An empirical analysis of binary transformation strategies and base algorithms for multi-label learning

Investigating strategies that are able to efficiently deal with multi-label classification tasks is a current research topic in machine learning. Many methods have been proposed, making the selection of the most suitable strategy a challenging issue. From this premise, this paper presents an extensi...

Full description

Saved in:
Bibliographic Details
Published inMachine learning Vol. 109; no. 8; pp. 1509 - 1563
Main Authors Rivolli, Adriano, Read, Jesse, Soares, Carlos, Pfahringer, Bernhard, de Carvalho, André C. P. L. F.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.08.2020
Springer Nature B.V
Springer Verlag
Subjects
Online AccessGet full text
ISSN0885-6125
1573-0565
1573-0565
DOI10.1007/s10994-020-05879-3

Cover

Abstract Investigating strategies that are able to efficiently deal with multi-label classification tasks is a current research topic in machine learning. Many methods have been proposed, making the selection of the most suitable strategy a challenging issue. From this premise, this paper presents an extensive empirical analysis of the binary transformation strategies and base algorithms for multi-label learning. This subset of strategies uses the one-versus-all approach to transform the original data, generating one binary data set per label, upon which any binary base algorithm can be applied. Considering that the influence of the base algorithm on the predictive performance obtained by the strategies has not been considered in depth by many empirical studies, we investigated the influence of distinct base algorithms on the performance of several strategies. Thus, this study covers a family of multi-label strategies using a diversified range of base algorithms, exploring their relationship over different perspectives. This finding has significant implications concerning the methodology of evaluation adopted in multi-label experiments containing binary transformation strategies, given that multiple base algorithms should be considered. Despite these improvements in strategy and base algorithms, for many data sets, a large number of labels, mainly those less frequent, were either never predicted, or always misclassified. We conclude the experimental analysis by recommending strategies and base algorithms in accordance with different performance criteria.
AbstractList Investigating strategies that are able to efficiently deal with multi-label classification tasks is a current research topic in machine learning. Many methods have been proposed, making the selection of the most suitable strategy a challenging issue. From this premise, this paper presents an extensive empirical analysis of the binary transformation strategies and base algorithms for multi-label learning. This subset of strategies uses the one-versus-all approach to transform the original data, generating one binary data set per label, upon which any binary base algorithm can be applied. Considering that the influence of the base algorithm on the predictive performance obtained by the strategies has not been considered in depth by many empirical studies, we investigated the influence of distinct base algorithms on the performance of several strategies. Thus, this study covers a family of multi-label strategies using a diversified range of base algorithms, exploring their relationship over different perspectives. This finding has significant implications concerning the methodology of evaluation adopted in multi-label experiments containing binary transformation strategies, given that multiple base algorithms should be considered. Despite these improvements in strategy and base algorithms, for many data sets, a large number of labels, mainly those less frequent, were either never predicted, or always misclassified. We conclude the experimental analysis by recommending strategies and base algorithms in accordance with different performance criteria.
Author Soares, Carlos
Rivolli, Adriano
de Carvalho, André C. P. L. F.
Pfahringer, Bernhard
Read, Jesse
Author_xml – sequence: 1
  givenname: Adriano
  orcidid: 0000-0001-6445-3007
  surname: Rivolli
  fullname: Rivolli, Adriano
  email: rivolli@utfpr.edu.br
  organization: Department of Computer Science, Technological University of Paraná
– sequence: 2
  givenname: Jesse
  surname: Read
  fullname: Read, Jesse
  organization: Laboratoire d’Informatique (LIX), École Polytechnique
– sequence: 3
  givenname: Carlos
  surname: Soares
  fullname: Soares, Carlos
  organization: Fraunhofer AICOS and LIAAD-INESC TEC, University of Porto
– sequence: 4
  givenname: Bernhard
  surname: Pfahringer
  fullname: Pfahringer, Bernhard
  organization: University of Waikato
– sequence: 5
  givenname: André C. P. L. F.
  surname: de Carvalho
  fullname: de Carvalho, André C. P. L. F.
  organization: Institute of Mathematics and Computer Sciences, University of São Paulo
BackLink https://hal.science/hal-04459082$$DView record in HAL
BookMark eNqNkUFrHCEUxyWkkE3aL5CT0FMP0z51dPS4hDYpLPTSnuXNrLMxOLrR2Zb99jWZhUAPS73Ik99fn793TS5jio6QWwafGUD3pTAwpm2AQwNSd6YRF2TFZCdqqeQlWYHWslGMyytyXcoTAHCl1YqM60jdtPfZDxgoRgzH4gtNI-19xHykc8ZYxpQnnH2KtNR6djvvSoW3tMfiKIZdyn5-nAqtIJ0OYfZNwN4FGhzm6OPuPXk3Yijuw2m_Ib--ff1599Bsftx_v1tvmqHt9NxwzrDrjHKuF2PbC80UCCaQsaGXnQE3qJFzUBzbwQxGbg3gltU1Ku26LRc3RCz3HuIej38wBLvPfqofsQzsiyq7qLJVlX1VZUVNfVpSj_jGJ_T2Yb2xL2fQttKA5r9ZZT8u7D6n54Mrs31Kh1y9FculMC0Iyc9TrZBCnCi-UENOpWQ3_l-z-p_Q4OfX4dTR-HA-erJT6jtx5_JbV2dSfwF9frZH
CitedBy_id crossref_primary_10_1007_s40747_021_00611_7
crossref_primary_10_3390_app15052379
crossref_primary_10_1007_s10994_021_06107_2
crossref_primary_10_1016_j_eswa_2022_117215
crossref_primary_10_1016_j_ins_2024_121074
crossref_primary_10_1109_TPAMI_2021_3051276
crossref_primary_10_1016_j_neucom_2022_01_075
crossref_primary_10_1016_j_patcog_2024_110342
crossref_primary_10_3390_infrastructures9050083
crossref_primary_10_1002_isaf_1564
Cites_doi 10.1016/j.eswa.2011.06.056
10.1145/1961189.1961199
10.1016/j.inffus.2017.12.001
10.1109/TKDE.2015.2416731
10.1016/j.neucom.2018.02.011
10.1145/2716262
10.4018/jdwm.2007070101
10.1016/j.ipm.2018.01.002
10.1007/978-3-642-01536-6_8
10.1007/978-0-387-09823-4_34
10.1007/s10994-011-5276-1
10.1016/S0893-6080(05)80023-1
10.1111/exsy.12304
10.1007/s10846-014-0144-4
10.1075/nlp.5(1st)
10.1023/A:1009982220290
10.1016/j.compbiomed.2015.07.017
10.1023/A:1010933404324
10.1109/TKDE.2013.39
10.1109/TKDE.2010.164
10.1023/A:1007614523901
10.1007/s13748-012-0030-x
10.1016/j.patcog.2012.03.004
10.1186/1687-4722-2011-426793
10.1016/j.patcog.2004.03.009
10.1109/TASL.2007.913750
10.1002/widm.1139
10.1109/TPAMI.2014.2339815
10.1016/j.eswa.2015.01.024
10.1007/s10994-011-5256-5
10.32614/RJ-2015-027
10.1016/j.patcog.2013.09.029
10.1007/978-3-319-99259-4_25
10.1109/EUROCON.2015.7313677
10.1109/AERO.2005.1559692
10.1145/3067695.3082053
10.1109/IJCNN.2015.7280644
10.1109/ICTAI.2013.76
10.1007/978-3-319-13560-1_8
10.3115/1572392.1572411
10.1109/MLSP.2013.6661934
10.1007/978-3-540-30115-8_22
10.1007/978-3-540-30228-5_1
10.1145/1180639.1180727
10.1007/978-3-540-24775-3_5
10.1007/978-3-319-01595-8_18
10.1007/3-540-47979-1_7
10.1007/978-3-642-23808-6_10
10.1145/2939672.2939785
10.1016/B978-1-55860-377-6.50048-7
10.1007/978-3-319-12027-0_17
10.1007/978-3-642-34654-5_20
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2020
The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2020.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2020
– notice: The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2020.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
3V.
7SC
7XB
88I
8AL
8AO
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
M2P
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
1XC
ADTOC
UNPAY
DOI 10.1007/s10994-020-05879-3
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Hyper Article en Ligne (HAL)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database
Computer Science Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0565
EndPage 1563
ExternalDocumentID 10.1007/s10994-020-05879-3
oai:HAL:hal-04459082v1
10_1007_s10994_020_05879_3
GrantInformation_xml – fundername: CAPES
– fundername: CeMEAI-FAPESP
  grantid: 13/07375-0
– fundername: Intel Corporation
  funderid: http://dx.doi.org/10.13039/100002418
– fundername: FAPESP
  grantid: 2016/18615-0; 2013/07375-0; 2012/22608-8
– fundername: CNPq
  grantid: 305291/2017-3; 152098/2016-0
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
88I
8AO
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEWM
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
LAK
LLZTM
M0N
M2P
M4Y
MA-
MVM
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF-
PQQKQ
PROAC
PT4
Q2X
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WH7
WIP
WK8
XJT
YLTOR
Z45
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z88
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z8Z
Z91
Z92
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
1XC
ADTOC
UNPAY
ID FETCH-LOGICAL-c478t-221a7796eeb3f4b38160313a11cb5790ec6f22062a4c9c95d90ad1111f68e7d23
IEDL.DBID BENPR
ISSN 0885-6125
1573-0565
IngestDate Tue Aug 19 15:05:08 EDT 2025
Tue Oct 14 20:46:06 EDT 2025
Fri Jul 25 05:26:48 EDT 2025
Fri Jul 25 06:56:04 EDT 2025
Thu Apr 24 23:10:35 EDT 2025
Wed Oct 01 01:03:56 EDT 2025
Fri Feb 21 02:49:04 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Multi-label learning
Base algorithms
Binary transformation
Comparison of strategies
Empirical analysis
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c478t-221a7796eeb3f4b38160313a11cb5790ec6f22062a4c9c95d90ad1111f68e7d23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6445-3007
0000-0002-1013-6724
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s10994-020-05879-3.pdf
PQID 2435333521
PQPubID 54194
PageCount 55
ParticipantIDs unpaywall_primary_10_1007_s10994_020_05879_3
hal_primary_oai_HAL_hal_04459082v1
proquest_journals_2539403521
proquest_journals_2435333521
crossref_primary_10_1007_s10994_020_05879_3
crossref_citationtrail_10_1007_s10994_020_05879_3
springer_journals_10_1007_s10994_020_05879_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-01
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Machine learning
PublicationTitleAbbrev Mach Learn
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Springer Verlag
References Tsoumakas, Katakis (CR54) 2007; 3
Benavoli, Corani, Demsar, Zaffalon (CR2) 2017; 18
Yang (CR62) 1999; 1
CR38
CR34
CR33
Madjarov, Kocev, Gjorgjevikj, Džeroski (CR32) 2012; 45
Joachims (CR26) 1998; 1398
Wolpert (CR61) 1992; 5
Quinlan (CR39) 1993
Gibaja, Ventura (CR20) 2014; 4
Schapire, Singer (CR46) 1999; 37
Read, Pfahringer, Holmes, Frank (CR42) 2009; 5782
Charte, Rivera, Charte, del Jesús, Herrera (CR10) 2018; 289
Tsoumakas, Katakis, Vlahavas (CR57) 2011; 23
Turnbull, Barrington, Torres, Lanckriet (CR58) 2008; 16
CR6
CR8
CR49
Liu, Chen (CR30) 2015; 42
CR48
CR47
Jackson, Moulinier (CR24) 2002
CR44
Alali, Kubat (CR1) 2015; 27
Breiman (CR5) 2001; 45
CR41
Jain, Dubes (CR25) 1988
CR40
Gelman, Hill (CR19) 2007
Bernardini, Benito, Meza (CR3) 2014; 12
Zhang, Zhou (CR64) 2014; 26
Zhou, Tao, Wu (CR66) 2012; 88
Montañes, Senge, Barranquero, Quevedo, Coz, Hüllermeier (CR35) 2014; 47
Charte, Charte (CR9) 2015; 7
Luaces, Díez, Barranquero, del Coz, Bahamonde (CR31) 2012; 1
CR18
CR17
CR16
CR15
CR59
CR11
Pereira, Plastino, Zadrozny, Merschmann (CR37) 2018; 54
CR53
CR52
de Carvalho, Freitas, Abraham, Hassanien, Snášel (CR14) 2009
Rivolli, Soares, de Carvalho (CR45) 2018
CR50
Chang, Lin (CR7) 2011; 2
Trohidis, Tsoumakas, Kalliris, Vlahavas (CR51) 2011; 2011
Zufferey, Hofer, Hennebert, Schumacher, Ingold, Bromuri (CR67) 2015; 65
Gibaja, Ventura (CR21) 2015; 47
CR29
Cherman, Spolaôr, Valverde-Rebaza, Monard (CR13) 2014
CR28
CR27
Cherman, Metz, Monard (CR12) 2012; 39
CR23
CR22
CR65
Zhang, Wu (CR63) 2015; 37
Boutell, Luo, Shen, Brown (CR4) 2004; 37
Read, Pfahringer, Holmes, Frank (CR43) 2011; 85
CR60
Tsoumakas, Katakis, Vlahavas, Maimon, Rokach (CR55) 2010
Tsoumakas, Katakis, Vlahavas (CR56) 2011; 23
Moyano, Galindo, Cios, Ventura (CR36) 2018; 44
Y Yang (5879_CR62) 1999; 1
5879_CR52
5879_CR53
5879_CR50
5879_CR6
5879_CR8
EA Cherman (5879_CR13) 2014
5879_CR11
5879_CR16
5879_CR17
A Rivolli (5879_CR45) 2018
5879_CR15
G Tsoumakas (5879_CR57) 2011; 23
5879_CR59
5879_CR18
ML Zhang (5879_CR64) 2014; 26
5879_CR60
A Alali (5879_CR1) 2015; 27
CC Chang (5879_CR7) 2011; 2
RB Pereira (5879_CR37) 2018; 54
J Read (5879_CR42) 2009; 5782
O Luaces (5879_CR31) 2012; 1
E Gibaja (5879_CR21) 2015; 47
5879_CR23
5879_CR65
L Breiman (5879_CR5) 2001; 45
5879_CR22
5879_CR27
5879_CR28
D Zufferey (5879_CR67) 2015; 65
E Gibaja (5879_CR20) 2014; 4
5879_CR29
T Joachims (5879_CR26) 1998; 1398
J Read (5879_CR43) 2011; 85
SM Liu (5879_CR30) 2015; 42
ACPLF de Carvalho (5879_CR14) 2009
E Montañes (5879_CR35) 2014; 47
EA Cherman (5879_CR12) 2012; 39
ML Zhang (5879_CR63) 2015; 37
F Charte (5879_CR10) 2018; 289
5879_CR34
5879_CR33
FC Bernardini (5879_CR3) 2014; 12
5879_CR38
ER Schapire (5879_CR46) 1999; 37
AK Jain (5879_CR25) 1988
MR Boutell (5879_CR4) 2004; 37
G Tsoumakas (5879_CR55) 2010
G Tsoumakas (5879_CR54) 2007; 3
A Gelman (5879_CR19) 2007
JR Quinlan (5879_CR39) 1993
5879_CR41
K Trohidis (5879_CR51) 2011; 2011
5879_CR40
G Tsoumakas (5879_CR56) 2011; 23
5879_CR44
5879_CR49
F Charte (5879_CR9) 2015; 7
5879_CR47
A Benavoli (5879_CR2) 2017; 18
P Jackson (5879_CR24) 2002
5879_CR48
D Turnbull (5879_CR58) 2008; 16
DH Wolpert (5879_CR61) 1992; 5
JM Moyano (5879_CR36) 2018; 44
T Zhou (5879_CR66) 2012; 88
G Madjarov (5879_CR32) 2012; 45
References_xml – ident: CR22
– volume: 39
  start-page: 1647
  issue: 2
  year: 2012
  end-page: 1655
  ident: CR12
  article-title: Incorporating label dependency into the binary relevance framework for multi-label classification
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.06.056
– volume: 2
  start-page: 27:1
  year: 2011
  end-page: 27:27
  ident: CR7
  article-title: LIBSVM: A library for support vector machines
  publication-title: ACM Transactions on Intelligent Systems and Technology
  doi: 10.1145/1961189.1961199
– volume: 44
  start-page: 33
  year: 2018
  end-page: 45
  ident: CR36
  article-title: Review of ensembles of multi-label classifiers: Models, experimental study and prospects
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2017.12.001
– year: 1993
  ident: CR39
  publication-title: C4.5: Programs for Machine Learning
– ident: CR49
– volume: 27
  start-page: 2480
  issue: 9
  year: 2015
  end-page: 2493
  ident: CR1
  article-title: PruDent: A pruned and confident stacking approach for multi-label classification
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2015.2416731
– ident: CR16
– volume: 1398
  start-page: 137
  year: 1998
  end-page: 142
  ident: CR26
  article-title: Text categorization with support vector machines: Learning with many relevant features
