Hierarchical Convolutional Neural Network With Feature Preservation and Autotuned Thresholding for Crack Detection

Drone imagery is increasingly used in automated inspection for infrastructure surface defects, especially in hazardous or unreachable environments. In machine vision, the key to crack detection rests with robust and accurate algorithms for image processing. To this end, this paper proposes a deep le...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 9; pp. 60201 - 60214
Main Authors Zhu, Qiuchen, Dinh, Tran Hiep, Phung, Manh Duong, Ha, Quang Phuc
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2021.3073921

Cover

Abstract Drone imagery is increasingly used in automated inspection for infrastructure surface defects, especially in hazardous or unreachable environments. In machine vision, the key to crack detection rests with robust and accurate algorithms for image processing. To this end, this paper proposes a deep learning approach using hierarchical convolutional neural networks with feature preservation (HCNNFP) and an intercontrast iterative thresholding algorithm for image binarization. First, a set of branch networks is proposed, wherein the output of previous convolutional blocks is half-sizedly concatenated to the current ones to reduce the obscuration in the down-sampling stage taking into account the overall information loss. Next, to extract the feature map generated from the enhanced HCNN, a binary contrast-based autotuned thresholding (CBAT) approach is developed at the post-processing step, where patterns of interest are clustered within the probability map of the identified features. The proposed technique is then applied to identify surface cracks on the surface of roads, bridges or pavements. An extensive comparison with existing techniques is conducted on various datasets and subject to a number of evaluation criteria including the average F-measure (<inline-formula> <tex-math notation="LaTeX">AF_\beta </tex-math></inline-formula>) introduced here for dynamic quantification of the performance. Experiments on crack images, including those captured by unmanned aerial vehicles inspecting a monorail bridge. The proposed technique outperforms the existing methods on various tested datasets especially for GAPs dataset with an increase of about 1.4% in terms of <inline-formula> <tex-math notation="LaTeX">AF_\beta </tex-math></inline-formula> while the mean percentage error drops by 2.2%. Such performance demonstrates the merits of the proposed HCNNFP architecture for surface defect inspection.
AbstractList Drone imagery is increasingly used in automated inspection for infrastructure surface defects, especially in hazardous or unreachable environments. In machine vision, the key to crack detection rests with robust and accurate algorithms for image processing. To this end, this paper proposes a deep learning approach using hierarchical convolutional neural networks with feature preservation (HCNNFP) and an intercontrast iterative thresholding algorithm for image binarization. First, a set of branch networks is proposed, wherein the output of previous convolutional blocks is half-sizedly concatenated to the current ones to reduce the obscuration in the down-sampling stage taking into account the overall information loss. Next, to extract the feature map generated from the enhanced HCNN, a binary contrast-based autotuned thresholding (CBAT) approach is developed at the post-processing step, where patterns of interest are clustered within the probability map of the identified features. The proposed technique is then applied to identify surface cracks on the surface of roads, bridges or pavements. An extensive comparison with existing techniques is conducted on various datasets and subject to a number of evaluation criteria including the average F-measure ([Formula Omitted]) introduced here for dynamic quantification of the performance. Experiments on crack images, including those captured by unmanned aerial vehicles inspecting a monorail bridge. The proposed technique outperforms the existing methods on various tested datasets especially for GAPs dataset with an increase of about 1.4% in terms of [Formula Omitted] while the mean percentage error drops by 2.2%. Such performance demonstrates the merits of the proposed HCNNFP architecture for surface defect inspection.
