Comparative ecophysiology of Dinophysis acuminata and D. acuta (DINOPHYCEAE, DINOPHYSIALES): effect of light intensity and quality on growth, cellular toxin content, and photosynthesis
Dinoflagellates of the genus Dinophysis are the most persistent producers of lipophilic shellfish toxins in Western Europe. Their mixotrophic nutrition requires a food chain of cryptophytes and plastid‐bearing ciliates for sustained growth and photosynthesis. In this study, cultures of D. acuminata...
Saved in:
Published in | Journal of phycology Vol. 54; no. 6; pp. 899 - 917 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.12.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-3646 1529-8817 1529-8817 |
DOI | 10.1111/jpy.12794 |
Cover
Abstract | Dinoflagellates of the genus Dinophysis are the most persistent producers of lipophilic shellfish toxins in Western Europe. Their mixotrophic nutrition requires a food chain of cryptophytes and plastid‐bearing ciliates for sustained growth and photosynthesis. In this study, cultures of D. acuminata and D. acuta, their ciliate prey Mesodinium rubrum and the cryptophyte, Teleaulax amphioxeia, were subject to three experimental settings to study their physiological response to different combinations of light intensity and quality. Growth rates, pigment analyses (HPLC), photosynthetic parameters (PAM‐fluorometry), and cellular toxin content (LC‐MS) were determined. Specific differences in photosynthetic parameters were observed in Dinophysis exposed to different photon fluxes (10–650 μmol photons · m−2 · s−1), light quality (white, blue and green), and shifts in light regime. Dinophysis acuta was more susceptible to photodamage under high light intensities (370–650 μmol photons · m−2 · s−1) than D. acuminata but survived better with low light (10 μmol photons · m−2 · s−1) and to a prolonged period (28 d) of darkness. Mesodinium rubrum and T. amphioxeia showed their maximal growth rate and yield under white and high light whereas Dinophysis seemed better adapted to grow under green and blue light. Toxin analyses in Dinophysis showed maximal toxin per cell under high light after prey depletion at the late exponential‐plateau phase. Changes observed in photosynthetic light curves of D. acuminata cultures after shifting light conditions from low intensity‐blue light to high intensity‐white light seemed compatible with photoacclimation in this species. Results obtained here are discussed in relation to different spatiotemporal distributions observed in field populations of D. acuminata and D. acuta in northwestern Iberia. |
---|---|
AbstractList | Dinoflagellates of the genus Dinophysis are the most persistent producers of lipophilic shellfish toxins in Western Europe. Their mixotrophic nutrition requires a food chain of cryptophytes and plastid‐bearing ciliates for sustained growth and photosynthesis. In this study, cultures of D. acuminata and D. acuta, their ciliate prey Mesodinium rubrum and the cryptophyte, Teleaulax amphioxeia, were subject to three experimental settings to study their physiological response to different combinations of light intensity and quality. Growth rates, pigment analyses (HPLC), photosynthetic parameters (PAM‐fluorometry), and cellular toxin content (LC‐MS) were determined. Specific differences in photosynthetic parameters were observed in Dinophysis exposed to different photon fluxes (10–650 μmol photons · m−2 · s−1), light quality (white, blue and green), and shifts in light regime. Dinophysis acuta was more susceptible to photodamage under high light intensities (370–650 μmol photons · m−2 · s−1) than D. acuminata but survived better with low light (10 μmol photons · m−2 · s−1) and to a prolonged period (28 d) of darkness. Mesodinium rubrum and T. amphioxeia showed their maximal growth rate and yield under white and high light whereas Dinophysis seemed better adapted to grow under green and blue light. Toxin analyses in Dinophysis showed maximal toxin per cell under high light after prey depletion at the late exponential‐plateau phase. Changes observed in photosynthetic light curves of D. acuminata cultures after shifting light conditions from low intensity‐blue light to high intensity‐white light seemed compatible with photoacclimation in this species. Results obtained here are discussed in relation to different spatiotemporal distributions observed in field populations of D. acuminata and D. acuta in northwestern Iberia. Dinoflagellates of the genus Dinophysis are the most persistent producers of lipophilic shellfish toxins in Western Europe. Their mixotrophic nutrition requires a food chain of cryptophytes and plastid‐bearing ciliates for sustained growth and photosynthesis. In this study, cultures of D. acuminata and D. acuta, their ciliate prey Mesodinium rubrum and the cryptophyte, Teleaulax amphioxeia, were subject to three experimental settings to study their physiological response to different combinations of light intensity and quality. Growth rates, pigment analyses (HPLC), photosynthetic parameters (PAM‐fluorometry), and cellular toxin content (LC‐MS) were determined. Specific differences in photosynthetic parameters were observed in Dinophysis exposed to different photon fluxes (10–650 μmol photons · m−2 · s−1), light quality (white, blue and green), and shifts in light regime. Dinophysis acuta was more susceptible to photodamage under high light intensities (370–650 μmol photons · m−2 · s−1) than D. acuminata but survived better with low light (10 μmol photons · m−2 · s−1) and to a prolonged period (28 d) of darkness. Mesodinium rubrum and T. amphioxeia showed their maximal growth rate and yield under white and high light whereas Dinophysis seemed better adapted to grow under green and blue light. Toxin analyses in Dinophysis showed maximal toxin per cell under high light after prey depletion at the late exponential‐plateau phase. Changes observed in photosynthetic light curves of D. acuminata cultures after shifting light conditions from low intensity‐blue light to high intensity‐white light seemed compatible with photoacclimation in this species. Results obtained here are discussed in relation to different spatiotemporal distributions observed in field populations of D. acuminata and D. acuta in northwestern Iberia. Dinoflagellates of the genus Dinophysis are the most persistent producers of lipophilic shellfish toxins in Western Europe. Their mixotrophic nutrition requires a food chain of cryptophytes and plastid-bearing ciliates for sustained growth and photosynthesis. In this study, cultures of D. acuminata and D. acuta, their ciliate prey Mesodinium rubrum and the cryptophyte, Teleaulax amphioxeia, were subject to three experimental settings to study their physiological response to different combinations of light intensity and quality. Growth rates, pigment analyses (HPLC), photosynthetic parameters (PAM-fluorometry), and cellular toxin content (LC-MS) were determined. Specific differences in photosynthetic parameters were observed in Dinophysis exposed to different photon fluxes (10-650 μmol photons · m · s ), light quality (white, blue and green), and shifts in light regime. Dinophysis acuta was more susceptible to photodamage under high light intensities (370-650 μmol photons · m · s ) than D. acuminata but survived better with low light (10 μmol photons · m · s ) and to a prolonged period (28 d) of darkness. Mesodinium rubrum and T. amphioxeia showed their maximal growth rate and yield under white and high light whereas Dinophysis seemed better adapted to grow under green and blue light. Toxin analyses in Dinophysis showed maximal toxin per cell under high light after prey depletion at the late exponential-plateau phase. Changes observed in photosynthetic light curves of D. acuminata cultures after shifting light conditions from low intensity-blue light to high intensity-white light seemed compatible with photoacclimation in this species. Results obtained here are discussed in relation to different spatiotemporal distributions observed in field populations of D. acuminata and D. acuta in northwestern Iberia. Dinoflagellates of the genus Dinophysis are the most persistent producers of lipophilic shellfish toxins in Western Europe. Their mixotrophic nutrition requires a food chain of cryptophytes and plastid-bearing ciliates for sustained growth and photosynthesis. In this study, cultures of D. acuminata and D. acuta, their ciliate prey Mesodinium rubrum and the cryptophyte, Teleaulax amphioxeia, were subject to three experimental settings to study their physiological response to different combinations of light intensity and quality. Growth rates, pigment analyses (HPLC), photosynthetic parameters (PAM-fluorometry), and cellular toxin content (LC-MS) were determined. Specific differences in photosynthetic parameters were observed in Dinophysis exposed to different photon fluxes (10-650 μmol photons · m-2 · s-1 ), light quality (white, blue and green), and shifts in light regime. Dinophysis acuta was more susceptible to photodamage under high light intensities (370-650 μmol photons · m-2 · s-1 ) than D. acuminata but survived better with low light (10 μmol photons · m-2 · s-1 ) and to a prolonged period (28 d) of darkness. Mesodinium rubrum and T. amphioxeia showed their maximal growth rate and yield under white and high light whereas Dinophysis seemed better adapted to grow under green and blue light. Toxin analyses in Dinophysis showed maximal toxin per cell under high light after prey depletion at the late exponential-plateau phase. Changes observed in photosynthetic light curves of D. acuminata cultures after shifting light conditions from low intensity-blue light to high intensity-white light seemed compatible with photoacclimation in this species. Results obtained here are discussed in relation to different spatiotemporal distributions observed in field populations of D. acuminata and D. acuta in northwestern Iberia.Dinoflagellates of the genus Dinophysis are the most persistent producers of lipophilic shellfish toxins in Western Europe. Their mixotrophic nutrition requires a food chain of cryptophytes and plastid-bearing ciliates for sustained growth and photosynthesis. In this study, cultures of D. acuminata and D. acuta, their ciliate prey Mesodinium rubrum and the cryptophyte, Teleaulax amphioxeia, were subject to three experimental settings to study their physiological response to different combinations of light intensity and quality. Growth rates, pigment analyses (HPLC), photosynthetic parameters (PAM-fluorometry), and cellular toxin content (LC-MS) were determined. Specific differences in photosynthetic parameters were observed in Dinophysis exposed to different photon fluxes (10-650 μmol photons · m-2 · s-1 ), light quality (white, blue and green), and shifts in light regime. Dinophysis acuta was more susceptible to photodamage under high light intensities (370-650 μmol photons · m-2 · s-1 ) than D. acuminata but survived better with low light (10 μmol photons · m-2 · s-1 ) and to a prolonged period (28 d) of darkness. Mesodinium rubrum and T. amphioxeia showed their maximal growth rate and yield under white and high light whereas Dinophysis seemed better adapted to grow under green and blue light. Toxin analyses in Dinophysis showed maximal toxin per cell under high light after prey depletion at the late exponential-plateau phase. Changes observed in photosynthetic light curves of D. acuminata cultures after shifting light conditions from low intensity-blue light to high intensity-white light seemed compatible with photoacclimation in this species. Results obtained here are discussed in relation to different spatiotemporal distributions observed in field populations of D. acuminata and D. acuta in northwestern Iberia. Dinoflagellates of the genus Dinophysis are the most persistent producers of lipophilic shellfish toxins in Western Europe. Their mixotrophic nutrition requires a food chain of cryptophytes and plastid‐bearing ciliates for sustained growth and photosynthesis. In this study, cultures of D. acuminata and D. acuta , their ciliate prey Mesodinium rubrum and the cryptophyte, Teleaulax amphioxeia , were subject to three experimental settings to study their physiological response to different combinations of light intensity and quality. Growth rates, pigment analyses (HPLC), photosynthetic parameters (PAM‐fluorometry), and cellular toxin content (LC‐MS) were determined. Specific differences in photosynthetic parameters were observed in Dinophysis exposed to different photon fluxes (10–650 μmol photons · m −2 · s −1 ), light quality (white, blue and green), and shifts in light regime. Dinophysis acuta was more susceptible to photodamage under high light intensities (370–650 μmol photons · m −2 · s −1 ) than D. acuminata but survived better with low light (10 μmol photons · m −2 · s −1 ) and to a prolonged period (28 d) of darkness. Mesodinium rubrum and T. amphioxeia showed their maximal growth rate and yield under white and high light whereas Dinophysis seemed better adapted to grow under green and blue light. Toxin analyses in Dinophysis showed maximal toxin per cell under high light after prey depletion at the late exponential‐plateau phase. Changes observed in photosynthetic light curves of D. acuminata cultures after shifting light conditions from low intensity‐blue light to high intensity‐white light seemed compatible with photoacclimation in this species. Results obtained here are discussed in relation to different spatiotemporal distributions observed in field populations of D. acuminata and D. acuta in northwestern Iberia. Dinoflagellates of the genus Dinophysis are the most persistent producers of lipophilic shellfish toxins in Western Europe. Their mixotrophic nutrition requires a food chain of cryptophytes and plastid‐bearing ciliates for sustained growth and photosynthesis. In this study, cultures of D. acuminata and D. acuta, their ciliate prey Mesodinium rubrum and the cryptophyte, Teleaulax amphioxeia, were subject to three experimental settings to study their physiological response to different combinations of light intensity and quality. Growth rates, pigment analyses (HPLC), photosynthetic parameters (PAM‐fluorometry), and cellular toxin content (LC‐MS) were determined. Specific differences in photosynthetic parameters were observed in Dinophysis exposed to different photon fluxes (10–650 μmol photons · m⁻² · s⁻¹), light quality (white, blue and green), and shifts in light regime. Dinophysis acuta was more susceptible to photodamage under high light intensities (370–650 μmol photons · m⁻² · s⁻¹) than D. acuminata but survived better with low light (10 μmol photons · m⁻² · s⁻¹) and to a prolonged period (28 d) of darkness. Mesodinium rubrum and T. amphioxeia showed their maximal growth rate and yield under white and high light whereas Dinophysis seemed better adapted to grow under green and blue light. Toxin analyses in Dinophysis showed maximal toxin per cell under high light after prey depletion at the late exponential‐plateau phase. Changes observed in photosynthetic light curves of D. acuminata cultures after shifting light conditions from low intensity‐blue light to high intensity‐white light seemed compatible with photoacclimation in this species. Results obtained here are discussed in relation to different spatiotemporal distributions observed in field populations of D. acuminata and D. acuta in northwestern Iberia. |
Author | Raven, J. Reguera, Beatriz Garrido, José Luis Riobó, Pilar Rodríguez, Francisco Blanco, Juan García‐Portela, María |
Author_xml | – sequence: 1 givenname: María orcidid: 0000-0003-1696-0578 surname: García‐Portela fullname: García‐Portela, María email: maria.garcia@ieo.es organization: Oceanographic Centre of Vigo – sequence: 2 givenname: Pilar surname: Riobó fullname: Riobó, Pilar organization: Marine Research Institute (IIM‐CSIC) – sequence: 3 givenname: Beatriz surname: Reguera fullname: Reguera, Beatriz organization: Oceanographic Centre of Vigo – sequence: 4 givenname: José Luis surname: Garrido fullname: Garrido, José Luis organization: Marine Research Institute (IIM‐CSIC) – sequence: 5 givenname: Juan surname: Blanco fullname: Blanco, Juan organization: Marine Research Centre (CIMA) – sequence: 6 givenname: Francisco surname: Rodríguez fullname: Rodríguez, Francisco organization: Oceanographic Centre of Vigo – sequence: 7 givenname: J. surname: Raven fullname: Raven, J. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30298602$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks9uEzEQxi1URNPCgRdAlri0Uja1vf9sblESaFBEKxUOPVlex5t1tLG3ay9l34bX4MqT4U3SSwXCF3tGv-_TeGbOwImxRgHwFqMJDudq2_QTTHKWvAAjnBIWUYrzEzBCiJAozpLsFJw5t0UI5VmKX4HTGBFGM0RG4NfM7hrRCq-_K6ikbareaVvbTQ9tCefaHDIOCtnttBFeQGHWcD75_TNkQnQxX365ub2-ny2mizE8BnfL6Wpxd_kBqrJU0g9Wtd5UHmrjlXHa93uXh07Uw9sauGnto6_GUKq67mrRQm9_aAOlHQR-vMebynrreuMrFSp6DV6WonbqzfE-B98-Lr7OrqPVzaflbLqKZJLTJKKMFmWaolLEicSK5lhmoS-CFRkVIU2LlGKcriUqkzKJWZqF5tCC5iheU5GX8Tm4OPg2rX3olPN8p91QpjDKdo4TQhBDLE6y_6MY5zHDCcEBff8M3dquNeEjgcpixuI8o4F6d6S6YqfWvGn1TrQ9f5pfAK4OgGytc60qudQ-DDO0rRW65hjxYUN42BC-35CguHymeDL9G3t0f9S16v8N8s-39wfFH9D5ypo |
CitedBy_id | crossref_primary_10_1111_jpy_12977 crossref_primary_10_3389_frpro_2023_1328026 crossref_primary_10_1016_j_hal_2019_101654 crossref_primary_10_1017_eds_2024_11 crossref_primary_10_3389_fmars_2021_799358 crossref_primary_10_1016_j_cub_2024_05_066 crossref_primary_10_1016_j_scitotenv_2021_145621 crossref_primary_10_1016_j_hal_2021_102009 crossref_primary_10_1016_j_hal_2022_102228 crossref_primary_10_1016_j_hal_2023_102479 crossref_primary_10_1016_j_hal_2024_102624 crossref_primary_10_3390_toxins11010037 crossref_primary_10_1016_j_hal_2025_102803 crossref_primary_10_1007_s42974_024_00202_9 crossref_primary_10_1016_j_hal_2021_102010 crossref_primary_10_3389_fmars_2023_1119370 crossref_primary_10_3390_toxins11100612 crossref_primary_10_1111_jpy_13131 crossref_primary_10_1111_jpy_13495 crossref_primary_10_3390_microorganisms8020187 crossref_primary_10_1111_jpy_13331 |
Cites_doi | 10.1073/pnas.1612483113 10.3354/meps10027 10.1093/plankt/fbs099 10.1111/j.1529-8817.2008.00579.x 10.1111/1462-2920.13373 10.1016/j.hal.2007.05.002 10.1111/j.1529-8817.2010.00954.x 10.3354/ame045101 10.4319/lo.2008.53.5.1816 10.4319/lo.1972.17.6.0805 10.1093/plankt/17.5.999 10.4490/algae.2017.32.3.8 10.1139/f71-052 10.3354/meps09879 10.3354/meps183013 10.1017/CBO9780511732263.020 10.1016/0005-2728(75)90209-1 10.1007/BF00571372 10.1529/biophysj.107.113993 10.2216/i0031-8884-33-6-455.1 10.2216/i0031-8884-32-3-234.1 10.1016/j.hal.2011.10.016 10.1007/BF02279480 10.1016/j.toxicon.2010.09.007 10.1007/BF00033156 10.1016/S0304-4165(89)80016-9 10.3389/fmicb.2016.00785 10.1016/j.hal.2009.05.004 10.1186/1471-2164-11-366 10.1007/978-3-540-32210-8_17 10.3354/meps07953 10.1016/j.dsr2.2013.03.033 10.1016/j.marpolbul.2011.10.015 10.1007/BF00024185 10.1016/j.hal.2006.08.007 10.1016/j.hal.2010.10.005 10.1111/j.1550-7408.2011.00559.x 10.1007/s10811-005-7907-z 10.3354/meps07179 10.1016/j.hal.2015.11.007 10.1016/j.jembe.2016.11.014 10.3354/ame01774 10.1016/j.hal.2009.12.002 10.1016/j.hal.2014.07.013 10.1111/j.1529-8817.2011.01076.x 10.3354/meps08014 10.1016/j.jmarsys.2011.12.007 10.1016/j.hal.2015.12.003 10.1007/978-94-007-1038-2_17 10.3390/md12010394 10.1016/j.hal.2013.06.004 10.1186/1741-7007-8-73 10.1111/1462-2920.13042 10.1016/j.hal.2012.12.004 10.1016/j.toxicon.2010.12.002 10.3354/meps195029 10.1038/35016570 10.1016/j.foodchem.2011.04.054 10.1371/journal.pone.0177512 10.1128/AEM.06544-11 10.3354/ame01203 10.1007/BF00345747 10.2989/18142320609504163 10.3354/ame01372 10.1007/s002270050569 10.1016/j.seares.2015.12.006 |
ContentType | Journal Article |
Copyright | 2018 Phycological Society of America 2018 Phycological Society of America. |
Copyright_xml | – notice: 2018 Phycological Society of America – notice: 2018 Phycological Society of America. |
DBID | AAYXX CITATION NPM 7TN F1W H95 L.G M7N 7X8 7S9 L.6 |
DOI | 10.1111/jpy.12794 |
DatabaseName | CrossRef PubMed Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Aquatic Science & Fisheries Abstracts (ASFA) Professional Oceanic Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional PubMed MEDLINE - Academic CrossRef AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1529-8817 |
EndPage | 917 |
ExternalDocumentID | 30298602 10_1111_jpy_12794 JPY12794 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Iberian Peninsula Western European region |
GeographicLocations_xml | – name: Iberian Peninsula – name: Western European region |
GrantInformation_xml | – fundername: Ministerio de Economía y Competitividad funderid: BES‐2014‐067832; CGL2013‐48861‐R; PCIN‐2015‐252 – fundername: Ministerio de Economía y Competitividad grantid: PCIN-2015-252 – fundername: Ministerio de Economía y Competitividad grantid: BES-2014-067832 – fundername: Ministerio de Economía y Competitividad grantid: CGL2013-48861-R |
GroupedDBID | -DZ -~X .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29L 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABPPZ ABPVW ACAHQ ACBWZ ACCZN ACGFS ACNCT ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADXHL ADZMN AEFGJ AEIGN AEIMD AENEX AETEA AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AI. AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BIYOS BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBC EBD EBS EDH EJD EMK EST ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ H~9 IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ NHB O66 O9- OIG P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 S10 SAMSI SUPJJ TN5 TUS TWZ UB1 UKR UPT VH1 W8V W99 WBKPD WH7 WIH WIK WNSPC WOHZO WQJ WXSBR WYISQ XG1 XJT XOL YBU YQT YR2 ZCG ZZTAW ~02 ~IA ~KM ~WT AAYXX CITATION AAHHS ACCFJ AEEZP AEQDE AIWBW AJBDE NPM 7TN F1W H95 L.G M7N 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4784-898bf550fa34c1e871c6002a9b68a50f8b58115dc0f4f439563028b8703d8a7f3 |
IEDL.DBID | DR2 |
ISSN | 0022-3646 1529-8817 |
IngestDate | Fri Sep 05 17:14:15 EDT 2025 Fri Sep 05 07:58:10 EDT 2025 Wed Aug 13 09:13:23 EDT 2025 Thu Apr 03 06:58:09 EDT 2025 Thu Apr 24 22:57:51 EDT 2025 Wed Oct 01 05:01:38 EDT 2025 Sun Sep 21 06:20:16 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | pigments Dinophysis light PAM ecophysiology toxins |
Language | English |
License | 2018 Phycological Society of America. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4784-898bf550fa34c1e871c6002a9b68a50f8b58115dc0f4f439563028b8703d8a7f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
ORCID | 0000-0003-1696-0578 |
PMID | 30298602 |
PQID | 2163993768 |
PQPubID | 1006384 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_2220909346 proquest_miscellaneous_2117391421 proquest_journals_2163993768 pubmed_primary_30298602 crossref_citationtrail_10_1111_jpy_12794 crossref_primary_10_1111_jpy_12794 wiley_primary_10_1111_jpy_12794_JPY12794 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2018 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: December 2018 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Marcos |
PublicationTitle | Journal of phycology |
PublicationTitleAlternate | J Phycol |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 56 2010; 11 2013; 3 2010; 58 2013; 28 2000; 47 2016; 108 2013; 23 2008b 1989; 990 2015; 76 2008; 7 2011; 10 2011; 57 2011; 58 2012; 14 1974; 17 2011; 129 2005a 2006; 28 1993; 32 2017; 32 1999; 183 2000; 405 2016; 113 1994; 33 2007; 6 1999; 134 2008; 353 2017; 487 2014; 12 2012; 64 1972; 17 2010; 9 2010; 8 2012; 465 2013; 109 1995; 17 1971; 28 2011 1986; 10 1991; 31 1998 2016; 53 1997 2000; 195 2006 2005 1975; 376 1993 2003 2008; 53 1996; 126 2016; 18 2008; 94 2008; 51 2012; 78 2012; 471 2016; 7 1990; 25 2006; 45 2013; 35 2017; 12 2009; 385 2009; 8 2009; 381 2008; 44 2015 2011; 47 2014; 39 2005; 17 2014; 101 e_1_2_8_24_1 e_1_2_8_47_1 Reguera B. (e_1_2_8_49_1) 1993 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 Li M. (e_1_2_8_26_1) 2016; 7 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 Reguera B. (e_1_2_8_50_1) 2015 Silke J. (e_1_2_8_60_1) 2005 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 Jeffrey S. W. (e_1_2_8_21_1) 1997 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 Maestrini S. Y. (e_1_2_8_28_1) 1998 e_1_2_8_25_1 e_1_2_8_46_1 Palma A. S. (e_1_2_8_37_1) 1998 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 Maestrini S. (e_1_2_8_29_1) 2000; 47 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 Blanco J. (e_1_2_8_2_1) 2013; 3 e_1_2_8_71_1 |
References_xml | – volume: 32 start-page: 47 year: 2017 end-page: 55 article-title: Ingestion rate and grazing impact by the mixotrophic ciliate on natural populations of marine heterotrophic bacteria in the coastal waters of Korea publication-title: Algae – volume: 126 start-page: 9 year: 1996 end-page: 18 article-title: Comparisons among species of (Dinophyceae) grown in nitrogen‐or phosphorus‐limiting batch culture publication-title: Mar. Biol. – volume: 78 start-page: 813 year: 2012 end-page: 21 article-title: Multiple plastids collected by the dinoflagellate through kleptoplastidy publication-title: Appl. Enviro. Microbiol. – year: 2005 – volume: 385 start-page: 87 year: 2009 end-page: 96 article-title: Vertical distribution of division rates in coastal dinoflagellate spp. populations: implications for modelling publication-title: Mar. Ecol. Prog. Ser. – volume: 53 start-page: 1816 year: 2008 article-title: Thin layers of spp. and the fate of during an upwelling‐downwelling cycle in a Galician Ría publication-title: Limnol. Oceanogr. – volume: 51 start-page: 301 year: 2008 end-page: 10 article-title: Growth and grazing responses of the mixotrophic dinoflagellate as functions of light intensity and prey concentration publication-title: Aquat. Microb. Ecol. – volume: 109 start-page: S273 year: 2013 end-page: 83 article-title: Distribution of species in the Bay of Biscay and possible transport pathways to Arcachon Bay publication-title: J. Mar. Syst. – volume: 76 start-page: 163 year: 2015 end-page: 74 article-title: Origin of cryptophyte plastids in from Galician waters: results from field and culture experiments publication-title: Aquat. Microb. Ecol. – volume: 9 start-page: 312 year: 2010 end-page: 22 article-title: Bloom dynamics of in an upwelling system: in situ growth versus transport publication-title: Harmful Algae – volume: 990 start-page: 87 year: 1989 end-page: 92 article-title: The relationship between the quantum yield of photosynthetic electrontransport and quenching of chlorophyll fluorescence publication-title: Biochim. Biophys. Acta – volume: 8 start-page: 73 year: 2010 article-title: Plastid evolution: Gene transfer and the maintenance of ‘stolen’ organelles publication-title: BMC Biol. – volume: 11 start-page: 366 year: 2010 article-title: Transcriptome analysis reveals nuclear‐encoded proteins for the maintenance of temporary plastids in the dinoflagellate publication-title: BMC Genom. – start-page: 215 year: 2006 end-page: 27 – volume: 7 start-page: 826 year: 2016 article-title: Phosphorus deficiency inhibits cell division but not growth in the dinoflagellate Amphidinium carterae publication-title: Front. Microbiol. – start-page: 559 year: 1993 end-page: 64 – volume: 17 start-page: 805 year: 1972 end-page: 15 article-title: Effects of size and concentration of food particles on the feeding behaviour of the marine planktonic copepod publication-title: Limnol. Oceanogr. – volume: 57 start-page: 275 year: 2011 end-page: 87 article-title: Toxin profiles of five geographical isolates of spp. from North and South America publication-title: Toxicon – volume: 353 start-page: 89 year: 2008 end-page: 105 article-title: Growth, behaviour and cell toxin quota of during a daily cycle publication-title: Mar. Ecol. Prog. Ser. – volume: 376 start-page: 105 year: 1975 end-page: 15 article-title: Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone publication-title: Biochim. Biophys Acta BBA Bioenerg. – volume: 12 start-page: 394 year: 2014 end-page: 461 article-title: toxins: causative organisms, distribution and fate in shellfish publication-title: Mar. Drugs – volume: 32 start-page: 234 year: 1993 end-page: 6 article-title: is a diatom, not a chrysophyte publication-title: Phycologia – volume: 134 start-page: 541 year: 1999 end-page: 9 article-title: Cell cycle and toxin production in the benthic dinoflagellate publication-title: Mar. Biol. – volume: 28 start-page: 283 year: 2006 end-page: 8 article-title: Are different species of selected by climatological conditions? publication-title: Afr. J. Mar. Sci. – volume: 10 start-page: 51 year: 1986 end-page: 62 article-title: Continuous recording of photochemical and non‐photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer publication-title: Photosynth. Res. – volume: 47 start-page: 7 year: 2000 end-page: 11 article-title: Phosphorus limitation might promote more toxin content in the marine invader dinoflagellate publication-title: Plankton Biol. Ecol. – volume: 7 start-page: 11 year: 2008 end-page: 25 article-title: Two decades of marine biotoxin monitoring in bivalves from Portugal (1986–2006): a review of exposure assessment publication-title: Harmful Algae – volume: 17 start-page: 999 year: 1995 end-page: 1015 article-title: Autoecology and some life history stages of Ehrenberg publication-title: J. Plankton Res. – volume: 47 start-page: 324 year: 2011 end-page: 32 article-title: Photoacclimation in the phototrophic marine ciliate (Ciliophora) publication-title: J. Phycol. – start-page: 128 year: 2015 end-page: 131 – volume: 58 start-page: 273 year: 2010 end-page: 86 article-title: Phytoplankton assemblages and characterization of a population during an upwelling–downwelling cycle publication-title: Aquat. Microb. Ecol. – volume: 113 start-page: 12208 year: 2016 end-page: 13 article-title: Cryptophyte farming by symbiotic ciliate host detected in situ publication-title: Proc. Natl. Acad. Sci. USA – volume: 10 start-page: 254 year: 2011 end-page: 64 article-title: The effects of growth phase and light intensity on toxin production by from the northeastern United States publication-title: Harmful Algae – volume: 471 start-page: 37 year: 2012 end-page: 50 article-title: Effects of light and food availability on toxin production, growth and photosynthesis in publication-title: Mar. Ecol. Prog. Ser. – volume: 64 start-page: 106 year: 2012 end-page: 113 article-title: A comparison of integrated and discrete depth sampling for monitoring toxic species of Dinophysis publication-title: Mar. Pollut. Bull. – start-page: 222 year: 2008b – volume: 8 start-page: 926 year: 2009 end-page: 37 article-title: Seasonal variability of lipophilic toxins during a bloom in Western Iberia: differences between picked cells and plankton concentrates publication-title: Harmful Algae – volume: 108 start-page: 19 year: 2016 end-page: 29 article-title: Temporal variation and trends of inorganic nutrients in the coastal upwelling of the NW Spain (Atlantic Galician rías) publication-title: J. Sea Res. – volume: 14 start-page: 87 year: 2012 end-page: 106 article-title: Harmful species: a review publication-title: Harmful Algae – volume: 53 start-page: 145 year: 2016 end-page: 59 article-title: Climate variability and blooms in an upwelling system publication-title: Harmful Algae – volume: 7 start-page: 785 year: 2016 article-title: Photoregulation in a kleptochloroplastidic noflagellate, publication-title: Front. Microbiol. – volume: 47 start-page: 1326 year: 2011 end-page: 37 article-title: Differences in the production and excretion kinetics of okadaic acid, dinophysistoxin‐1, and pectenotoxin‐2 between cultures of and isolated from western Japan publication-title: J. Phycol. – volume: 183 start-page: 13 year: 1999 end-page: 27 article-title: Significance of nanophytoplankton photosynthesis and primary production in a coastal upwelling system (Ría de Vigo, NW Spain) publication-title: Mar. Ecol. Prog. Ser. – volume: 101 start-page: 141 year: 2014 end-page: 51 article-title: The growth season of in an upwelling system embayment: a conceptual model based on in situ measurements publication-title: Deep Sea Res. Part 2 Top. Stud. Oceanogr. – volume: 487 start-page: 59 year: 2017 end-page: 67 article-title: Relationship between strains of (Dinophyceae) from the Atlantic Iberian Peninsula and their sampling sites publication-title: J. Exp. Mar. Biol. Ecol. – volume: 58 start-page: 365 year: 2011 end-page: 72 article-title: Natural co‐occurrence of (Dinoflagellata) and (Ciliophora) in thin layers in a coastal inlet publication-title: J. Eukar. Microb. – volume: 17 start-page: 281 year: 1974 end-page: 91 article-title: Carbondioxide exchange of : a mathematical model publication-title: Oecol. – volume: 94 start-page: 2423 year: 2008 end-page: 33 article-title: Phycocyanin sensitizes both photosystem I and photosystem II in cryptophyte CCMP270 cells publication-title: Biophys. J . – volume: 44 start-page: 1154 year: 2008 end-page: 63 article-title: Plastid dynamics during survival of without its ciliate prey publication-title: J. Phycol. – volume: 465 start-page: 33 year: 2012 end-page: 52 article-title: Pigment‐based chloroplast types in dinoflagellates publication-title: Mar. Ecol. Prog. Ser. – volume: 45 start-page: 101 year: 2006 end-page: 6 article-title: First successful culture of the marine dinoflagellate publication-title: Aquat. Microb. Ecol. – volume: 12 start-page: e0177512 year: 2017 article-title: Evolutionary transition towards permanent chloroplasts? Division of kleptochloroplasts in starved cells of two species of (Dinophyceae) publication-title: PLoS ONE – volume: 28 start-page: 391 year: 1971 end-page: 407 article-title: The red‐water ciliate and its “incomplete symbionts”; a review including new ultrastructural observations publication-title: J. Fish. Res. Board Can. – volume: 31 start-page: 589 year: 1991 end-page: 94 article-title: Influence of injection conditionsin reversed‐phase high‐performance liquid chromatographyof chlorophylls and carotenoids publication-title: Chromatographia – volume: 18 start-page: 4412 year: 2016 end-page: 25 article-title: Pigment variations in (CCMP370) as a response to changes in light intensity or quality publication-title: Env. Microbiol. – volume: 6 start-page: 218 year: 2007 end-page: 31 article-title: Toxicity of spp. in relation to population density and environmental conditions on the Swedish west coast publication-title: Harmful Algae – volume: 129 start-page: 533 year: 2011 end-page: 40 article-title: Automated on‐line solid‐phase extraction coupled to liquid chromatography–tandem mass spectrometry for determination of lipophilic marine toxins in shellfish publication-title: Food Chem. – volume: 405 start-page: 1049 year: 2000 end-page: 52 article-title: Cryptophyte algae are robbed of their organelles by the marine ciliate publication-title: Nature – volume: 3 start-page: 1 year: 2013 end-page: 55 article-title: Evaluación del impacto de los métodos y niveles utilizados para el control de toxinas en el mejillón publication-title: Revista Galega dos Recursos Mariños (Art. Inf. Tecn.) – start-page: 449 year: 1997 end-page: 559 – start-page: 483 year: 2005a end-page: 8 – volume: 28 start-page: 126 year: 2013 end-page: 39 article-title: Acquired phototrophy in and ‐ a review of cellular organization, prey selectivity, nutrient uptake and bioenergetics publication-title: Harmful Algae – volume: 195 start-page: 29 year: 2000 end-page: 45 article-title: Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8column and pyridine‐containing mobile phases publication-title: Mar. Ecol. Prog. Ser. – volume: 39 start-page: 223 year: 2014 end-page: 31 article-title: Diversity and plastid types in complex (Dinophyceae) in Scottish waters publication-title: Harmful Algae – start-page: 124 year: 1998 end-page: 7 – volume: 18 start-page: 627 year: 2016 end-page: 43 article-title: Divinyl chlorophyll in the marine eukaryotic protist (Dinophyceae) publication-title: Environ. Microbiol. – volume: 33 start-page: 455 year: 1994 end-page: 61 article-title: Okadaic acid antibody localzes to chloroplasts in the DSP‐toxin producing dinoflagellates and publication-title: Phycologia – start-page: 385 year: 2003 end-page: 412 – volume: 35 start-page: 433 year: 2013 end-page: 7 article-title: Pigment composition in three species (Dinophyceae) and the associated cultures of and publication-title: J. Plankton Res. – volume: 381 start-page: 51 year: 2009 end-page: 62 article-title: Role of food uptake for photosynthesis, growth and survival of the mixotrophic dinoflagellate Dinophysis acuminata publication-title: Mar. Ecol. Prog. Ser. – volume: 23 start-page: 34 year: 2013 end-page: 45 article-title: Production and excretion of okadaic acid, pectenotoxin‐2 and a novel dinophysistoxin from the DSP‐causing marine dinoflagellate –effects of light, food availability and growth phase publication-title: Harmful Algae – volume: 25 start-page: 147 year: 1990 end-page: 50 article-title: The use of chlorophyll fluorescence in nomenclature in plant stress physiology publication-title: Photosynth. Res. – start-page: 243 year: 1998 end-page: 65 – volume: 53 start-page: 40 year: 2016 end-page: 52 article-title: Modelling the hydrodynamic conditions associated with blooms in Galicia (NW Spain) publication-title: Harmful Algae – volume: 56 start-page: 1487 year: 2010 end-page: 96 article-title: Production of diarrhetic shellfish poisoning toxins and pectenotoxins at depths within and below the euphotic zone publication-title: Toxicon – start-page: 538 year: 2011 end-page: 606 – volume: 17 start-page: 155 year: 2005 end-page: 60 article-title: Contribution to toxicity assessment of (Dinophyceae) publication-title: J. Appl. Phycol. – ident: e_1_2_8_44_1 doi: 10.1073/pnas.1612483113 – ident: e_1_2_8_34_1 doi: 10.3354/meps10027 – ident: e_1_2_8_53_1 doi: 10.1093/plankt/fbs099 – ident: e_1_2_8_40_1 doi: 10.1111/j.1529-8817.2008.00579.x – ident: e_1_2_8_14_1 doi: 10.1111/1462-2920.13373 – ident: e_1_2_8_66_1 doi: 10.1016/j.hal.2007.05.002 – ident: e_1_2_8_31_1 doi: 10.1111/j.1529-8817.2010.00954.x – ident: e_1_2_8_39_1 doi: 10.3354/ame045101 – ident: e_1_2_8_68_1 doi: 10.4319/lo.2008.53.5.1816 – start-page: 483 volume-title: Molluscan Shellfish Safety year: 2005 ident: e_1_2_8_60_1 – ident: e_1_2_8_11_1 doi: 10.4319/lo.1972.17.6.0805 – ident: e_1_2_8_32_1 – volume: 7 start-page: 826 year: 2016 ident: e_1_2_8_26_1 article-title: Phosphorus deficiency inhibits cell division but not growth in the dinoflagellate Amphidinium carterae publication-title: Front. Microbiol. – ident: e_1_2_8_48_1 doi: 10.1093/plankt/17.5.999 – ident: e_1_2_8_59_1 doi: 10.4490/algae.2017.32.3.8 – volume: 3 start-page: 1 year: 2013 ident: e_1_2_8_2_1 article-title: Evaluación del impacto de los métodos y niveles utilizados para el control de toxinas en el mejillón publication-title: Revista Galega dos Recursos Mariños (Art. Inf. Tecn.) – ident: e_1_2_8_63_1 doi: 10.1139/f71-052 – ident: e_1_2_8_74_1 doi: 10.3354/meps09879 – ident: e_1_2_8_64_1 doi: 10.3354/meps183013 – ident: e_1_2_8_22_1 doi: 10.1017/CBO9780511732263.020 – ident: e_1_2_8_25_1 doi: 10.1016/0005-2728(75)90209-1 – ident: e_1_2_8_10_1 doi: 10.1007/BF00571372 – ident: e_1_2_8_72_1 doi: 10.1529/biophysj.107.113993 – ident: e_1_2_8_77_1 doi: 10.2216/i0031-8884-33-6-455.1 – ident: e_1_2_8_17_1 doi: 10.2216/i0031-8884-32-3-234.1 – ident: e_1_2_8_52_1 doi: 10.1016/j.hal.2011.10.016 – ident: e_1_2_8_75_1 doi: 10.1007/BF02279480 – ident: e_1_2_8_12_1 doi: 10.1016/j.toxicon.2010.09.007 – ident: e_1_2_8_67_1 doi: 10.1007/BF00033156 – ident: e_1_2_8_15_1 doi: 10.1016/S0304-4165(89)80016-9 – ident: e_1_2_8_20_1 doi: 10.3389/fmicb.2016.00785 – ident: e_1_2_8_43_1 doi: 10.1016/j.hal.2009.05.004 – ident: e_1_2_8_73_1 doi: 10.1186/1471-2164-11-366 – ident: e_1_2_8_3_1 doi: 10.1007/978-3-540-32210-8_17 – ident: e_1_2_8_45_1 doi: 10.3354/meps07953 – start-page: 128 volume-title: Marine and Freshwater Harmful Algae year: 2015 ident: e_1_2_8_50_1 – volume: 47 start-page: 7 year: 2000 ident: e_1_2_8_29_1 article-title: Phosphorus limitation might promote more toxin content in the marine invader dinoflagellate Alexandrium minutum publication-title: Plankton Biol. Ecol. – ident: e_1_2_8_69_1 doi: 10.1016/j.dsr2.2013.03.033 – ident: e_1_2_8_8_1 doi: 10.1016/j.marpolbul.2011.10.015 – ident: e_1_2_8_58_1 doi: 10.1007/BF00024185 – ident: e_1_2_8_27_1 doi: 10.1016/j.hal.2006.08.007 – ident: e_1_2_8_65_1 doi: 10.1016/j.hal.2010.10.005 – start-page: 243 volume-title: Physiological Ecology of Harmful Algal Blooms year: 1998 ident: e_1_2_8_28_1 – ident: e_1_2_8_61_1 doi: 10.1111/j.1550-7408.2011.00559.x – ident: e_1_2_8_30_1 doi: 10.1007/s10811-005-7907-z – ident: e_1_2_8_42_1 doi: 10.3354/meps07179 – ident: e_1_2_8_5_1 doi: 10.1016/j.hal.2015.11.007 – ident: e_1_2_8_4_1 doi: 10.1016/j.jembe.2016.11.014 – ident: e_1_2_8_54_1 doi: 10.3354/ame01774 – ident: e_1_2_8_7_1 doi: 10.1016/j.hal.2009.12.002 – ident: e_1_2_8_62_1 doi: 10.1016/j.hal.2014.07.013 – ident: e_1_2_8_33_1 doi: 10.1111/j.1529-8817.2011.01076.x – ident: e_1_2_8_70_1 doi: 10.3354/meps08014 – ident: e_1_2_8_1_1 doi: 10.1016/j.jmarsys.2011.12.007 – ident: e_1_2_8_56_1 doi: 10.1016/j.hal.2015.12.003 – start-page: 449 volume-title: Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods year: 1997 ident: e_1_2_8_21_1 – ident: e_1_2_8_46_1 doi: 10.1007/978-94-007-1038-2_17 – ident: e_1_2_8_51_1 doi: 10.3390/md12010394 – ident: e_1_2_8_19_1 doi: 10.1016/j.hal.2013.06.004 – ident: e_1_2_8_24_1 doi: 10.1186/1741-7007-8-73 – start-page: 559 volume-title: Toxic Phytoplankton Blooms in the Sea year: 1993 ident: e_1_2_8_49_1 – ident: e_1_2_8_55_1 doi: 10.1111/1462-2920.13042 – ident: e_1_2_8_35_1 doi: 10.1016/j.hal.2012.12.004 – ident: e_1_2_8_13_1 doi: 10.1016/j.toxicon.2010.12.002 – ident: e_1_2_8_41_1 – ident: e_1_2_8_76_1 doi: 10.3354/meps195029 – ident: e_1_2_8_18_1 doi: 10.1038/35016570 – start-page: 124 volume-title: Harmful Algae year: 1998 ident: e_1_2_8_37_1 – ident: e_1_2_8_47_1 doi: 10.1016/j.foodchem.2011.04.054 – ident: e_1_2_8_57_1 doi: 10.1371/journal.pone.0177512 – ident: e_1_2_8_36_1 doi: 10.1128/AEM.06544-11 – ident: e_1_2_8_23_1 doi: 10.3354/ame01203 – ident: e_1_2_8_71_1 doi: 10.1007/BF00345747 – ident: e_1_2_8_9_1 doi: 10.2989/18142320609504163 – ident: e_1_2_8_16_1 doi: 10.3354/ame01372 – ident: e_1_2_8_38_1 doi: 10.1007/s002270050569 – ident: e_1_2_8_6_1 doi: 10.1016/j.seares.2015.12.006 |
SSID | ssj0007651 |
Score | 2.3658636 |
Snippet | Dinoflagellates of the genus Dinophysis are the most persistent producers of lipophilic shellfish toxins in Western Europe. Their mixotrophic nutrition... Dinoflagellates of the genus Dinophysis are the most persistent producers of lipophilic shellfish toxins in Western Europe. Their mixotrophic nutrition... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 899 |
SubjectTerms | Acclimation blue light Ciliates Darkness Depletion Dinoflagellates Dinophysis Dinophysis acuminata Dinophysis acuta Ecophysiology Fluorimetry Fluorometry Fluxes food chain Food chains Growth rate High-performance liquid chromatography HPLC Iberian Peninsula Light Light effects Light intensity Light quality Lipophilic lipophilicity Liquid chromatography Luminous intensity mass spectrometry Mesodinium Mesodinium rubrum Nutrition PAM Parameters Phase transitions Photons photoperiod Photosynthesis physiological response pigments Plastids Prey Shellfish shellfish toxins Survival Toxins Western European region White light |
Title | Comparative ecophysiology of Dinophysis acuminata and D. acuta (DINOPHYCEAE, DINOPHYSIALES): effect of light intensity and quality on growth, cellular toxin content, and photosynthesis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjpy.12794 https://www.ncbi.nlm.nih.gov/pubmed/30298602 https://www.proquest.com/docview/2163993768 https://www.proquest.com/docview/2117391421 https://www.proquest.com/docview/2220909346 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1529-8817 dateEnd: 20241004 omitProxy: true ssIdentifier: ssj0007651 issn: 0022-3646 databaseCode: ABDBF dateStart: 20000201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0022-3646 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1529-8817 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007651 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaqigMXaPldWpBBHIq0WcWJk9hwWna32lZQKkqlVkKKbMehq1bJqpsVpE_T1-DKkzG2k5TyJ8QtdibJOJmxv7HHXxB6LnyVh9A3epoRCFBknnkiAb8C8AGDQaa5ZGZz8tu9eHpId4-ioxX0qt0L4_ghugk34xm2vzYOLuTiRyef1wMSgDlB_0vCyC7Rvr-ijkriiHRM4TGNG1Yhm8XTXnl9LPoFYF7Hq3bA2b6NPraqujyT08GykgN18ROL43-2ZQ3daoAoHjrLWUcruriDbrwuASzWd9HX0RUrOIYI1U6A2Bl4XOZ4PCtczQILtTTJNJXAosjwePDtEmqgtDXe2Xu3Pz0eTYaTPm4KBzvDN5ODFy-xyyIxtzozkwN45hLpq9rexW30hCcV-NN5-bk66WOzvmASZnFVfpkV2CTYw2jZt-Lzk7IqF3UBUBY0uocOtycfRlOv-cuDp2jCqMc4kznESbkIqSIaAjhl1goFlzETUM1kBGYUZcrPaQ7wyRCaBUxCPxNmTCR5eB-tFmWhHyIccsECTbXkiaSRVByiQ5IRGpBMZ5FQPbTVfu9UNRTo5k8cZ2kXCs3r1H6IHnrWic4d78fvhDZbo0kb11-kAXGgL2Y99LQ7DU5r3pQodLk0MiQJuVHsLzJB4HOfhzTuoQfOIDtNQkOcH_sBNMia1Z9VTHf3j-3Bo38X3UA3ARYyl7SziVar86V-DNCrkk-sj30H6o4rNQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGQIIX7pfCAIN4GFJTxYmTOIiX0nZqR1cmtknbA4psx2EVU1KtqSD8Gv4Gr_wyju0kY9yEeEuck-QkOcf-zvHxF4SecVdmPvSNjmIEAhSRpQ6PwK8AfMBgkKpYML04eWcWjg_o9mFwuIZeNmthLD9Em3DTnmH6a-3gOiH9o5cvqh7xwJ4uoIt6fk675fDtGXlUFAak5QoPaVjzCpk6nubU86PRLxDzPGI1Q87WNfSuUdZWmnzorUrRk59_4nH836e5jq7WWBT3rfHcQGsqv4kuvSoAL1a30NfBGTE4hiDV5EBMEh4XGR7Oc9uyxFyudD1NyTHPUzzsffsCLbC3OZzM3uyOjwaj_qiL6529SX862nv-AttCEn2pE50fwHNbS19W5ip2rSfcKcfvT4uP5XEX6ykGXTOLy-LTPMe6xh4GzK4RXxwXZbGsckCzoNFtdLA12h-MnfpHD46kEaMOi5nIIFTKuE8lURDDST1dyGMRMg7NTARgSUEq3YxmgKA0p5nHBHQ1fsp4lPl30Hpe5Ooewn7MmaeoEnEkaCBkDAEiSQn1SKrSgMsO2mw-eCJrFnT9M46TpI2GFlViPkQHPW1FF5b643dCG43VJLX3LxOPWNwXsg560h4Gv9VviueqWGkZEvmxVuwvMp7nxm7s07CD7lqLbDXxNXd-6HrwQMau_qxisr17ZDbu_7voY3R5vL8zTaaT2esH6AqgRGZreDbQenm6Ug8BiZXikXG47370L1E |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGQIgX7pfCAIN4GFJT1YmTOPBUelE7RqkYkzYJKbIdh1VMSbSmgvBr-Bu88ss4tpOMcRPiLXFOkpP4HPs79vFnhJ7wvkw9aBsdxQgEKCJNHB6CXwH4gM4gUZFgenHyq3kw3ac7B_7BBnrerIWx_BDtgJv2DNNeawcvkvRHJy-qHnHBnM6h8zSA6Eojojen3FFh4JOWKjygQU0rZNJ4mlvPdka_IMyzgNX0OJMr6F2jq000-dBbl6InP_9E4_ifH3MVXa6RKB5Y07mGNlR2HV14kQNarG6gr8NTWnAMIaoZATFD8DhP8WiZ2ZIV5nKts2lKjnmW4FHv2xcogbPt0Wz-ejE9HI4H4y6uT_Zmg93x3tNn2KaR6Ecd69EBvLSZ9GVlnmJXesKbMvz-JP9YHnWxnmDQGbO4zD8tM6wz7KG77Brx4igv81WVAZYFjW6i_cn47XDq1Ns8OJKGjDosYiKFQCnlHpVEQQQn9WQhj0TAOBQz4YMd-YnspzQF_KQZzVwmoKHxEsbD1LuFNrM8U3cQ9iLOXEWViEJBfSEjCA9JQqhLEpX4XHbQdlPfsaw50PVWHMdxGwsVVWwqooMet6KFJf74ndBWYzRx7fur2CUW9QWsgx61l8Fr9Z_imcrXWoaEXqQV-4uM6_ajfuTRoINuW4NsNfE0cz4YPXyQMas_qxjvLA7Nwd1_F32ILi5Gk3h3Nn95D10CiMhsAs8W2ixP1uo-wLBSPDDu9h3RaS4A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+ecophysiology+of+Dinophysis+acuminata+and+D.+acuta+%28DINOPHYCEAE%2C+DINOPHYSIALES%29%3A+effect+of+light+intensity+and+quality+on+growth%2C+cellular+toxin+content%2C+and+photosynthesis&rft.jtitle=Journal+of+phycology&rft.au=Garc%C3%ADa-Portela%2C+Mar%C3%ADa&rft.au=Riob%C3%B3%2C+Pilar&rft.au=Reguera%2C+Beatriz&rft.au=Garrido%2C+Jos%C3%A9+Luis&rft.date=2018-12-01&rft.issn=1529-8817&rft.eissn=1529-8817&rft.volume=54&rft.issue=6&rft.spage=899&rft_id=info:doi/10.1111%2Fjpy.12794&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3646&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3646&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3646&client=summon |