  publication-title: Proceedings of the 10th European Conference on Machine Learning
– volume: 289
  start-page: 68
  year: 2018
  end-page: 85
  ident: CR10
  article-title: Tips, guidelines and tools for managing multi-label datasets: The mldr.datasets R package and the cometa data repository
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.02.011
– ident: CR29
– volume: 47
  start-page: 1
  issue: 3
  year: 2015
  end-page: 38
  ident: CR21
  article-title: A tutorial on multilabel learning
  publication-title: ACM Computing Surveys
  doi: 10.1145/2716262
– ident: CR8
– year: 2007
  ident: CR19
  publication-title: Data analysis using regression and multilevel/hierarchical models. Analytical methods for social research
– volume: 3
  start-page: 1
  issue: 3
  year: 2007
  end-page: 13
  ident: CR54
  article-title: Multi-label classification: An overview
  publication-title: International Journal of Data Warehousing and Mining
  doi: 10.4018/jdwm.2007070101
– volume: 54
  start-page: 359
  issue: 3
  year: 2018
  end-page: 369
  ident: CR37
  article-title: Correlation analysis of performance measures for multi-label classification
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2018.01.002
– year: 1988
  ident: CR25
  publication-title: Algorithms for clustering data
– start-page: 177
  year: 2009
  end-page: 195
  ident: CR14
  article-title: A tutorial on multi-label classification techniques
  publication-title: Foundations of computational intelligence
  doi: 10.1007/978-3-642-01536-6_8
– ident: CR15
– start-page: 667
  year: 2010
  end-page: 685
  ident: CR55
  article-title: Mining multi-label data
  publication-title: Data mining and knowledge discovery handbook, Chap 34
  doi: 10.1007/978-0-387-09823-4_34
– ident: CR50
– volume: 88
  start-page: 69
  issue: 1–2
  year: 2012
  end-page: 126
  ident: CR66
  article-title: Compressed labeling on distilled labelsets for multi-label learning
  publication-title: Machine Learning
  doi: 10.1007/s10994-011-5276-1
– volume: 5
  start-page: 241
  issue: 2
  year: 1992
  end-page: 259
  ident: CR61
  article-title: Stacked generalization
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(05)80023-1
– ident: CR11
– ident: CR60
– year: 2018
  ident: CR45
  article-title: Enhancing multilabel classification for food truck recommendation
  publication-title: Expert Systems
  doi: 10.1111/exsy.12304
– year: 2014
  ident: CR13
  article-title: Lazy multi-label learning algorithms based on mutuality strategies
  publication-title: Journal of Intelligent & Robotic Systems
  doi: 10.1007/s10846-014-0144-4
– ident: CR18
– ident: CR47
– year: 2002
  ident: CR24
  publication-title: Natural language processing for online applications: Text retrieval, extraction & categorization
  doi: 10.1075/nlp.5(1st)
– volume: 1
  start-page: 69
  issue: 1–2
  year: 1999
  end-page: 90
  ident: CR62
  article-title: An evaluation of statistical approaches to text categorization
  publication-title: Information Retrieval
  doi: 10.1023/A:1009982220290
– ident: CR53
– volume: 65
  start-page: 34
  year: 2015
  end-page: 43
  ident: CR67
  article-title: Performance comparison of multi-label learning algorithms on clinical data for chronic diseases
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2015.07.017
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  end-page: 32
  ident: CR5
  article-title: Random forests
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
– volume: 26
  start-page: 1819
  issue: 8
  year: 2014
  end-page: 1837
  ident: CR64
  article-title: A review on multi-label learning algorithms
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2013.39
– volume: 12
  start-page: 53
  issue: 1
  year: 2014
  end-page: 71
  ident: CR3
  article-title: Cardinality and density measures and their influence to multi-label learning methods
  publication-title: Journal of the Brazilian Society on Computational Intelligence
– ident: CR33
– volume: 23
  start-page: 1079
  issue: 7
  year: 2011
  end-page: 1089
  ident: CR56
  article-title: Random k-labelsets for multi-label classification
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2010.164
– volume: 37
  start-page: 297
  issue: 3
  year: 1999
  end-page: 336
  ident: CR46
  article-title: Improved boosting algorithm using confidence-rated predictions
  publication-title: Machine Learning
  doi: 10.1023/A:1007614523901
– ident: CR6
– volume: 1
  start-page: 303
  issue: 4
  year: 2012
  end-page: 313
  ident: CR31
  article-title: Binary relevance efficacy for multilabel classification
  publication-title: Progress in Artificial Intelligence
  doi: 10.1007/s13748-012-0030-x
– volume: 45
  start-page: 3084
  issue: 9
  year: 2012
  end-page: 3104
  ident: CR32
  article-title: An extensive experimental comparison of methods for multi-label learning
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2012.03.004
– ident: CR40
– ident: CR27
– volume: 2011
  start-page: 4
  issue: 1
  year: 2011
  ident: CR51
  article-title: Multi-label classification of music by emotion
  publication-title: Journal on Audio, Speech, and Music Processing
  doi: 10.1186/1687-4722-2011-426793
– volume: 37
  start-page: 1757
  issue: 9
  year: 2004
  end-page: 1771
  ident: CR4
  article-title: Learning multi-label scene classification
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2004.03.009
– ident: CR23
– volume: 16
  start-page: 467
  issue: 2
  year: 2008
  end-page: 476
  ident: CR58
  article-title: Semantic annotation and retrieval of music and sound effects
  publication-title: IEEE Transactions on Audio, Speech, and Language Processing
  doi: 10.1109/TASL.2007.913750
– volume: 4
  start-page: 411
  issue: 6
  year: 2014
  end-page: 444
  ident: CR20
  article-title: Multi-label learning: A review of the state of the art and ongoing research
  publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
  doi: 10.1002/widm.1139
– volume: 5782
  start-page: 254
  year: 2009
  end-page: 269
  ident: CR42
  article-title: Classifier chains for multi-label classification
  publication-title: Proceedings of the European Conference, Bled, Slovenia
– ident: CR44
– ident: CR48
– ident: CR65
– volume: 37
  start-page: 107
  issue: 1
  year: 2015
  end-page: 120
  ident: CR63
  article-title: Lift: Multi-Label learning with label-specific features
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2014.2339815
– volume: 18
  start-page: 77:1
  year: 2017
  end-page: 77:36
  ident: CR2
  article-title: Time for a change: A tutorial for comparing multiple classifiers through bayesian analysis
  publication-title: Journal of Machine Learning Research
– volume: 42
  start-page: 5567
  issue: 13
  year: 2015
  end-page: 5579
  ident: CR30
  article-title: An empirical study of empty prediction of multi-label classification
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2015.01.024
– ident: CR38
– ident: CR52
– ident: CR17
– volume: 85
  start-page: 333
  issue: 3
  year: 2011
  end-page: 359
  ident: CR43
  article-title: Classifier chains for multi-label classification
  publication-title: Machine Learning
  doi: 10.1007/s10994-011-5256-5
– volume: 7
  start-page: 149
  issue: 2
  year: 2015
  end-page: 162
  ident: CR9
  article-title: Working with multilabel datasets in R: The mldr Package
  publication-title: The R Journal
  doi: 10.32614/RJ-2015-027
– ident: CR34
– volume: 47
  start-page: 1494
  issue: 3
  year: 2014
  end-page: 1508
  ident: CR35
  article-title: Dependent binary relevance models for multi-label classification
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2013.09.029
– ident: CR59
– volume: 23
  start-page: 1079
  issue: 7
  year: 2011
  end-page: 1089
  ident: CR57
  article-title: Random k-labelsets for multilabel classification
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2010.164
– ident: CR28
– ident: CR41
– volume-title: Natural language processing for online applications: Text retrieval, extraction & categorization
  year: 2002
  ident: 5879_CR24
  doi: 10.1075/nlp.5(1st)
– ident: 5879_CR18
– volume: 27
  start-page: 2480
  issue: 9
  year: 2015
  ident: 5879_CR1
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2015.2416731
– volume-title: C4.5: Programs for Machine Learning
  year: 1993
  ident: 5879_CR39
– ident: 5879_CR15
  doi: 10.1007/978-3-319-99259-4_25
– volume: 47
  start-page: 1
  issue: 3
  year: 2015
  ident: 5879_CR21
  publication-title: ACM Computing Surveys
  doi: 10.1145/2716262
– ident: 5879_CR53
– ident: 5879_CR8
  doi: 10.1109/EUROCON.2015.7313677
– volume: 23
  start-page: 1079
  issue: 7
  year: 2011
  ident: 5879_CR57
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2010.164
– volume: 37
  start-page: 1757
  issue: 9
  year: 2004
  ident: 5879_CR4
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2004.03.009
– ident: 5879_CR50
  doi: 10.1109/AERO.2005.1559692
– volume: 18
  start-page: 77:1
  year: 2017
  ident: 5879_CR2
  publication-title: Journal of Machine Learning Research
– ident: 5879_CR16
  doi: 10.1145/3067695.3082053
– ident: 5879_CR33
  doi: 10.1109/IJCNN.2015.7280644
– volume: 88
  start-page: 69
  issue: 1–2
  year: 2012
  ident: 5879_CR66
  publication-title: Machine Learning
  doi: 10.1007/s10994-011-5276-1
– ident: 5879_CR23
  doi: 10.1109/ICTAI.2013.76
– ident: 5879_CR29
  doi: 10.1007/978-3-319-13560-1_8
– volume: 1398
  start-page: 137
  year: 1998
  ident: 5879_CR26
  publication-title: Proceedings of the 10th European Conference on Machine Learning
– volume: 44
  start-page: 33
  year: 2018
  ident: 5879_CR36
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2017.12.001
– year: 2018
  ident: 5879_CR45
  publication-title: Expert Systems
  doi: 10.1111/exsy.12304
– start-page: 177
  volume-title: Foundations of computational intelligence
  year: 2009
  ident: 5879_CR14
  doi: 10.1007/978-3-642-01536-6_8
– ident: 5879_CR38
  doi: 10.3115/1572392.1572411
– volume: 1
  start-page: 69
  issue: 1–2
  year: 1999
  ident: 5879_CR62
  publication-title: Information Retrieval
  doi: 10.1023/A:1009982220290
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 5879_CR5
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
– ident: 5879_CR6
  doi: 10.1109/MLSP.2013.6661934
– ident: 5879_CR27
  doi: 10.1007/978-3-540-30115-8_22
– ident: 5879_CR52
– year: 2014
  ident: 5879_CR13
  publication-title: Journal of Intelligent & Robotic Systems
  doi: 10.1007/s10846-014-0144-4
– ident: 5879_CR40
  doi: 10.1007/978-3-540-30228-5_1
– volume: 23
  start-page: 1079
  issue: 7
  year: 2011
  ident: 5879_CR56
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2010.164
– volume: 5782
  start-page: 254
  year: 2009
  ident: 5879_CR42
  publication-title: Proceedings of the European Conference, Bled, Slovenia
– volume: 12
  start-page: 53
  issue: 1
  year: 2014
  ident: 5879_CR3
  publication-title: Journal of the Brazilian Society on Computational Intelligence
– volume: 5
  start-page: 241
  issue: 2
  year: 1992
  ident: 5879_CR61
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(05)80023-1
– volume: 39
  start-page: 1647
  issue: 2
  year: 2012
  ident: 5879_CR12
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.06.056
– volume-title: Data analysis using regression and multilevel/hierarchical models. Analytical methods for social research
  year: 2007
  ident: 5879_CR19
– ident: 5879_CR49
  doi: 10.1145/1180639.1180727
– ident: 5879_CR22
  doi: 10.1007/978-3-540-24775-3_5
– ident: 5879_CR59
– ident: 5879_CR48
  doi: 10.1007/978-3-319-01595-8_18
– ident: 5879_CR60
– volume: 7
  start-page: 149
  issue: 2
  year: 2015
  ident: 5879_CR9
  publication-title: The R Journal
  doi: 10.32614/RJ-2015-027
– volume: 45
  start-page: 3084
  issue: 9
  year: 2012
  ident: 5879_CR32
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2012.03.004
– volume: 3
  start-page: 1
  issue: 3
  year: 2007
  ident: 5879_CR54
  publication-title: International Journal of Data Warehousing and Mining
  doi: 10.4018/jdwm.2007070101
– start-page: 667
  volume-title: Data mining and knowledge discovery handbook, Chap 34
  year: 2010
  ident: 5879_CR55
  doi: 10.1007/978-0-387-09823-4_34
– volume: 42
  start-page: 5567
  issue: 13
  year: 2015
  ident: 5879_CR30
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2015.01.024
– volume: 54
  start-page: 359
  issue: 3
  year: 2018
  ident: 5879_CR37
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2018.01.002
– volume: 65
  start-page: 34
  year: 2015
  ident: 5879_CR67
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2015.07.017
– ident: 5879_CR17
  doi: 10.1007/3-540-47979-1_7
– volume: 2
  start-page: 27:1
  year: 2011
  ident: 5879_CR7
  publication-title: ACM Transactions on Intelligent Systems and Technology
  doi: 10.1145/1961189.1961199
– volume: 47
  start-page: 1494
  issue: 3
  year: 2014
  ident: 5879_CR35
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2013.09.029
– ident: 5879_CR44
– ident: 5879_CR47
  doi: 10.1007/978-3-642-23808-6_10
– volume: 289
  start-page: 68
  year: 2018
  ident: 5879_CR10
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.02.011
– ident: 5879_CR11
  doi: 10.1145/2939672.2939785
– ident: 5879_CR65
– volume: 4
  start-page: 411
  issue: 6
  year: 2014
  ident: 5879_CR20
  publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
  doi: 10.1002/widm.1139
– volume: 37
  start-page: 297
  issue: 3
  year: 1999
  ident: 5879_CR46
  publication-title: Machine Learning
  doi: 10.1023/A:1007614523901
– volume: 16
  start-page: 467
  issue: 2
  year: 2008
  ident: 5879_CR58
  publication-title: IEEE Transactions on Audio, Speech, and Language Processing
  doi: 10.1109/TASL.2007.913750
– ident: 5879_CR28
  doi: 10.1016/B978-1-55860-377-6.50048-7
– ident: 5879_CR41
  doi: 10.1007/978-3-319-12027-0_17
– volume: 37
  start-page: 107
  issue: 1
  year: 2015
  ident: 5879_CR63
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2014.2339815
– volume: 1
  start-page: 303
  issue: 4
  year: 2012
  ident: 5879_CR31
  publication-title: Progress in Artificial Intelligence
  doi: 10.1007/s13748-012-0030-x
– volume-title: Algorithms for clustering data
  year: 1988
  ident: 5879_CR25
– ident: 5879_CR34
  doi: 10.1007/978-3-642-34654-5_20
– volume: 85
  start-page: 333
  issue: 3
  year: 2011
  ident: 5879_CR43
  publication-title: Machine Learning
  doi: 10.1007/s10994-011-5256-5
– volume: 2011
  start-page: 4
  issue: 1
  year: 2011
  ident: 5879_CR51
  publication-title: Journal on Audio, Speech, and Music Processing
  doi: 10.1186/1687-4722-2011-426793
– volume: 26
  start-page: 1819
  issue: 8
  year: 2014
  ident: 5879_CR64
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2013.39
SSID ssj0002686
Score 2.4017315
Snippet Investigating strategies that are able to efficiently deal with multi-label classification tasks is a current research topic in machine learning. Many methods...
SourceID unpaywall
hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1509
SubjectTerms Algorithms
Artificial Intelligence
Binary data
Computer Science
Control
Datasets
Empirical analysis
Machine Learning
Mechatronics
Natural Language Processing (NLP)
Performance prediction
Robotics
Simulation and Modeling
Transformations
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwEA46H9QHf4vTKUF808CaNsnyOMQxRH1ysLeStKkKtRtbp_jfe8nSboKKvjaX0OYuuSt3930IXYBH5eDIM6LAnZAo1ZzoQGoijWA6zBIqtc3o3j_w_iC6HbKhbwqbVtXuVUrS3dRLzW4Oxpba5G1HSBKuojVm4bzAige0W9-_lDt-Rzg-jFj_7Vtlvl_jiztafbbFkEuRZp0c3UTrs2KsPt5Vni_5n94O2vKBI-7ONb2LVkyxh7YrUgbsz-g-yroFNq_jFwf9gZXHHMGjDGvXeovLpVB1VOBpWYFFgHCKrVfDKn8aTV7K59cpBkHsig4JmIvJsWeZeDpAg97N43WfeDIFkkSiUxJKAyWE5Ab-nrNI23yhhW1UQZBoJmTbJDyjtM2pihKZSJbKtkrtfZrxjhEpDQ9RoxgV5ghhnWmYFaQRg800qVZcKGoY_NImQkPA00RBtadx4pHGLeFFHi8wkq0eYtBD7PQQh010Wc8Zz3E2fpU-B1XVghYiu9-9i-2zdhQ5Gve3oIlalSZjfzCnMYXwMLR9Zj8MM8sUPx--qpS_GP7tja5qA_nDBxz_b_UTtEGd0drCwxZqlJOZOYVgqNRnzvY_Ab1e_Kg
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fTxQxEJ7A8SA8CCqEUzCN8U0Kt71te328KORClPjgJfi06U8gLHsXbk-jf71tt3ucBInG1-10s53Odr5mZr4BeOs9KvOO3GHp3QnOjWJYZUJhYTlVfaeJUCGi--mMjcb56Tk9X4EPbS1MzHZvQ5JNTUNgaarqo6lxR0uFb5HSloRA7oAL7C-Exq3CGqMekXdgbXz2efi1AZAUByceaVN5SFVjNNXOPPyi3_zT6mXIjlyCnoto6QY8mVdT-eO7LMslh3SyCbZdSpOHcn04r9Wh_nmP5fF_17oFTxNiRcPGxJ7Biq2ew2bbDQKlw-EFuGGF7M30KnKOIJnITtDEIRVrflG9hJEnFZrVLUuFFzYouFMky4vJ7VV9eTNDXhDFbEfs7dSWKLW3uNiG8cnxl_cjnLo4YJ3zQY0JySTngll_bXe5CoHKwBcps0wrykXPauYI6TEicy20oEb0pAkHuWMDyw3p70CnmlR2F5Byys_KTE69RqxRknFJLPV3ac2VR1pdyNq9K3SiOA-dNsrijpw5KLPwyiyiMot-F94t5kwbgo9Hpd94k1gIBm7u0fBjEZ718jz2j_-WdWGvtZginQizgnhc2g8Fbn8YpqFFfTN80NrE3fBjX3SwMMS_WMDLfxN_BeskWl7IeNyDTn07t_sehdXqdfrJfgFAXiUv
  priority: 102
  providerName: Unpaywall
Title An empirical analysis of binary transformation strategies and base algorithms for multi-label learning
URI https://link.springer.com/article/10.1007/s10994-020-05879-3
https://www.proquest.com/docview/2435333521
https://www.proquest.com/docview/2539403521
https://hal.science/hal-04459082
https://link.springer.com/content/pdf/10.1007/s10994-020-05879-3.pdf
UnpaywallVersion publishedVersion
Volume 109
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: AMVHM
  dateStart: 20080107
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: ADMLS
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-0565
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-t7QPsgfE1URiVhXhjFo3zVT9MKEPtKqDVhCjaniI7cTakLO1oxsR_z53nZOWBiqco8UVJfGffOef7_QDeokeN0JEXXKE74UGuI649qbk0caj9IhNSU0Z3No-mi-DTWXi2A_OmFoa2VTZzop2o82VG_8jfi5A4vDFc8D6srjmxRlF2taHQUI5aIT-yEGMd6AlCxupC73g8P_3azs0istyPOLRCTr7dldG4YjoLkysoOTyKJff_clWdS9oouRGFtonTXXhwU63U71tVlhu-afIYHrmgkiV3VvAEdkz1FPYawgbmxu8zKJKKmavVDwsLwpTDI2HLgmlblsvqjTB2WbF13QBJoHDOyOMxVV5gt9SXV2uGgsxuSORoSqZkjoHi4jksJuNvH6fcES3wLIhHNRfCU3EsI4Mr6yLQlEskSEfleZkOYzk0WVQIMYyECjKZyTCXQ5XTXFtEIxPnwt-HbrWszAtgutB4l5cHIXamybWKYiVMiMvdLNYYDPXBa_o0zRwKOZFhlOk9fjLpIUU9pFYPqd-Hd-09qzsMjq3Sb1BVrSDBZ0-TLyldGwaBpXj_5fXhoNFk6gbtOhUYOvpUg_aP5tYC-3DYKP--edsbHbYG8h8f8HL7w1_BQ2GNlDYhHkC3_nljXmNgVOsBdEaTkwH0kpPzz2M6zr5PZwM3BrB1IRI8W8xPk_M_LyMM2g
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2V9lA48I1YKGAhOFGLjeMk60OFFmi1pdsVQq3UW2o7TouUZhc2peqf47cx4zrpcmDFpdfEVhLPeGacmXkP4A161BQdeck1uhMuC5NyEynDlcsSE5dWKEMZ3f1JOjqUX46SoxX43fbCUFllaxO9oS6mlv6RvxcJcXhjuBB9mP3gxBpF2dWWQkMHaoViy0OMhcaOPXd5gUe4-dbuZ5T3WyF2tg8-jXhgGeBWZoOGCxHpLFOpw2NlKQ0l0gjPUEeRNUmm-s6mpRD9VGhplVVJofq6IENTpgOXFQR8gC5gTcZS4eFv7eP25Ou3zheI1HNN4lZOOMUSoW0nNO95WF5ByehBpnj8l2u8dUqFmQtRb5eovQPr5_VMX17oqlrwhTv34W4IYtnwSusewIqrH8K9liCCBXvxCMphzdzZ7LuHIWE64J-wacmMbwNmzULYPK3ZvGmBK3BwwcjDMl2doBia07M5w4HMF0ByVF1XscB4cfIYDm9kyZ_Aaj2t3VNgpjQ4KypkgovpCqPTTAuX4PHaZgaDrx5E7ZrmNqCeE_lGlV_jNZMccpRD7uWQxz14182ZXWF-LB39GkXVDSS47tFwnNO1vpSeUv5X1IONVpJ5MBLzXGCoGlPP2z9udxrfg81W-Ne3l73RZqcg__EBz5Y__BWsjw72x_l4d7L3HG4Lr7BUALkBq83Pc_cCg7LGvAyaz-D4pjfbH0RdQbE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIvE48EYsFLAQnKjVjTexNweEVpRlS0vFgUq9uXZit0hpdmFTqv41fh0zXiddDqy49JrYSuIZz4wzM98H8Bo9qkRH7rlBd8LT0kpuk9zy3KnMDnwhcksZ3S_7cnKQfj7MDtfgd9sLQ2WVrU0MhrqcFvSPfEtkxOGN4UKy5WNZxNft8fvZD04MUpRpbek0Fiqy6y7O8fg2f7ezjbJ-I8T447cPEx4ZBniRqmHDhUiMUrl0eKT0qaUkGmEZmiQpbKbyviukF6IvhUmLvMizMu-bkoyMl0OnSgI9QPN_XdH3Upf6-FPnBYQMLJO4iTNOUURs2IltewGQV1AaeqhyPvjLKV47oZLMpXi3S9Hehptn9cxcnJuqWvKC43twJ4avbLTQt_uw5uoHcLelhmDRUjwEP6qZO519DwAkzETkEzb1zIYGYNYsBczTms2bFrICB5eMfCsz1TEuenNyOmc4kIXSR45K6yoWuS6OH8HBlSz4Y1ivp7V7Asx6i7OSMs1wMV1pjVRGuAwP1oWyGHb1IGnXVBcR75xoNyp9idRMctAoBx3koAc9eNvNmS3QPlaOfoWi6gYSUPdktKfpWj9NA5n8r6QHG60kdTQPcy0wSB1Qt9s_bne63oPNVviXt1e90WanIP_xAU9XP_wl3MAtpvd29nefwS0R9JUqHzdgvfl55p5jNNbYF0HtGRxd9T77A1k2P0s
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fTxQxEJ7A8SA8CCqEUzCN8U0Kt71te328KORClPjgJfi06U8gLHsXbk-jf71tt3ucBInG1-10s53Odr5mZr4BeOs9KvOO3GHp3QnOjWJYZUJhYTlVfaeJUCGi--mMjcb56Tk9X4EPbS1MzHZvQ5JNTUNgaarqo6lxR0uFb5HSloRA7oAL7C-Exq3CGqMekXdgbXz2efi1AZAUByceaVN5SFVjNNXOPPyi3_zT6mXIjlyCnoto6QY8mVdT-eO7LMslh3SyCbZdSpOHcn04r9Wh_nmP5fF_17oFTxNiRcPGxJ7Biq2ew2bbDQKlw-EFuGGF7M30KnKOIJnITtDEIRVrflG9hJEnFZrVLUuFFzYouFMky4vJ7VV9eTNDXhDFbEfs7dSWKLW3uNiG8cnxl_cjnLo4YJ3zQY0JySTngll_bXe5CoHKwBcps0wrykXPauYI6TEicy20oEb0pAkHuWMDyw3p70CnmlR2F5Byys_KTE69RqxRknFJLPV3ac2VR1pdyNq9K3SiOA-dNsrijpw5KLPwyiyiMot-F94t5kwbgo9Hpd94k1gIBm7u0fBjEZ718jz2j_-WdWGvtZginQizgnhc2g8Fbn8YpqFFfTN80NrE3fBjX3SwMMS_WMDLfxN_BeskWl7IeNyDTn07t_sehdXqdfrJfgFAXiUv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+empirical+analysis+of+binary+transformation+strategies+and+base+algorithms+for+multi-label+learning&rft.jtitle=Machine+learning&rft.au=Rivolli+Adriano&rft.au=Read%2C+Jesse&rft.au=Soares%2C+Carlos&rft.au=Pfahringer+Bernhard&rft.date=2020-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0885-6125&rft.eissn=1573-0565&rft.volume=109&rft.issue=8&rft.spage=1509&rft.epage=1563&rft_id=info:doi/10.1007%2Fs10994-020-05879-3&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon