DropNet: An Improved Dropping Algorithm Based On Neural Networks for Line-of-Sight Massive MIMO
In line-of-sight massive MIMO, the downlink channel vectors of few users may become highly correlated. This high correlation limits the sum-rates of systems employing linear precoders. To constrain the reduction of the sum-rate, few users can be dropped and served in the next coherence intervals. Th...
Saved in:
| Published in | IEEE access Vol. 9; p. 1 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2020.3037562 |
Cover
| Abstract | In line-of-sight massive MIMO, the downlink channel vectors of few users may become highly correlated. This high correlation limits the sum-rates of systems employing linear precoders. To constrain the reduction of the sum-rate, few users can be dropped and served in the next coherence intervals. The optimal strategy for selecting the dropped users can be obtained by an exhaustive search at the cost of high computational complexity. To alleviate the computational complexity of the exhaustive search, a correlation-based dropping algorithm (CDA) is conventionally used, incurring a sum-rate loss with respect to the optimal scheme. In this paper, we propose a dropping algorithm based on neural networks (DropNet) to find the set of dropped users. We use appropriate input features required for the user dropping problem to limit the complexity of DropNet. DropNet is evaluated using two known linear precoders: conjugate beamforming (CB) and zero-forcing (ZF). Simulation results show that DropNet provides a trade-off between complexity and sum-rate performance. In particular, for a 64-antenna base station and 10 single-antenna users: (i) DropNet reduces the computational complexity of the exhaustive search by a factor of 46 and 3 for CB and ZF, respectively, (ii) DropNet improves the 5th percentile sum-rate of CDA by 0:86 and 2:33 bits/s/Hz for CB and ZF, respectively. |
|---|---|
| AbstractList | In line-of-sight massive MIMO, the downlink channel vectors of few users may become highly correlated. This high correlation limits the sum-rates of systems employing linear precoders. To constrain the reduction of the sum-rate, few users can be dropped and served in the next coherence intervals. The optimal strategy for selecting the dropped users can be obtained by an exhaustive search at the cost of high computational complexity. To alleviate the computational complexity of the exhaustive search, a correlation-based dropping algorithm (CDA) is conventionally used, incurring a sum-rate loss with respect to the optimal scheme. In this paper, we propose a dropping algorithm based on neural networks (DropNet) to find the set of dropped users. We use appropriate input features required for the user dropping problem to limit the complexity of DropNet. DropNet is evaluated using two known linear precoders: conjugate beamforming (CB) and zero-forcing (ZF). Simulation results show that DropNet provides a trade-off between complexity and sum-rate performance. In particular, for a 64-antenna base station and 10 single-antenna users: (i) DropNet reduces the computational complexity of the exhaustive search by a factor of 46 and 3 for CB and ZF, respectively, (ii) DropNet improves the 5th percentile sum-rate of CDA by 0:86 and 2:33 bits/s/Hz for CB and ZF, respectively. |
| Author | Sheikh, Alireza Alvarado, Alex Willems, Frans M. J. Farsaei, Amirashkan Gustavsson, Ulf |
| Author_xml | – sequence: 1 givenname: Amirashkan surname: Farsaei fullname: Farsaei, Amirashkan organization: Eindhoven University of Technology, Eindhoven, The Netherlands. (e-mail: a.farsaee@tue.nl) – sequence: 2 givenname: Alireza surname: Sheikh fullname: Sheikh, Alireza organization: Eindhoven University of Technology, Eindhoven, The Netherlands – sequence: 3 givenname: Ulf surname: Gustavsson fullname: Gustavsson, Ulf organization: Ericsson Research, Gothenburg, Sweden – sequence: 4 givenname: Alex surname: Alvarado fullname: Alvarado, Alex organization: Eindhoven University of Technology, Eindhoven, The Netherlands – sequence: 5 givenname: Frans M. J. surname: Willems fullname: Willems, Frans M. J. organization: Eindhoven University of Technology, Eindhoven, The Netherlands |
| BookMark | eNptUctu2zAQFIoUaJrmC3Ih0LNcviRKvbluHgbs-OD2TKyplUNXFlWSTpC_L10FRmGUlyWGOzO7w4_ZRe96zLIbRieM0frLdDa7Xa8nnHI6EVSoouTvskvOyjoXhSgv_rl_yK5D2NF0qgQV6jLT370bHjF-JdOezPeDd8_YkCM42H5Lpt3WeRuf9uQbhPSw6skjHjx0qcQX538F0jpPFrbH3LX52m6fIllCCPYZyXK-XH3K3rfQBbx-q1fZz7vbH7OHfLG6n8-mi9xIVcWcN00lTclpLYrWSMZFSQsGVamqpmwV1BILbDi2LQXBhBESsGqEAaVQ8XojrrL5qNs42OnB2z34V-3A6r-A81sNPlrToUaQAjgTjLZSYjJpKK_Lqi43irNqw5KWHLUO_QCvL9B1J0FG9TFzDcZgCPqYuX7LPNE-j7QU4u8Dhqh37uD7tLXmsk4L0WSauuqxy3gXgsdWGxshWtdHD7Y7OYy_eu4gzrjnc_2fdTOyLCKeGCloJdNAfwCH0av9 |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1109_OJCOMS_2022_3172621 crossref_primary_10_1109_ACCESS_2022_3208284 crossref_primary_10_1109_ACCESS_2022_3195299 crossref_primary_10_1109_LCOMM_2021_3091676 crossref_primary_10_1109_TWC_2021_3092965 |
| Cites_doi | 10.1109/TCOMM.2017.2725262 10.1109/MCOM.2014.6815890 10.1109/LCOMM.2019.2912601 10.1109/GLOCOM.2017.8254547 10.1109/LCOMM.2019.2934680 10.1038/323533a0 10.1109/VTCSpring.2017.8108586 10.1109/IZSBC.2002.991747 10.1561/2000000093 10.1017/S0962492900002919 10.1109/VETECF.2011.6093291 10.1007/BF02551274 10.1109/TWC.2015.2414413 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA |
| DOI | 10.1109/ACCESS.2020.3037562 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 1 |
| ExternalDocumentID | oai_doaj_org_article_ea43a21310f44e1a8d0296896b7218b1 10.1109/access.2020.3037562 10_1109_ACCESS_2020_3037562 9357421 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: H2020 Marie SkodowskaCurie Actions grantid: grant agreement No 721732. funderid: 10.13039/100010665 |
| GroupedDBID | 0R~ 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS 4.4 AAYXX AGSQL CITATION EJD 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c478t-2dd84c620935fc41236051a8678d6f7a94e5ed2eff0a313c34ae8d3ca77e729b3 |
| IEDL.DBID | RIE |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:52:53 EDT 2025 Sun Oct 26 03:13:02 EDT 2025 Mon Jun 30 14:32:32 EDT 2025 Wed Oct 01 04:43:54 EDT 2025 Thu Apr 24 22:57:27 EDT 2025 Wed Aug 27 02:49:00 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c478t-2dd84c620935fc41236051a8678d6f7a94e5ed2eff0a313c34ae8d3ca77e729b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7316-3471 0000-0002-2172-3051 0000-0002-8666-462X 0000-0002-5852-0151 0000-0001-5915-2066 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9357421 |
| PQID | 2493600213 |
| PQPubID | 4845423 |
| PageCount | 1 |
| ParticipantIDs | crossref_citationtrail_10_1109_ACCESS_2020_3037562 doaj_primary_oai_doaj_org_article_ea43a21310f44e1a8d0296896b7218b1 ieee_primary_9357421 crossref_primary_10_1109_ACCESS_2020_3037562 proquest_journals_2493600213 unpaywall_primary_10_1109_access_2020_3037562 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-01-01 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 hartman (ref18) 2011 ref12 hunger (ref15) 2005 ngo (ref1) 2014 ref10 ref2 ref17 ref19 ref8 ref7 arakawa (ref14) 2006 ref9 ref4 ref3 ref6 burden (ref16) 1989 ref5 kidger (ref11) 2019 |
| References_xml | – ident: ref2 doi: 10.1109/TCOMM.2017.2725262 – year: 2019 ident: ref11 article-title: Universal approximation with deep narrow networks publication-title: arXiv 1905 08539 – ident: ref4 doi: 10.1109/MCOM.2014.6815890 – ident: ref6 doi: 10.1109/LCOMM.2019.2912601 – ident: ref17 doi: 10.1109/GLOCOM.2017.8254547 – ident: ref7 doi: 10.1109/LCOMM.2019.2934680 – ident: ref13 doi: 10.1038/323533a0 – ident: ref19 doi: 10.1109/VTCSpring.2017.8108586 – ident: ref8 doi: 10.1109/IZSBC.2002.991747 – ident: ref12 doi: 10.1561/2000000093 – ident: ref10 doi: 10.1017/S0962492900002919 – start-page: 76 year: 2014 ident: ref1 article-title: Aspects of favorable propagation in massive MIMO publication-title: Proc 22nd Eur Signal Process Conf (EUSIPCO) – year: 1989 ident: ref16 publication-title: Numerical Analysis – year: 2011 ident: ref18 publication-title: Fundamentals of Matrix Algebra – ident: ref5 doi: 10.1109/VETECF.2011.6093291 – ident: ref9 doi: 10.1007/BF02551274 – year: 2006 ident: ref14 article-title: Computational workloads for commonly used signal processing kernels – year: 2005 ident: ref15 article-title: Floating point operations in matrix-vector calculus – ident: ref3 doi: 10.1109/TWC.2015.2414413 |
| SSID | ssj0000816957 |
| Score | 2.2355888 |
| Snippet | In line-of-sight massive MIMO, the downlink channel vectors of few users may become highly correlated. This high correlation limits the sum-rates of systems... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Antennas Artificial neural networks Beamforming Complexity Computational complexity Correlated scenarios Correlation dropping algorithm Interference Line of sight line-of-sight massive MIMO Massive MIMO neural network Neural networks Power control Precoding Searching Signal to noise ratio |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWqXmgPqFCqLi2VDxyxmthex-a2XVoVpN0eSqXeLDuZANKSrLapEP-eGSdd7aoSXLhajjWZGXve-OMNY--jKxQtjiIithe6NEFYDGwiaBkdICCHtDUwm5vrO_3lfny_UeqL7oT19MC94s4haBVkjiik1hryYKtMOmOdiZi72JgSn8y6jWQqrcE2N25cDDRDeebOJ9Mp_hEmhBLzVCr8auRWKEqM_UOJlS20-eKxWYbfv8JisRF4rg7YywEx8kkv6Su2A81rtr_BI3jI_KdVu5xD95FPGt5vE0DFqZFeQ_HJ4lu7-tF9_8kvMGZVvG04cXLgoPP-EvgDR-jKMS0F0dbilvJ1PkNUjSshn32e3bxhd1eXX6fXYqicIEpd2E7IqrKod0mnnHWpiWEFJ1-wGJkqUxfBaRhDJaGus6ByVSodwFaqDEUBiLajOmK7TdvAMeOlqTGSlYZezOsMlEUIEk0twUadxcyMmHxSoi8HWnGqbrHwKb3InO8170nzftD8iH1Yf7TsWTX-3v2CrLPuSpTYqQEdxQ-O4v_lKCN2SLZdD4KqKbTE5tMnW_th-j549FtFB5a5GjGxtv8zUUOqabkl6tv_IeoJ25N0dSbt9Jyy3W71CO8Q-3TxLLn5H3pd-C0 priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELagewAOvBZE2AX5wBG3ie06CbdsYbUgtSBBpeVk2ckEVoSk6qbi8esZO261BQkJbpHlWLZm7Plmxv6GkGc2T4U7HJlFbM9kqQzL0LAxI7nNAQE5-NDAfKHOlvLN-fQ8BNz8WxgA8JfPYOw-fS7_Aprv6URxR56WT3KRcDSLE5fBQ78OT5qqvk4O1BSx-IgcLBfvio-uolyiciZ8bvIoEGtOjK9BiE4hR1_VFX9VfM8cedb-UGZlD3He2LQr8-ObaZorxuf0DtHbaQ93Tr6MN70dlz9_Y3T8_3XdJbcDLqXFoEj3yDVo75NbV9gKD4l-ue5WC-hf0KKlQzACKuoa3ZsrWjSfuvVF__krPUHLWNGupY75AwddDFfNLykCZIrOL7CuZu9dVIDOEbvjeUvnr-dvH5Dl6asPszMW6jOwUqZZz3hVZShd7mZcl9LxuOAWNxnav0rVqcklTKHiUNexEYkohTSQVaI0aQqI6a14SEZt18IjQktVo70slXuXL2MQGQIdq2oOmZWxjVVE-FZMugzk5a6GRqO9ExPnupjNUGO1k60Oso3I891Pq4G74-_dT5z8d10d8bZvQFnpsI81GCkMTxAU11ICLraKea6yXFl0pTObROTQyXc3SBBmRI632qTDIXGpcXcIlxZNRETYTsP-mOqgtXtTffyP_Y_ITe7u4vjQ0TEZ9esNPEEw1dunYcf8All9Euo priority: 102 providerName: Unpaywall |
| Title | DropNet: An Improved Dropping Algorithm Based On Neural Networks for Line-of-Sight Massive MIMO |
| URI | https://ieeexplore.ieee.org/document/9357421 https://www.proquest.com/docview/2493600213 https://ieeexplore.ieee.org/ielx7/6287639/9312710/09357421.pdf https://doaj.org/article/ea43a21310f44e1a8d0296896b7218b1 |
| UnpaywallVersion | publishedVersion |
| Volume | 9 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFLbGOMAO_BpogVH5wHHuUtt1HG5ZYRpI6ZCg0jhFtvMCiJJUXSoEfz3PThqtgBC3yEocW5_t971n-3uEvLBpIvziyCxyeyadMkyjYWNGcpsCEnIIoYF8ri4W8u3V9GqPnAx3YQAgHD6DsX8Me_ll4zY-VHaaiil6cujr3Eq06u5qDfEUn0AinSa9sNAkTk-z2Qz7gC4gR8_Up3pVfMf4BI3-PqnKDr-8s6lX5sd3s1zeMDXn90m-bWR3wuTreNPasfv5m37j__biAbnXc06adYPkIdmD-hE5uKFEeEiKV-tmNYf2Jc1q2gUaoKS-0N-notnyU7P-0n7-Rs_Q6pX0sqZe1QMrnXfHyK8pkl-Kji2wpmLvvcdPc-TluJbS_E1--Zgszl9_mF2wPvcCczLRLeNlqRE57vdJKye9RgtOX6PRtpWqSkwqYQolh6qKjZgIJ6QBXQpnkgSQr1vxhOzXTQ1HhDpVoS10yt-5lzEIjSTGqoqDtjK2sYoI34JSuF6Y3OfHWBbBQYnTokOy8EgWPZIRORk-WnW6HP9-_cyjPbzqRbVDASJT9HO0ACOF4RMkvJWUgJ0tY54qnSqLbrK2k4gcejSHSnogI3K8HTtFvwBcFzjyhd_ynIiIsGE8_dFUE7Ji7jT16d__8ozc5f44TYj-HJP9dr2B58iHWjsKcYRRmA4jcnsxf5d9_AW9rwVW |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWq9lA48FUQgQI-cKy3ie04CbftQrWFZnuglXqzbGdSqi7JapsVKr-ecZKNuoAQt8hKHFvP9rwZ228IeW-zRPjFkVnk9kw6ZViKho0ZyW0GSMihDQ3kMzW9kJ8v48stcjDchQGA9vAZjPxju5df1G7lQ2WHmYjRk0NfZyeWUsbdba0houJTSGRx0ksLRWF2OJ5MsBfoBHL0TX2yV8U3zE-r0t-nVdlgmLuramHufpj5_J6xOX5M8nUzuzMmN6NVY0fu528Kjv_bjyfkUc866bgbJk_JFlTPyMN7WoR7RH9c1osZNB_ouKJdqAEK6gv9jSo6nl_Vy-vm23d6hHavoGcV9boeWOmsO0h-S5H-UnRtgdUl--p9fpojM8fVlOYn-dlzcnH86XwyZX32BeZkkjaMF0WK2HG_U1o66VVacAKbFK1bocrEZBJiKDiUZWhEJJyQBtJCOJMkgIzdihdku6oreEmoUyVaQ6f8rXsZgkiRxlhVckitDG2oAsLXoGjXS5P7DBlz3booYaY7JLVHUvdIBuRg-GjRKXP8-_Ujj_bwqpfVbgsQGd3PUg1GCsMjpLyllICdLUKeqTRTFh3l1EYB2fNoDpX0QAZkfz12dL8E3Goc-8JvekYiIGwYT3801bR5MTea-urvf3lHdqfn-ak-PZl9eU0ecH-4po0F7ZPtZrmCN8iOGvu2nRS_ADXmBf4 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELagewAOvBZE2AX5wBG3ie06CbdsYbUgtSBBpeVk2ckEVoSk6qbi8esZO261BQkJbpHlWLZm7Plmxv6GkGc2T4U7HJlFbM9kqQzL0LAxI7nNAQE5-NDAfKHOlvLN-fQ8BNz8WxgA8JfPYOw-fS7_Aprv6URxR56WT3KRcDSLE5fBQ78OT5qqvk4O1BSx-IgcLBfvio-uolyiciZ8bvIoEGtOjK9BiE4hR1_VFX9VfM8cedb-UGZlD3He2LQr8-ObaZorxuf0DtHbaQ93Tr6MN70dlz9_Y3T8_3XdJbcDLqXFoEj3yDVo75NbV9gKD4l-ue5WC-hf0KKlQzACKuoa3ZsrWjSfuvVF__krPUHLWNGupY75AwddDFfNLykCZIrOL7CuZu9dVIDOEbvjeUvnr-dvH5Dl6asPszMW6jOwUqZZz3hVZShd7mZcl9LxuOAWNxnav0rVqcklTKHiUNexEYkohTSQVaI0aQqI6a14SEZt18IjQktVo70slXuXL2MQGQIdq2oOmZWxjVVE-FZMugzk5a6GRqO9ExPnupjNUGO1k60Oso3I891Pq4G74-_dT5z8d10d8bZvQFnpsI81GCkMTxAU11ICLraKea6yXFl0pTObROTQyXc3SBBmRI632qTDIXGpcXcIlxZNRETYTsP-mOqgtXtTffyP_Y_ITe7u4vjQ0TEZ9esNPEEw1dunYcf8All9Euo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DropNet%3A+An+Improved+Dropping+Algorithm+Based+On+Neural+Networks+for+Line-of-Sight+Massive+MIMO&rft.jtitle=IEEE+access&rft.au=Farsaei%2C+Amirashkan&rft.au=Sheikh%2C+Alireza&rft.au=Gustavsson%2C+Ulf&rft.au=Alvarado%2C+Alex&rft.date=2021-01-01&rft.pub=IEEE&rft.eissn=2169-3536&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FACCESS.2020.3037562&rft.externalDocID=9357421 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |