1016/j.biopsych.2018.09.009_bib17) 2017; 174
McCutcheon (10.1016/j.biopsych.2018.09.009_bib18) 2018; 44
Guy (10.1016/j.biopsych.2018.09.009_bib23) 1976
de la Fuente-Sandoval (10.1016/j.biopsych.2018.09.009_bib20) 2013; 16
(10.1016/j.biopsych.2018.09.009_bib21) 1994
Provencher (10.1016/j.biopsych.2018.09.009_bib26) 2001; 14
Chiu (10.1016/j.biopsych.2018.09.009_bib42) 2018; 193
Frangou (10.1016/j.biopsych.2018.09.009_bib2) 2008; 36
Gardner (10.1016/j.biopsych.2018.09.009_bib22) 2010; 167
Gasparovic (10.1016/j.biopsych.2018.09.009_bib41) 2006; 55
Chiappelli (10.1016/j.biopsych.2018.09.009_bib52) 2018; 43
de Leon (10.1016/j.biopsych.2018.09.009_bib40) 2005; 76
Kay (10.1016/j.biopsych.2018.09.009_bib24) 1987; 13
Woolrich (10.1016/j.biopsych.2018.09.009_bib28) 2009; 45
Shukla (10.1016/j.biopsych.2018.09.009_bib53) 2018
Stone (10.1016/j.biopsych.2018.09.009_bib49) 2009; 66
Wijtenburg (10.1016/j.biopsych.2018.09.009_bib54) 2017; 42
Rowland (10.1016/j.biopsych.2018.09.009_bib56) 2016; 73
Demjaha (10.1016/j.biopsych.2018.09.009_bib12) 2014; 75
30871691 - Biol Psychiatry. 2019 Apr 1;85(7):e31-e32
References_xml – volume: 159
  start-page: 1944
  year: 2002
  end-page: 1946
  ident: bib46
  article-title: Glutamate and glutamine measured with 4.0 T proton MRS in never-treated patients with schizophrenia and healthy volunteers
  publication-title: Am J Psychiatry
– volume: 43
  start-page: 1706
  year: 2018
  end-page: 1711
  ident: bib52
  article-title: Salivary kynurenic acid response to psychological stress: Inverse relationship to cortical glutamate in schizophrenia
  publication-title: Neuropsychopharmacology
– volume: 36
  start-page: 1781
  year: 2011
  end-page: 1791
  ident: bib19
  article-title: Higher levels of glutamate in the associative-striatum of subjects with prodromal symptoms of schizophrenia and patients with first-episode psychosis
  publication-title: Neuropsychopharmacology
– volume: 346
  start-page: 1130
  year: 1995
  end-page: 1131
  ident: bib4
  article-title: Presynaptic dopamine function in striatum of neuroleptic-naive schizophrenic patients
  publication-title: Lancet
– volume: 29
  start-page: 277
  year: 2017
  end-page: 286
  ident: bib44
  article-title: Abnormal concentration of GABA and glutamate in the prefrontal cortex in schizophrenia—An in vivo
  publication-title: Shanghai Arch Psychiatry
– volume: 44
  start-page: 1301
  year: 2018
  end-page: 1311
  ident: bib18
  article-title: Defining the locus of dopaminergic dysfunction in schizophrenia: A meta-analysis and test of the mesolimbic hypothesis
  publication-title: Schizophr Bull
– volume: 19
  start-page: pyv105
  year: 2015
  ident: bib48
  article-title: Cortico-striatal GABAergic and glutamatergic dysregulations in subjects at ultra-high risk for psychosis investigated with proton magnetic resonance spectroscopy
  publication-title: Int J Neuropsychopharmacol
– volume: 23
  start-page: 2145
  year: 2018
  end-page: 2155
  ident: bib35
  article-title: Response to initial antipsychotic treatment in first episode psychosis is related to anterior cingulate glutamate levels: A multicentre
  publication-title: Mol Psychiatry
– volume: 188
  start-page: 1217
  year: 1975
  end-page: 1219
  ident: bib3
  article-title: Antipsychotic drugs: Direct correlation between clinical potency and presynaptic action on dopamine neurons
  publication-title: Science
– volume: 51
  start-page: 199
  year: 1994
  end-page: 214
  ident: bib9
  article-title: Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans: Psychotomimetic, perceptual, cognitive, and neuroendocrine responses
  publication-title: Arch Gen Psychiatry
– volume: 59
  start-page: 22
  year: 1998
  end-page: 33
  ident: bib25
  article-title: The Mini-International Neuropsychiatric Interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10
  publication-title: J Clin Psychiatry
– volume: 42
  start-page: 744
  year: 2016
  end-page: 752
  ident: bib13
  article-title: Treatment-resistant schizophrenia patients show elevated anterior cingulate cortex glutamate compared to treatment-responsive
  publication-title: Schizophr Bull
– year: 1976
  ident: bib23
  article-title: ECDEU Assessment Manual for Psychopharmacology
– volume: 76
  start-page: 135
  year: 2005
  end-page: 157
  ident: bib40
  article-title: A meta-analysis of worldwide studies demonstrates an association between schizophrenia and tobacco smoking behaviors
  publication-title: Schizophr Res
– year: 1994
  ident: bib21
  article-title: Diagnostic and Statistical Manual of Mental Disorders
– volume: 60
  start-page: 1187
  year: 2003
  end-page: 1192
  ident: bib1
  article-title: Schizophrenia as a complex trait: Evidence from a meta-analysis of twin studies
  publication-title: Arch Gen Psychiatry
– volume: 193
  start-page: 295
  year: 2018
  end-page: 303
  ident: bib42
  article-title: In vivo gamma-aminobutyric acid and glutamate levels in people with first-episode schizophrenia: A proton magnetic resonance spectroscopy study
  publication-title: Schizophr Res
– volume: 54
  start-page: 959
  year: 1997
  end-page: 965
  ident: bib47
  article-title: Measurement of glutamate and glutamine in the medial prefrontal cortex of never-treated schizophrenic patients and healthy controls by proton magnetic resonance spectroscopy
  publication-title: Arch Gen Psychiatry
– volume: 86
  start-page: 340
  year: 2018
  end-page: 352
  ident: bib30
  article-title: Neurometabolite levels in antipsychotic-naive/free patients with schizophrenia: A systematic review and meta-analysis of
  publication-title: Prog Neuropsychopharmacol Biol Psychiatry
– volume: 8
  start-page: 66
  year: 2017
  ident: bib31
  article-title: Effects of antipsychotic administration on brain glutamate in schizophrenia: A systematic review of longitudinal
  publication-title: Front Psychiatry
– volume: 45
  start-page: 789
  year: 1988
  end-page: 796
  ident: bib15
  article-title: Clozapine for the treatment-resistant schizophrenic: A double-blind comparison with chlorpromazine
  publication-title: Arch Gen Psychiatry
– volume: 18
  start-page: pyu117
  year: 2015
  ident: bib16
  article-title: Glutamatergic neurometabolites in clozapine-responsive and -resistant schizophrenia
  publication-title: Int J Neuropsychopharmacol
– volume: 133
  start-page: 54
  year: 2011
  end-page: 62
  ident: bib5
  article-title: Treatment resistant schizophrenia and response to antipsychotics: A review
  publication-title: Schizophr Res
– volume: 56
  start-page: 907
  year: 2011
  end-page: 922
  ident: bib27
  article-title: A Bayesian model of shape and appearance for subcortical brain segmentation
  publication-title: NeuroImage
– volume: 16
  start-page: 471
  year: 2013
  end-page: 475
  ident: bib20
  article-title: Striatal glutamate and the conversion to psychosis: A prospective
  publication-title: Int J Neuropsychopharmacol
– volume: 55
  start-page: 1219
  year: 2006
  end-page: 1226
  ident: bib41
  article-title: Use of tissue water as a concentration reference for proton spectroscopic imaging
  publication-title: Magn Reson Med
– volume: 164
  start-page: 164
  year: 2015
  end-page: 175
  ident: bib58
  article-title: Neuroimaging findings in treatment-resistant schizophrenia: A systematic review: Lack of neuroimaging correlates of treatment-resistant schizophrenia
  publication-title: Schizophr Res
– volume: 6
  start-page: 380
  year: 2001
  end-page: 386
  ident: bib37
  article-title: The expression of glutamate transporter GLT-1 in the rat cerebral cortex is down-regulated by the antipsychotic drug clozapine
  publication-title: Mol Psychiatry
– volume: 42
  start-page: 941
  year: 2017
  end-page: 950
  ident: bib8
  article-title: Presynaptic dopamine capacity in patients with treatment-resistant schizophrenia taking clozapine: An [
  publication-title: Neuropsychopharmacology
– volume: 83
  start-page: 475
  year: 2018
  end-page: 483
  ident: bib34
  article-title: Prefrontal and striatal gamma-aminobutyric acid levels and the effect of antipsychotic treatment in first-episode psychosis patients
  publication-title: Biol Psychiatry
– volume: 37
  start-page: 2515
  year: 2012
  end-page: 2521
  ident: bib29
  article-title: Anterior cingulate glutamate levels related to clinical status following treatment in first-episode schizophrenia
  publication-title: Neuropsychopharmacology
– volume: 42
  start-page: 562
  year: 2017
  end-page: 571
  ident: bib54
  article-title: Altered glutamate and regional cerebral blood flow levels in schizophrenia: A
  publication-title: Neuropsychopharmacology
– volume: 8
  start-page: 119
  year: 2012
  end-page: 122
  ident: bib32
  article-title: Six-month treatment with atypical antipsychotic drugs decreased frontal-lobe levels of glutamate plus glutamine in early-stage first-episode schizophrenia
  publication-title: Neuropsychiatr Dis Treat
– volume: 69
  start-page: 449
  year: 2012
  end-page: 459
  ident: bib36
  article-title: Elevated prefrontal cortex gamma-aminobutyric acid and glutamate-glutamine levels in schizophrenia measured in vivo with proton magnetic resonance spectroscopy
  publication-title: Arch Gen Psychiatry
– year: 2018
  ident: bib53
  article-title: Anterior cingulate glutamate and GABA associations on functional connectivity in schizophrenia
  publication-title: Schizophr Bull
– volume: 73
  start-page: 665
  year: 2016
  end-page: 674
  ident: bib11
  article-title: Nature of glutamate alterations in schizophrenia: A meta-analysis of proton magnetic resonance spectroscopy studies
  publication-title: JAMA Psychiatry
– volume: 169
  start-page: 1203
  year: 2012
  end-page: 1210
  ident: bib7
  article-title: Dopamine synthesis capacity in patients with treatment-resistant schizophrenia
  publication-title: Am J Psychiatry
– volume: 13
  start-page: 261
  year: 1987
  end-page: 276
  ident: bib24
  article-title: The Positive and Negative Syndrome Scale (PANSS) for schizophrenia
  publication-title: Schizophr Bull
– volume: 73
  start-page: 166
  year: 2016
  end-page: 174
  ident: bib56
  article-title: Frontal glutamate and gamma-aminobutyric acid levels and their associations with mismatch negativity and digit sequencing task performance in schizophrenia
  publication-title: JAMA Psychiatry
– volume: 158
  start-page: 360
  year: 2001
  end-page: 369
  ident: bib6
  article-title: Does fast dissociation from the dopamine D
  publication-title: Am J Psychiatry
– volume: 45
  start-page: 180
  year: 2019
  end-page: 189
  ident: bib51
  article-title: 7T proton magnetic resonance spectroscopy of the anterior cingulate cortex in first-episode schizophrenia
  publication-title: Schizophr Bull
– volume: 198
  start-page: 448
  year: 2011
  end-page: 456
  ident: bib33
  article-title: Grey matter and social functioning correlates of glutamatergic metabolite loss in schizophrenia
  publication-title: Br J Psychiatry
– volume: 83
  start-page: 484
  year: 2018
  end-page: 491
  ident: bib43
  article-title: In vivo brain glycine and glutamate concentrations in patients with first-episode psychosis measured by echo time-averaged proton magnetic resonance spectroscopy at 4T
  publication-title: Biol Psychiatry
– volume: 108
  start-page: 69
  year: 2009
  end-page: 77
  ident: bib57
  article-title: Metabolite changes and gender differences in schizophrenia using 3-Tesla proton magnetic resonance spectroscopy (
  publication-title: Schizophr Res
– volume: 165
  start-page: 1543
  year: 2012
  end-page: 1555
  ident: bib38
  article-title: Clozapine, but not haloperidol, enhances glial D-serine and L-glutamate release in rat frontal cortex and primary cultured astrocytes
  publication-title: Br J Pharmacol
– volume: 168
  start-page: 322
  year: 2015
  end-page: 329
  ident: bib45
  article-title: Glutamatergic dysfunction linked to energy and membrane lipid metabolism in frontal and anterior cingulate cortices of never treated first-episode schizophrenia patients
  publication-title: Schizophr Res
– volume: 75
  start-page: e11
  year: 2014
  end-page: e13
  ident: bib12
  article-title: Antipsychotic treatment resistance in schizophrenia associated with elevated glutamate levels but normal dopamine function
  publication-title: Biol Psychiatry
– volume: 14
  start-page: 260
  year: 2001
  end-page: 264
  ident: bib26
  article-title: Automatic quantitation of localized in vivo
  publication-title: NMR Biomed
– volume: 4
  start-page: 151
  year: 2013
  ident: bib39
  article-title: Relationship between glutamate dysfunction and symptoms and cognitive function in psychosis
  publication-title: Front Psychiatry
– volume: 161
  start-page: 1116
  year: 2004
  end-page: 1118
  ident: bib50
  article-title: 3-T proton MRS investigation of glutamate and glutamine in adolescents at high genetic risk for schizophrenia
  publication-title: Am J Psychiatry
– volume: 66
  start-page: 533
  year: 2009
  end-page: 539
  ident: bib49
  article-title: Glutamate dysfunction in people with prodromal symptoms of psychosis: Relationship to gray matter volume
  publication-title: Biol Psychiatry
– volume: 13
  start-page: 9
  year: 1995
  end-page: 19
  ident: bib10
  article-title: Subanesthetic doses of ketamine stimulate psychosis in schizophrenia
  publication-title: Neuropsychopharmacology
– volume: 167
  start-page: 686
  year: 2010
  end-page: 693
  ident: bib22
  article-title: International consensus study of antipsychotic dosing
  publication-title: Am J Psychiatry
– volume: 42
  start-page: 425
  year: 2016
  end-page: 433
  ident: bib55
  article-title: Cross-sectional study of glutamate in the anterior cingulate and hippocampus in schizophrenia
  publication-title: Schizophr Bull
– volume: 151
  start-page: 1744
  year: 1994
  end-page: 1752
  ident: bib14
  article-title: Clinical effects of clozapine in chronic schizophrenia: Response to treatment and predictors of outcome
  publication-title: Am J Psychiatry
– volume: 174
  start-page: 216
  year: 2017
  end-page: 229
  ident: bib17
  article-title: Treatment-resistant schizophrenia: Treatment Response and Resistance in Psychosis (TRRIP) Working Group Consensus Guidelines on Diagnosis and Terminology
  publication-title: Am J Psychiatry
– volume: 45
  start-page: S173
  year: 2009
  end-page: S186
  ident: bib28
  article-title: Bayesian analysis of neuroimaging data in FSL
  publication-title: NeuroImage
– volume: 36
  start-page: 405
  year: 2008
  end-page: 409
  ident: bib2
  article-title: Schizophrenia
  publication-title: Medicine
– volume: 83
  start-page: 484
  year: 2018
  ident: 10.1016/j.biopsych.2018.09.009_bib43
  article-title: In vivo brain glycine and glutamate concentrations in patients with first-episode psychosis measured by echo time-averaged proton magnetic resonance spectroscopy at 4T
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2017.08.022
– volume: 43
  start-page: 1706
  year: 2018
  ident: 10.1016/j.biopsych.2018.09.009_bib52
  article-title: Salivary kynurenic acid response to psychological stress: Inverse relationship to cortical glutamate in schizophrenia
  publication-title: Neuropsychopharmacology
  doi: 10.1038/s41386-018-0072-2
– volume: 133
  start-page: 54
  year: 2011
  ident: 10.1016/j.biopsych.2018.09.009_bib5
  article-title: Treatment resistant schizophrenia and response to antipsychotics: A review
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2011.09.016
– volume: 36
  start-page: 405
  year: 2008
  ident: 10.1016/j.biopsych.2018.09.009_bib2
  article-title: Schizophrenia
  publication-title: Medicine
  doi: 10.1016/j.mpmed.2008.05.007
– volume: 75
  start-page: e11
  year: 2014
  ident: 10.1016/j.biopsych.2018.09.009_bib12
  article-title: Antipsychotic treatment resistance in schizophrenia associated with elevated glutamate levels but normal dopamine function
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2013.06.011
– volume: 174
  start-page: 216
  year: 2017
  ident: 10.1016/j.biopsych.2018.09.009_bib17
  article-title: Treatment-resistant schizophrenia: Treatment Response and Resistance in Psychosis (TRRIP) Working Group Consensus Guidelines on Diagnosis and Terminology
  publication-title: Am J Psychiatry
  doi: 10.1176/appi.ajp.2016.16050503
– volume: 51
  start-page: 199
  year: 1994
  ident: 10.1016/j.biopsych.2018.09.009_bib9
  article-title: Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans: Psychotomimetic, perceptual, cognitive, and neuroendocrine responses
  publication-title: Arch Gen Psychiatry
  doi: 10.1001/archpsyc.1994.03950030035004
– volume: 151
  start-page: 1744
  year: 1994
  ident: 10.1016/j.biopsych.2018.09.009_bib14
  article-title: Clinical effects of clozapine in chronic schizophrenia: Response to treatment and predictors of outcome
  publication-title: Am J Psychiatry
  doi: 10.1176/ajp.151.12.1744
– volume: 4
  start-page: 151
  year: 2013
  ident: 10.1016/j.biopsych.2018.09.009_bib39
  article-title: Relationship between glutamate dysfunction and symptoms and cognitive function in psychosis
  publication-title: Front Psychiatry
  doi: 10.3389/fpsyt.2013.00151
– volume: 159
  start-page: 1944
  year: 2002
  ident: 10.1016/j.biopsych.2018.09.009_bib46
  article-title: Glutamate and glutamine measured with 4.0 T proton MRS in never-treated patients with schizophrenia and healthy volunteers
  publication-title: Am J Psychiatry
  doi: 10.1176/appi.ajp.159.11.1944
– volume: 45
  start-page: 180
  year: 2019
  ident: 10.1016/j.biopsych.2018.09.009_bib51
  article-title: 7T proton magnetic resonance spectroscopy of the anterior cingulate cortex in first-episode schizophrenia
  publication-title: Schizophr Bull
  doi: 10.1093/schbul/sbx190
– volume: 13
  start-page: 261
  year: 1987
  ident: 10.1016/j.biopsych.2018.09.009_bib24
  article-title: The Positive and Negative Syndrome Scale (PANSS) for schizophrenia
  publication-title: Schizophr Bull
  doi: 10.1093/schbul/13.2.261
– volume: 42
  start-page: 562
  year: 2017
  ident: 10.1016/j.biopsych.2018.09.009_bib54
  article-title: Altered glutamate and regional cerebral blood flow levels in schizophrenia: A 1H-MRS and pCASL study
  publication-title: Neuropsychopharmacology
  doi: 10.1038/npp.2016.172
– volume: 193
  start-page: 295
  year: 2018
  ident: 10.1016/j.biopsych.2018.09.009_bib42
  article-title: In vivo gamma-aminobutyric acid and glutamate levels in people with first-episode schizophrenia: A proton magnetic resonance spectroscopy study
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2017.07.021
– volume: 42
  start-page: 941
  year: 2017
  ident: 10.1016/j.biopsych.2018.09.009_bib8
  article-title: Presynaptic dopamine capacity in patients with treatment-resistant schizophrenia taking clozapine: An [18F]DOPA PET study
  publication-title: Neuropsychopharmacology
  doi: 10.1038/npp.2016.258
– volume: 18
  start-page: pyu117
  year: 2015
  ident: 10.1016/j.biopsych.2018.09.009_bib16
  article-title: Glutamatergic neurometabolites in clozapine-responsive and -resistant schizophrenia
  publication-title: Int J Neuropsychopharmacol
  doi: 10.1093/ijnp/pyu117
– volume: 45
  start-page: S173
  year: 2009
  ident: 10.1016/j.biopsych.2018.09.009_bib28
  article-title: Bayesian analysis of neuroimaging data in FSL
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.10.055
– volume: 55
  start-page: 1219
  year: 2006
  ident: 10.1016/j.biopsych.2018.09.009_bib41
  article-title: Use of tissue water as a concentration reference for proton spectroscopic imaging
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.20901
– volume: 167
  start-page: 686
  year: 2010
  ident: 10.1016/j.biopsych.2018.09.009_bib22
  article-title: International consensus study of antipsychotic dosing
  publication-title: Am J Psychiatry
  doi: 10.1176/appi.ajp.2009.09060802
– year: 1994
  ident: 10.1016/j.biopsych.2018.09.009_bib21
– volume: 54
  start-page: 959
  year: 1997
  ident: 10.1016/j.biopsych.2018.09.009_bib47
  article-title: Measurement of glutamate and glutamine in the medial prefrontal cortex of never-treated schizophrenic patients and healthy controls by proton magnetic resonance spectroscopy
  publication-title: Arch Gen Psychiatry
  doi: 10.1001/archpsyc.1997.01830220085012
– volume: 6
  start-page: 380
  year: 2001
  ident: 10.1016/j.biopsych.2018.09.009_bib37
  article-title: The expression of glutamate transporter GLT-1 in the rat cerebral cortex is down-regulated by the antipsychotic drug clozapine
  publication-title: Mol Psychiatry
  doi: 10.1038/sj.mp.4000880
– volume: 42
  start-page: 744
  year: 2016
  ident: 10.1016/j.biopsych.2018.09.009_bib13
  article-title: Treatment-resistant schizophrenia patients show elevated anterior cingulate cortex glutamate compared to treatment-responsive
  publication-title: Schizophr Bull
  doi: 10.1093/schbul/sbv151
– volume: 13
  start-page: 9
  year: 1995
  ident: 10.1016/j.biopsych.2018.09.009_bib10
  article-title: Subanesthetic doses of ketamine stimulate psychosis in schizophrenia
  publication-title: Neuropsychopharmacology
  doi: 10.1016/0893-133X(94)00131-I
– volume: 164
  start-page: 164
  year: 2015
  ident: 10.1016/j.biopsych.2018.09.009_bib58
  article-title: Neuroimaging findings in treatment-resistant schizophrenia: A systematic review: Lack of neuroimaging correlates of treatment-resistant schizophrenia
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2015.01.043
– volume: 165
  start-page: 1543
  year: 2012
  ident: 10.1016/j.biopsych.2018.09.009_bib38
  article-title: Clozapine, but not haloperidol, enhances glial D-serine and L-glutamate release in rat frontal cortex and primary cultured astrocytes
  publication-title: Br J Pharmacol
  doi: 10.1111/j.1476-5381.2011.01638.x
– volume: 161
  start-page: 1116
  year: 2004
  ident: 10.1016/j.biopsych.2018.09.009_bib50
  article-title: 3-T proton MRS investigation of glutamate and glutamine in adolescents at high genetic risk for schizophrenia
  publication-title: Am J Psychiatry
  doi: 10.1176/appi.ajp.161.6.1116
– volume: 56
  start-page: 907
  year: 2011
  ident: 10.1016/j.biopsych.2018.09.009_bib27
  article-title: A Bayesian model of shape and appearance for subcortical brain segmentation
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.02.046
– volume: 36
  start-page: 1781
  year: 2011
  ident: 10.1016/j.biopsych.2018.09.009_bib19
  article-title: Higher levels of glutamate in the associative-striatum of subjects with prodromal symptoms of schizophrenia and patients with first-episode psychosis
  publication-title: Neuropsychopharmacology
  doi: 10.1038/npp.2011.65
– volume: 66
  start-page: 533
  year: 2009
  ident: 10.1016/j.biopsych.2018.09.009_bib49
  article-title: Glutamate dysfunction in people with prodromal symptoms of psychosis: Relationship to gray matter volume
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2009.05.006
– year: 2018
  ident: 10.1016/j.biopsych.2018.09.009_bib53
  article-title: Anterior cingulate glutamate and GABA associations on functional connectivity in schizophrenia
  publication-title: Schizophr Bull
– volume: 23
  start-page: 2145
  year: 2018
  ident: 10.1016/j.biopsych.2018.09.009_bib35
  article-title: Response to initial antipsychotic treatment in first episode psychosis is related to anterior cingulate glutamate levels: A multicentre 1H-MRS study (OPTiMiSE)
  publication-title: Mol Psychiatry
  doi: 10.1038/s41380-018-0082-9
– volume: 14
  start-page: 260
  year: 2001
  ident: 10.1016/j.biopsych.2018.09.009_bib26
  article-title: Automatic quantitation of localized in vivo 1H spectra with LCModel
  publication-title: NMR Biomed
  doi: 10.1002/nbm.698
– volume: 8
  start-page: 119
  year: 2012
  ident: 10.1016/j.biopsych.2018.09.009_bib32
  article-title: Six-month treatment with atypical antipsychotic drugs decreased frontal-lobe levels of glutamate plus glutamine in early-stage first-episode schizophrenia
  publication-title: Neuropsychiatr Dis Treat
– volume: 188
  start-page: 1217
  year: 1975
  ident: 10.1016/j.biopsych.2018.09.009_bib3
  article-title: Antipsychotic drugs: Direct correlation between clinical potency and presynaptic action on dopamine neurons
  publication-title: Science
  doi: 10.1126/science.1145194
– volume: 69
  start-page: 449
  year: 2012
  ident: 10.1016/j.biopsych.2018.09.009_bib36
  article-title: Elevated prefrontal cortex gamma-aminobutyric acid and glutamate-glutamine levels in schizophrenia measured in vivo with proton magnetic resonance spectroscopy
  publication-title: Arch Gen Psychiatry
  doi: 10.1001/archgenpsychiatry.2011.1519
– volume: 37
  start-page: 2515
  year: 2012
  ident: 10.1016/j.biopsych.2018.09.009_bib29
  article-title: Anterior cingulate glutamate levels related to clinical status following treatment in first-episode schizophrenia
  publication-title: Neuropsychopharmacology
  doi: 10.1038/npp.2012.113
– volume: 169
  start-page: 1203
  year: 2012
  ident: 10.1016/j.biopsych.2018.09.009_bib7
  article-title: Dopamine synthesis capacity in patients with treatment-resistant schizophrenia
  publication-title: Am J Psychiatry
  doi: 10.1176/appi.ajp.2012.12010144
– volume: 59
  start-page: 22
  issue: Suppl 20
  year: 1998
  ident: 10.1016/j.biopsych.2018.09.009_bib25
  article-title: The Mini-International Neuropsychiatric Interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10
  publication-title: J Clin Psychiatry
– volume: 60
  start-page: 1187
  year: 2003
  ident: 10.1016/j.biopsych.2018.09.009_bib1
  article-title: Schizophrenia as a complex trait: Evidence from a meta-analysis of twin studies
  publication-title: Arch Gen Psychiatry
  doi: 10.1001/archpsyc.60.12.1187
– volume: 86
  start-page: 340
  year: 2018
  ident: 10.1016/j.biopsych.2018.09.009_bib30
  article-title: Neurometabolite levels in antipsychotic-naive/free patients with schizophrenia: A systematic review and meta-analysis of 1H-MRS studies
  publication-title: Prog Neuropsychopharmacol Biol Psychiatry
  doi: 10.1016/j.pnpbp.2018.03.016
– volume: 108
  start-page: 69
  year: 2009
  ident: 10.1016/j.biopsych.2018.09.009_bib57
  article-title: Metabolite changes and gender differences in schizophrenia using 3-Tesla proton magnetic resonance spectroscopy (1H-MRS)
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2008.11.014
– volume: 45
  start-page: 789
  year: 1988
  ident: 10.1016/j.biopsych.2018.09.009_bib15
  article-title: Clozapine for the treatment-resistant schizophrenic: A double-blind comparison with chlorpromazine
  publication-title: Arch Gen Psychiatry
  doi: 10.1001/archpsyc.1988.01800330013001
– volume: 83
  start-page: 475
  year: 2018
  ident: 10.1016/j.biopsych.2018.09.009_bib34
  article-title: Prefrontal and striatal gamma-aminobutyric acid levels and the effect of antipsychotic treatment in first-episode psychosis patients
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2017.09.028
– volume: 73
  start-page: 665
  year: 2016
  ident: 10.1016/j.biopsych.2018.09.009_bib11
  article-title: Nature of glutamate alterations in schizophrenia: A meta-analysis of proton magnetic resonance spectroscopy studies
  publication-title: JAMA Psychiatry
  doi: 10.1001/jamapsychiatry.2016.0442
– volume: 346
  start-page: 1130
  year: 1995
  ident: 10.1016/j.biopsych.2018.09.009_bib4
  article-title: Presynaptic dopamine function in striatum of neuroleptic-naive schizophrenic patients
  publication-title: Lancet
  doi: 10.1016/S0140-6736(95)91801-9
– volume: 158
  start-page: 360
  year: 2001
  ident: 10.1016/j.biopsych.2018.09.009_bib6
  article-title: Does fast dissociation from the dopamine D2 receptor explain the action of atypical antipsychotics? A new hypothesis
  publication-title: Am J Psychiatry
  doi: 10.1176/appi.ajp.158.3.360
– volume: 29
  start-page: 277
  year: 2017
  ident: 10.1016/j.biopsych.2018.09.009_bib44
  article-title: Abnormal concentration of GABA and glutamate in the prefrontal cortex in schizophrenia—An in vivo 1H-MRS study
  publication-title: Shanghai Arch Psychiatry
– volume: 16
  start-page: 471
  year: 2013
  ident: 10.1016/j.biopsych.2018.09.009_bib20
  article-title: Striatal glutamate and the conversion to psychosis: A prospective 1H-MRS imaging study
  publication-title: Int J Neuropsychopharmacol
  doi: 10.1017/S1461145712000314
– volume: 19
  start-page: pyv105
  year: 2015
  ident: 10.1016/j.biopsych.2018.09.009_bib48
  article-title: Cortico-striatal GABAergic and glutamatergic dysregulations in subjects at ultra-high risk for psychosis investigated with proton magnetic resonance spectroscopy
  publication-title: Int J Neuropsychopharmacol
  doi: 10.1093/ijnp/pyv105
– volume: 168
  start-page: 322
  year: 2015
  ident: 10.1016/j.biopsych.2018.09.009_bib45
  article-title: Glutamatergic dysfunction linked to energy and membrane lipid metabolism in frontal and anterior cingulate cortices of never treated first-episode schizophrenia patients
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2015.07.013
– volume: 198
  start-page: 448
  year: 2011
  ident: 10.1016/j.biopsych.2018.09.009_bib33
  article-title: Grey matter and social functioning correlates of glutamatergic metabolite loss in schizophrenia
  publication-title: Br J Psychiatry
  doi: 10.1192/bjp.bp.110.079608
– volume: 42
  start-page: 425
  year: 2016
  ident: 10.1016/j.biopsych.2018.09.009_bib55
  article-title: Cross-sectional study of glutamate in the anterior cingulate and hippocampus in schizophrenia
  publication-title: Schizophr Bull
  doi: 10.1093/schbul/sbv124
– volume: 73
  start-page: 166
  year: 2016
  ident: 10.1016/j.biopsych.2018.09.009_bib56
  article-title: Frontal glutamate and gamma-aminobutyric acid levels and their associations with mismatch negativity and digit sequencing task performance in schizophrenia
  publication-title: JAMA Psychiatry
  doi: 10.1001/jamapsychiatry.2015.2680
– volume: 44
  start-page: 1301
  year: 2018
  ident: 10.1016/j.biopsych.2018.09.009_bib18
  article-title: Defining the locus of dopaminergic dysfunction in schizophrenia: A meta-analysis and test of the mesolimbic hypothesis
  publication-title: Schizophr Bull
  doi: 10.1093/schbul/sbx180
– volume: 8
  start-page: 66
  year: 2017
  ident: 10.1016/j.biopsych.2018.09.009_bib31
  article-title: Effects of antipsychotic administration on brain glutamate in schizophrenia: A systematic review of longitudinal 1H-MRS studies
  publication-title: Front Psychiatry
  doi: 10.3389/fpsyt.2017.00066
– volume: 76
  start-page: 135
  year: 2005
  ident: 10.1016/j.biopsych.2018.09.009_bib40
  article-title: A meta-analysis of worldwide studies demonstrates an association between schizophrenia and tobacco smoking behaviors
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2005.02.010
– year: 1976
  ident: 10.1016/j.biopsych.2018.09.009_bib23
– reference: 30871691 - Biol Psychiatry. 2019 Apr 1;85(7):e31-e32
SSID ssj0007221
Score 2.573646
Snippet In terms of antipsychotic treatment response, patients with schizophrenia can be classified into three groups: 1) treatment resistant to both non-clozapine...
AbstractBackgroundIn terms of antipsychotic treatment response, patients with schizophrenia can be classified into three groups: 1) treatment resistant to both...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 596
SubjectTerms 1H-MRS
Adult
Antipsychotic
Antipsychotic Agents - pharmacology
Caudate Nucleus - diagnostic imaging
Caudate Nucleus - metabolism
Clozapine
Cross-Sectional Studies
Female
Glutamate
Glutamic Acid - metabolism
Glutamine - metabolism
Gyrus Cinguli - diagnostic imaging
Gyrus Cinguli - metabolism
Humans
Male
Middle Aged
Prefrontal Cortex - diagnostic imaging
Prefrontal Cortex - metabolism
Proton Magnetic Resonance Spectroscopy
Psychiatric/Mental Health
Schizophrenia
Schizophrenia - diagnostic imaging
Schizophrenia - drug therapy
Schizophrenia - metabolism
Treatment-resistant
Title Glutamatergic Neurometabolite Levels in Patients With Ultra-Treatment-Resistant Schizophrenia: A Cross-Sectional 3T Proton Magnetic Resonance Spectroscopy Study
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0006322318318523
https://www.clinicalkey.es/playcontent/1-s2.0-S0006322318318523
https://dx.doi.org/10.1016/j.biopsych.2018.09.009
https://www.ncbi.nlm.nih.gov/pubmed/30389132
https://www.proquest.com/docview/2129533287
Volume 85
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9NAEB21qfi4VBAohJZqkbhu46ztrN1bFLWEj1YVSURvq7V3Da6KE8XuIRd-S38qM_Y6KgIEglOUSBM7npeZt5o3MwCvrRdYGVjNZZQIHgjrcYyBtENjaPB1SMU3UlucDyfz4N1leLkF47YXhmSVLvY3Mb2O1u6Tvnua_WWeU48vplfMbghK6gD2t2FHYLaPOrAzevt-cr4JyFIItzhvyMngTqPw1VGSL2pdMam8onrkKWkTf52jfsdB61x0-gh2HYlko-Y-H8OWLbpwr1krue7Cg3G7xa0L989c8fwJ3L5BlGlkqHaF4Y7VYzm-2gpRQH3I7APJh0qWF-yimbVask959YXNr6uV5rNWkM4_2pI4Z1Gx6V3B3jEbsTH9HD6t1V10g_6MXawWyC7Zmf5cULsko3IBzfiwbLqsF_BQW8yakZxx_RTmpyez8YS7BQ08DWRU8TDNpNGJoZOuyGQcZ57RA-2ngTAiMVlkwsimsfESEYV4MMPTi7G6piFJikTS34NOsSjsc2AiS9NIZhaRo4NMSj1Ap4U-klP8RiFlD8LWJSp108tpica1amVqV6p1pSJXKi9W6Moe9Dd2y2Z-xx8tZOtx1XanYjxVmGL-zdKWLiyUaqBKoTz1E3R7EG8sf0D_X131VQtLhdiieo8u7OKmVMhKSDyMZ-IePGvwunkGvlcXqMWL_7jyPjzEd3GjYzqATrW6sS-RolXJIWwffRscuj_idwRRPWQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6VIiiXCsIrlMcicd3GWdtZm1sVUQIkVUUT0dtqba_BVbGj2D3kwm_hpzKzXqetAIHgFCnJ-jWfZ77VfDMD8Mp4gZGB0VxGieCBMB5HH0gzNEYZfo4o-UZqi6PRZBG8Pw1Pt2Dc1cKQrNL5_tanW2_tvhm4pzlYFgXV-GJ4xeiGoKQKYP8G3AxozAGCev_bpc5DCuHG5o04_f1KmfDZflJUVlVMGq_INjwlZeKvI9TvGKiNRId3YddRSHbQXuU92DJlD261QyXXPdgZdzPcenB75lLn9-H7W8SYRn5qVujsmG3K8dU0iAGqQmZTEg_VrCjZcdtptWafiuYLW5w3K83nnRydfzQ1Mc6yYSdX5Xqv2QEb0-3wE6vtogv05-x4VSG3ZDP9uaRiSUbJAurwYRjNvW-ok2a1XDMSM64fwOLwzXw84W48A08DGTU8THOZ6SSjfa7IZRznXqaH2k8DkYkky6MsjEwaZ14iohC3Zbh3yYy2JCRJkUb6D2G7rErzGJjI0zSSuUHc6CCXUg_RaKGP1BSPKKTsQ9iZRKWudzmN0DhXnUjtTHWmVGRK5cUKTdmHwWbdsu3e8ccVsrO46mpT0ZsqDDD_ttLUzinUaqhqoTz1E3D7EG9WXsP-X531ZQdLhdiibI8uTXVRK-QkJB3GHXEfHrV43TwD37PpafHkP878AnYm89lUTd8dfdiDO_hL3CqansJ2s7owz5CsNclz-zL-AKL8PiY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Glutamatergic+Neurometabolite+Levels+in+Patients+With+Ultra-Treatment-Resistant+Schizophrenia%3A+A+Cross-Sectional+3T+Proton+Magnetic+Resonance+Spectroscopy+Study&rft.jtitle=Biological+psychiatry+%281969%29&rft.au=Iwata%2C+Yusuke&rft.au=Nakajima%2C+Shinichiro&rft.au=Plitman%2C+Eric&rft.au=Caravaggio%2C+Fernando&rft.date=2019-04-01&rft.issn=0006-3223&rft.volume=85&rft.issue=7&rft.spage=596&rft.epage=605&rft_id=info:doi/10.1016%2Fj.biopsych.2018.09.009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_biopsych_2018_09_009
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00063223%2FS0006322318X00079%2Fcov150h.gif