Drone imagery is increasingly used in automated inspection for infrastructure surface defects, especially in hazardous or unreachable environments. In machine vision, the key to crack detection rests with robust and accurate algorithms for image processing. To this end, this paper proposes a deep learning approach using hierarchical convolutional neural networks with feature preservation (HCNNFP) and an intercontrast iterative thresholding algorithm for image binarization. First, a set of branch networks is proposed, wherein the output of previous convolutional blocks is half-sizedly concatenated to the current ones to reduce the obscuration in the down-sampling stage taking into account the overall information loss. Next, to extract the feature map generated from the enhanced HCNN, a binary contrast-based autotuned thresholding (CBAT) approach is developed at the post-processing step, where patterns of interest are clustered within the probability map of the identified features. The proposed technique is then applied to identify surface cracks on the surface of roads, bridges or pavements. An extensive comparison with existing techniques is conducted on various datasets and subject to a number of evaluation criteria including the average F-measure (<inline-formula> <tex-math notation="LaTeX">AF_\beta </tex-math></inline-formula>) introduced here for dynamic quantification of the performance. Experiments on crack images, including those captured by unmanned aerial vehicles inspecting a monorail bridge. The proposed technique outperforms the existing methods on various tested datasets especially for GAPs dataset with an increase of about 1.4% in terms of <inline-formula> <tex-math notation="LaTeX">AF_\beta </tex-math></inline-formula> while the mean percentage error drops by 2.2%. Such performance demonstrates the merits of the proposed HCNNFP architecture for surface defect inspection.
Drone imagery is increasingly used in automated inspection for infrastructure surface defects, especially in hazardous or unreachable environments. In machine vision, the key to crack detection rests with robust and accurate algorithms for image processing. To this end, this paper proposes a deep learning approach using hierarchical convolutional neural networks with feature preservation (HCNNFP) and an intercontrast iterative thresholding algorithm for image binarization. First, a set of branch networks is proposed, wherein the output of previous convolutional blocks is half-sizedly concatenated to the current ones to reduce the obscuration in the down-sampling stage taking into account the overall information loss. Next, to extract the feature map generated from the enhanced HCNN, a binary contrast-based autotuned thresholding (CBAT) approach is developed at the post-processing step, where patterns of interest are clustered within the probability map of the identified features. The proposed technique is then applied to identify surface cracks on the surface of roads, bridges or pavements. An extensive comparison with existing techniques is conducted on various datasets and subject to a number of evaluation criteria including the average F-measure ( <tex-math notation="LaTeX">$AF_\beta $ </tex-math>) introduced here for dynamic quantification of the performance. Experiments on crack images, including those captured by unmanned aerial vehicles inspecting a monorail bridge. The proposed technique outperforms the existing methods on various tested datasets especially for GAPs dataset with an increase of about 1.4% in terms of <tex-math notation="LaTeX">$AF_\beta $ </tex-math> while the mean percentage error drops by 2.2%. Such performance demonstrates the merits of the proposed HCNNFP architecture for surface defect inspection.
Author Zhu, Qiuchen
Dinh, Tran Hiep
Ha, Quang Phuc
Phung, Manh Duong
Author_xml – sequence: 1
  givenname: Qiuchen
  orcidid: 0000-0002-5647-9925
  surname: Zhu
  fullname: Zhu, Qiuchen
  email: qiuchen.zhu@uts.edu.au
  organization: School of Electrical and Data Engineering, University of Technology Sydney, Sydney, NSW, Australia
– sequence: 2
  givenname: Tran Hiep
  orcidid: 0000-0002-2317-0032
  surname: Dinh
  fullname: Dinh, Tran Hiep
  organization: UTS-VNU Joint Technology and Innovation Research Centre (JTIRC), Hanoi, Vietnam
– sequence: 3
  givenname: Manh Duong
  orcidid: 0000-0001-5247-6180
  surname: Phung
  fullname: Phung, Manh Duong
  organization: School of Electrical and Data Engineering, University of Technology Sydney, Sydney, NSW, Australia
– sequence: 4
  givenname: Quang Phuc
  orcidid: 0000-0003-0978-1758
  surname: Ha
  fullname: Ha, Quang Phuc
  organization: School of Electrical and Data Engineering, University of Technology Sydney, Sydney, NSW, Australia
BookMark eNqFkc1O3DAUhaOKSqWUJ2BjqeuZ-je2l6MUChKilQCxtBzbYTyk8fTGAfH2eCYIVXRRb6597zmfZZ_P1cGQhlBVJwQvCcH626ppTq-vlxRTsmRYMk3Jh-qQklovmGD1wV_7T9XxOG5wWaq0hDys4DwGsODW0dkeNWl4TP2UYxrK6SpMsC_5KcEDuot5jc6CzRME9AvCGODR7qTIDh6tppzyNASPbtZltk69j8M96hKgBqx7QN9DDm4n_1J97Gw_huPXelTdnp3eNOeLy58_LprV5cJxqfKCaSZx3RHRKu686GzdKc_bVjvRUkJYeYRjwWkqysTKWnLcYq4IrSVTrezYUXUxc32yG7OF-NvCs0k2mn0jwb2xkKPrg5HOeylsRzFpOe-EbblgTCilOeVY-8LiM2satvb5yfb9G5Bgs4vBWOfCOJpdDOY1hmL7Otu2kP5MYcxmkyYof1t0gkjMOKeqqNiscpDGEUL3D3uO-D1bv3O5mPd5ZLCx_4_3ZPbGEMLbbZrjWmHNXgCwCLUJ
CODEN IAECCG
CitedBy_id crossref_primary_10_1017_S0263574722000339
crossref_primary_10_1080_19479832_2024_2382737
crossref_primary_10_1177_00368504221128487
crossref_primary_10_1016_j_conbuildmat_2022_128543
crossref_primary_10_1590_s1983_41952023000100003
crossref_primary_10_1007_s00371_024_03656_0
crossref_primary_10_1016_j_conbuildmat_2023_131852
crossref_primary_10_3390_s22062347
crossref_primary_10_3390_app132212299
crossref_primary_10_1016_j_compind_2022_103698
crossref_primary_10_1016_j_cosrev_2025_100729
crossref_primary_10_1016_j_measen_2023_100940
crossref_primary_10_1109_TII_2022_3172995
crossref_primary_10_3390_electronics13142746
crossref_primary_10_1109_ACCESS_2023_3265725
crossref_primary_10_1109_TIM_2022_3181940
crossref_primary_10_1109_TIM_2023_3272052
crossref_primary_10_21041_ra_v13i3_685
crossref_primary_10_1016_j_jtte_2023_02_001
Cites_doi 10.1109/CVPR.2017.563
10.1109/ICIP.2013.6738843
10.1007/s00366-018-0611-9
10.1109/ICCV.2015.164
10.1109/ACCESS.2018.2829347
10.1016/j.autcon.2019.04.005
10.1109/TIP.2018.2878966
10.1109/TIE.2017.2764844
10.1109/TITS.2016.2552248
10.1007/s00521-020-04819-5
10.1016/j.autcon.2019.103018
10.1109/TIP.2014.2298981
10.1111/mice.12297
10.1109/IJCNN.2017.7966101
10.1016/j.neucom.2015.12.114
10.1109/JSYST.2019.2922290
10.1109/TITS.2019.2910595
10.1109/TPAMI.2014.2345401
10.1109/TII.2015.2417676
10.1016/j.autcon.2018.11.028
10.1109/5.726791
10.1109/ACCESS.2020.3037667
10.1109/CVPR.2019.00075
10.1109/TPAMI.2011.267
10.1109/TIP.2015.2487833
10.1109/ICIP.2016.7533052
10.1016/j.autcon.2018.07.008
10.1109/TITS.2018.2856928
10.1109/TITS.2019.2891167
10.1109/ROBIO49542.2019.8961534
10.1109/TIE.2019.2945265
10.1109/ICCV.2015.123
10.1016/j.neucom.2019.01.036
10.1109/ACCESS.2020.2966881
10.1109/TIP.2019.2932501
10.1109/TPAMI.2016.2644615
10.1109/TPAMI.1985.4767640
10.1109/CVPR.2017.622
10.1109/TKDE.2016.2606428
10.1109/ICRA.2018.8461082
10.1109/COASE.2019.8843165
10.1109/TSMC.1979.4310076
10.1109/ACCESS.2018.2855144
10.1109/TII.2019.2958826
10.1109/ACCESS.2019.2916330
10.1109/ACCESS.2020.3005450
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2021.3073921
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 60214
ExternalDocumentID oai_doaj_org_article_7cdd75af201b44f5ab4533588942409d
10.1109/access.2021.3073921
10_1109_ACCESS_2021_3073921
9406809
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c478t-393706f15b84cd5fa6f8d4bb9c5b2113000c3ec925a6fa76740b048126738b7f3
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Fri Oct 03 12:52:08 EDT 2025
Sun Oct 26 04:16:07 EDT 2025
Mon Jun 30 03:35:51 EDT 2025
Wed Oct 01 04:44:04 EDT 2025
Thu Apr 24 22:54:03 EDT 2025
Wed Aug 27 02:30:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c478t-393706f15b84cd5fa6f8d4bb9c5b2113000c3ec925a6fa76740b048126738b7f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2317-0032
0000-0003-0978-1758
0000-0002-5647-9925
0000-0001-5247-6180
OpenAccessLink https://doaj.org/article/7cdd75af201b44f5ab4533588942409d
PQID 2517034428
PQPubID 4845423
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_7cdd75af201b44f5ab4533588942409d
unpaywall_primary_10_1109_access_2021_3073921
ieee_primary_9406809
proquest_journals_2517034428
crossref_citationtrail_10_1109_ACCESS_2021_3073921
crossref_primary_10_1109_ACCESS_2021_3073921
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
ref46
ref45
ref48
ref47
ref42
ref44
ref43
ref49
ref8
ref7
kingma (ref41) 2015
murphy (ref30) 2012
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref33
ref32
ref2
ref1
ref39
ref38
zhu (ref12) 2019
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref35
  doi: 10.1109/CVPR.2017.563
– ident: ref6
  doi: 10.1109/ICIP.2013.6738843
– ident: ref5
  doi: 10.1007/s00366-018-0611-9
– ident: ref46
  doi: 10.1109/ICCV.2015.164
– ident: ref8
  doi: 10.1109/ACCESS.2018.2829347
– ident: ref23
  doi: 10.1016/j.autcon.2019.04.005
– ident: ref14
  doi: 10.1109/TIP.2018.2878966
– start-page: 1
  year: 2019
  ident: ref12
  article-title: Crack detection using enhanced hierarchical convolutional neural networks
  publication-title: Proc Australas Conf Robot Autom (ACRA)
– ident: ref24
  doi: 10.1109/TIE.2017.2764844
– ident: ref9
  doi: 10.1109/TITS.2016.2552248
– ident: ref25
  doi: 10.1007/s00521-020-04819-5
– ident: ref21
  doi: 10.1016/j.autcon.2019.103018
– ident: ref48
  doi: 10.1109/TIP.2014.2298981
– ident: ref19
  doi: 10.1111/mice.12297
– ident: ref43
  doi: 10.1109/IJCNN.2017.7966101
– ident: ref36
  doi: 10.1016/j.neucom.2015.12.114
– ident: ref15
  doi: 10.1109/JSYST.2019.2922290
– ident: ref22
  doi: 10.1109/TITS.2019.2910595
– ident: ref33
  doi: 10.1109/TPAMI.2014.2345401
– ident: ref49
  doi: 10.1109/TII.2015.2417676
– ident: ref18
  doi: 10.1016/j.autcon.2018.11.028
– start-page: 1
  year: 2015
  ident: ref41
  article-title: Adam: A method for stochastic optimization
  publication-title: Proc Int Conf Learn Represent (ICLR)
– ident: ref29
  doi: 10.1109/5.726791
– ident: ref13
  doi: 10.1109/ACCESS.2020.3037667
– ident: ref32
  doi: 10.1109/CVPR.2019.00075
– ident: ref7
  doi: 10.1109/TPAMI.2011.267
– ident: ref31
  doi: 10.1109/TIP.2015.2487833
– year: 2012
  ident: ref30
  publication-title: Machine Learning A Probabilistic Perspective
– ident: ref16
  doi: 10.1109/ICIP.2016.7533052
– ident: ref17
  doi: 10.1016/j.autcon.2018.07.008
– ident: ref3
  doi: 10.1109/TITS.2018.2856928
– ident: ref20
  doi: 10.1109/TITS.2019.2891167
– ident: ref44
  doi: 10.1109/ROBIO49542.2019.8961534
– ident: ref27
  doi: 10.1109/TIE.2019.2945265
– ident: ref40
  doi: 10.1109/ICCV.2015.123
– ident: ref42
  doi: 10.1016/j.neucom.2019.01.036
– ident: ref1
  doi: 10.1109/ACCESS.2020.2966881
– ident: ref4
  doi: 10.1109/TIP.2019.2932501
– ident: ref11
  doi: 10.1109/TPAMI.2016.2644615
– ident: ref38
  doi: 10.1109/TPAMI.1985.4767640
– ident: ref47
  doi: 10.1109/CVPR.2017.622
– ident: ref28
  doi: 10.1109/TKDE.2016.2606428
– ident: ref34
  doi: 10.1109/ICRA.2018.8461082
– ident: ref39
  doi: 10.1109/COASE.2019.8843165
– ident: ref37
  doi: 10.1109/TSMC.1979.4310076
– ident: ref10
  doi: 10.1109/ACCESS.2018.2855144
– ident: ref26
  doi: 10.1109/TII.2019.2958826
– ident: ref2
  doi: 10.1109/ACCESS.2019.2916330
– ident: ref45
  doi: 10.1109/ACCESS.2020.3005450
SSID ssj0000816957
Score 2.3189812
Snippet Drone imagery is increasingly used in automated inspection for infrastructure surface defects, especially in hazardous or unreachable environments. In machine...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 60201
SubjectTerms Algorithms
Artificial neural networks
Bridge inspection
Computational modeling
Convolutional neural networks
crack detection
Datasets
Deep learning
Feature extraction
Feature maps
feature preserving
Hazardous areas
hierarchical convolutional neural network
Image processing
Inspection
Iterative methods
Kernel
Machine learning
Machine vision
Monorails
Neural networks
Occultation
Post-production processing
Surface cracks
Surface defects
thresholding
Unmanned aerial vehicles
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbaXoADr4IaKMgHjs02ydqJfVwC1QqpnFrRm-WnqLrKVtsEBL-eGccbdQEhTnk5jq1vHH-2x98Q8g4lslwQdV650ubMCp5rEURuimC1ZnXF4q6088_18pJ9uuJXe-Rk2gvjvY_OZ36Gp3Et363tgFNlp5JhpAi5T_YbUY97tab5FAwgIXmThIXKQp4u2hbqAEPAqpyhJcuq3Ol8okZ_Cqqywy8fDN2t_vFdr1b3upqzJ-R8W8jRw-RmNvRmZn_-pt_4v7V4Sh4nzkkXo5E8I3u-e04e3VMiPCSb5TXuRI6BUVa0XXffkknCFep3xEN0GKdfrvuvFJnjsPEUPTi207pUd44uhn7dD_DvphdgJXdpcYsCNabtRtsb-sH30fure0Euzz5etMs8hWPILQDW5yidV9Sh5EYw63jQdRCOGSMtNzCMnAMGdu6trDg80SgSVBhUo6kwsKhpwvwlOejWnT8iVBsgPqLQVgrPau4M5Bk0cA8YI88rzTNSbXFSNmmVY8iMlYpjlkKqEVyF4KoEbkZOppduR6mOfyd_jwYwJUWd7XgDwFKp2arGOtdwHYAmGcYC14YBP4aySwZUSLqMHCLAUyYJ24wcb81JpX_CnUJxOBRYrERG8snE_iiqjoEyd4r66u9feU0eYqpxQuiYHPSbwb8BitSbt7Ft_AItlAz7
  priority: 102
  providerName: IEEE
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELWge0Ac-FoQWRbkA0fSJo6d2scSWFVIrDhsxXKKbMcW1UZp1U1g4dcz47rVFiQkOOXLsSaaF_vZHr8h5DVKZDVelilrcptyK0WqpZepybzVmpeMh11pH8_L-YJ_uBSXccIt7IVxzoXgMzfG07CWv3TtzXRSMhRPUxNV5Ay6xQkKv5UyU-N14--So1IAFx-Ro8X5p9kXzCiXlyotwtrkiyisOdEhByEMClk-Rmwrlh90R0G1P6ZZOWCc94ZurX981217q_M5e0jqndnbmJOr8dCbsf35m6Lj_3_XI_Ig8lI62wLpMbnjuifk_i21wmOymS9xt3JIntLSatV9i7CFK9T4CIcQVE4_L_uvFNnlsHEUozx2U79Udw2dDf2qH6B9pxeApOu4AEaBPtNqo-0Vfef6ECHWPSWLs_cX1TyNKRtSC07tU5TXy0qfCyO5bYTXpZcNN0ZZYWCoWUADbAtnFRPwRKOQUGZQsYZh8lEz9cUzMupWnXtOqDZAjmSmrZKOl6IxUKfXwE9gHF0wLRLCdp6rbdQzx7QabR3GNZmqZ1UFIK7R3XV0d0Le7F9ab-U8_l78LUJiXxS1uMMNcF8df-16aptmKrQHKmU490IbDhwabFcc6JJqEnKMLt9XEv2bkNMdwOrYblzXKCCHIoxMJiTdg-4PU7dAPjD15B_Ln5JRvxncS6BUvXkV_5tfH9wbCQ
  priority: 102
  providerName: Unpaywall
Title Hierarchical Convolutional Neural Network With Feature Preservation and Autotuned Thresholding for Crack Detection
URI https://ieeexplore.ieee.org/document/9406809
https://www.proquest.com/docview/2517034428
https://ieeexplore.ieee.org/ielx7/6287639/9312710/09406809.pdf
https://doaj.org/article/7cdd75af201b44f5ab4533588942409d
UnpaywallVersion publishedVersion
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQewAOqNAiAu3KB46kTbx21j4uKdUKiYpDV7Qnyx-xqFhlq20C6r_vjONd7aoSXDhFSRxrMjOx3zjjN4R8RIosH2SVM1-6nDspciODzG0RnDG8YjzuSvt2Wc3m_Ou1uN4q9YU5YQM98KC4s4nzfiJMgInKch6EsRwQipBScZiMlMfRt5BqK5iKY7AsKyUmiWaoLNTZtK7hjSAgZOUp-rVi5c5UFBn7U4mVHbT5vG_vzMMfs1hsTTwXB-RVQox0Okj6mjxr2jfk5RaP4CFZzW5xH3Esa7Kg9bL9nRwKzpB9Ix5iujf9cdv9pIj7-lVDMf9ivShLTevptO-WXQ8jL70CG9-nX1MUgC2tV8b9oudNF3O32iMyv_hyVc_yVEwhd6DuLkfiu6IKpbCSOy-CqYL03FrlhIUgcAw6c-PGKSbgjkGKn8IilwzDsqB2EsZvyV67bJt3hBoLsEUWxinZ8Ep4C30GA8gBItwxMyIjbK1X7RLTOBa8WOgYcRRKD8bQaAydjJGRT5uH7gaijb83_4wG2zRFlux4AXxHJ9_R__KdjByiuTedKI6VSFRGjtfm1-mLvtdI7Yb0iExmJN-4xBNRTSxzuSPq-_8h6gfyAvscFn-OyV636psTgEOdHUXPH8WdiyOyP7_8Pr15BIYmBYY
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcigceBVEoIAPHJttkrWz8XEJVAt0e9qK3iw_RdVVttomreDX43G8URcQ4pSXndj6xs5ne_wNwHuUyDKuKtPC5DqlumKprFyVqsxpKWlZ0LArbX5azs7ol3N2vgOHw14Ya21wPrMjPA1r-WalO5wqO-IUI0Xwe3CfUUpZv1trmFHBEBKcTaK0UJ7xo2ld-1r4QWCRj9CWeZFv_X6CSn8Mq7LFMPe65kr-uJXL5Z2fzfFjmG-K2fuYXI66Vo30z98UHP-3Hk_gUWSdZNqbyVPYsc0zeHhHi3Af1rML3IscQqMsSb1qbqJR-itU8AiH4DJOvl203wlyx25tCfpwbCZ2iWwMmXbtqu18700W3k6u4_IW8eSY1GupL8lH2wb_r-Y5nB1_WtSzNAZkSLWHrE1RPC8rXc5URbVhTpauMlQprpnyA8mxx0CPreYF808kygRlCvVoCgwtqiZu_AJ2m1VjXwKRylOfKpOaV5aWzCj_Tic9-_Cj5HEhWQLFBieho1o5Bs1YijBqybjowRUIrojgJnA4ZLrqxTr-nfwDGsCQFJW2ww0PlogNV0y0MRMmnSdKilLHpKKeIfuyc-rJEDcJ7CPAw0sitgkcbMxJxF7hWqA8HEosFlUC6WBifxRVhlCZW0V99fevvIO92WJ-Ik4-n359DQ8wRz89dAC77bqzbzxhatXb0E5-AV9bEEg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELWge0Ac-FoQWRbkA0fSJo6d2scSWFVIrDhsxXKKbMcW1UZp1U1g4dcz47rVFiQkOOXLsSaaF_vZHr8h5DVKZDVelilrcptyK0WqpZepybzVmpeMh11pH8_L-YJ_uBSXccIt7IVxzoXgMzfG07CWv3TtzXRSMhRPUxNV5Ay6xQkKv5UyU-N14--So1IAFx-Ro8X5p9kXzCiXlyotwtrkiyisOdEhByEMClk-Rmwrlh90R0G1P6ZZOWCc94ZurX981217q_M5e0jqndnbmJOr8dCbsf35m6Lj_3_XI_Ig8lI62wLpMbnjuifk_i21wmOymS9xt3JIntLSatV9i7CFK9T4CIcQVE4_L_uvFNnlsHEUozx2U79Udw2dDf2qH6B9pxeApOu4AEaBPtNqo-0Vfef6ECHWPSWLs_cX1TyNKRtSC07tU5TXy0qfCyO5bYTXpZcNN0ZZYWCoWUADbAtnFRPwRKOQUGZQsYZh8lEz9cUzMupWnXtOqDZAjmSmrZKOl6IxUKfXwE9gHF0wLRLCdp6rbdQzx7QabR3GNZmqZ1UFIK7R3XV0d0Le7F9ab-U8_l78LUJiXxS1uMMNcF8df-16aptmKrQHKmU490IbDhwabFcc6JJqEnKMLt9XEv2bkNMdwOrYblzXKCCHIoxMJiTdg-4PU7dAPjD15B_Ln5JRvxncS6BUvXkV_5tfH9wbCQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+Convolutional+Neural+Network+With+Feature+Preservation+and+Autotuned+Thresholding+for+Crack+Detection&rft.jtitle=IEEE+access&rft.au=Zhu%2C+Qiuchen&rft.au=Dinh%2C+Tran+Hiep&rft.au=Phung%2C+Manh+Duong&rft.au=Ha%2C+Quang+Phuc&rft.date=2021&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=9&rft.spage=60201&rft.epage=60214&rft_id=info:doi/10.1109%2FACCESS.2021.3073921&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2021_3073921
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon