DropNet: An Improved Dropping Algorithm Based On Neural Networks for Line-of-Sight Massive MIMO

In line-of-sight massive MIMO, the downlink channel vectors of few users may become highly correlated. This high correlation limits the sum-rates of systems employing linear precoders. To constrain the reduction of the sum-rate, few users can be dropped and served in the next coherence intervals. Th...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 9; p. 1
Main Authors Farsaei, Amirashkan, Sheikh, Alireza, Gustavsson, Ulf, Alvarado, Alex, Willems, Frans M. J.
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2020.3037562

Cover

Abstract In line-of-sight massive MIMO, the downlink channel vectors of few users may become highly correlated. This high correlation limits the sum-rates of systems employing linear precoders. To constrain the reduction of the sum-rate, few users can be dropped and served in the next coherence intervals. The optimal strategy for selecting the dropped users can be obtained by an exhaustive search at the cost of high computational complexity. To alleviate the computational complexity of the exhaustive search, a correlation-based dropping algorithm (CDA) is conventionally used, incurring a sum-rate loss with respect to the optimal scheme. In this paper, we propose a dropping algorithm based on neural networks (DropNet) to find the set of dropped users. We use appropriate input features required for the user dropping problem to limit the complexity of DropNet. DropNet is evaluated using two known linear precoders: conjugate beamforming (CB) and zero-forcing (ZF). Simulation results show that DropNet provides a trade-off between complexity and sum-rate performance. In particular, for a 64-antenna base station and 10 single-antenna users: (i) DropNet reduces the computational complexity of the exhaustive search by a factor of 46 and 3 for CB and ZF, respectively, (ii) DropNet improves the 5th percentile sum-rate of CDA by 0:86 and 2:33 bits/s/Hz for CB and ZF, respectively.
AbstractList In line-of-sight massive MIMO, the downlink channel vectors of few users may become highly correlated. This high correlation limits the sum-rates of systems employing linear precoders. To constrain the reduction of the sum-rate, few users can be dropped and served in the next coherence intervals. The optimal strategy for selecting the dropped users can be obtained by an exhaustive search at the cost of high computational complexity. To alleviate the computational complexity of the exhaustive search, a correlation-based dropping algorithm (CDA) is conventionally used, incurring a sum-rate loss with respect to the optimal scheme. In this paper, we propose a dropping algorithm based on neural networks (DropNet) to find the set of dropped users. We use appropriate input features required for the user dropping problem to limit the complexity of DropNet. DropNet is evaluated using two known linear precoders: conjugate beamforming (CB) and zero-forcing (ZF). Simulation results show that DropNet provides a trade-off between complexity and sum-rate performance. In particular, for a 64-antenna base station and 10 single-antenna users: (i) DropNet reduces the computational complexity of the exhaustive search by a factor of 46 and 3 for CB and ZF, respectively, (ii) DropNet improves the 5th percentile sum-rate of CDA by 0:86 and 2:33 bits/s/Hz for CB and ZF, respectively.
Author Sheikh, Alireza
Alvarado, Alex
Willems, Frans M. J.
Farsaei, Amirashkan
Gustavsson, Ulf
Author_xml – sequence: 1
  givenname: Amirashkan
  surname: Farsaei
  fullname: Farsaei, Amirashkan
  organization: Eindhoven University of Technology, Eindhoven, The Netherlands. (e-mail: a.farsaee@tue.nl)
– sequence: 2
  givenname: Alireza
  surname: Sheikh
  fullname: Sheikh, Alireza
  organization: Eindhoven University of Technology, Eindhoven, The Netherlands
– sequence: 3
  givenname: Ulf
  surname: Gustavsson
  fullname: Gustavsson, Ulf
  organization: Ericsson Research, Gothenburg, Sweden
– sequence: 4
  givenname: Alex
  surname: Alvarado
  fullname: Alvarado, Alex
  organization: Eindhoven University of Technology, Eindhoven, The Netherlands
– sequence: 5
  givenname: Frans M. J.
  surname: Willems
  fullname: Willems, Frans M. J.
  organization: Eindhoven University of Technology, Eindhoven, The Netherlands
BookMark eNptUctu2zAQFIoUaJrmC3Ih0LNcviRKvbluHgbs-OD2TKyplUNXFlWSTpC_L10FRmGUlyWGOzO7w4_ZRe96zLIbRieM0frLdDa7Xa8nnHI6EVSoouTvskvOyjoXhSgv_rl_yK5D2NF0qgQV6jLT370bHjF-JdOezPeDd8_YkCM42H5Lpt3WeRuf9uQbhPSw6skjHjx0qcQX538F0jpPFrbH3LX52m6fIllCCPYZyXK-XH3K3rfQBbx-q1fZz7vbH7OHfLG6n8-mi9xIVcWcN00lTclpLYrWSMZFSQsGVamqpmwV1BILbDi2LQXBhBESsGqEAaVQ8XojrrL5qNs42OnB2z34V-3A6r-A81sNPlrToUaQAjgTjLZSYjJpKK_Lqi43irNqw5KWHLUO_QCvL9B1J0FG9TFzDcZgCPqYuX7LPNE-j7QU4u8Dhqh37uD7tLXmsk4L0WSauuqxy3gXgsdWGxshWtdHD7Y7OYy_eu4gzrjnc_2fdTOyLCKeGCloJdNAfwCH0av9
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_OJCOMS_2022_3172621
crossref_primary_10_1109_ACCESS_2022_3208284
crossref_primary_10_1109_ACCESS_2022_3195299
crossref_primary_10_1109_LCOMM_2021_3091676
crossref_primary_10_1109_TWC_2021_3092965
Cites_doi 10.1109/TCOMM.2017.2725262
10.1109/MCOM.2014.6815890
10.1109/LCOMM.2019.2912601
10.1109/GLOCOM.2017.8254547
10.1109/LCOMM.2019.2934680
10.1038/323533a0
10.1109/VTCSpring.2017.8108586
10.1109/IZSBC.2002.991747
10.1561/2000000093
10.1017/S0962492900002919
10.1109/VETECF.2011.6093291
10.1007/BF02551274
10.1109/TWC.2015.2414413
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2020.3037562
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 1
ExternalDocumentID oai_doaj_org_article_ea43a21310f44e1a8d0296896b7218b1
10.1109/access.2020.3037562
10_1109_ACCESS_2020_3037562
9357421
Genre orig-research
GrantInformation_xml – fundername: H2020 Marie SkodowskaCurie Actions
  grantid: grant agreement No 721732.
  funderid: 10.13039/100010665
GroupedDBID 0R~
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
4.4
AAYXX
AGSQL
CITATION
EJD
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c478t-2dd84c620935fc41236051a8678d6f7a94e5ed2eff0a313c34ae8d3ca77e729b3
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Fri Oct 03 12:52:53 EDT 2025
Sun Oct 26 03:13:02 EDT 2025
Mon Jun 30 14:32:32 EDT 2025
Wed Oct 01 04:43:54 EDT 2025
Thu Apr 24 22:57:27 EDT 2025
Wed Aug 27 02:49:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c478t-2dd84c620935fc41236051a8678d6f7a94e5ed2eff0a313c34ae8d3ca77e729b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7316-3471
0000-0002-2172-3051
0000-0002-8666-462X
0000-0002-5852-0151
0000-0001-5915-2066
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9357421
PQID 2493600213
PQPubID 4845423
PageCount 1
ParticipantIDs crossref_citationtrail_10_1109_ACCESS_2020_3037562
doaj_primary_oai_doaj_org_article_ea43a21310f44e1a8d0296896b7218b1
ieee_primary_9357421
crossref_primary_10_1109_ACCESS_2020_3037562
proquest_journals_2493600213
unpaywall_primary_10_1109_access_2020_3037562
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
hartman (ref18) 2011
ref12
hunger (ref15) 2005
ngo (ref1) 2014
ref10
ref2
ref17
ref19
ref8
ref7
arakawa (ref14) 2006
ref9
ref4
ref3
ref6
burden (ref16) 1989
ref5
kidger (ref11) 2019
References_xml – ident: ref2
  doi: 10.1109/TCOMM.2017.2725262
– year: 2019
  ident: ref11
  article-title: Universal approximation with deep narrow networks
  publication-title: arXiv 1905 08539
– ident: ref4
  doi: 10.1109/MCOM.2014.6815890
– ident: ref6
  doi: 10.1109/LCOMM.2019.2912601
– ident: ref17
  doi: 10.1109/GLOCOM.2017.8254547
– ident: ref7
  doi: 10.1109/LCOMM.2019.2934680
– ident: ref13
  doi: 10.1038/323533a0
– ident: ref19
  doi: 10.1109/VTCSpring.2017.8108586
– ident: ref8
  doi: 10.1109/IZSBC.2002.991747
– ident: ref12
  doi: 10.1561/2000000093
– ident: ref10
  doi: 10.1017/S0962492900002919
– start-page: 76
  year: 2014
  ident: ref1
  article-title: Aspects of favorable propagation in massive MIMO
  publication-title: Proc 22nd Eur Signal Process Conf (EUSIPCO)
– year: 1989
  ident: ref16
  publication-title: Numerical Analysis
– year: 2011
  ident: ref18
  publication-title: Fundamentals of Matrix Algebra
– ident: ref5
  doi: 10.1109/VETECF.2011.6093291
– ident: ref9
  doi: 10.1007/BF02551274
– year: 2006
  ident: ref14
  article-title: Computational workloads for commonly used signal processing kernels
– year: 2005
  ident: ref15
  article-title: Floating point operations in matrix-vector calculus
– ident: ref3
  doi: 10.1109/TWC.2015.2414413
SSID ssj0000816957
Score 2.2355888
Snippet In line-of-sight massive MIMO, the downlink channel vectors of few users may become highly correlated. This high correlation limits the sum-rates of systems...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Antennas
Artificial neural networks
Beamforming
Complexity
Computational complexity
Correlated scenarios
Correlation
dropping algorithm
Interference
Line of sight
line-of-sight massive MIMO
Massive MIMO
neural network
Neural networks
Power control
Precoding
Searching
Signal to noise ratio
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWqXmgPqFCqLi2VDxyxmthex-a2XVoVpN0eSqXeLDuZANKSrLapEP-eGSdd7aoSXLhajjWZGXve-OMNY--jKxQtjiIithe6NEFYDGwiaBkdICCHtDUwm5vrO_3lfny_UeqL7oT19MC94s4haBVkjiik1hryYKtMOmOdiZi72JgSn8y6jWQqrcE2N25cDDRDeebOJ9Mp_hEmhBLzVCr8auRWKEqM_UOJlS20-eKxWYbfv8JisRF4rg7YywEx8kkv6Su2A81rtr_BI3jI_KdVu5xD95FPGt5vE0DFqZFeQ_HJ4lu7-tF9_8kvMGZVvG04cXLgoPP-EvgDR-jKMS0F0dbilvJ1PkNUjSshn32e3bxhd1eXX6fXYqicIEpd2E7IqrKod0mnnHWpiWEFJ1-wGJkqUxfBaRhDJaGus6ByVSodwFaqDEUBiLajOmK7TdvAMeOlqTGSlYZezOsMlEUIEk0twUadxcyMmHxSoi8HWnGqbrHwKb3InO8170nzftD8iH1Yf7TsWTX-3v2CrLPuSpTYqQEdxQ-O4v_lKCN2SLZdD4KqKbTE5tMnW_th-j549FtFB5a5GjGxtv8zUUOqabkl6tv_IeoJ25N0dSbt9Jyy3W71CO8Q-3TxLLn5H3pd-C0
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELagewAOvBZE2AX5wBG3ie06CbdsYbUgtSBBpeVk2ckEVoSk6qbi8esZO261BQkJbpHlWLZm7Plmxv6GkGc2T4U7HJlFbM9kqQzL0LAxI7nNAQE5-NDAfKHOlvLN-fQ8BNz8WxgA8JfPYOw-fS7_Aprv6URxR56WT3KRcDSLE5fBQ78OT5qqvk4O1BSx-IgcLBfvio-uolyiciZ8bvIoEGtOjK9BiE4hR1_VFX9VfM8cedb-UGZlD3He2LQr8-ObaZorxuf0DtHbaQ93Tr6MN70dlz9_Y3T8_3XdJbcDLqXFoEj3yDVo75NbV9gKD4l-ue5WC-hf0KKlQzACKuoa3ZsrWjSfuvVF__krPUHLWNGupY75AwddDFfNLykCZIrOL7CuZu9dVIDOEbvjeUvnr-dvH5Dl6asPszMW6jOwUqZZz3hVZShd7mZcl9LxuOAWNxnav0rVqcklTKHiUNexEYkohTSQVaI0aQqI6a14SEZt18IjQktVo70slXuXL2MQGQIdq2oOmZWxjVVE-FZMugzk5a6GRqO9ExPnupjNUGO1k60Oso3I891Pq4G74-_dT5z8d10d8bZvQFnpsI81GCkMTxAU11ICLraKea6yXFl0pTObROTQyXc3SBBmRI632qTDIXGpcXcIlxZNRETYTsP-mOqgtXtTffyP_Y_ITe7u4vjQ0TEZ9esNPEEw1dunYcf8All9Euo
  priority: 102
  providerName: Unpaywall
Title DropNet: An Improved Dropping Algorithm Based On Neural Networks for Line-of-Sight Massive MIMO
URI https://ieeexplore.ieee.org/document/9357421
https://www.proquest.com/docview/2493600213
https://ieeexplore.ieee.org/ielx7/6287639/9312710/09357421.pdf
https://doaj.org/article/ea43a21310f44e1a8d0296896b7218b1
UnpaywallVersion publishedVersion
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFLbGOMAO_BpogVH5wHHuUtt1HG5ZYRpI6ZCg0jhFtvMCiJJUXSoEfz3PThqtgBC3yEocW5_t971n-3uEvLBpIvziyCxyeyadMkyjYWNGcpsCEnIIoYF8ri4W8u3V9GqPnAx3YQAgHD6DsX8Me_ll4zY-VHaaiil6cujr3Eq06u5qDfEUn0AinSa9sNAkTk-z2Qz7gC4gR8_Up3pVfMf4BI3-PqnKDr-8s6lX5sd3s1zeMDXn90m-bWR3wuTreNPasfv5m37j__biAbnXc06adYPkIdmD-hE5uKFEeEiKV-tmNYf2Jc1q2gUaoKS-0N-notnyU7P-0n7-Rs_Q6pX0sqZe1QMrnXfHyK8pkl-Kji2wpmLvvcdPc-TluJbS_E1--Zgszl9_mF2wPvcCczLRLeNlqRE57vdJKye9RgtOX6PRtpWqSkwqYQolh6qKjZgIJ6QBXQpnkgSQr1vxhOzXTQ1HhDpVoS10yt-5lzEIjSTGqoqDtjK2sYoI34JSuF6Y3OfHWBbBQYnTokOy8EgWPZIRORk-WnW6HP9-_cyjPbzqRbVDASJT9HO0ACOF4RMkvJWUgJ0tY54qnSqLbrK2k4gcejSHSnogI3K8HTtFvwBcFzjyhd_ynIiIsGE8_dFUE7Ji7jT16d__8ozc5f44TYj-HJP9dr2B58iHWjsKcYRRmA4jcnsxf5d9_AW9rwVW
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWq9lA48FUQgQI-cKy3ie04CbftQrWFZnuglXqzbGdSqi7JapsVKr-ecZKNuoAQt8hKHFvP9rwZ228IeW-zRPjFkVnk9kw6ZViKho0ZyW0GSMihDQ3kMzW9kJ8v48stcjDchQGA9vAZjPxju5df1G7lQ2WHmYjRk0NfZyeWUsbdba0houJTSGRx0ksLRWF2OJ5MsBfoBHL0TX2yV8U3zE-r0t-nVdlgmLuramHufpj5_J6xOX5M8nUzuzMmN6NVY0fu528Kjv_bjyfkUc866bgbJk_JFlTPyMN7WoR7RH9c1osZNB_ouKJdqAEK6gv9jSo6nl_Vy-vm23d6hHavoGcV9boeWOmsO0h-S5H-UnRtgdUl--p9fpojM8fVlOYn-dlzcnH86XwyZX32BeZkkjaMF0WK2HG_U1o66VVacAKbFK1bocrEZBJiKDiUZWhEJJyQBtJCOJMkgIzdihdku6oreEmoUyVaQ6f8rXsZgkiRxlhVckitDG2oAsLXoGjXS5P7DBlz3booYaY7JLVHUvdIBuRg-GjRKXP8-_Ujj_bwqpfVbgsQGd3PUg1GCsMjpLyllICdLUKeqTRTFh3l1EYB2fNoDpX0QAZkfz12dL8E3Goc-8JvekYiIGwYT3801bR5MTea-urvf3lHdqfn-ak-PZl9eU0ecH-4po0F7ZPtZrmCN8iOGvu2nRS_ADXmBf4
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELagewAOvBZE2AX5wBG3ie06CbdsYbUgtSBBpeVk2ckEVoSk6qbi8esZO261BQkJbpHlWLZm7Plmxv6GkGc2T4U7HJlFbM9kqQzL0LAxI7nNAQE5-NDAfKHOlvLN-fQ8BNz8WxgA8JfPYOw-fS7_Aprv6URxR56WT3KRcDSLE5fBQ78OT5qqvk4O1BSx-IgcLBfvio-uolyiciZ8bvIoEGtOjK9BiE4hR1_VFX9VfM8cedb-UGZlD3He2LQr8-ObaZorxuf0DtHbaQ93Tr6MN70dlz9_Y3T8_3XdJbcDLqXFoEj3yDVo75NbV9gKD4l-ue5WC-hf0KKlQzACKuoa3ZsrWjSfuvVF__krPUHLWNGupY75AwddDFfNLykCZIrOL7CuZu9dVIDOEbvjeUvnr-dvH5Dl6asPszMW6jOwUqZZz3hVZShd7mZcl9LxuOAWNxnav0rVqcklTKHiUNexEYkohTSQVaI0aQqI6a14SEZt18IjQktVo70slXuXL2MQGQIdq2oOmZWxjVVE-FZMugzk5a6GRqO9ExPnupjNUGO1k60Oso3I891Pq4G74-_dT5z8d10d8bZvQFnpsI81GCkMTxAU11ICLraKea6yXFl0pTObROTQyXc3SBBmRI632qTDIXGpcXcIlxZNRETYTsP-mOqgtXtTffyP_Y_ITe7u4vjQ0TEZ9esNPEEw1dunYcf8All9Euo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DropNet%3A+An+Improved+Dropping+Algorithm+Based+On+Neural+Networks+for+Line-of-Sight+Massive+MIMO&rft.jtitle=IEEE+access&rft.au=Farsaei%2C+Amirashkan&rft.au=Sheikh%2C+Alireza&rft.au=Gustavsson%2C+Ulf&rft.au=Alvarado%2C+Alex&rft.date=2021-01-01&rft.pub=IEEE&rft.eissn=2169-3536&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FACCESS.2020.3037562&rft.externalDocID=9357421
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon