Hierarchical Convolutional Neural Network With Feature Preservation and Autotuned Thresholding for Crack Detection
Drone imagery is increasingly used in automated inspection for infrastructure surface defects, especially in hazardous or unreachable environments. In machine vision, the key to crack detection rests with robust and accurate algorithms for image processing. To this end, this paper proposes a deep le...
Saved in:
| Published in | IEEE access Vol. 9; pp. 60201 - 60214 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2021.3073921 |
Cover
| Abstract | Drone imagery is increasingly used in automated inspection for infrastructure surface defects, especially in hazardous or unreachable environments. In machine vision, the key to crack detection rests with robust and accurate algorithms for image processing. To this end, this paper proposes a deep learning approach using hierarchical convolutional neural networks with feature preservation (HCNNFP) and an intercontrast iterative thresholding algorithm for image binarization. First, a set of branch networks is proposed, wherein the output of previous convolutional blocks is half-sizedly concatenated to the current ones to reduce the obscuration in the down-sampling stage taking into account the overall information loss. Next, to extract the feature map generated from the enhanced HCNN, a binary contrast-based autotuned thresholding (CBAT) approach is developed at the post-processing step, where patterns of interest are clustered within the probability map of the identified features. The proposed technique is then applied to identify surface cracks on the surface of roads, bridges or pavements. An extensive comparison with existing techniques is conducted on various datasets and subject to a number of evaluation criteria including the average F-measure (<inline-formula> <tex-math notation="LaTeX">AF_\beta </tex-math></inline-formula>) introduced here for dynamic quantification of the performance. Experiments on crack images, including those captured by unmanned aerial vehicles inspecting a monorail bridge. The proposed technique outperforms the existing methods on various tested datasets especially for GAPs dataset with an increase of about 1.4% in terms of <inline-formula> <tex-math notation="LaTeX">AF_\beta </tex-math></inline-formula> while the mean percentage error drops by 2.2%. Such performance demonstrates the merits of the proposed HCNNFP architecture for surface defect inspection. |
|---|---|
| AbstractList | Drone imagery is increasingly used in automated inspection for infrastructure surface defects, especially in hazardous or unreachable environments. In machine vision, the key to crack detection rests with robust and accurate algorithms for image processing. To this end, this paper proposes a deep learning approach using hierarchical convolutional neural networks with feature preservation (HCNNFP) and an intercontrast iterative thresholding algorithm for image binarization. First, a set of branch networks is proposed, wherein the output of previous convolutional blocks is half-sizedly concatenated to the current ones to reduce the obscuration in the down-sampling stage taking into account the overall information loss. Next, to extract the feature map generated from the enhanced HCNN, a binary contrast-based autotuned thresholding (CBAT) approach is developed at the post-processing step, where patterns of interest are clustered within the probability map of the identified features. The proposed technique is then applied to identify surface cracks on the surface of roads, bridges or pavements. An extensive comparison with existing techniques is conducted on various datasets and subject to a number of evaluation criteria including the average F-measure ([Formula Omitted]) introduced here for dynamic quantification of the performance. Experiments on crack images, including those captured by unmanned aerial vehicles inspecting a monorail bridge. The proposed technique outperforms the existing methods on various tested datasets especially for GAPs dataset with an increase of about 1.4% in terms of [Formula Omitted] while the mean percentage error drops by 2.2%. Such performance demonstrates the merits of the proposed HCNNFP architecture for surface defect inspection. Drone imagery is increasingly used in automated inspection for infrastructure surface defects, especially in hazardous or unreachable environments. In machine vision, the key to crack detection rests with robust and accurate algorithms for image processing. To this end, this paper proposes a deep learning approach using hierarchical convolutional neural networks with feature preservation (HCNNFP) and an intercontrast iterative thresholding algorithm for image binarization. First, a set of branch networks is proposed, wherein the output of previous convolutional blocks is half-sizedly concatenated to the current ones to reduce the obscuration in the down-sampling stage taking into account the overall information loss. Next, to extract the feature map generated from the enhanced HCNN, a binary contrast-based autotuned thresholding (CBAT) approach is developed at the post-processing step, where patterns of interest are clustered within the probability map of the identified features. The proposed technique is then applied to identify surface cracks on the surface of roads, bridges or pavements. An extensive comparison with existing techniques is conducted on various datasets and subject to a number of evaluation criteria including the average F-measure (<inline-formula> <tex-math notation="LaTeX">AF_\beta </tex-math></inline-formula>) introduced here for dynamic quantification of the performance. Experiments on crack images, including those captured by unmanned aerial vehicles inspecting a monorail bridge. The proposed technique outperforms the existing methods on various tested datasets especially for GAPs dataset with an increase of about 1.4% in terms of <inline-formula> <tex-math notation="LaTeX">AF_\beta </tex-math></inline-formula> while the mean percentage error drops by 2.2%. Such performance demonstrates the merits of the proposed HCNNFP architecture for surface defect inspection. Drone imagery is increasingly used in automated inspection for infrastructure surface defects, especially in hazardous or unreachable environments. In machine vision, the key to crack detection rests with robust and accurate algorithms for image processing. To this end, this paper proposes a deep learning approach using hierarchical convolutional neural networks with feature preservation (HCNNFP) and an intercontrast iterative thresholding algorithm for image binarization. First, a set of branch networks is proposed, wherein the output of previous convolutional blocks is half-sizedly concatenated to the current ones to reduce the obscuration in the down-sampling stage taking into account the overall information loss. Next, to extract the feature map generated from the enhanced HCNN, a binary contrast-based autotuned thresholding (CBAT) approach is developed at the post-processing step, where patterns of interest are clustered within the probability map of the identified features. The proposed technique is then applied to identify surface cracks on the surface of roads, bridges or pavements. An extensive comparison with existing techniques is conducted on various datasets and subject to a number of evaluation criteria including the average F-measure ( <tex-math notation="LaTeX">$AF_\beta $ </tex-math>) introduced here for dynamic quantification of the performance. Experiments on crack images, including those captured by unmanned aerial vehicles inspecting a monorail bridge. The proposed technique outperforms the existing methods on various tested datasets especially for GAPs dataset with an increase of about 1.4% in terms of <tex-math notation="LaTeX">$AF_\beta $ </tex-math> while the mean percentage error drops by 2.2%. Such performance demonstrates the merits of the proposed HCNNFP architecture for surface defect inspection. |
| Author | Zhu, Qiuchen Dinh, Tran Hiep Ha, Quang Phuc Phung, Manh Duong |
| Author_xml | – sequence: 1 givenname: Qiuchen orcidid: 0000-0002-5647-9925 surname: Zhu fullname: Zhu, Qiuchen email: qiuchen.zhu@uts.edu.au organization: School of Electrical and Data Engineering, University of Technology Sydney, Sydney, NSW, Australia – sequence: 2 givenname: Tran Hiep orcidid: 0000-0002-2317-0032 surname: Dinh fullname: Dinh, Tran Hiep organization: UTS-VNU Joint Technology and Innovation Research Centre (JTIRC), Hanoi, Vietnam – sequence: 3 givenname: Manh Duong orcidid: 0000-0001-5247-6180 surname: Phung fullname: Phung, Manh Duong organization: School of Electrical and Data Engineering, University of Technology Sydney, Sydney, NSW, Australia – sequence: 4 givenname: Quang Phuc orcidid: 0000-0003-0978-1758 surname: Ha fullname: Ha, Quang Phuc organization: School of Electrical and Data Engineering, University of Technology Sydney, Sydney, NSW, Australia |
| BookMark | eNqFkc1O3DAUhaOKSqWUJ2BjqeuZ-je2l6MUChKilQCxtBzbYTyk8fTGAfH2eCYIVXRRb6597zmfZZ_P1cGQhlBVJwQvCcH626ppTq-vlxRTsmRYMk3Jh-qQklovmGD1wV_7T9XxOG5wWaq0hDys4DwGsODW0dkeNWl4TP2UYxrK6SpMsC_5KcEDuot5jc6CzRME9AvCGODR7qTIDh6tppzyNASPbtZltk69j8M96hKgBqx7QN9DDm4n_1J97Gw_huPXelTdnp3eNOeLy58_LprV5cJxqfKCaSZx3RHRKu686GzdKc_bVjvRUkJYeYRjwWkqysTKWnLcYq4IrSVTrezYUXUxc32yG7OF-NvCs0k2mn0jwb2xkKPrg5HOeylsRzFpOe-EbblgTCilOeVY-8LiM2satvb5yfb9G5Bgs4vBWOfCOJpdDOY1hmL7Otu2kP5MYcxmkyYof1t0gkjMOKeqqNiscpDGEUL3D3uO-D1bv3O5mPd5ZLCx_4_3ZPbGEMLbbZrjWmHNXgCwCLUJ |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1017_S0263574722000339 crossref_primary_10_1080_19479832_2024_2382737 crossref_primary_10_1177_00368504221128487 crossref_primary_10_1016_j_conbuildmat_2022_128543 crossref_primary_10_1590_s1983_41952023000100003 crossref_primary_10_1007_s00371_024_03656_0 crossref_primary_10_1016_j_conbuildmat_2023_131852 crossref_primary_10_3390_s22062347 crossref_primary_10_3390_app132212299 crossref_primary_10_1016_j_compind_2022_103698 crossref_primary_10_1016_j_cosrev_2025_100729 crossref_primary_10_1016_j_measen_2023_100940 crossref_primary_10_1109_TII_2022_3172995 crossref_primary_10_3390_electronics13142746 crossref_primary_10_1109_ACCESS_2023_3265725 crossref_primary_10_1109_TIM_2022_3181940 crossref_primary_10_1109_TIM_2023_3272052 crossref_primary_10_21041_ra_v13i3_685 crossref_primary_10_1016_j_jtte_2023_02_001 |
| Cites_doi | 10.1109/CVPR.2017.563 10.1109/ICIP.2013.6738843 10.1007/s00366-018-0611-9 10.1109/ICCV.2015.164 10.1109/ACCESS.2018.2829347 10.1016/j.autcon.2019.04.005 10.1109/TIP.2018.2878966 10.1109/TIE.2017.2764844 10.1109/TITS.2016.2552248 10.1007/s00521-020-04819-5 10.1016/j.autcon.2019.103018 10.1109/TIP.2014.2298981 10.1111/mice.12297 10.1109/IJCNN.2017.7966101 10.1016/j.neucom.2015.12.114 10.1109/JSYST.2019.2922290 10.1109/TITS.2019.2910595 10.1109/TPAMI.2014.2345401 10.1109/TII.2015.2417676 10.1016/j.autcon.2018.11.028 10.1109/5.726791 10.1109/ACCESS.2020.3037667 10.1109/CVPR.2019.00075 10.1109/TPAMI.2011.267 10.1109/TIP.2015.2487833 10.1109/ICIP.2016.7533052 10.1016/j.autcon.2018.07.008 10.1109/TITS.2018.2856928 10.1109/TITS.2019.2891167 10.1109/ROBIO49542.2019.8961534 10.1109/TIE.2019.2945265 10.1109/ICCV.2015.123 10.1016/j.neucom.2019.01.036 10.1109/ACCESS.2020.2966881 10.1109/TIP.2019.2932501 10.1109/TPAMI.2016.2644615 10.1109/TPAMI.1985.4767640 10.1109/CVPR.2017.622 10.1109/TKDE.2016.2606428 10.1109/ICRA.2018.8461082 10.1109/COASE.2019.8843165 10.1109/TSMC.1979.4310076 10.1109/ACCESS.2018.2855144 10.1109/TII.2019.2958826 10.1109/ACCESS.2019.2916330 10.1109/ACCESS.2020.3005450 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA |
| DOI | 10.1109/ACCESS.2021.3073921 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 60214 |
| ExternalDocumentID | oai_doaj_org_article_7cdd75af201b44f5ab4533588942409d 10.1109/access.2021.3073921 10_1109_ACCESS_2021_3073921 9406809 |
| Genre | orig-research |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c478t-393706f15b84cd5fa6f8d4bb9c5b2113000c3ec925a6fa76740b048126738b7f3 |
| IEDL.DBID | DOA |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:52:08 EDT 2025 Sun Oct 26 04:16:07 EDT 2025 Mon Jun 30 03:35:51 EDT 2025 Wed Oct 01 04:44:04 EDT 2025 Thu Apr 24 22:54:03 EDT 2025 Wed Aug 27 02:30:55 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c478t-393706f15b84cd5fa6f8d4bb9c5b2113000c3ec925a6fa76740b048126738b7f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2317-0032 0000-0003-0978-1758 0000-0002-5647-9925 0000-0001-5247-6180 |
| OpenAccessLink | https://doaj.org/article/7cdd75af201b44f5ab4533588942409d |
| PQID | 2517034428 |
| PQPubID | 4845423 |
| PageCount | 14 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_7cdd75af201b44f5ab4533588942409d unpaywall_primary_10_1109_access_2021_3073921 ieee_primary_9406809 proquest_journals_2517034428 crossref_citationtrail_10_1109_ACCESS_2021_3073921 crossref_primary_10_1109_ACCESS_2021_3073921 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20210000 2021-00-00 20210101 2021-01-01 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 20210000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 ref46 ref45 ref48 ref47 ref42 ref44 ref43 ref49 ref8 ref7 kingma (ref41) 2015 murphy (ref30) 2012 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref33 ref32 ref2 ref1 ref39 ref38 zhu (ref12) 2019 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref35 doi: 10.1109/CVPR.2017.563 – ident: ref6 doi: 10.1109/ICIP.2013.6738843 – ident: ref5 doi: 10.1007/s00366-018-0611-9 – ident: ref46 doi: 10.1109/ICCV.2015.164 – ident: ref8 doi: 10.1109/ACCESS.2018.2829347 – ident: ref23 doi: 10.1016/j.autcon.2019.04.005 – ident: ref14 doi: 10.1109/TIP.2018.2878966 – start-page: 1 year: 2019 ident: ref12 article-title: Crack detection using enhanced hierarchical convolutional neural networks publication-title: Proc Australas Conf Robot Autom (ACRA) – ident: ref24 doi: 10.1109/TIE.2017.2764844 – ident: ref9 doi: 10.1109/TITS.2016.2552248 – ident: ref25 doi: 10.1007/s00521-020-04819-5 – ident: ref21 doi: 10.1016/j.autcon.2019.103018 – ident: ref48 doi: 10.1109/TIP.2014.2298981 – ident: ref19 doi: 10.1111/mice.12297 – ident: ref43 doi: 10.1109/IJCNN.2017.7966101 – ident: ref36 doi: 10.1016/j.neucom.2015.12.114 – ident: ref15 doi: 10.1109/JSYST.2019.2922290 – ident: ref22 doi: 10.1109/TITS.2019.2910595 – ident: ref33 doi: 10.1109/TPAMI.2014.2345401 – ident: ref49 doi: 10.1109/TII.2015.2417676 – ident: ref18 doi: 10.1016/j.autcon.2018.11.028 – start-page: 1 year: 2015 ident: ref41 article-title: Adam: A method for stochastic optimization publication-title: Proc Int Conf Learn Represent (ICLR) – ident: ref29 doi: 10.1109/5.726791 – ident: ref13 doi: 10.1109/ACCESS.2020.3037667 – ident: ref32 doi: 10.1109/CVPR.2019.00075 – ident: ref7 doi: 10.1109/TPAMI.2011.267 – ident: ref31 doi: 10.1109/TIP.2015.2487833 – year: 2012 ident: ref30 publication-title: Machine Learning A Probabilistic Perspective – ident: ref16 doi: 10.1109/ICIP.2016.7533052 – ident: ref17 doi: 10.1016/j.autcon.2018.07.008 – ident: ref3 doi: 10.1109/TITS.2018.2856928 – ident: ref20 doi: 10.1109/TITS.2019.2891167 – ident: ref44 doi: 10.1109/ROBIO49542.2019.8961534 – ident: ref27 doi: 10.1109/TIE.2019.2945265 – ident: ref40 doi: 10.1109/ICCV.2015.123 – ident: ref42 doi: 10.1016/j.neucom.2019.01.036 – ident: ref1 doi: 10.1109/ACCESS.2020.2966881 – ident: ref4 doi: 10.1109/TIP.2019.2932501 – ident: ref11 doi: 10.1109/TPAMI.2016.2644615 – ident: ref38 doi: 10.1109/TPAMI.1985.4767640 – ident: ref47 doi: 10.1109/CVPR.2017.622 – ident: ref28 doi: 10.1109/TKDE.2016.2606428 – ident: ref34 doi: 10.1109/ICRA.2018.8461082 – ident: ref39 doi: 10.1109/COASE.2019.8843165 – ident: ref37 doi: 10.1109/TSMC.1979.4310076 – ident: ref10 doi: 10.1109/ACCESS.2018.2855144 – ident: ref26 doi: 10.1109/TII.2019.2958826 – ident: ref2 doi: 10.1109/ACCESS.2019.2916330 – ident: ref45 doi: 10.1109/ACCESS.2020.3005450 |
| SSID | ssj0000816957 |
| Score | 2.3189812 |
| Snippet | Drone imagery is increasingly used in automated inspection for infrastructure surface defects, especially in hazardous or unreachable environments. In machine... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 60201 |
| SubjectTerms | Algorithms Artificial neural networks Bridge inspection Computational modeling Convolutional neural networks crack detection Datasets Deep learning Feature extraction Feature maps feature preserving Hazardous areas hierarchical convolutional neural network Image processing Inspection Iterative methods Kernel Machine learning Machine vision Monorails Neural networks Occultation Post-production processing Surface cracks Surface defects thresholding Unmanned aerial vehicles |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbaXoADr4IaKMgHjs02ydqJfVwC1QqpnFrRm-WnqLrKVtsEBL-eGccbdQEhTnk5jq1vHH-2x98Q8g4lslwQdV650ubMCp5rEURuimC1ZnXF4q6088_18pJ9uuJXe-Rk2gvjvY_OZ36Gp3Et363tgFNlp5JhpAi5T_YbUY97tab5FAwgIXmThIXKQp4u2hbqAEPAqpyhJcuq3Ol8okZ_Cqqywy8fDN2t_vFdr1b3upqzJ-R8W8jRw-RmNvRmZn_-pt_4v7V4Sh4nzkkXo5E8I3u-e04e3VMiPCSb5TXuRI6BUVa0XXffkknCFep3xEN0GKdfrvuvFJnjsPEUPTi207pUd44uhn7dD_DvphdgJXdpcYsCNabtRtsb-sH30fure0Euzz5etMs8hWPILQDW5yidV9Sh5EYw63jQdRCOGSMtNzCMnAMGdu6trDg80SgSVBhUo6kwsKhpwvwlOejWnT8iVBsgPqLQVgrPau4M5Bk0cA8YI88rzTNSbXFSNmmVY8iMlYpjlkKqEVyF4KoEbkZOppduR6mOfyd_jwYwJUWd7XgDwFKp2arGOtdwHYAmGcYC14YBP4aySwZUSLqMHCLAUyYJ24wcb81JpX_CnUJxOBRYrERG8snE_iiqjoEyd4r66u9feU0eYqpxQuiYHPSbwb8BitSbt7Ft_AItlAz7 priority: 102 providerName: IEEE – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELWge0Ac-FoQWRbkA0fSJo6d2scSWFVIrDhsxXKKbMcW1UZp1U1g4dcz47rVFiQkOOXLsSaaF_vZHr8h5DVKZDVelilrcptyK0WqpZepybzVmpeMh11pH8_L-YJ_uBSXccIt7IVxzoXgMzfG07CWv3TtzXRSMhRPUxNV5Ay6xQkKv5UyU-N14--So1IAFx-Ro8X5p9kXzCiXlyotwtrkiyisOdEhByEMClk-Rmwrlh90R0G1P6ZZOWCc94ZurX981217q_M5e0jqndnbmJOr8dCbsf35m6Lj_3_XI_Ig8lI62wLpMbnjuifk_i21wmOymS9xt3JIntLSatV9i7CFK9T4CIcQVE4_L_uvFNnlsHEUozx2U79Udw2dDf2qH6B9pxeApOu4AEaBPtNqo-0Vfef6ECHWPSWLs_cX1TyNKRtSC07tU5TXy0qfCyO5bYTXpZcNN0ZZYWCoWUADbAtnFRPwRKOQUGZQsYZh8lEz9cUzMupWnXtOqDZAjmSmrZKOl6IxUKfXwE9gHF0wLRLCdp6rbdQzx7QabR3GNZmqZ1UFIK7R3XV0d0Le7F9ab-U8_l78LUJiXxS1uMMNcF8df-16aptmKrQHKmU490IbDhwabFcc6JJqEnKMLt9XEv2bkNMdwOrYblzXKCCHIoxMJiTdg-4PU7dAPjD15B_Ln5JRvxncS6BUvXkV_5tfH9wbCQ priority: 102 providerName: Unpaywall |
| Title | Hierarchical Convolutional Neural Network With Feature Preservation and Autotuned Thresholding for Crack Detection |
| URI | https://ieeexplore.ieee.org/document/9406809 https://www.proquest.com/docview/2517034428 https://ieeexplore.ieee.org/ielx7/6287639/9312710/09406809.pdf https://doaj.org/article/7cdd75af201b44f5ab4533588942409d |
| UnpaywallVersion | publishedVersion |
| Volume | 9 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQewAOqNAiAu3KB46kTbx21j4uKdUKiYpDV7Qnyx-xqFhlq20C6r_vjONd7aoSXDhFSRxrMjOx3zjjN4R8RIosH2SVM1-6nDspciODzG0RnDG8YjzuSvt2Wc3m_Ou1uN4q9YU5YQM98KC4s4nzfiJMgInKch6EsRwQipBScZiMlMfRt5BqK5iKY7AsKyUmiWaoLNTZtK7hjSAgZOUp-rVi5c5UFBn7U4mVHbT5vG_vzMMfs1hsTTwXB-RVQox0Okj6mjxr2jfk5RaP4CFZzW5xH3Esa7Kg9bL9nRwKzpB9Ix5iujf9cdv9pIj7-lVDMf9ivShLTevptO-WXQ8jL70CG9-nX1MUgC2tV8b9oudNF3O32iMyv_hyVc_yVEwhd6DuLkfiu6IKpbCSOy-CqYL03FrlhIUgcAw6c-PGKSbgjkGKn8IilwzDsqB2EsZvyV67bJt3hBoLsEUWxinZ8Ep4C30GA8gBItwxMyIjbK1X7RLTOBa8WOgYcRRKD8bQaAydjJGRT5uH7gaijb83_4wG2zRFlux4AXxHJ9_R__KdjByiuTedKI6VSFRGjtfm1-mLvtdI7Yb0iExmJN-4xBNRTSxzuSPq-_8h6gfyAvscFn-OyV636psTgEOdHUXPH8WdiyOyP7_8Pr15BIYmBYY |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcigceBVEoIAPHJttkrWz8XEJVAt0e9qK3iw_RdVVttomreDX43G8URcQ4pSXndj6xs5ne_wNwHuUyDKuKtPC5DqlumKprFyVqsxpKWlZ0LArbX5azs7ol3N2vgOHw14Ya21wPrMjPA1r-WalO5wqO-IUI0Xwe3CfUUpZv1trmFHBEBKcTaK0UJ7xo2ld-1r4QWCRj9CWeZFv_X6CSn8Mq7LFMPe65kr-uJXL5Z2fzfFjmG-K2fuYXI66Vo30z98UHP-3Hk_gUWSdZNqbyVPYsc0zeHhHi3Af1rML3IscQqMsSb1qbqJR-itU8AiH4DJOvl203wlyx25tCfpwbCZ2iWwMmXbtqu18700W3k6u4_IW8eSY1GupL8lH2wb_r-Y5nB1_WtSzNAZkSLWHrE1RPC8rXc5URbVhTpauMlQprpnyA8mxx0CPreYF808kygRlCvVoCgwtqiZu_AJ2m1VjXwKRylOfKpOaV5aWzCj_Tic9-_Cj5HEhWQLFBieho1o5Bs1YijBqybjowRUIrojgJnA4ZLrqxTr-nfwDGsCQFJW2ww0PlogNV0y0MRMmnSdKilLHpKKeIfuyc-rJEDcJ7CPAw0sitgkcbMxJxF7hWqA8HEosFlUC6WBifxRVhlCZW0V99fevvIO92WJ-Ik4-n359DQ8wRz89dAC77bqzbzxhatXb0E5-AV9bEEg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELWge0Ac-FoQWRbkA0fSJo6d2scSWFVIrDhsxXKKbMcW1UZp1U1g4dcz47rVFiQkOOXLsSaaF_vZHr8h5DVKZDVelilrcptyK0WqpZepybzVmpeMh11pH8_L-YJ_uBSXccIt7IVxzoXgMzfG07CWv3TtzXRSMhRPUxNV5Ay6xQkKv5UyU-N14--So1IAFx-Ro8X5p9kXzCiXlyotwtrkiyisOdEhByEMClk-Rmwrlh90R0G1P6ZZOWCc94ZurX981217q_M5e0jqndnbmJOr8dCbsf35m6Lj_3_XI_Ig8lI62wLpMbnjuifk_i21wmOymS9xt3JIntLSatV9i7CFK9T4CIcQVE4_L_uvFNnlsHEUozx2U79Udw2dDf2qH6B9pxeApOu4AEaBPtNqo-0Vfef6ECHWPSWLs_cX1TyNKRtSC07tU5TXy0qfCyO5bYTXpZcNN0ZZYWCoWUADbAtnFRPwRKOQUGZQsYZh8lEz9cUzMupWnXtOqDZAjmSmrZKOl6IxUKfXwE9gHF0wLRLCdp6rbdQzx7QabR3GNZmqZ1UFIK7R3XV0d0Le7F9ab-U8_l78LUJiXxS1uMMNcF8df-16aptmKrQHKmU490IbDhwabFcc6JJqEnKMLt9XEv2bkNMdwOrYblzXKCCHIoxMJiTdg-4PU7dAPjD15B_Ln5JRvxncS6BUvXkV_5tfH9wbCQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+Convolutional+Neural+Network+With+Feature+Preservation+and+Autotuned+Thresholding+for+Crack+Detection&rft.jtitle=IEEE+access&rft.au=Zhu%2C+Qiuchen&rft.au=Dinh%2C+Tran+Hiep&rft.au=Phung%2C+Manh+Duong&rft.au=Ha%2C+Quang+Phuc&rft.date=2021&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=9&rft.spage=60201&rft.epage=60214&rft_id=info:doi/10.1109%2FACCESS.2021.3073921&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2021_3073921 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |