Comparative ecophysiology of Dinophysis acuminata and D. acuta (DINOPHYCEAE, DINOPHYSIALES): effect of light intensity and quality on growth, cellular toxin content, and photosynthesis

Dinoflagellates of the genus Dinophysis are the most persistent producers of lipophilic shellfish toxins in Western Europe. Their mixotrophic nutrition requires a food chain of cryptophytes and plastid‐bearing ciliates for sustained growth and photosynthesis. In this study, cultures of D. acuminata...

Full description

Saved in:
Bibliographic Details
Published inJournal of phycology Vol. 54; no. 6; pp. 899 - 917
Main Authors García‐Portela, María, Riobó, Pilar, Reguera, Beatriz, Garrido, José Luis, Blanco, Juan, Rodríguez, Francisco, Raven, J.
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.12.2018
Subjects
Online AccessGet full text
ISSN0022-3646
1529-8817
1529-8817
DOI10.1111/jpy.12794

Cover

Abstract Dinoflagellates of the genus Dinophysis are the most persistent producers of lipophilic shellfish toxins in Western Europe. Their mixotrophic nutrition requires a food chain of cryptophytes and plastid‐bearing ciliates for sustained growth and photosynthesis. In this study, cultures of D. acuminata and D. acuta, their ciliate prey Mesodinium rubrum and the cryptophyte, Teleaulax amphioxeia, were subject to three experimental settings to study their physiological response to different combinations of light intensity and quality. Growth rates, pigment analyses (HPLC), photosynthetic parameters (PAM‐fluorometry), and cellular toxin content (LC‐MS) were determined. Specific differences in photosynthetic parameters were observed in Dinophysis exposed to different photon fluxes (10–650 μmol photons · m−2 · s−1), light quality (white, blue and green), and shifts in light regime. Dinophysis acuta was more susceptible to photodamage under high light intensities (370–650 μmol photons · m−2 · s−1) than D. acuminata but survived better with low light (10 μmol photons · m−2 · s−1) and to a prolonged period (28 d) of darkness. Mesodinium rubrum and T. amphioxeia showed their maximal growth rate and yield under white and high light whereas Dinophysis seemed better adapted to grow under green and blue light. Toxin analyses in Dinophysis showed maximal toxin per cell under high light after prey depletion at the late exponential‐plateau phase. Changes observed in photosynthetic light curves of D. acuminata cultures after shifting light conditions from low intensity‐blue light to high intensity‐white light seemed compatible with photoacclimation in this species. Results obtained here are discussed in relation to different spatiotemporal distributions observed in field populations of D. acuminata and D. acuta in northwestern Iberia.
AbstractList Dinoflagellates of the genus Dinophysis are the most persistent producers of lipophilic shellfish toxins in Western Europe. Their mixotrophic nutrition requires a food chain of cryptophytes and plastid‐bearing ciliates for sustained growth and photosynthesis. In this study, cultures of D. acuminata and D. acuta, their ciliate prey Mesodinium rubrum and the cryptophyte, Teleaulax amphioxeia, were subject to three experimental settings to study their physiological response to different combinations of light intensity and quality. Growth rates, pigment analyses (HPLC), photosynthetic parameters (PAM‐fluorometry), and cellular toxin content (LC‐MS) were determined. Specific differences in photosynthetic parameters were observed in Dinophysis exposed to different photon fluxes (10–650 μmol photons · m−2 · s−1), light quality (white, blue and green), and shifts in light regime. Dinophysis acuta was more susceptible to photodamage under high light intensities (370–650 μmol photons · m−2 · s−1) than D. acuminata but survived better with low light (10 μmol photons · m−2 · s−1) and to a prolonged period (28 d) of darkness. Mesodinium rubrum and T. amphioxeia showed their maximal growth rate and yield under white and high light whereas Dinophysis seemed better adapted to grow under green and blue light. Toxin analyses in Dinophysis showed maximal toxin per cell under high light after prey depletion at the late exponential‐plateau phase. Changes observed in photosynthetic light curves of D. acuminata cultures after shifting light conditions from low intensity‐blue light to high intensity‐white light seemed compatible with photoacclimation in this species. Results obtained here are discussed in relation to different spatiotemporal distributions observed in field populations of D. acuminata and D. acuta in northwestern Iberia.
Dinoflagellates of the genus Dinophysis are the most persistent producers of lipophilic shellfish toxins in Western Europe. Their mixotrophic nutrition requires a food chain of cryptophytes and plastid‐bearing ciliates for sustained growth and photosynthesis. In this study, cultures of D. acuminata and D. acuta, their ciliate prey Mesodinium rubrum and the cryptophyte, Teleaulax amphioxeia, were subject to three experimental settings to study their physiological response to different combinations of light intensity and quality. Growth rates, pigment analyses (HPLC), photosynthetic parameters (PAM‐fluorometry), and cellular toxin content (LC‐MS) were determined. Specific differences in photosynthetic parameters were observed in Dinophysis exposed to different photon fluxes (10–650 μmol photons · m−2 · s−1), light quality (white, blue and green), and shifts in light regime. Dinophysis acuta was more susceptible to photodamage under high light intensities (370–650 μmol photons · m−2 · s−1) than D. acuminata but survived better with low light (10 μmol photons · m−2 · s−1) and to a prolonged period (28 d) of darkness. Mesodinium rubrum and T. amphioxeia showed their maximal growth rate and yield under white and high light whereas Dinophysis seemed better adapted to grow under green and blue light. Toxin analyses in Dinophysis showed maximal toxin per cell under high light after prey depletion at the late exponential‐plateau phase. Changes observed in photosynthetic light curves of D. acuminata cultures after shifting light conditions from low intensity‐blue light to high intensity‐white light seemed compatible with photoacclimation in this species. Results obtained here are discussed in relation to different spatiotemporal distributions observed in field populations of D. acuminata and D. acuta in northwestern Iberia.
Dinoflagellates of the genus Dinophysis are the most persistent producers of lipophilic shellfish toxins in Western Europe. Their mixotrophic nutrition requires a food chain of cryptophytes and plastid-bearing ciliates for sustained growth and photosynthesis. In this study, cultures of D. acuminata and D. acuta, their ciliate prey Mesodinium rubrum and the cryptophyte, Teleaulax amphioxeia, were subject to three experimental settings to study their physiological response to different combinations of light intensity and quality. Growth rates, pigment analyses (HPLC), photosynthetic parameters (PAM-fluorometry), and cellular toxin content (LC-MS) were determined. Specific differences in photosynthetic parameters were observed in Dinophysis exposed to different photon fluxes (10-650 μmol photons · m  · s ), light quality (white, blue and green), and shifts in light regime. Dinophysis acuta was more susceptible to photodamage under high light intensities (370-650 μmol photons · m  · s ) than D. acuminata but survived better with low light (10 μmol photons · m  · s ) and to a prolonged period (28 d) of darkness. Mesodinium rubrum and T. amphioxeia showed their maximal growth rate and yield under white and high light whereas Dinophysis seemed better adapted to grow under green and blue light. Toxin analyses in Dinophysis showed maximal toxin per cell under high light after prey depletion at the late exponential-plateau phase. Changes observed in photosynthetic light curves of D. acuminata cultures after shifting light conditions from low intensity-blue light to high intensity-white light seemed compatible with photoacclimation in this species. Results obtained here are discussed in relation to different spatiotemporal distributions observed in field populations of D. acuminata and D. acuta in northwestern Iberia.
Dinoflagellates of the genus Dinophysis are the most persistent producers of lipophilic shellfish toxins in Western Europe. Their mixotrophic nutrition requires a food chain of cryptophytes and plastid-bearing ciliates for sustained growth and photosynthesis. In this study, cultures of D. acuminata and D. acuta, their ciliate prey Mesodinium rubrum and the cryptophyte, Teleaulax amphioxeia, were subject to three experimental settings to study their physiological response to different combinations of light intensity and quality. Growth rates, pigment analyses (HPLC), photosynthetic parameters (PAM-fluorometry), and cellular toxin content (LC-MS) were determined. Specific differences in photosynthetic parameters were observed in Dinophysis exposed to different photon fluxes (10-650 μmol photons · m-2 · s-1 ), light quality (white, blue and green), and shifts in light regime. Dinophysis acuta was more susceptible to photodamage under high light intensities (370-650 μmol photons · m-2 · s-1 ) than D. acuminata but survived better with low light (10 μmol photons · m-2 · s-1 ) and to a prolonged period (28 d) of darkness. Mesodinium rubrum and T. amphioxeia showed their maximal growth rate and yield under white and high light whereas Dinophysis seemed better adapted to grow under green and blue light. Toxin analyses in Dinophysis showed maximal toxin per cell under high light after prey depletion at the late exponential-plateau phase. Changes observed in photosynthetic light curves of D. acuminata cultures after shifting light conditions from low intensity-blue light to high intensity-white light seemed compatible with photoacclimation in this species. Results obtained here are discussed in relation to different spatiotemporal distributions observed in field populations of D. acuminata and D. acuta in northwestern Iberia.Dinoflagellates of the genus Dinophysis are the most persistent producers of lipophilic shellfish toxins in Western Europe. Their mixotrophic nutrition requires a food chain of cryptophytes and plastid-bearing ciliates for sustained growth and photosynthesis. In this study, cultures of D. acuminata and D. acuta, their ciliate prey Mesodinium rubrum and the cryptophyte, Teleaulax amphioxeia, were subject to three experimental settings to study their physiological response to different combinations of light intensity and quality. Growth rates, pigment analyses (HPLC), photosynthetic parameters (PAM-fluorometry), and cellular toxin content (LC-MS) were determined. Specific differences in photosynthetic parameters were observed in Dinophysis exposed to different photon fluxes (10-650 μmol photons · m-2 · s-1 ), light quality (white, blue and green), and shifts in light regime. Dinophysis acuta was more susceptible to photodamage under high light intensities (370-650 μmol photons · m-2 · s-1 ) than D. acuminata but survived better with low light (10 μmol photons · m-2 · s-1 ) and to a prolonged period (28 d) of darkness. Mesodinium rubrum and T. amphioxeia showed their maximal growth rate and yield under white and high light whereas Dinophysis seemed better adapted to grow under green and blue light. Toxin analyses in Dinophysis showed maximal toxin per cell under high light after prey depletion at the late exponential-plateau phase. Changes observed in photosynthetic light curves of D. acuminata cultures after shifting light conditions from low intensity-blue light to high intensity-white light seemed compatible with photoacclimation in this species. Results obtained here are discussed in relation to different spatiotemporal distributions observed in field populations of D. acuminata and D. acuta in northwestern Iberia.
Dinoflagellates of the genus Dinophysis are the most persistent producers of lipophilic shellfish toxins in Western Europe. Their mixotrophic nutrition requires a food chain of cryptophytes and plastid‐bearing ciliates for sustained growth and photosynthesis. In this study, cultures of D. acuminata and D. acuta , their ciliate prey Mesodinium rubrum and the cryptophyte, Teleaulax amphioxeia , were subject to three experimental settings to study their physiological response to different combinations of light intensity and quality. Growth rates, pigment analyses (HPLC), photosynthetic parameters (PAM‐fluorometry), and cellular toxin content (LC‐MS) were determined. Specific differences in photosynthetic parameters were observed in Dinophysis exposed to different photon fluxes (10–650 μmol photons · m −2  · s −1 ), light quality (white, blue and green), and shifts in light regime. Dinophysis acuta was more susceptible to photodamage under high light intensities (370–650 μmol photons · m −2  · s −1 ) than D. acuminata but survived better with low light (10 μmol photons · m −2  · s −1 ) and to a prolonged period (28 d) of darkness. Mesodinium rubrum and T. amphioxeia showed their maximal growth rate and yield under white and high light whereas Dinophysis seemed better adapted to grow under green and blue light. Toxin analyses in Dinophysis showed maximal toxin per cell under high light after prey depletion at the late exponential‐plateau phase. Changes observed in photosynthetic light curves of D. acuminata cultures after shifting light conditions from low intensity‐blue light to high intensity‐white light seemed compatible with photoacclimation in this species. Results obtained here are discussed in relation to different spatiotemporal distributions observed in field populations of D. acuminata and D. acuta in northwestern Iberia.
Dinoflagellates of the genus Dinophysis are the most persistent producers of lipophilic shellfish toxins in Western Europe. Their mixotrophic nutrition requires a food chain of cryptophytes and plastid‐bearing ciliates for sustained growth and photosynthesis. In this study, cultures of D. acuminata and D. acuta, their ciliate prey Mesodinium rubrum and the cryptophyte, Teleaulax amphioxeia, were subject to three experimental settings to study their physiological response to different combinations of light intensity and quality. Growth rates, pigment analyses (HPLC), photosynthetic parameters (PAM‐fluorometry), and cellular toxin content (LC‐MS) were determined. Specific differences in photosynthetic parameters were observed in Dinophysis exposed to different photon fluxes (10–650 μmol photons · m⁻² · s⁻¹), light quality (white, blue and green), and shifts in light regime. Dinophysis acuta was more susceptible to photodamage under high light intensities (370–650 μmol photons · m⁻² · s⁻¹) than D. acuminata but survived better with low light (10 μmol photons · m⁻² · s⁻¹) and to a prolonged period (28 d) of darkness. Mesodinium rubrum and T. amphioxeia showed their maximal growth rate and yield under white and high light whereas Dinophysis seemed better adapted to grow under green and blue light. Toxin analyses in Dinophysis showed maximal toxin per cell under high light after prey depletion at the late exponential‐plateau phase. Changes observed in photosynthetic light curves of D. acuminata cultures after shifting light conditions from low intensity‐blue light to high intensity‐white light seemed compatible with photoacclimation in this species. Results obtained here are discussed in relation to different spatiotemporal distributions observed in field populations of D. acuminata and D. acuta in northwestern Iberia.
Author Raven, J.
Reguera, Beatriz
Garrido, José Luis
Riobó, Pilar
Rodríguez, Francisco
Blanco, Juan
García‐Portela, María
Author_xml – sequence: 1
  givenname: María
  orcidid: 0000-0003-1696-0578
  surname: García‐Portela
  fullname: García‐Portela, María
  email: maria.garcia@ieo.es
  organization: Oceanographic Centre of Vigo
– sequence: 2
  givenname: Pilar
  surname: Riobó
  fullname: Riobó, Pilar
  organization: Marine Research Institute (IIM‐CSIC)
– sequence: 3
  givenname: Beatriz
  surname: Reguera
  fullname: Reguera, Beatriz
  organization: Oceanographic Centre of Vigo
– sequence: 4
  givenname: José Luis
  surname: Garrido
  fullname: Garrido, José Luis
  organization: Marine Research Institute (IIM‐CSIC)
– sequence: 5
  givenname: Juan
  surname: Blanco
  fullname: Blanco, Juan
  organization: Marine Research Centre (CIMA)
– sequence: 6
  givenname: Francisco
  surname: Rodríguez
  fullname: Rodríguez, Francisco
  organization: Oceanographic Centre of Vigo
– sequence: 7
  givenname: J.
  surname: Raven
  fullname: Raven, J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30298602$$D View this record in MEDLINE/PubMed
BookMark eNqFks9uEzEQxi1URNPCgRdAlri0Uja1vf9sblESaFBEKxUOPVlex5t1tLG3ay9l34bX4MqT4U3SSwXCF3tGv-_TeGbOwImxRgHwFqMJDudq2_QTTHKWvAAjnBIWUYrzEzBCiJAozpLsFJw5t0UI5VmKX4HTGBFGM0RG4NfM7hrRCq-_K6ikbareaVvbTQ9tCefaHDIOCtnttBFeQGHWcD75_TNkQnQxX365ub2-ny2mizE8BnfL6Wpxd_kBqrJU0g9Wtd5UHmrjlXHa93uXh07Uw9sauGnto6_GUKq67mrRQm9_aAOlHQR-vMebynrreuMrFSp6DV6WonbqzfE-B98-Lr7OrqPVzaflbLqKZJLTJKKMFmWaolLEicSK5lhmoS-CFRkVIU2LlGKcriUqkzKJWZqF5tCC5iheU5GX8Tm4OPg2rX3olPN8p91QpjDKdo4TQhBDLE6y_6MY5zHDCcEBff8M3dquNeEjgcpixuI8o4F6d6S6YqfWvGn1TrQ9f5pfAK4OgGytc60qudQ-DDO0rRW65hjxYUN42BC-35CguHymeDL9G3t0f9S16v8N8s-39wfFH9D5ypo
CitedBy_id crossref_primary_10_1111_jpy_12977
crossref_primary_10_3389_frpro_2023_1328026
crossref_primary_10_1016_j_hal_2019_101654
crossref_primary_10_1017_eds_2024_11
crossref_primary_10_3389_fmars_2021_799358
crossref_primary_10_1016_j_cub_2024_05_066
crossref_primary_10_1016_j_scitotenv_2021_145621
crossref_primary_10_1016_j_hal_2021_102009
crossref_primary_10_1016_j_hal_2022_102228
crossref_primary_10_1016_j_hal_2023_102479
crossref_primary_10_1016_j_hal_2024_102624
crossref_primary_10_3390_toxins11010037
crossref_primary_10_1016_j_hal_2025_102803
crossref_primary_10_1007_s42974_024_00202_9
crossref_primary_10_1016_j_hal_2021_102010
crossref_primary_10_3389_fmars_2023_1119370
crossref_primary_10_3390_toxins11100612
crossref_primary_10_1111_jpy_13131
crossref_primary_10_1111_jpy_13495
crossref_primary_10_3390_microorganisms8020187
crossref_primary_10_1111_jpy_13331
Cites_doi 10.1073/pnas.1612483113
10.3354/meps10027
10.1093/plankt/fbs099
10.1111/j.1529-8817.2008.00579.x
10.1111/1462-2920.13373
10.1016/j.hal.2007.05.002
10.1111/j.1529-8817.2010.00954.x
10.3354/ame045101
10.4319/lo.2008.53.5.1816
10.4319/lo.1972.17.6.0805
10.1093/plankt/17.5.999
10.4490/algae.2017.32.3.8
10.1139/f71-052
10.3354/meps09879
10.3354/meps183013
10.1017/CBO9780511732263.020
10.1016/0005-2728(75)90209-1
10.1007/BF00571372
10.1529/biophysj.107.113993
10.2216/i0031-8884-33-6-455.1
10.2216/i0031-8884-32-3-234.1
10.1016/j.hal.2011.10.016
10.1007/BF02279480
10.1016/j.toxicon.2010.09.007
10.1007/BF00033156
10.1016/S0304-4165(89)80016-9
10.3389/fmicb.2016.00785
10.1016/j.hal.2009.05.004
10.1186/1471-2164-11-366
10.1007/978-3-540-32210-8_17
10.3354/meps07953
10.1016/j.dsr2.2013.03.033
10.1016/j.marpolbul.2011.10.015
10.1007/BF00024185
10.1016/j.hal.2006.08.007
10.1016/j.hal.2010.10.005
10.1111/j.1550-7408.2011.00559.x
10.1007/s10811-005-7907-z
10.3354/meps07179
10.1016/j.hal.2015.11.007
10.1016/j.jembe.2016.11.014
10.3354/ame01774
10.1016/j.hal.2009.12.002
10.1016/j.hal.2014.07.013
10.1111/j.1529-8817.2011.01076.x
10.3354/meps08014
10.1016/j.jmarsys.2011.12.007
10.1016/j.hal.2015.12.003
10.1007/978-94-007-1038-2_17
10.3390/md12010394
10.1016/j.hal.2013.06.004
10.1186/1741-7007-8-73
10.1111/1462-2920.13042
10.1016/j.hal.2012.12.004
10.1016/j.toxicon.2010.12.002
10.3354/meps195029
10.1038/35016570
10.1016/j.foodchem.2011.04.054
10.1371/journal.pone.0177512
10.1128/AEM.06544-11
10.3354/ame01203
10.1007/BF00345747
10.2989/18142320609504163
10.3354/ame01372
10.1007/s002270050569
10.1016/j.seares.2015.12.006
ContentType Journal Article
Copyright 2018 Phycological Society of America
2018 Phycological Society of America.
Copyright_xml – notice: 2018 Phycological Society of America
– notice: 2018 Phycological Society of America.
DBID AAYXX
CITATION
NPM
7TN
F1W
H95
L.G
M7N
7X8
7S9
L.6
DOI 10.1111/jpy.12794
DatabaseName CrossRef
PubMed
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Oceanic Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
PubMed
MEDLINE - Academic
CrossRef
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1529-8817
EndPage 917
ExternalDocumentID 30298602
10_1111_jpy_12794
JPY12794
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Iberian Peninsula
Western European region
GeographicLocations_xml – name: Iberian Peninsula
– name: Western European region
GrantInformation_xml – fundername: Ministerio de Economía y Competitividad
  funderid: BES‐2014‐067832; CGL2013‐48861‐R; PCIN‐2015‐252
– fundername: Ministerio de Economía y Competitividad
  grantid: PCIN-2015-252
– fundername: Ministerio de Economía y Competitividad
  grantid: BES-2014-067832
– fundername: Ministerio de Economía y Competitividad
  grantid: CGL2013-48861-R
GroupedDBID -DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29L
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPPZ
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADXHL
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AETEA
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AI.
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBC
EBD
EBS
EDH
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
H~9
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
NHB
O66
O9-
OIG
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
S10
SAMSI
SUPJJ
TN5
TUS
TWZ
UB1
UKR
UPT
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XJT
XOL
YBU
YQT
YR2
ZCG
ZZTAW
~02
~IA
~KM
~WT
AAYXX
CITATION
AAHHS
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
NPM
7TN
F1W
H95
L.G
M7N
7X8
7S9
L.6
ID FETCH-LOGICAL-c4784-898bf550fa34c1e871c6002a9b68a50f8b58115dc0f4f439563028b8703d8a7f3
IEDL.DBID DR2
ISSN 0022-3646
1529-8817
IngestDate Fri Sep 05 17:14:15 EDT 2025
Fri Sep 05 07:58:10 EDT 2025
Wed Aug 13 09:13:23 EDT 2025
Thu Apr 03 06:58:09 EDT 2025
Thu Apr 24 22:57:51 EDT 2025
Wed Oct 01 05:01:38 EDT 2025
Sun Sep 21 06:20:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords pigments
Dinophysis
light
PAM
ecophysiology
toxins
Language English
License 2018 Phycological Society of America.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4784-898bf550fa34c1e871c6002a9b68a50f8b58115dc0f4f439563028b8703d8a7f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ORCID 0000-0003-1696-0578
PMID 30298602
PQID 2163993768
PQPubID 1006384
PageCount 19
ParticipantIDs proquest_miscellaneous_2220909346
proquest_miscellaneous_2117391421
proquest_journals_2163993768
pubmed_primary_30298602
crossref_citationtrail_10_1111_jpy_12794
crossref_primary_10_1111_jpy_12794
wiley_primary_10_1111_jpy_12794_JPY12794
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2018
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: December 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Marcos
PublicationTitle Journal of phycology
PublicationTitleAlternate J Phycol
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 56
2010; 11
2013; 3
2010; 58
2013; 28
2000; 47
2016; 108
2013; 23
2008b
1989; 990
2015; 76
2008; 7
2011; 10
2011; 57
2011; 58
2012; 14
1974; 17
2011; 129
2005a
2006; 28
1993; 32
2017; 32
1999; 183
2000; 405
2016; 113
1994; 33
2007; 6
1999; 134
2008; 353
2017; 487
2014; 12
2012; 64
1972; 17
2010; 9
2010; 8
2012; 465
2013; 109
1995; 17
1971; 28
2011
1986; 10
1991; 31
1998
2016; 53
1997
2000; 195
2006
2005
1975; 376
1993
2003
2008; 53
1996; 126
2016; 18
2008; 94
2008; 51
2012; 78
2012; 471
2016; 7
1990; 25
2006; 45
2013; 35
2017; 12
2009; 385
2009; 8
2009; 381
2008; 44
2015
2011; 47
2014; 39
2005; 17
2014; 101
e_1_2_8_24_1
e_1_2_8_47_1
Reguera B. (e_1_2_8_49_1) 1993
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
Li M. (e_1_2_8_26_1) 2016; 7
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Reguera B. (e_1_2_8_50_1) 2015
Silke J. (e_1_2_8_60_1) 2005
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
Jeffrey S. W. (e_1_2_8_21_1) 1997
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
Maestrini S. Y. (e_1_2_8_28_1) 1998
e_1_2_8_25_1
e_1_2_8_46_1
Palma A. S. (e_1_2_8_37_1) 1998
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
Maestrini S. (e_1_2_8_29_1) 2000; 47
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
Blanco J. (e_1_2_8_2_1) 2013; 3
e_1_2_8_71_1
References_xml – volume: 32
  start-page: 47
  year: 2017
  end-page: 55
  article-title: Ingestion rate and grazing impact by the mixotrophic ciliate on natural populations of marine heterotrophic bacteria in the coastal waters of Korea
  publication-title: Algae
– volume: 126
  start-page: 9
  year: 1996
  end-page: 18
  article-title: Comparisons among species of (Dinophyceae) grown in nitrogen‐or phosphorus‐limiting batch culture
  publication-title: Mar. Biol.
– volume: 78
  start-page: 813
  year: 2012
  end-page: 21
  article-title: Multiple plastids collected by the dinoflagellate through kleptoplastidy
  publication-title: Appl. Enviro. Microbiol.
– year: 2005
– volume: 385
  start-page: 87
  year: 2009
  end-page: 96
  article-title: Vertical distribution of division rates in coastal dinoflagellate spp. populations: implications for modelling
  publication-title: Mar. Ecol. Prog. Ser.
– volume: 53
  start-page: 1816
  year: 2008
  article-title: Thin layers of spp. and the fate of during an upwelling‐downwelling cycle in a Galician Ría
  publication-title: Limnol. Oceanogr.
– volume: 51
  start-page: 301
  year: 2008
  end-page: 10
  article-title: Growth and grazing responses of the mixotrophic dinoflagellate as functions of light intensity and prey concentration
  publication-title: Aquat. Microb. Ecol.
– volume: 109
  start-page: S273
  year: 2013
  end-page: 83
  article-title: Distribution of species in the Bay of Biscay and possible transport pathways to Arcachon Bay
  publication-title: J. Mar. Syst.
– volume: 76
  start-page: 163
  year: 2015
  end-page: 74
  article-title: Origin of cryptophyte plastids in from Galician waters: results from field and culture experiments
  publication-title: Aquat. Microb. Ecol.
– volume: 9
  start-page: 312
  year: 2010
  end-page: 22
  article-title: Bloom dynamics of in an upwelling system: in situ growth versus transport
  publication-title: Harmful Algae
– volume: 990
  start-page: 87
  year: 1989
  end-page: 92
  article-title: The relationship between the quantum yield of photosynthetic electrontransport and quenching of chlorophyll fluorescence
  publication-title: Biochim. Biophys. Acta
– volume: 8
  start-page: 73
  year: 2010
  article-title: Plastid evolution: Gene transfer and the maintenance of ‘stolen’ organelles
  publication-title: BMC Biol.
– volume: 11
  start-page: 366
  year: 2010
  article-title: Transcriptome analysis reveals nuclear‐encoded proteins for the maintenance of temporary plastids in the dinoflagellate
  publication-title: BMC Genom.
– start-page: 215
  year: 2006
  end-page: 27
– volume: 7
  start-page: 826
  year: 2016
  article-title: Phosphorus deficiency inhibits cell division but not growth in the dinoflagellate Amphidinium carterae
  publication-title: Front. Microbiol.
– start-page: 559
  year: 1993
  end-page: 64
– volume: 17
  start-page: 805
  year: 1972
  end-page: 15
  article-title: Effects of size and concentration of food particles on the feeding behaviour of the marine planktonic copepod
  publication-title: Limnol. Oceanogr.
– volume: 57
  start-page: 275
  year: 2011
  end-page: 87
  article-title: Toxin profiles of five geographical isolates of spp. from North and South America
  publication-title: Toxicon
– volume: 353
  start-page: 89
  year: 2008
  end-page: 105
  article-title: Growth, behaviour and cell toxin quota of during a daily cycle
  publication-title: Mar. Ecol. Prog. Ser.
– volume: 376
  start-page: 105
  year: 1975
  end-page: 15
  article-title: Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone
  publication-title: Biochim. Biophys Acta BBA Bioenerg.
– volume: 12
  start-page: 394
  year: 2014
  end-page: 461
  article-title: toxins: causative organisms, distribution and fate in shellfish
  publication-title: Mar. Drugs
– volume: 32
  start-page: 234
  year: 1993
  end-page: 6
  article-title: is a diatom, not a chrysophyte
  publication-title: Phycologia
– volume: 134
  start-page: 541
  year: 1999
  end-page: 9
  article-title: Cell cycle and toxin production in the benthic dinoflagellate
  publication-title: Mar. Biol.
– volume: 28
  start-page: 283
  year: 2006
  end-page: 8
  article-title: Are different species of selected by climatological conditions?
  publication-title: Afr. J. Mar. Sci.
– volume: 10
  start-page: 51
  year: 1986
  end-page: 62
  article-title: Continuous recording of photochemical and non‐photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer
  publication-title: Photosynth. Res.
– volume: 47
  start-page: 7
  year: 2000
  end-page: 11
  article-title: Phosphorus limitation might promote more toxin content in the marine invader dinoflagellate
  publication-title: Plankton Biol. Ecol.
– volume: 7
  start-page: 11
  year: 2008
  end-page: 25
  article-title: Two decades of marine biotoxin monitoring in bivalves from Portugal (1986–2006): a review of exposure assessment
  publication-title: Harmful Algae
– volume: 17
  start-page: 999
  year: 1995
  end-page: 1015
  article-title: Autoecology and some life history stages of Ehrenberg
  publication-title: J. Plankton Res.
– volume: 47
  start-page: 324
  year: 2011
  end-page: 32
  article-title: Photoacclimation in the phototrophic marine ciliate (Ciliophora)
  publication-title: J. Phycol.
– start-page: 128
  year: 2015
  end-page: 131
– volume: 58
  start-page: 273
  year: 2010
  end-page: 86
  article-title: Phytoplankton assemblages and characterization of a population during an upwelling–downwelling cycle
  publication-title: Aquat. Microb. Ecol.
– volume: 113
  start-page: 12208
  year: 2016
  end-page: 13
  article-title: Cryptophyte farming by symbiotic ciliate host detected in situ
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 10
  start-page: 254
  year: 2011
  end-page: 64
  article-title: The effects of growth phase and light intensity on toxin production by from the northeastern United States
  publication-title: Harmful Algae
– volume: 471
  start-page: 37
  year: 2012
  end-page: 50
  article-title: Effects of light and food availability on toxin production, growth and photosynthesis in
  publication-title: Mar. Ecol. Prog. Ser.
– volume: 64
  start-page: 106
  year: 2012
  end-page: 113
  article-title: A comparison of integrated and discrete depth sampling for monitoring toxic species of Dinophysis
  publication-title: Mar. Pollut. Bull.
– start-page: 222
  year: 2008b
– volume: 8
  start-page: 926
  year: 2009
  end-page: 37
  article-title: Seasonal variability of lipophilic toxins during a bloom in Western Iberia: differences between picked cells and plankton concentrates
  publication-title: Harmful Algae
– volume: 108
  start-page: 19
  year: 2016
  end-page: 29
  article-title: Temporal variation and trends of inorganic nutrients in the coastal upwelling of the NW Spain (Atlantic Galician rías)
  publication-title: J. Sea Res.
– volume: 14
  start-page: 87
  year: 2012
  end-page: 106
  article-title: Harmful species: a review
  publication-title: Harmful Algae
– volume: 53
  start-page: 145
  year: 2016
  end-page: 59
  article-title: Climate variability and blooms in an upwelling system
  publication-title: Harmful Algae
– volume: 7
  start-page: 785
  year: 2016
  article-title: Photoregulation in a kleptochloroplastidic noflagellate,
  publication-title: Front. Microbiol.
– volume: 47
  start-page: 1326
  year: 2011
  end-page: 37
  article-title: Differences in the production and excretion kinetics of okadaic acid, dinophysistoxin‐1, and pectenotoxin‐2 between cultures of and isolated from western Japan
  publication-title: J. Phycol.
– volume: 183
  start-page: 13
  year: 1999
  end-page: 27
  article-title: Significance of nanophytoplankton photosynthesis and primary production in a coastal upwelling system (Ría de Vigo, NW Spain)
  publication-title: Mar. Ecol. Prog. Ser.
– volume: 101
  start-page: 141
  year: 2014
  end-page: 51
  article-title: The growth season of in an upwelling system embayment: a conceptual model based on in situ measurements
  publication-title: Deep Sea Res. Part 2 Top. Stud. Oceanogr.
– volume: 487
  start-page: 59
  year: 2017
  end-page: 67
  article-title: Relationship between strains of (Dinophyceae) from the Atlantic Iberian Peninsula and their sampling sites
  publication-title: J. Exp. Mar. Biol. Ecol.
– volume: 58
  start-page: 365
  year: 2011
  end-page: 72
  article-title: Natural co‐occurrence of (Dinoflagellata) and (Ciliophora) in thin layers in a coastal inlet
  publication-title: J. Eukar. Microb.
– volume: 17
  start-page: 281
  year: 1974
  end-page: 91
  article-title: Carbondioxide exchange of : a mathematical model
  publication-title: Oecol.
– volume: 94
  start-page: 2423
  year: 2008
  end-page: 33
  article-title: Phycocyanin sensitizes both photosystem I and photosystem II in cryptophyte CCMP270 cells
  publication-title: Biophys. J .
– volume: 44
  start-page: 1154
  year: 2008
  end-page: 63
  article-title: Plastid dynamics during survival of without its ciliate prey
  publication-title: J. Phycol.
– volume: 465
  start-page: 33
  year: 2012
  end-page: 52
  article-title: Pigment‐based chloroplast types in dinoflagellates
  publication-title: Mar. Ecol. Prog. Ser.
– volume: 45
  start-page: 101
  year: 2006
  end-page: 6
  article-title: First successful culture of the marine dinoflagellate
  publication-title: Aquat. Microb. Ecol.
– volume: 12
  start-page: e0177512
  year: 2017
  article-title: Evolutionary transition towards permanent chloroplasts? Division of kleptochloroplasts in starved cells of two species of (Dinophyceae)
  publication-title: PLoS ONE
– volume: 28
  start-page: 391
  year: 1971
  end-page: 407
  article-title: The red‐water ciliate and its “incomplete symbionts”; a review including new ultrastructural observations
  publication-title: J. Fish. Res. Board Can.
– volume: 31
  start-page: 589
  year: 1991
  end-page: 94
  article-title: Influence of injection conditionsin reversed‐phase high‐performance liquid chromatographyof chlorophylls and carotenoids
  publication-title: Chromatographia
– volume: 18
  start-page: 4412
  year: 2016
  end-page: 25
  article-title: Pigment variations in (CCMP370) as a response to changes in light intensity or quality
  publication-title: Env. Microbiol.
– volume: 6
  start-page: 218
  year: 2007
  end-page: 31
  article-title: Toxicity of spp. in relation to population density and environmental conditions on the Swedish west coast
  publication-title: Harmful Algae
– volume: 129
  start-page: 533
  year: 2011
  end-page: 40
  article-title: Automated on‐line solid‐phase extraction coupled to liquid chromatography–tandem mass spectrometry for determination of lipophilic marine toxins in shellfish
  publication-title: Food Chem.
– volume: 405
  start-page: 1049
  year: 2000
  end-page: 52
  article-title: Cryptophyte algae are robbed of their organelles by the marine ciliate
  publication-title: Nature
– volume: 3
  start-page: 1
  year: 2013
  end-page: 55
  article-title: Evaluación del impacto de los métodos y niveles utilizados para el control de toxinas en el mejillón
  publication-title: Revista Galega dos Recursos Mariños (Art. Inf. Tecn.)
– start-page: 449
  year: 1997
  end-page: 559
– start-page: 483
  year: 2005a
  end-page: 8
– volume: 28
  start-page: 126
  year: 2013
  end-page: 39
  article-title: Acquired phototrophy in and ‐ a review of cellular organization, prey selectivity, nutrient uptake and bioenergetics
  publication-title: Harmful Algae
– volume: 195
  start-page: 29
  year: 2000
  end-page: 45
  article-title: Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8column and pyridine‐containing mobile phases
  publication-title: Mar. Ecol. Prog. Ser.
– volume: 39
  start-page: 223
  year: 2014
  end-page: 31
  article-title: Diversity and plastid types in complex (Dinophyceae) in Scottish waters
  publication-title: Harmful Algae
– start-page: 124
  year: 1998
  end-page: 7
– volume: 18
  start-page: 627
  year: 2016
  end-page: 43
  article-title: Divinyl chlorophyll in the marine eukaryotic protist (Dinophyceae)
  publication-title: Environ. Microbiol.
– volume: 33
  start-page: 455
  year: 1994
  end-page: 61
  article-title: Okadaic acid antibody localzes to chloroplasts in the DSP‐toxin producing dinoflagellates and
  publication-title: Phycologia
– start-page: 385
  year: 2003
  end-page: 412
– volume: 35
  start-page: 433
  year: 2013
  end-page: 7
  article-title: Pigment composition in three species (Dinophyceae) and the associated cultures of and
  publication-title: J. Plankton Res.
– volume: 381
  start-page: 51
  year: 2009
  end-page: 62
  article-title: Role of food uptake for photosynthesis, growth and survival of the mixotrophic dinoflagellate Dinophysis acuminata
  publication-title: Mar. Ecol. Prog. Ser.
– volume: 23
  start-page: 34
  year: 2013
  end-page: 45
  article-title: Production and excretion of okadaic acid, pectenotoxin‐2 and a novel dinophysistoxin from the DSP‐causing marine dinoflagellate –effects of light, food availability and growth phase
  publication-title: Harmful Algae
– volume: 25
  start-page: 147
  year: 1990
  end-page: 50
  article-title: The use of chlorophyll fluorescence in nomenclature in plant stress physiology
  publication-title: Photosynth. Res.
– start-page: 243
  year: 1998
  end-page: 65
– volume: 53
  start-page: 40
  year: 2016
  end-page: 52
  article-title: Modelling the hydrodynamic conditions associated with blooms in Galicia (NW Spain)
  publication-title: Harmful Algae
– volume: 56
  start-page: 1487
  year: 2010
  end-page: 96
  article-title: Production of diarrhetic shellfish poisoning toxins and pectenotoxins at depths within and below the euphotic zone
  publication-title: Toxicon
– start-page: 538
  year: 2011
  end-page: 606
– volume: 17
  start-page: 155
  year: 2005
  end-page: 60
  article-title: Contribution to toxicity assessment of (Dinophyceae)
  publication-title: J. Appl. Phycol.
– ident: e_1_2_8_44_1
  doi: 10.1073/pnas.1612483113
– ident: e_1_2_8_34_1
  doi: 10.3354/meps10027
– ident: e_1_2_8_53_1
  doi: 10.1093/plankt/fbs099
– ident: e_1_2_8_40_1
  doi: 10.1111/j.1529-8817.2008.00579.x
– ident: e_1_2_8_14_1
  doi: 10.1111/1462-2920.13373
– ident: e_1_2_8_66_1
  doi: 10.1016/j.hal.2007.05.002
– ident: e_1_2_8_31_1
  doi: 10.1111/j.1529-8817.2010.00954.x
– ident: e_1_2_8_39_1
  doi: 10.3354/ame045101
– ident: e_1_2_8_68_1
  doi: 10.4319/lo.2008.53.5.1816
– start-page: 483
  volume-title: Molluscan Shellfish Safety
  year: 2005
  ident: e_1_2_8_60_1
– ident: e_1_2_8_11_1
  doi: 10.4319/lo.1972.17.6.0805
– ident: e_1_2_8_32_1
– volume: 7
  start-page: 826
  year: 2016
  ident: e_1_2_8_26_1
  article-title: Phosphorus deficiency inhibits cell division but not growth in the dinoflagellate Amphidinium carterae
  publication-title: Front. Microbiol.
– ident: e_1_2_8_48_1
  doi: 10.1093/plankt/17.5.999
– ident: e_1_2_8_59_1
  doi: 10.4490/algae.2017.32.3.8
– volume: 3
  start-page: 1
  year: 2013
  ident: e_1_2_8_2_1
  article-title: Evaluación del impacto de los métodos y niveles utilizados para el control de toxinas en el mejillón
  publication-title: Revista Galega dos Recursos Mariños (Art. Inf. Tecn.)
– ident: e_1_2_8_63_1
  doi: 10.1139/f71-052
– ident: e_1_2_8_74_1
  doi: 10.3354/meps09879
– ident: e_1_2_8_64_1
  doi: 10.3354/meps183013
– ident: e_1_2_8_22_1
  doi: 10.1017/CBO9780511732263.020
– ident: e_1_2_8_25_1
  doi: 10.1016/0005-2728(75)90209-1
– ident: e_1_2_8_10_1
  doi: 10.1007/BF00571372
– ident: e_1_2_8_72_1
  doi: 10.1529/biophysj.107.113993
– ident: e_1_2_8_77_1
  doi: 10.2216/i0031-8884-33-6-455.1
– ident: e_1_2_8_17_1
  doi: 10.2216/i0031-8884-32-3-234.1
– ident: e_1_2_8_52_1
  doi: 10.1016/j.hal.2011.10.016
– ident: e_1_2_8_75_1
  doi: 10.1007/BF02279480
– ident: e_1_2_8_12_1
  doi: 10.1016/j.toxicon.2010.09.007
– ident: e_1_2_8_67_1
  doi: 10.1007/BF00033156
– ident: e_1_2_8_15_1
  doi: 10.1016/S0304-4165(89)80016-9
– ident: e_1_2_8_20_1
  doi: 10.3389/fmicb.2016.00785
– ident: e_1_2_8_43_1
  doi: 10.1016/j.hal.2009.05.004
– ident: e_1_2_8_73_1
  doi: 10.1186/1471-2164-11-366
– ident: e_1_2_8_3_1
  doi: 10.1007/978-3-540-32210-8_17
– ident: e_1_2_8_45_1
  doi: 10.3354/meps07953
– start-page: 128
  volume-title: Marine and Freshwater Harmful Algae
  year: 2015
  ident: e_1_2_8_50_1
– volume: 47
  start-page: 7
  year: 2000
  ident: e_1_2_8_29_1
  article-title: Phosphorus limitation might promote more toxin content in the marine invader dinoflagellate Alexandrium minutum
  publication-title: Plankton Biol. Ecol.
– ident: e_1_2_8_69_1
  doi: 10.1016/j.dsr2.2013.03.033
– ident: e_1_2_8_8_1
  doi: 10.1016/j.marpolbul.2011.10.015
– ident: e_1_2_8_58_1
  doi: 10.1007/BF00024185
– ident: e_1_2_8_27_1
  doi: 10.1016/j.hal.2006.08.007
– ident: e_1_2_8_65_1
  doi: 10.1016/j.hal.2010.10.005
– start-page: 243
  volume-title: Physiological Ecology of Harmful Algal Blooms
  year: 1998
  ident: e_1_2_8_28_1
– ident: e_1_2_8_61_1
  doi: 10.1111/j.1550-7408.2011.00559.x
– ident: e_1_2_8_30_1
  doi: 10.1007/s10811-005-7907-z
– ident: e_1_2_8_42_1
  doi: 10.3354/meps07179
– ident: e_1_2_8_5_1
  doi: 10.1016/j.hal.2015.11.007
– ident: e_1_2_8_4_1
  doi: 10.1016/j.jembe.2016.11.014
– ident: e_1_2_8_54_1
  doi: 10.3354/ame01774
– ident: e_1_2_8_7_1
  doi: 10.1016/j.hal.2009.12.002
– ident: e_1_2_8_62_1
  doi: 10.1016/j.hal.2014.07.013
– ident: e_1_2_8_33_1
  doi: 10.1111/j.1529-8817.2011.01076.x
– ident: e_1_2_8_70_1
  doi: 10.3354/meps08014
– ident: e_1_2_8_1_1
  doi: 10.1016/j.jmarsys.2011.12.007
– ident: e_1_2_8_56_1
  doi: 10.1016/j.hal.2015.12.003
– start-page: 449
  volume-title: Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods
  year: 1997
  ident: e_1_2_8_21_1
– ident: e_1_2_8_46_1
  doi: 10.1007/978-94-007-1038-2_17
– ident: e_1_2_8_51_1
  doi: 10.3390/md12010394
– ident: e_1_2_8_19_1
  doi: 10.1016/j.hal.2013.06.004
– ident: e_1_2_8_24_1
  doi: 10.1186/1741-7007-8-73
– start-page: 559
  volume-title: Toxic Phytoplankton Blooms in the Sea
  year: 1993
  ident: e_1_2_8_49_1
– ident: e_1_2_8_55_1
  doi: 10.1111/1462-2920.13042
– ident: e_1_2_8_35_1
  doi: 10.1016/j.hal.2012.12.004
– ident: e_1_2_8_13_1
  doi: 10.1016/j.toxicon.2010.12.002
– ident: e_1_2_8_41_1
– ident: e_1_2_8_76_1
  doi: 10.3354/meps195029
– ident: e_1_2_8_18_1
  doi: 10.1038/35016570
– start-page: 124
  volume-title: Harmful Algae
  year: 1998
  ident: e_1_2_8_37_1
– ident: e_1_2_8_47_1
  doi: 10.1016/j.foodchem.2011.04.054
– ident: e_1_2_8_57_1
  doi: 10.1371/journal.pone.0177512
– ident: e_1_2_8_36_1
  doi: 10.1128/AEM.06544-11
– ident: e_1_2_8_23_1
  doi: 10.3354/ame01203
– ident: e_1_2_8_71_1
  doi: 10.1007/BF00345747
– ident: e_1_2_8_9_1
  doi: 10.2989/18142320609504163
– ident: e_1_2_8_16_1
  doi: 10.3354/ame01372
– ident: e_1_2_8_38_1
  doi: 10.1007/s002270050569
– ident: e_1_2_8_6_1
  doi: 10.1016/j.seares.2015.12.006
SSID ssj0007651
Score 2.3658636
Snippet Dinoflagellates of the genus Dinophysis are the most persistent producers of lipophilic shellfish toxins in Western Europe. Their mixotrophic nutrition...
Dinoflagellates of the genus Dinophysis are the most persistent producers of lipophilic shellfish toxins in Western Europe. Their mixotrophic nutrition...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 899
SubjectTerms Acclimation
blue light
Ciliates
Darkness
Depletion
Dinoflagellates
Dinophysis
Dinophysis acuminata
Dinophysis acuta
Ecophysiology
Fluorimetry
Fluorometry
Fluxes
food chain
Food chains
Growth rate
High-performance liquid chromatography
HPLC
Iberian Peninsula
Light
Light effects
Light intensity
Light quality
Lipophilic
lipophilicity
Liquid chromatography
Luminous intensity
mass spectrometry
Mesodinium
Mesodinium rubrum
Nutrition
PAM
Parameters
Phase transitions
Photons
photoperiod
Photosynthesis
physiological response
pigments
Plastids
Prey
Shellfish
shellfish toxins
Survival
Toxins
Western European region
White light
Title Comparative ecophysiology of Dinophysis acuminata and D. acuta (DINOPHYCEAE, DINOPHYSIALES): effect of light intensity and quality on growth, cellular toxin content, and photosynthesis
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjpy.12794
https://www.ncbi.nlm.nih.gov/pubmed/30298602
https://www.proquest.com/docview/2163993768
https://www.proquest.com/docview/2117391421
https://www.proquest.com/docview/2220909346
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1529-8817
  dateEnd: 20241004
  omitProxy: true
  ssIdentifier: ssj0007651
  issn: 0022-3646
  databaseCode: ABDBF
  dateStart: 20000201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0022-3646
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1529-8817
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007651
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaqigMXaPldWpBBHIq0WcWJk9hwWna32lZQKkqlVkKKbMehq1bJqpsVpE_T1-DKkzG2k5TyJ8QtdibJOJmxv7HHXxB6LnyVh9A3epoRCFBknnkiAb8C8AGDQaa5ZGZz8tu9eHpId4-ioxX0qt0L4_ghugk34xm2vzYOLuTiRyef1wMSgDlB_0vCyC7Rvr-ijkriiHRM4TGNG1Yhm8XTXnl9LPoFYF7Hq3bA2b6NPraqujyT08GykgN18ROL43-2ZQ3daoAoHjrLWUcruriDbrwuASzWd9HX0RUrOIYI1U6A2Bl4XOZ4PCtczQILtTTJNJXAosjwePDtEmqgtDXe2Xu3Pz0eTYaTPm4KBzvDN5ODFy-xyyIxtzozkwN45hLpq9rexW30hCcV-NN5-bk66WOzvmASZnFVfpkV2CTYw2jZt-Lzk7IqF3UBUBY0uocOtycfRlOv-cuDp2jCqMc4kznESbkIqSIaAjhl1goFlzETUM1kBGYUZcrPaQ7wyRCaBUxCPxNmTCR5eB-tFmWhHyIccsECTbXkiaSRVByiQ5IRGpBMZ5FQPbTVfu9UNRTo5k8cZ2kXCs3r1H6IHnrWic4d78fvhDZbo0kb11-kAXGgL2Y99LQ7DU5r3pQodLk0MiQJuVHsLzJB4HOfhzTuoQfOIDtNQkOcH_sBNMia1Z9VTHf3j-3Bo38X3UA3ARYyl7SziVar86V-DNCrkk-sj30H6o4rNQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGQIIX7pfCAIN4GFJTxYmTOIiX0nZqR1cmtknbA4psx2EVU1KtqSD8Gv4Gr_wyju0kY9yEeEuck-QkOcf-zvHxF4SecVdmPvSNjmIEAhSRpQ6PwK8AfMBgkKpYML04eWcWjg_o9mFwuIZeNmthLD9Em3DTnmH6a-3gOiH9o5cvqh7xwJ4uoIt6fk675fDtGXlUFAak5QoPaVjzCpk6nubU86PRLxDzPGI1Q87WNfSuUdZWmnzorUrRk59_4nH836e5jq7WWBT3rfHcQGsqv4kuvSoAL1a30NfBGTE4hiDV5EBMEh4XGR7Oc9uyxFyudD1NyTHPUzzsffsCLbC3OZzM3uyOjwaj_qiL6529SX862nv-AttCEn2pE50fwHNbS19W5ip2rSfcKcfvT4uP5XEX6ykGXTOLy-LTPMe6xh4GzK4RXxwXZbGsckCzoNFtdLA12h-MnfpHD46kEaMOi5nIIFTKuE8lURDDST1dyGMRMg7NTARgSUEq3YxmgKA0p5nHBHQ1fsp4lPl30Hpe5Ooewn7MmaeoEnEkaCBkDAEiSQn1SKrSgMsO2mw-eCJrFnT9M46TpI2GFlViPkQHPW1FF5b643dCG43VJLX3LxOPWNwXsg560h4Gv9VviueqWGkZEvmxVuwvMp7nxm7s07CD7lqLbDXxNXd-6HrwQMau_qxisr17ZDbu_7voY3R5vL8zTaaT2esH6AqgRGZreDbQenm6Ug8BiZXikXG47370L1E
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGQIgX7pfCAIN4GFJT1YmTOPBUelE7RqkYkzYJKbIdh1VMSbSmgvBr-Bu88ss4tpOMcRPiLXFOkpP4HPs79vFnhJ7wvkw9aBsdxQgEKCJNHB6CXwH4gM4gUZFgenHyq3kw3ac7B_7BBnrerIWx_BDtgJv2DNNeawcvkvRHJy-qHnHBnM6h8zSA6Eojojen3FFh4JOWKjygQU0rZNJ4mlvPdka_IMyzgNX0OJMr6F2jq000-dBbl6InP_9E4_ifH3MVXa6RKB5Y07mGNlR2HV14kQNarG6gr8NTWnAMIaoZATFD8DhP8WiZ2ZIV5nKts2lKjnmW4FHv2xcogbPt0Wz-ejE9HI4H4y6uT_Zmg93x3tNn2KaR6Ecd69EBvLSZ9GVlnmJXesKbMvz-JP9YHnWxnmDQGbO4zD8tM6wz7KG77Brx4igv81WVAZYFjW6i_cn47XDq1Ns8OJKGjDosYiKFQCnlHpVEQQQn9WQhj0TAOBQz4YMd-YnspzQF_KQZzVwmoKHxEsbD1LuFNrM8U3cQ9iLOXEWViEJBfSEjCA9JQqhLEpX4XHbQdlPfsaw50PVWHMdxGwsVVWwqooMet6KFJf74ndBWYzRx7fur2CUW9QWsgx61l8Fr9Z_imcrXWoaEXqQV-4uM6_ajfuTRoINuW4NsNfE0cz4YPXyQMas_qxjvLA7Nwd1_F32ILi5Gk3h3Nn95D10CiMhsAs8W2ixP1uo-wLBSPDDu9h3RaS4A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+ecophysiology+of+Dinophysis+acuminata+and+D.+acuta+%28DINOPHYCEAE%2C+DINOPHYSIALES%29%3A+effect+of+light+intensity+and+quality+on+growth%2C+cellular+toxin+content%2C+and+photosynthesis&rft.jtitle=Journal+of+phycology&rft.au=Garc%C3%ADa-Portela%2C+Mar%C3%ADa&rft.au=Riob%C3%B3%2C+Pilar&rft.au=Reguera%2C+Beatriz&rft.au=Garrido%2C+Jos%C3%A9+Luis&rft.date=2018-12-01&rft.issn=1529-8817&rft.eissn=1529-8817&rft.volume=54&rft.issue=6&rft.spage=899&rft_id=info:doi/10.1111%2Fjpy.12794&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3646&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3646&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3646&client=summon