An empirical analysis of binary transformation strategies and base algorithms for multi-label learning
Investigating strategies that are able to efficiently deal with multi-label classification tasks is a current research topic in machine learning. Many methods have been proposed, making the selection of the most suitable strategy a challenging issue. From this premise, this paper presents an extensi...
Saved in:
| Published in | Machine learning Vol. 109; no. 8; pp. 1509 - 1563 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.08.2020
Springer Nature B.V Springer Verlag |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0885-6125 1573-0565 1573-0565 |
| DOI | 10.1007/s10994-020-05879-3 |
Cover
| Abstract | Investigating strategies that are able to efficiently deal with multi-label classification tasks is a current research topic in machine learning. Many methods have been proposed, making the selection of the most suitable strategy a challenging issue. From this premise, this paper presents an extensive empirical analysis of the binary transformation strategies and base algorithms for multi-label learning. This subset of strategies uses the one-versus-all approach to transform the original data, generating one binary data set per label, upon which any binary base algorithm can be applied. Considering that the influence of the base algorithm on the predictive performance obtained by the strategies has not been considered in depth by many empirical studies, we investigated the influence of distinct base algorithms on the performance of several strategies. Thus, this study covers a family of multi-label strategies using a diversified range of base algorithms, exploring their relationship over different perspectives. This finding has significant implications concerning the methodology of evaluation adopted in multi-label experiments containing binary transformation strategies, given that multiple base algorithms should be considered. Despite these improvements in strategy and base algorithms, for many data sets, a large number of labels, mainly those less frequent, were either never predicted, or always misclassified. We conclude the experimental analysis by recommending strategies and base algorithms in accordance with different performance criteria. |
|---|---|
| AbstractList | Investigating strategies that are able to efficiently deal with multi-label classification tasks is a current research topic in machine learning. Many methods have been proposed, making the selection of the most suitable strategy a challenging issue. From this premise, this paper presents an extensive empirical analysis of the binary transformation strategies and base algorithms for multi-label learning. This subset of strategies uses the one-versus-all approach to transform the original data, generating one binary data set per label, upon which any binary base algorithm can be applied. Considering that the influence of the base algorithm on the predictive performance obtained by the strategies has not been considered in depth by many empirical studies, we investigated the influence of distinct base algorithms on the performance of several strategies. Thus, this study covers a family of multi-label strategies using a diversified range of base algorithms, exploring their relationship over different perspectives. This finding has significant implications concerning the methodology of evaluation adopted in multi-label experiments containing binary transformation strategies, given that multiple base algorithms should be considered. Despite these improvements in strategy and base algorithms, for many data sets, a large number of labels, mainly those less frequent, were either never predicted, or always misclassified. We conclude the experimental analysis by recommending strategies and base algorithms in accordance with different performance criteria. |
| Author | Soares, Carlos Rivolli, Adriano de Carvalho, André C. P. L. F. Pfahringer, Bernhard Read, Jesse |
| Author_xml | – sequence: 1 givenname: Adriano orcidid: 0000-0001-6445-3007 surname: Rivolli fullname: Rivolli, Adriano email: rivolli@utfpr.edu.br organization: Department of Computer Science, Technological University of Paraná – sequence: 2 givenname: Jesse surname: Read fullname: Read, Jesse organization: Laboratoire d’Informatique (LIX), École Polytechnique – sequence: 3 givenname: Carlos surname: Soares fullname: Soares, Carlos organization: Fraunhofer AICOS and LIAAD-INESC TEC, University of Porto – sequence: 4 givenname: Bernhard surname: Pfahringer fullname: Pfahringer, Bernhard organization: University of Waikato – sequence: 5 givenname: André C. P. L. F. surname: de Carvalho fullname: de Carvalho, André C. P. L. F. organization: Institute of Mathematics and Computer Sciences, University of São Paulo |
| BackLink | https://hal.science/hal-04459082$$DView record in HAL |
| BookMark | eNqNkUFrHCEUxyWkkE3aL5CT0FMP0z51dPS4hDYpLPTSnuXNrLMxOLrR2Zb99jWZhUAPS73Ik99fn793TS5jio6QWwafGUD3pTAwpm2AQwNSd6YRF2TFZCdqqeQlWYHWslGMyytyXcoTAHCl1YqM60jdtPfZDxgoRgzH4gtNI-19xHykc8ZYxpQnnH2KtNR6djvvSoW3tMfiKIZdyn5-nAqtIJ0OYfZNwN4FGhzm6OPuPXk3Yijuw2m_Ib--ff1599Bsftx_v1tvmqHt9NxwzrDrjHKuF2PbC80UCCaQsaGXnQE3qJFzUBzbwQxGbg3gltU1Ku26LRc3RCz3HuIej38wBLvPfqofsQzsiyq7qLJVlX1VZUVNfVpSj_jGJ_T2Yb2xL2fQttKA5r9ZZT8u7D6n54Mrs31Kh1y9FculMC0Iyc9TrZBCnCi-UENOpWQ3_l-z-p_Q4OfX4dTR-HA-erJT6jtx5_JbV2dSfwF9frZH |
| CitedBy_id | crossref_primary_10_1007_s40747_021_00611_7 crossref_primary_10_3390_app15052379 crossref_primary_10_1007_s10994_021_06107_2 crossref_primary_10_1016_j_eswa_2022_117215 crossref_primary_10_1016_j_ins_2024_121074 crossref_primary_10_1109_TPAMI_2021_3051276 crossref_primary_10_1016_j_neucom_2022_01_075 crossref_primary_10_1016_j_patcog_2024_110342 crossref_primary_10_3390_infrastructures9050083 crossref_primary_10_1002_isaf_1564 |
| Cites_doi | 10.1016/j.eswa.2011.06.056 10.1145/1961189.1961199 10.1016/j.inffus.2017.12.001 10.1109/TKDE.2015.2416731 10.1016/j.neucom.2018.02.011 10.1145/2716262 10.4018/jdwm.2007070101 10.1016/j.ipm.2018.01.002 10.1007/978-3-642-01536-6_8 10.1007/978-0-387-09823-4_34 10.1007/s10994-011-5276-1 10.1016/S0893-6080(05)80023-1 10.1111/exsy.12304 10.1007/s10846-014-0144-4 10.1075/nlp.5(1st) 10.1023/A:1009982220290 10.1016/j.compbiomed.2015.07.017 10.1023/A:1010933404324 10.1109/TKDE.2013.39 10.1109/TKDE.2010.164 10.1023/A:1007614523901 10.1007/s13748-012-0030-x 10.1016/j.patcog.2012.03.004 10.1186/1687-4722-2011-426793 10.1016/j.patcog.2004.03.009 10.1109/TASL.2007.913750 10.1002/widm.1139 10.1109/TPAMI.2014.2339815 10.1016/j.eswa.2015.01.024 10.1007/s10994-011-5256-5 10.32614/RJ-2015-027 10.1016/j.patcog.2013.09.029 10.1007/978-3-319-99259-4_25 10.1109/EUROCON.2015.7313677 10.1109/AERO.2005.1559692 10.1145/3067695.3082053 10.1109/IJCNN.2015.7280644 10.1109/ICTAI.2013.76 10.1007/978-3-319-13560-1_8 10.3115/1572392.1572411 10.1109/MLSP.2013.6661934 10.1007/978-3-540-30115-8_22 10.1007/978-3-540-30228-5_1 10.1145/1180639.1180727 10.1007/978-3-540-24775-3_5 10.1007/978-3-319-01595-8_18 10.1007/3-540-47979-1_7 10.1007/978-3-642-23808-6_10 10.1145/2939672.2939785 10.1016/B978-1-55860-377-6.50048-7 10.1007/978-3-319-12027-0_17 10.1007/978-3-642-34654-5_20 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2020 The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2020. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2020 – notice: The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2020. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 3V. 7SC 7XB 88I 8AL 8AO 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N M2P P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 1XC ADTOC UNPAY |
| DOI | 10.1007/s10994-020-05879-3 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Hyper Article en Ligne (HAL) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database Computer Science Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-0565 |
| EndPage | 1563 |
| ExternalDocumentID | 10.1007/s10994-020-05879-3 oai:HAL:hal-04459082v1 10_1007_s10994_020_05879_3 |
| GrantInformation_xml | – fundername: CAPES – fundername: CeMEAI-FAPESP grantid: 13/07375-0 – fundername: Intel Corporation funderid: http://dx.doi.org/10.13039/100002418 – fundername: FAPESP grantid: 2016/18615-0; 2013/07375-0; 2012/22608-8 – fundername: CNPq grantid: 305291/2017-3; 152098/2016-0 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 88I 8AO 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAEWM AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW LAK LLZTM M0N M2P M4Y MA- MVM N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF- PQQKQ PROAC PT4 Q2X QF4 QM1 QN7 QO4 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VXZ W23 W48 WH7 WIP WK8 XJT YLTOR Z45 Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z88 Z8M Z8N Z8O Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z8Z Z91 Z92 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U 1XC ADTOC UNPAY |
| ID | FETCH-LOGICAL-c478t-221a7796eeb3f4b38160313a11cb5790ec6f22062a4c9c95d90ad1111f68e7d23 |
| IEDL.DBID | BENPR |
| ISSN | 0885-6125 1573-0565 |
| IngestDate | Tue Aug 19 15:05:08 EDT 2025 Tue Oct 14 20:46:06 EDT 2025 Fri Jul 25 05:26:48 EDT 2025 Fri Jul 25 06:56:04 EDT 2025 Thu Apr 24 23:10:35 EDT 2025 Wed Oct 01 01:03:56 EDT 2025 Fri Feb 21 02:49:04 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Multi-label learning Base algorithms Binary transformation Comparison of strategies Empirical analysis |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c478t-221a7796eeb3f4b38160313a11cb5790ec6f22062a4c9c95d90ad1111f68e7d23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6445-3007 0000-0002-1013-6724 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s10994-020-05879-3.pdf |
| PQID | 2435333521 |
| PQPubID | 54194 |
| PageCount | 55 |
| ParticipantIDs | unpaywall_primary_10_1007_s10994_020_05879_3 hal_primary_oai_HAL_hal_04459082v1 proquest_journals_2539403521 proquest_journals_2435333521 crossref_primary_10_1007_s10994_020_05879_3 crossref_citationtrail_10_1007_s10994_020_05879_3 springer_journals_10_1007_s10994_020_05879_3 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-08-01 |
| PublicationDateYYYYMMDD | 2020-08-01 |
| PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationTitle | Machine learning |
| PublicationTitleAbbrev | Mach Learn |
| PublicationYear | 2020 |
| Publisher | Springer US Springer Nature B.V Springer Verlag |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: Springer Verlag |
| References | Tsoumakas, Katakis (CR54) 2007; 3 Benavoli, Corani, Demsar, Zaffalon (CR2) 2017; 18 Yang (CR62) 1999; 1 CR38 CR34 CR33 Madjarov, Kocev, Gjorgjevikj, Džeroski (CR32) 2012; 45 Joachims (CR26) 1998; 1398 Wolpert (CR61) 1992; 5 Quinlan (CR39) 1993 Gibaja, Ventura (CR20) 2014; 4 Schapire, Singer (CR46) 1999; 37 Read, Pfahringer, Holmes, Frank (CR42) 2009; 5782 Charte, Rivera, Charte, del Jesús, Herrera (CR10) 2018; 289 Tsoumakas, Katakis, Vlahavas (CR57) 2011; 23 Turnbull, Barrington, Torres, Lanckriet (CR58) 2008; 16 CR6 CR8 CR49 Liu, Chen (CR30) 2015; 42 CR48 CR47 Jackson, Moulinier (CR24) 2002 CR44 Alali, Kubat (CR1) 2015; 27 Breiman (CR5) 2001; 45 CR41 Jain, Dubes (CR25) 1988 CR40 Gelman, Hill (CR19) 2007 Bernardini, Benito, Meza (CR3) 2014; 12 Zhang, Zhou (CR64) 2014; 26 Zhou, Tao, Wu (CR66) 2012; 88 Montañes, Senge, Barranquero, Quevedo, Coz, Hüllermeier (CR35) 2014; 47 Charte, Charte (CR9) 2015; 7 Luaces, Díez, Barranquero, del Coz, Bahamonde (CR31) 2012; 1 CR18 CR17 CR16 CR15 CR59 CR11 Pereira, Plastino, Zadrozny, Merschmann (CR37) 2018; 54 CR53 CR52 de Carvalho, Freitas, Abraham, Hassanien, Snášel (CR14) 2009 Rivolli, Soares, de Carvalho (CR45) 2018 CR50 Chang, Lin (CR7) 2011; 2 Trohidis, Tsoumakas, Kalliris, Vlahavas (CR51) 2011; 2011 Zufferey, Hofer, Hennebert, Schumacher, Ingold, Bromuri (CR67) 2015; 65 Gibaja, Ventura (CR21) 2015; 47 CR29 Cherman, Spolaôr, Valverde-Rebaza, Monard (CR13) 2014 CR28 CR27 Cherman, Metz, Monard (CR12) 2012; 39 CR23 CR22 CR65 Zhang, Wu (CR63) 2015; 37 Boutell, Luo, Shen, Brown (CR4) 2004; 37 Read, Pfahringer, Holmes, Frank (CR43) 2011; 85 CR60 Tsoumakas, Katakis, Vlahavas, Maimon, Rokach (CR55) 2010 Tsoumakas, Katakis, Vlahavas (CR56) 2011; 23 Moyano, Galindo, Cios, Ventura (CR36) 2018; 44 Y Yang (5879_CR62) 1999; 1 5879_CR52 5879_CR53 5879_CR50 5879_CR6 5879_CR8 EA Cherman (5879_CR13) 2014 5879_CR11 5879_CR16 5879_CR17 A Rivolli (5879_CR45) 2018 5879_CR15 G Tsoumakas (5879_CR57) 2011; 23 5879_CR59 5879_CR18 ML Zhang (5879_CR64) 2014; 26 5879_CR60 A Alali (5879_CR1) 2015; 27 CC Chang (5879_CR7) 2011; 2 RB Pereira (5879_CR37) 2018; 54 J Read (5879_CR42) 2009; 5782 O Luaces (5879_CR31) 2012; 1 E Gibaja (5879_CR21) 2015; 47 5879_CR23 5879_CR65 L Breiman (5879_CR5) 2001; 45 5879_CR22 5879_CR27 5879_CR28 D Zufferey (5879_CR67) 2015; 65 E Gibaja (5879_CR20) 2014; 4 5879_CR29 T Joachims (5879_CR26) 1998; 1398 J Read (5879_CR43) 2011; 85 SM Liu (5879_CR30) 2015; 42 ACPLF de Carvalho (5879_CR14) 2009 E Montañes (5879_CR35) 2014; 47 EA Cherman (5879_CR12) 2012; 39 ML Zhang (5879_CR63) 2015; 37 F Charte (5879_CR10) 2018; 289 5879_CR34 5879_CR33 FC Bernardini (5879_CR3) 2014; 12 5879_CR38 ER Schapire (5879_CR46) 1999; 37 AK Jain (5879_CR25) 1988 MR Boutell (5879_CR4) 2004; 37 G Tsoumakas (5879_CR55) 2010 G Tsoumakas (5879_CR54) 2007; 3 A Gelman (5879_CR19) 2007 JR Quinlan (5879_CR39) 1993 5879_CR41 K Trohidis (5879_CR51) 2011; 2011 5879_CR40 G Tsoumakas (5879_CR56) 2011; 23 5879_CR44 5879_CR49 F Charte (5879_CR9) 2015; 7 5879_CR47 A Benavoli (5879_CR2) 2017; 18 P Jackson (5879_CR24) 2002 5879_CR48 D Turnbull (5879_CR58) 2008; 16 DH Wolpert (5879_CR61) 1992; 5 JM Moyano (5879_CR36) 2018; 44 T Zhou (5879_CR66) 2012; 88 G Madjarov (5879_CR32) 2012; 45 |
| References_xml | – ident: CR22 – volume: 39 start-page: 1647 issue: 2 year: 2012 end-page: 1655 ident: CR12 article-title: Incorporating label dependency into the binary relevance framework for multi-label classification publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2011.06.056 – volume: 2 start-page: 27:1 year: 2011 end-page: 27:27 ident: CR7 article-title: LIBSVM: A library for support vector machines publication-title: ACM Transactions on Intelligent Systems and Technology doi: 10.1145/1961189.1961199 – volume: 44 start-page: 33 year: 2018 end-page: 45 ident: CR36 article-title: Review of ensembles of multi-label classifiers: Models, experimental study and prospects publication-title: Information Fusion doi: 10.1016/j.inffus.2017.12.001 – year: 1993 ident: CR39 publication-title: C4.5: Programs for Machine Learning – ident: CR49 – volume: 27 start-page: 2480 issue: 9 year: 2015 end-page: 2493 ident: CR1 article-title: PruDent: A pruned and confident stacking approach for multi-label classification publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2015.2416731 – ident: CR16 – volume: 1398 start-page: 137 year: 1998 end-page: 142 ident: CR26 article-title: Text categorization with support vector machines: Learning with many relevant features publication-title: Proceedings of the 10th European Conference on Machine Learning – volume: 289 start-page: 68 year: 2018 end-page: 85 ident: CR10 article-title: Tips, guidelines and tools for managing multi-label datasets: The mldr.datasets R package and the cometa data repository publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.02.011 – ident: CR29 – volume: 47 start-page: 1 issue: 3 year: 2015 end-page: 38 ident: CR21 article-title: A tutorial on multilabel learning publication-title: ACM Computing Surveys doi: 10.1145/2716262 – ident: CR8 – year: 2007 ident: CR19 publication-title: Data analysis using regression and multilevel/hierarchical models. Analytical methods for social research – volume: 3 start-page: 1 issue: 3 year: 2007 end-page: 13 ident: CR54 article-title: Multi-label classification: An overview publication-title: International Journal of Data Warehousing and Mining doi: 10.4018/jdwm.2007070101 – volume: 54 start-page: 359 issue: 3 year: 2018 end-page: 369 ident: CR37 article-title: Correlation analysis of performance measures for multi-label classification publication-title: Information Processing & Management doi: 10.1016/j.ipm.2018.01.002 – year: 1988 ident: CR25 publication-title: Algorithms for clustering data – start-page: 177 year: 2009 end-page: 195 ident: CR14 article-title: A tutorial on multi-label classification techniques publication-title: Foundations of computational intelligence doi: 10.1007/978-3-642-01536-6_8 – ident: CR15 – start-page: 667 year: 2010 end-page: 685 ident: CR55 article-title: Mining multi-label data publication-title: Data mining and knowledge discovery handbook, Chap 34 doi: 10.1007/978-0-387-09823-4_34 – ident: CR50 – volume: 88 start-page: 69 issue: 1–2 year: 2012 end-page: 126 ident: CR66 article-title: Compressed labeling on distilled labelsets for multi-label learning publication-title: Machine Learning doi: 10.1007/s10994-011-5276-1 – volume: 5 start-page: 241 issue: 2 year: 1992 end-page: 259 ident: CR61 article-title: Stacked generalization publication-title: Neural Networks doi: 10.1016/S0893-6080(05)80023-1 – ident: CR11 – ident: CR60 – year: 2018 ident: CR45 article-title: Enhancing multilabel classification for food truck recommendation publication-title: Expert Systems doi: 10.1111/exsy.12304 – year: 2014 ident: CR13 article-title: Lazy multi-label learning algorithms based on mutuality strategies publication-title: Journal of Intelligent & Robotic Systems doi: 10.1007/s10846-014-0144-4 – ident: CR18 – ident: CR47 – year: 2002 ident: CR24 publication-title: Natural language processing for online applications: Text retrieval, extraction & categorization doi: 10.1075/nlp.5(1st) – volume: 1 start-page: 69 issue: 1–2 year: 1999 end-page: 90 ident: CR62 article-title: An evaluation of statistical approaches to text categorization publication-title: Information Retrieval doi: 10.1023/A:1009982220290 – ident: CR53 – volume: 65 start-page: 34 year: 2015 end-page: 43 ident: CR67 article-title: Performance comparison of multi-label learning algorithms on clinical data for chronic diseases publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2015.07.017 – volume: 45 start-page: 5 issue: 1 year: 2001 end-page: 32 ident: CR5 article-title: Random forests publication-title: Machine Learning doi: 10.1023/A:1010933404324 – volume: 26 start-page: 1819 issue: 8 year: 2014 end-page: 1837 ident: CR64 article-title: A review on multi-label learning algorithms publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2013.39 – volume: 12 start-page: 53 issue: 1 year: 2014 end-page: 71 ident: CR3 article-title: Cardinality and density measures and their influence to multi-label learning methods publication-title: Journal of the Brazilian Society on Computational Intelligence – ident: CR33 – volume: 23 start-page: 1079 issue: 7 year: 2011 end-page: 1089 ident: CR56 article-title: Random k-labelsets for multi-label classification publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2010.164 – volume: 37 start-page: 297 issue: 3 year: 1999 end-page: 336 ident: CR46 article-title: Improved boosting algorithm using confidence-rated predictions publication-title: Machine Learning doi: 10.1023/A:1007614523901 – ident: CR6 – volume: 1 start-page: 303 issue: 4 year: 2012 end-page: 313 ident: CR31 article-title: Binary relevance efficacy for multilabel classification publication-title: Progress in Artificial Intelligence doi: 10.1007/s13748-012-0030-x – volume: 45 start-page: 3084 issue: 9 year: 2012 end-page: 3104 ident: CR32 article-title: An extensive experimental comparison of methods for multi-label learning publication-title: Pattern Recognition doi: 10.1016/j.patcog.2012.03.004 – ident: CR40 – ident: CR27 – volume: 2011 start-page: 4 issue: 1 year: 2011 ident: CR51 article-title: Multi-label classification of music by emotion publication-title: Journal on Audio, Speech, and Music Processing doi: 10.1186/1687-4722-2011-426793 – volume: 37 start-page: 1757 issue: 9 year: 2004 end-page: 1771 ident: CR4 article-title: Learning multi-label scene classification publication-title: Pattern Recognition doi: 10.1016/j.patcog.2004.03.009 – ident: CR23 – volume: 16 start-page: 467 issue: 2 year: 2008 end-page: 476 ident: CR58 article-title: Semantic annotation and retrieval of music and sound effects publication-title: IEEE Transactions on Audio, Speech, and Language Processing doi: 10.1109/TASL.2007.913750 – volume: 4 start-page: 411 issue: 6 year: 2014 end-page: 444 ident: CR20 article-title: Multi-label learning: A review of the state of the art and ongoing research publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery doi: 10.1002/widm.1139 – volume: 5782 start-page: 254 year: 2009 end-page: 269 ident: CR42 article-title: Classifier chains for multi-label classification publication-title: Proceedings of the European Conference, Bled, Slovenia – ident: CR44 – ident: CR48 – ident: CR65 – volume: 37 start-page: 107 issue: 1 year: 2015 end-page: 120 ident: CR63 article-title: Lift: Multi-Label learning with label-specific features publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2014.2339815 – volume: 18 start-page: 77:1 year: 2017 end-page: 77:36 ident: CR2 article-title: Time for a change: A tutorial for comparing multiple classifiers through bayesian analysis publication-title: Journal of Machine Learning Research – volume: 42 start-page: 5567 issue: 13 year: 2015 end-page: 5579 ident: CR30 article-title: An empirical study of empty prediction of multi-label classification publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2015.01.024 – ident: CR38 – ident: CR52 – ident: CR17 – volume: 85 start-page: 333 issue: 3 year: 2011 end-page: 359 ident: CR43 article-title: Classifier chains for multi-label classification publication-title: Machine Learning doi: 10.1007/s10994-011-5256-5 – volume: 7 start-page: 149 issue: 2 year: 2015 end-page: 162 ident: CR9 article-title: Working with multilabel datasets in R: The mldr Package publication-title: The R Journal doi: 10.32614/RJ-2015-027 – ident: CR34 – volume: 47 start-page: 1494 issue: 3 year: 2014 end-page: 1508 ident: CR35 article-title: Dependent binary relevance models for multi-label classification publication-title: Pattern Recognition doi: 10.1016/j.patcog.2013.09.029 – ident: CR59 – volume: 23 start-page: 1079 issue: 7 year: 2011 end-page: 1089 ident: CR57 article-title: Random k-labelsets for multilabel classification publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2010.164 – ident: CR28 – ident: CR41 – volume-title: Natural language processing for online applications: Text retrieval, extraction & categorization year: 2002 ident: 5879_CR24 doi: 10.1075/nlp.5(1st) – ident: 5879_CR18 – volume: 27 start-page: 2480 issue: 9 year: 2015 ident: 5879_CR1 publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2015.2416731 – volume-title: C4.5: Programs for Machine Learning year: 1993 ident: 5879_CR39 – ident: 5879_CR15 doi: 10.1007/978-3-319-99259-4_25 – volume: 47 start-page: 1 issue: 3 year: 2015 ident: 5879_CR21 publication-title: ACM Computing Surveys doi: 10.1145/2716262 – ident: 5879_CR53 – ident: 5879_CR8 doi: 10.1109/EUROCON.2015.7313677 – volume: 23 start-page: 1079 issue: 7 year: 2011 ident: 5879_CR57 publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2010.164 – volume: 37 start-page: 1757 issue: 9 year: 2004 ident: 5879_CR4 publication-title: Pattern Recognition doi: 10.1016/j.patcog.2004.03.009 – ident: 5879_CR50 doi: 10.1109/AERO.2005.1559692 – volume: 18 start-page: 77:1 year: 2017 ident: 5879_CR2 publication-title: Journal of Machine Learning Research – ident: 5879_CR16 doi: 10.1145/3067695.3082053 – ident: 5879_CR33 doi: 10.1109/IJCNN.2015.7280644 – volume: 88 start-page: 69 issue: 1–2 year: 2012 ident: 5879_CR66 publication-title: Machine Learning doi: 10.1007/s10994-011-5276-1 – ident: 5879_CR23 doi: 10.1109/ICTAI.2013.76 – ident: 5879_CR29 doi: 10.1007/978-3-319-13560-1_8 – volume: 1398 start-page: 137 year: 1998 ident: 5879_CR26 publication-title: Proceedings of the 10th European Conference on Machine Learning – volume: 44 start-page: 33 year: 2018 ident: 5879_CR36 publication-title: Information Fusion doi: 10.1016/j.inffus.2017.12.001 – year: 2018 ident: 5879_CR45 publication-title: Expert Systems doi: 10.1111/exsy.12304 – start-page: 177 volume-title: Foundations of computational intelligence year: 2009 ident: 5879_CR14 doi: 10.1007/978-3-642-01536-6_8 – ident: 5879_CR38 doi: 10.3115/1572392.1572411 – volume: 1 start-page: 69 issue: 1–2 year: 1999 ident: 5879_CR62 publication-title: Information Retrieval doi: 10.1023/A:1009982220290 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 5879_CR5 publication-title: Machine Learning doi: 10.1023/A:1010933404324 – ident: 5879_CR6 doi: 10.1109/MLSP.2013.6661934 – ident: 5879_CR27 doi: 10.1007/978-3-540-30115-8_22 – ident: 5879_CR52 – year: 2014 ident: 5879_CR13 publication-title: Journal of Intelligent & Robotic Systems doi: 10.1007/s10846-014-0144-4 – ident: 5879_CR40 doi: 10.1007/978-3-540-30228-5_1 – volume: 23 start-page: 1079 issue: 7 year: 2011 ident: 5879_CR56 publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2010.164 – volume: 5782 start-page: 254 year: 2009 ident: 5879_CR42 publication-title: Proceedings of the European Conference, Bled, Slovenia – volume: 12 start-page: 53 issue: 1 year: 2014 ident: 5879_CR3 publication-title: Journal of the Brazilian Society on Computational Intelligence – volume: 5 start-page: 241 issue: 2 year: 1992 ident: 5879_CR61 publication-title: Neural Networks doi: 10.1016/S0893-6080(05)80023-1 – volume: 39 start-page: 1647 issue: 2 year: 2012 ident: 5879_CR12 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2011.06.056 – volume-title: Data analysis using regression and multilevel/hierarchical models. Analytical methods for social research year: 2007 ident: 5879_CR19 – ident: 5879_CR49 doi: 10.1145/1180639.1180727 – ident: 5879_CR22 doi: 10.1007/978-3-540-24775-3_5 – ident: 5879_CR59 – ident: 5879_CR48 doi: 10.1007/978-3-319-01595-8_18 – ident: 5879_CR60 – volume: 7 start-page: 149 issue: 2 year: 2015 ident: 5879_CR9 publication-title: The R Journal doi: 10.32614/RJ-2015-027 – volume: 45 start-page: 3084 issue: 9 year: 2012 ident: 5879_CR32 publication-title: Pattern Recognition doi: 10.1016/j.patcog.2012.03.004 – volume: 3 start-page: 1 issue: 3 year: 2007 ident: 5879_CR54 publication-title: International Journal of Data Warehousing and Mining doi: 10.4018/jdwm.2007070101 – start-page: 667 volume-title: Data mining and knowledge discovery handbook, Chap 34 year: 2010 ident: 5879_CR55 doi: 10.1007/978-0-387-09823-4_34 – volume: 42 start-page: 5567 issue: 13 year: 2015 ident: 5879_CR30 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2015.01.024 – volume: 54 start-page: 359 issue: 3 year: 2018 ident: 5879_CR37 publication-title: Information Processing & Management doi: 10.1016/j.ipm.2018.01.002 – volume: 65 start-page: 34 year: 2015 ident: 5879_CR67 publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2015.07.017 – ident: 5879_CR17 doi: 10.1007/3-540-47979-1_7 – volume: 2 start-page: 27:1 year: 2011 ident: 5879_CR7 publication-title: ACM Transactions on Intelligent Systems and Technology doi: 10.1145/1961189.1961199 – volume: 47 start-page: 1494 issue: 3 year: 2014 ident: 5879_CR35 publication-title: Pattern Recognition doi: 10.1016/j.patcog.2013.09.029 – ident: 5879_CR44 – ident: 5879_CR47 doi: 10.1007/978-3-642-23808-6_10 – volume: 289 start-page: 68 year: 2018 ident: 5879_CR10 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.02.011 – ident: 5879_CR11 doi: 10.1145/2939672.2939785 – ident: 5879_CR65 – volume: 4 start-page: 411 issue: 6 year: 2014 ident: 5879_CR20 publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery doi: 10.1002/widm.1139 – volume: 37 start-page: 297 issue: 3 year: 1999 ident: 5879_CR46 publication-title: Machine Learning doi: 10.1023/A:1007614523901 – volume: 16 start-page: 467 issue: 2 year: 2008 ident: 5879_CR58 publication-title: IEEE Transactions on Audio, Speech, and Language Processing doi: 10.1109/TASL.2007.913750 – ident: 5879_CR28 doi: 10.1016/B978-1-55860-377-6.50048-7 – ident: 5879_CR41 doi: 10.1007/978-3-319-12027-0_17 – volume: 37 start-page: 107 issue: 1 year: 2015 ident: 5879_CR63 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2014.2339815 – volume: 1 start-page: 303 issue: 4 year: 2012 ident: 5879_CR31 publication-title: Progress in Artificial Intelligence doi: 10.1007/s13748-012-0030-x – volume-title: Algorithms for clustering data year: 1988 ident: 5879_CR25 – ident: 5879_CR34 doi: 10.1007/978-3-642-34654-5_20 – volume: 85 start-page: 333 issue: 3 year: 2011 ident: 5879_CR43 publication-title: Machine Learning doi: 10.1007/s10994-011-5256-5 – volume: 2011 start-page: 4 issue: 1 year: 2011 ident: 5879_CR51 publication-title: Journal on Audio, Speech, and Music Processing doi: 10.1186/1687-4722-2011-426793 – volume: 26 start-page: 1819 issue: 8 year: 2014 ident: 5879_CR64 publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2013.39 |
| SSID | ssj0002686 |
| Score | 2.4017315 |
| Snippet | Investigating strategies that are able to efficiently deal with multi-label classification tasks is a current research topic in machine learning. Many methods... |
| SourceID | unpaywall hal proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1509 |
| SubjectTerms | Algorithms Artificial Intelligence Binary data Computer Science Control Datasets Empirical analysis Machine Learning Mechatronics Natural Language Processing (NLP) Performance prediction Robotics Simulation and Modeling Transformations |
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwEA46H9QHf4vTKUF808CaNsnyOMQxRH1ysLeStKkKtRtbp_jfe8nSboKKvjaX0OYuuSt3930IXYBH5eDIM6LAnZAo1ZzoQGoijWA6zBIqtc3o3j_w_iC6HbKhbwqbVtXuVUrS3dRLzW4Oxpba5G1HSBKuojVm4bzAige0W9-_lDt-Rzg-jFj_7Vtlvl_jiztafbbFkEuRZp0c3UTrs2KsPt5Vni_5n94O2vKBI-7ONb2LVkyxh7YrUgbsz-g-yroFNq_jFwf9gZXHHMGjDGvXeovLpVB1VOBpWYFFgHCKrVfDKn8aTV7K59cpBkHsig4JmIvJsWeZeDpAg97N43WfeDIFkkSiUxJKAyWE5Ab-nrNI23yhhW1UQZBoJmTbJDyjtM2pihKZSJbKtkrtfZrxjhEpDQ9RoxgV5ghhnWmYFaQRg800qVZcKGoY_NImQkPA00RBtadx4pHGLeFFHi8wkq0eYtBD7PQQh010Wc8Zz3E2fpU-B1XVghYiu9-9i-2zdhQ5Gve3oIlalSZjfzCnMYXwMLR9Zj8MM8sUPx--qpS_GP7tja5qA_nDBxz_b_UTtEGd0drCwxZqlJOZOYVgqNRnzvY_Ab1e_Kg priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fTxQxEJ7A8SA8CCqEUzCN8U0Kt71te328KORClPjgJfi06U8gLHsXbk-jf71tt3ucBInG1-10s53Odr5mZr4BeOs9KvOO3GHp3QnOjWJYZUJhYTlVfaeJUCGi--mMjcb56Tk9X4EPbS1MzHZvQ5JNTUNgaarqo6lxR0uFb5HSloRA7oAL7C-Exq3CGqMekXdgbXz2efi1AZAUByceaVN5SFVjNNXOPPyi3_zT6mXIjlyCnoto6QY8mVdT-eO7LMslh3SyCbZdSpOHcn04r9Wh_nmP5fF_17oFTxNiRcPGxJ7Biq2ew2bbDQKlw-EFuGGF7M30KnKOIJnITtDEIRVrflG9hJEnFZrVLUuFFzYouFMky4vJ7VV9eTNDXhDFbEfs7dSWKLW3uNiG8cnxl_cjnLo4YJ3zQY0JySTngll_bXe5CoHKwBcps0wrykXPauYI6TEicy20oEb0pAkHuWMDyw3p70CnmlR2F5Byys_KTE69RqxRknFJLPV3ac2VR1pdyNq9K3SiOA-dNsrijpw5KLPwyiyiMot-F94t5kwbgo9Hpd94k1gIBm7u0fBjEZ718jz2j_-WdWGvtZginQizgnhc2g8Fbn8YpqFFfTN80NrE3fBjX3SwMMS_WMDLfxN_BeskWl7IeNyDTn07t_sehdXqdfrJfgFAXiUv priority: 102 providerName: Unpaywall |
| Title | An empirical analysis of binary transformation strategies and base algorithms for multi-label learning |
| URI | https://link.springer.com/article/10.1007/s10994-020-05879-3 https://www.proquest.com/docview/2435333521 https://www.proquest.com/docview/2539403521 https://hal.science/hal-04459082 https://link.springer.com/content/pdf/10.1007/s10994-020-05879-3.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 109 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025 customDbUrl: eissn: 1573-0565 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: AMVHM dateStart: 20080107 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1573-0565 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: ADMLS dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-0565 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-0565 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-0565 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-0565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-t7QPsgfE1URiVhXhjFo3zVT9MKEPtKqDVhCjaniI7cTakLO1oxsR_z53nZOWBiqco8UVJfGffOef7_QDeokeN0JEXXKE74UGuI649qbk0caj9IhNSU0Z3No-mi-DTWXi2A_OmFoa2VTZzop2o82VG_8jfi5A4vDFc8D6srjmxRlF2taHQUI5aIT-yEGMd6AlCxupC73g8P_3azs0istyPOLRCTr7dldG4YjoLkysoOTyKJff_clWdS9oouRGFtonTXXhwU63U71tVlhu-afIYHrmgkiV3VvAEdkz1FPYawgbmxu8zKJKKmavVDwsLwpTDI2HLgmlblsvqjTB2WbF13QBJoHDOyOMxVV5gt9SXV2uGgsxuSORoSqZkjoHi4jksJuNvH6fcES3wLIhHNRfCU3EsI4Mr6yLQlEskSEfleZkOYzk0WVQIMYyECjKZyTCXQ5XTXFtEIxPnwt-HbrWszAtgutB4l5cHIXamybWKYiVMiMvdLNYYDPXBa_o0zRwKOZFhlOk9fjLpIUU9pFYPqd-Hd-09qzsMjq3Sb1BVrSDBZ0-TLyldGwaBpXj_5fXhoNFk6gbtOhUYOvpUg_aP5tYC-3DYKP--edsbHbYG8h8f8HL7w1_BQ2GNlDYhHkC3_nljXmNgVOsBdEaTkwH0kpPzz2M6zr5PZwM3BrB1IRI8W8xPk_M_LyMM2g |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2V9lA48I1YKGAhOFGLjeMk60OFFmi1pdsVQq3UW2o7TouUZhc2peqf47cx4zrpcmDFpdfEVhLPeGacmXkP4A161BQdeck1uhMuC5NyEynDlcsSE5dWKEMZ3f1JOjqUX46SoxX43fbCUFllaxO9oS6mlv6RvxcJcXhjuBB9mP3gxBpF2dWWQkMHaoViy0OMhcaOPXd5gUe4-dbuZ5T3WyF2tg8-jXhgGeBWZoOGCxHpLFOpw2NlKQ0l0gjPUEeRNUmm-s6mpRD9VGhplVVJofq6IENTpgOXFQR8gC5gTcZS4eFv7eP25Ou3zheI1HNN4lZOOMUSoW0nNO95WF5ByehBpnj8l2u8dUqFmQtRb5eovQPr5_VMX17oqlrwhTv34W4IYtnwSusewIqrH8K9liCCBXvxCMphzdzZ7LuHIWE64J-wacmMbwNmzULYPK3ZvGmBK3BwwcjDMl2doBia07M5w4HMF0ByVF1XscB4cfIYDm9kyZ_Aaj2t3VNgpjQ4KypkgovpCqPTTAuX4PHaZgaDrx5E7ZrmNqCeE_lGlV_jNZMccpRD7uWQxz14182ZXWF-LB39GkXVDSS47tFwnNO1vpSeUv5X1IONVpJ5MBLzXGCoGlPP2z9udxrfg81W-Ne3l73RZqcg__EBz5Y__BWsjw72x_l4d7L3HG4Lr7BUALkBq83Pc_cCg7LGvAyaz-D4pjfbH0RdQbE |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIvE48EYsFLAQnKjVjTexNweEVpRlS0vFgUq9uXZit0hpdmFTqv41fh0zXiddDqy49JrYSuIZz4wzM98H8Bo9qkRH7rlBd8LT0kpuk9zy3KnMDnwhcksZ3S_7cnKQfj7MDtfgd9sLQ2WVrU0MhrqcFvSPfEtkxOGN4UKy5WNZxNft8fvZD04MUpRpbek0Fiqy6y7O8fg2f7ezjbJ-I8T447cPEx4ZBniRqmHDhUiMUrl0eKT0qaUkGmEZmiQpbKbyviukF6IvhUmLvMizMu-bkoyMl0OnSgI9QPN_XdH3Upf6-FPnBYQMLJO4iTNOUURs2IltewGQV1AaeqhyPvjLKV47oZLMpXi3S9Hehptn9cxcnJuqWvKC43twJ4avbLTQt_uw5uoHcLelhmDRUjwEP6qZO519DwAkzETkEzb1zIYGYNYsBczTms2bFrICB5eMfCsz1TEuenNyOmc4kIXSR45K6yoWuS6OH8HBlSz4Y1ivp7V7Asx6i7OSMs1wMV1pjVRGuAwP1oWyGHb1IGnXVBcR75xoNyp9idRMctAoBx3koAc9eNvNmS3QPlaOfoWi6gYSUPdktKfpWj9NA5n8r6QHG60kdTQPcy0wSB1Qt9s_bne63oPNVviXt1e90WanIP_xAU9XP_wl3MAtpvd29nefwS0R9JUqHzdgvfl55p5jNNbYF0HtGRxd9T77A1k2P0s |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fTxQxEJ7A8SA8CCqEUzCN8U0Kt71te328KORClPjgJfi06U8gLHsXbk-jf71tt3ucBInG1-10s53Odr5mZr4BeOs9KvOO3GHp3QnOjWJYZUJhYTlVfaeJUCGi--mMjcb56Tk9X4EPbS1MzHZvQ5JNTUNgaarqo6lxR0uFb5HSloRA7oAL7C-Exq3CGqMekXdgbXz2efi1AZAUByceaVN5SFVjNNXOPPyi3_zT6mXIjlyCnoto6QY8mVdT-eO7LMslh3SyCbZdSpOHcn04r9Wh_nmP5fF_17oFTxNiRcPGxJ7Biq2ew2bbDQKlw-EFuGGF7M30KnKOIJnITtDEIRVrflG9hJEnFZrVLUuFFzYouFMky4vJ7VV9eTNDXhDFbEfs7dSWKLW3uNiG8cnxl_cjnLo4YJ3zQY0JySTngll_bXe5CoHKwBcps0wrykXPauYI6TEicy20oEb0pAkHuWMDyw3p70CnmlR2F5Byys_KTE69RqxRknFJLPV3ac2VR1pdyNq9K3SiOA-dNsrijpw5KLPwyiyiMot-F94t5kwbgo9Hpd94k1gIBm7u0fBjEZ718jz2j_-WdWGvtZginQizgnhc2g8Fbn8YpqFFfTN80NrE3fBjX3SwMMS_WMDLfxN_BeskWl7IeNyDTn07t_sehdXqdfrJfgFAXiUv |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+empirical+analysis+of+binary+transformation+strategies+and+base+algorithms+for+multi-label+learning&rft.jtitle=Machine+learning&rft.au=Rivolli+Adriano&rft.au=Read%2C+Jesse&rft.au=Soares%2C+Carlos&rft.au=Pfahringer+Bernhard&rft.date=2020-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0885-6125&rft.eissn=1573-0565&rft.volume=109&rft.issue=8&rft.spage=1509&rft.epage=1563&rft_id=info:doi/10.1007%2Fs10994-020-05879-3&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon |