Fast reconstruction of 3D volumes from 2D CT projection data with GPUs
Background Biomedical image reconstruction applications require producing high fidelity images in or close to real-time. We have implemented reconstruction of three dimensional conebeam computed tomography(CBCT) with two dimensional projections. The algorithm takes slices of the target, weights and...
        Saved in:
      
    
          | Published in | BMC research notes Vol. 7; no. 1; p. 582 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        London
          BioMed Central
    
        30.08.2014
     BioMed Central Ltd Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1756-0500 1756-0500  | 
| DOI | 10.1186/1756-0500-7-582 | 
Cover
| Abstract | Background
Biomedical image reconstruction applications require producing high fidelity images in or close to real-time. We have implemented reconstruction of three dimensional conebeam computed tomography(CBCT) with two dimensional projections. The algorithm takes slices of the target, weights and filters them to backproject the data, then creates the final 3D volume. We have implemented the algorithm using several hardware and software approaches and taken advantage of different types of parallelism in modern processors. The two hardware platforms used are a Central Processing Unit (CPU) and a heterogeneous system with a combination of CPU and GPU. On the CPU we implement serial MATLAB, parallel MATLAB, C and parallel C with OpenMP extensions. These codes are compared against the heterogeneous versions written in CUDA-C and OpenCL.
Findings
Our results show that GPUs are particularly well suited to accelerating CBCT. Relative performance was evaluated on a mathematical phantom as well as on mouse data. Speedups of up to 200x are observed by using an AMD GPU compared to a parallel version in C with OpenMP constructs.
Conclusions
In this paper, we have implemented the Feldkamp-Davis-Kress algorithm, compatible with Fessler’s image reconstruction toolbox and tested it on different hardware platforms including CPU and a combination of CPU and GPU. Both NVIDIA and AMD GPUs have been used for performance evaluation. GPUs provide significant speedup over the parallel CPU version. | 
    
|---|---|
| AbstractList | Doc number: 582 Abstract Background: Biomedical image reconstruction applications require producing high fidelity images in or close to real-time. We have implemented reconstruction of three dimensional conebeam computed tomography(CBCT) with two dimensional projections. The algorithm takes slices of the target, weights and filters them to backproject the data, then creates the final 3D volume. We have implemented the algorithm using several hardware and software approaches and taken advantage of different types of parallelism in modern processors. The two hardware platforms used are a Central Processing Unit (CPU) and a heterogeneous system with a combination of CPU and GPU. On the CPU we implement serial MATLAB, parallel MATLAB, C and parallel C with OpenMP extensions. These codes are compared against the heterogeneous versions written in CUDA-C and OpenCL. Findings: Our results show that GPUs are particularly well suited to accelerating CBCT. Relative performance was evaluated on a mathematical phantom as well as on mouse data. Speedups of up to 200x are observed by using an AMD GPU compared to a parallel version in C with OpenMP constructs. Conclusions: In this paper, we have implemented the Feldkamp-Davis-Kress algorithm, compatible with Fessler's image reconstruction toolbox and tested it on different hardware platforms including CPU and a combination of CPU and GPU. Both NVIDIA and AMD GPUs have been used for performance evaluation. GPUs provide significant speedup over the parallel CPU version. Biomedical image reconstruction applications require producing high fidelity images in or close to real-time. We have implemented reconstruction of three dimensional conebeam computed tomography(CBCT) with two dimensional projections. The algorithm takes slices of the target, weights and filters them to backproject the data, then creates the final 3D volume. We have implemented the algorithm using several hardware and software approaches and taken advantage of different types of parallelism in modern processors. The two hardware platforms used are a Central Processing Unit (CPU) and a heterogeneous system with a combination of CPU and GPU. On the CPU we implement serial MATLAB, parallel MATLAB, C and parallel C with OpenMP extensions. These codes are compared against the heterogeneous versions written in CUDA-C and OpenCL. Our results show that GPUs are particularly well suited to accelerating CBCT. Relative performance was evaluated on a mathematical phantom as well as on mouse data. Speedups of up to 200x are observed by using an AMD GPU compared to a parallel version in C with OpenMP constructs. In this paper, we have implemented the Feldkamp-Davis-Kress algorithm, compatible with Fessler's image reconstruction toolbox and tested it on different hardware platforms including CPU and a combination of CPU and GPU. Both NVIDIA and AMD GPUs have been used for performance evaluation. GPUs provide significant speedup over the parallel CPU version. Background Biomedical image reconstruction applications require producing high fidelity images in or close to real-time. We have implemented reconstruction of three dimensional conebeam computed tomography(CBCT) with two dimensional projections. The algorithm takes slices of the target, weights and filters them to backproject the data, then creates the final 3D volume. We have implemented the algorithm using several hardware and software approaches and taken advantage of different types of parallelism in modern processors. The two hardware platforms used are a Central Processing Unit (CPU) and a heterogeneous system with a combination of CPU and GPU. On the CPU we implement serial MATLAB, parallel MATLAB, C and parallel C with OpenMP extensions. These codes are compared against the heterogeneous versions written in CUDA-C and OpenCL. Findings Our results show that GPUs are particularly well suited to accelerating CBCT. Relative performance was evaluated on a mathematical phantom as well as on mouse data. Speedups of up to 200x are observed by using an AMD GPU compared to a parallel version in C with OpenMP constructs. Conclusions In this paper, we have implemented the Feldkamp-Davis-Kress algorithm, compatible with Fessler's image reconstruction toolbox and tested it on different hardware platforms including CPU and a combination of CPU and GPU. Both NVIDIA and AMD GPUs have been used for performance evaluation. GPUs provide significant speedup over the parallel CPU version. Keywords: Computed tomography, Graphics processing unit, Conebeam reconstruction, CUDA, OpenCL Background Biomedical image reconstruction applications require producing high fidelity images in or close to real-time. We have implemented reconstruction of three dimensional conebeam computed tomography(CBCT) with two dimensional projections. The algorithm takes slices of the target, weights and filters them to backproject the data, then creates the final 3D volume. We have implemented the algorithm using several hardware and software approaches and taken advantage of different types of parallelism in modern processors. The two hardware platforms used are a Central Processing Unit (CPU) and a heterogeneous system with a combination of CPU and GPU. On the CPU we implement serial MATLAB, parallel MATLAB, C and parallel C with OpenMP extensions. These codes are compared against the heterogeneous versions written in CUDA-C and OpenCL. Findings Our results show that GPUs are particularly well suited to accelerating CBCT. Relative performance was evaluated on a mathematical phantom as well as on mouse data. Speedups of up to 200x are observed by using an AMD GPU compared to a parallel version in C with OpenMP constructs. Conclusions In this paper, we have implemented the Feldkamp-Davis-Kress algorithm, compatible with Fessler’s image reconstruction toolbox and tested it on different hardware platforms including CPU and a combination of CPU and GPU. Both NVIDIA and AMD GPUs have been used for performance evaluation. GPUs provide significant speedup over the parallel CPU version. Biomedical image reconstruction applications require producing high fidelity images in or close to real-time. We have implemented reconstruction of three dimensional conebeam computed tomography(CBCT) with two dimensional projections. The algorithm takes slices of the target, weights and filters them to backproject the data, then creates the final 3D volume. We have implemented the algorithm using several hardware and software approaches and taken advantage of different types of parallelism in modern processors. The two hardware platforms used are a Central Processing Unit (CPU) and a heterogeneous system with a combination of CPU and GPU. On the CPU we implement serial MATLAB, parallel MATLAB, C and parallel C with OpenMP extensions. These codes are compared against the heterogeneous versions written in CUDA-C and OpenCL. Our results show that GPUs are particularly well suited to accelerating CBCT. Relative performance was evaluated on a mathematical phantom as well as on mouse data. Speedups of up to 200x are observed by using an AMD GPU compared to a parallel version in C with OpenMP constructs. In this paper, we have implemented the Feldkamp-Davis-Kress algorithm, compatible with Fessler's image reconstruction toolbox and tested it on different hardware platforms including CPU and a combination of CPU and GPU. Both NVIDIA and AMD GPUs have been used for performance evaluation. GPUs provide significant speedup over the parallel CPU version. Biomedical image reconstruction applications require producing high fidelity images in or close to real-time. We have implemented reconstruction of three dimensional conebeam computed tomography(CBCT) with two dimensional projections. The algorithm takes slices of the target, weights and filters them to backproject the data, then creates the final 3D volume. We have implemented the algorithm using several hardware and software approaches and taken advantage of different types of parallelism in modern processors. The two hardware platforms used are a Central Processing Unit (CPU) and a heterogeneous system with a combination of CPU and GPU. On the CPU we implement serial MATLAB, parallel MATLAB, C and parallel C with OpenMP extensions. These codes are compared against the heterogeneous versions written in CUDA-C and OpenCL.BACKGROUNDBiomedical image reconstruction applications require producing high fidelity images in or close to real-time. We have implemented reconstruction of three dimensional conebeam computed tomography(CBCT) with two dimensional projections. The algorithm takes slices of the target, weights and filters them to backproject the data, then creates the final 3D volume. We have implemented the algorithm using several hardware and software approaches and taken advantage of different types of parallelism in modern processors. The two hardware platforms used are a Central Processing Unit (CPU) and a heterogeneous system with a combination of CPU and GPU. On the CPU we implement serial MATLAB, parallel MATLAB, C and parallel C with OpenMP extensions. These codes are compared against the heterogeneous versions written in CUDA-C and OpenCL.Our results show that GPUs are particularly well suited to accelerating CBCT. Relative performance was evaluated on a mathematical phantom as well as on mouse data. Speedups of up to 200x are observed by using an AMD GPU compared to a parallel version in C with OpenMP constructs.FINDINGSOur results show that GPUs are particularly well suited to accelerating CBCT. Relative performance was evaluated on a mathematical phantom as well as on mouse data. Speedups of up to 200x are observed by using an AMD GPU compared to a parallel version in C with OpenMP constructs.In this paper, we have implemented the Feldkamp-Davis-Kress algorithm, compatible with Fessler's image reconstruction toolbox and tested it on different hardware platforms including CPU and a combination of CPU and GPU. Both NVIDIA and AMD GPUs have been used for performance evaluation. GPUs provide significant speedup over the parallel CPU version.CONCLUSIONSIn this paper, we have implemented the Feldkamp-Davis-Kress algorithm, compatible with Fessler's image reconstruction toolbox and tested it on different hardware platforms including CPU and a combination of CPU and GPU. Both NVIDIA and AMD GPUs have been used for performance evaluation. GPUs provide significant speedup over the parallel CPU version.  | 
    
| ArticleNumber | 582 | 
    
| Audience | Academic | 
    
| Author | Brock, James Leeser, Miriam Mukherjee, Saoni  | 
    
| Author_xml | – sequence: 1 givenname: Miriam surname: Leeser fullname: Leeser, Miriam email: mel@coe.neu.edu organization: Department of Electrical and Computer Engineering, 440 Dana Building, Northeastern University – sequence: 2 givenname: Saoni surname: Mukherjee fullname: Mukherjee, Saoni organization: Department of Electrical and Computer Engineering, 440 Dana Building, Northeastern University – sequence: 3 givenname: James surname: Brock fullname: Brock, James organization: Cognitive Electronics  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25176282$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNks1PHCEYxkmjqR_13FszSS_2MArDMDCXJmbtWhMTe1CvhJ15WdnMwBYYrf99mexWd41tGg4Q3t_zAM_LAdqxzgJCHwk-IURUp4SzKscM45znTBTv0P7zzs7Geg8dhLDAuCJCkPdor2CEV4Uo9tF0qkLMPDTOhuiHJhpnM6czep49uG7oIWTauz4rzrPJTbb0bgErplVRZY8m3mcXP27DB7SrVRfgaD0fotvpt5vJ9_zq-uJycnaVNyUXRc4KpRngslW01QTKmgOZVcB0KWYEp8qM8lKousStahmpQQNWjNdtzbAitKaHCK98B7tUT4-q6-TSm175J0mwHCOR46Pl-GjJZYokSb6uJMth1kPbgI1evcicMnK7Ys29nLsHWZKKF5VIBsdrA-9-DhCi7E1ooOuUBTcESVhVlJRwTBP6-RW6cIO3KZGRIjVhgpYv1Fx1II3VLp3bjKbyjJVYUFrX471P3qDSaKE3qV2gTdrfEnzZEiQmwq84V0MI8vL6bpv9tBnKcxp_PkYCTldA410IHvR_5MxeKRoT1fhX0r1N9w_duqUhnWDn4Dcy-4vkNzxm5OQ | 
    
| CitedBy_id | crossref_primary_10_1186_s12938_018_0506_4 crossref_primary_10_1007_s12530_015_9139_z crossref_primary_10_46300_91011_2021_15_33 crossref_primary_10_1016_j_ejmp_2017_07_024 crossref_primary_10_3390_s24061947 crossref_primary_10_1088_1361_6560_acd616 crossref_primary_10_1186_s12859_018_2169_3 crossref_primary_10_1002_mp_13674 crossref_primary_10_1088_2057_1976_2_5_055010 crossref_primary_10_1145_3155284_3018765 crossref_primary_10_1587_transinf_2016EDP7174  | 
    
| Cites_doi | 10.1088/0031-9155/58/2/335 10.1109/TPDS.2012.194 10.1088/0031-9155/52/12/006 10.1145/1513895.1513898 10.1093/sysbio/syr100 10.1155/2009/149079 10.1016/j.cmpb.2009.08.006 10.1109/TPDS.2013.198 10.1145/197938.197972 10.1093/bioinformatics/bts061 10.1118/1.1759828 10.1016/j.jcp.2013.10.012 10.1364/JOSAA.1.000612  | 
    
| ContentType | Journal Article | 
    
| Copyright | Leeser et al.; licensee BioMed Central Ltd. 2014 COPYRIGHT 2014 BioMed Central Ltd. 2014 Leeser et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.  | 
    
| Copyright_xml | – notice: Leeser et al.; licensee BioMed Central Ltd. 2014 – notice: COPYRIGHT 2014 BioMed Central Ltd. – notice: 2014 Leeser et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.  | 
    
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1186/1756-0500-7-582 | 
    
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | Publicly Available Content Database MEDLINE MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Biology | 
    
| EISSN | 1756-0500 | 
    
| ExternalDocumentID | 10.1186/1756-0500-7-582 PMC4167268 3431542551 A540833992 25176282 10_1186_1756_0500_7_582  | 
    
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article  | 
    
| GroupedDBID | --- 0R~ 23N 2WC 4.4 53G 5GY 5VS 6J9 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACMJI ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AFKRA AFPKN AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK E3Z EBD EBLON EBS EJD EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IEA IHR INH INR IOV ITC KQ8 LK8 M1P M48 M7P MK0 M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP ~8M AAYXX CITATION ALIPV CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQUKI PRINS 7X8 5PM 2VQ ADTOC C1A IPNFZ LGEZI LOTEE NADUK NXXTH RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c4782-52af5e04da3df1e497e1b6e5f48b105e0b3748a940dad519efe0a579d950a1393 | 
    
| IEDL.DBID | M48 | 
    
| ISSN | 1756-0500 | 
    
| IngestDate | Sun Oct 26 02:49:02 EDT 2025 Tue Sep 30 16:42:07 EDT 2025 Wed Oct 01 14:42:11 EDT 2025 Sat Oct 11 05:45:24 EDT 2025 Mon Oct 20 21:42:23 EDT 2025 Mon Oct 20 16:50:15 EDT 2025 Thu Oct 16 14:15:19 EDT 2025 Mon Jul 21 05:45:23 EDT 2025 Wed Oct 01 04:11:28 EDT 2025 Thu Apr 24 23:05:41 EDT 2025 Sat Sep 06 07:27:58 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | CUDA OpenCL Computed tomography Conebeam reconstruction Graphics processing unit  | 
    
| Language | English | 
    
| License | This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c4782-52af5e04da3df1e497e1b6e5f48b105e0b3748a940dad519efe0a579d950a1393 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/1756-0500-7-582 | 
    
| PMID | 25176282 | 
    
| PQID | 1561915834 | 
    
| PQPubID | 55247 | 
    
| ParticipantIDs | unpaywall_primary_10_1186_1756_0500_7_582 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4167268 proquest_miscellaneous_1562431703 proquest_journals_1561915834 gale_infotracmisc_A540833992 gale_infotracacademiconefile_A540833992 gale_incontextgauss_IOV_A540833992 pubmed_primary_25176282 crossref_primary_10_1186_1756_0500_7_582 crossref_citationtrail_10_1186_1756_0500_7_582 springer_journals_10_1186_1756_0500_7_582  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20140830 | 
    
| PublicationDateYYYYMMDD | 2014-08-30 | 
    
| PublicationDate_xml | – month: 8 year: 2014 text: 20140830 day: 30  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | London | 
    
| PublicationPlace_xml | – name: London – name: England  | 
    
| PublicationTitle | BMC research notes | 
    
| PublicationTitleAbbrev | BMC Res Notes | 
    
| PublicationTitleAlternate | BMC Res Notes | 
    
| PublicationYear | 2014 | 
    
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V  | 
    
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V  | 
    
| References | L Jie (3133_CR11) 2014; 257 Part A T Rodet (3133_CR17) 2004; 31 K Mueller (3133_CR22) 2007 T Okuyama (3133_CR13) 2014; 25 3133_CR5 M Leeser (3133_CR14) 2012 3133_CR4 N Valim (3133_CR12) 2013; 58 B Sukhwani (3133_CR8) 2009 S Xiao (3133_CR15) 2003 PB Noël (3133_CR20) 2010; 98 K Mueller (3133_CR3) 2006; 11 S Basu (3133_CR16) 2000; 9 F Ino (3133_CR6) 2009 DL Ayres (3133_CR10) 2012; 61 C-M Liu (3133_CR9) 2012; 28 PB Noël (3133_CR25) 2008 3133_CR24 3133_CR23 S Mukherjee (3133_CR26) 2012 B Cabral (3133_CR18) 1994 EF de O Sandes (3133_CR7) 2013; 24 3133_CR28 3133_CR27 X Zhao (3133_CR1) 2009; 2009 LA Feldkamp (3133_CR2) 1984; 1 K Mueller (3133_CR19) 2007; 52 M Knaup (3133_CR21) 2008  | 
    
| References_xml | – start-page: 819 volume-title: Image Processing, International Conference on (ICIP), Volume 2 year: 2003 ident: 3133_CR15 – volume: 11 start-page: 1184 year: 2006 ident: 3133_CR3 publication-title: IEEE Int Symp Biomed Imaging – ident: 3133_CR27 – volume: 58 start-page: 335 issue: 2 year: 2013 ident: 3133_CR12 publication-title: Phys Med Biol doi: 10.1088/0031-9155/58/2/335 – ident: 3133_CR23 – ident: 3133_CR4 – volume: 24 start-page: 1009 issue: 5 year: 2013 ident: 3133_CR7 publication-title: Parallel Distributed Syst IEEE Trans doi: 10.1109/TPDS.2012.194 – volume: 52 start-page: 3405 year: 2007 ident: 3133_CR19 publication-title: Phys Med Biol doi: 10.1088/0031-9155/52/12/006 – volume-title: Proc. High-Performance Comput Biomed Image Anal year: 2008 ident: 3133_CR25 – ident: 3133_CR28 – start-page: 64980 volume-title: Electronic Imaging 2007 year: 2007 ident: 3133_CR22 – start-page: 725858 volume-title: SPIE Medical Imaging year: 2009 ident: 3133_CR6 – start-page: 19 volume-title: Proceedings of 2nd Workshop on General Purpose Processing on Graphics Processing Units year: 2009 ident: 3133_CR8 doi: 10.1145/1513895.1513898 – volume-title: Workshop on Numerical Software Verification (NSV) year: 2012 ident: 3133_CR14 – start-page: 5153 volume-title: Nuclear Science Symposium Conference Record (NSS) year: 2008 ident: 3133_CR21 – volume: 61 start-page: 170 issue: 1 year: 2012 ident: 3133_CR10 publication-title: System Biol doi: 10.1093/sysbio/syr100 – ident: 3133_CR24 – volume: 2009 start-page: 149079 year: 2009 ident: 3133_CR1 publication-title: Int J Biomed Imaging doi: 10.1155/2009/149079 – ident: 3133_CR5 – volume: 98 start-page: 271 issue: 3 year: 2010 ident: 3133_CR20 publication-title: Comput Methods Prog Biomed doi: 10.1016/j.cmpb.2009.08.006 – volume: 25 start-page: 1966 issue: 8 year: 2014 ident: 3133_CR13 publication-title: Parallel Distributed Syst EEE Trans doi: 10.1109/TPDS.2013.198 – start-page: 1 volume-title: High Performance Extreme Computing (HPEC), Conference On year: 2012 ident: 3133_CR26 – start-page: 91 volume-title: Proceedings of the 1994 Symposium on Volume Visualization year: 1994 ident: 3133_CR18 doi: 10.1145/197938.197972 – volume: 28 start-page: 878 issue: 6 year: 2012 ident: 3133_CR9 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts061 – volume: 31 start-page: 1972 year: 2004 ident: 3133_CR17 publication-title: Med Phys doi: 10.1118/1.1759828 – volume: 9 start-page: 10 year: 2000 ident: 3133_CR16 publication-title: IEEE Trans Image Process – volume: 257 Part A start-page: 521 issue: 0 year: 2014 ident: 3133_CR11 publication-title: J Comput Phys doi: 10.1016/j.jcp.2013.10.012 – volume: 1 start-page: 612 year: 1984 ident: 3133_CR2 publication-title: J Opt Soc Am doi: 10.1364/JOSAA.1.000612  | 
    
| SSID | ssj0061881 | 
    
| Score | 2.1435547 | 
    
| Snippet | Background
Biomedical image reconstruction applications require producing high fidelity images in or close to real-time. We have implemented reconstruction of... Biomedical image reconstruction applications require producing high fidelity images in or close to real-time. We have implemented reconstruction of three... Background Biomedical image reconstruction applications require producing high fidelity images in or close to real-time. We have implemented reconstruction of... Doc number: 582 Abstract Background: Biomedical image reconstruction applications require producing high fidelity images in or close to real-time. We have...  | 
    
| SourceID | unpaywall pubmedcentral proquest gale pubmed crossref springer  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 582 | 
    
| SubjectTerms | Algorithms Analysis Biomedical and Life Sciences Biomedicine Codes CT imaging Life Sciences Medical Imaging Medicine/Public Health Open source software Programming languages Protein folding Sensors Studies Technical Note Tomography Tomography, X-Ray Computed - methods  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fb9MwELZGJwQ8IH4TGMggJNhDmOM4jvOA0NhWBhJlQuu0N8u1nQ2pSoqyCu2_5y51QjNp8OyLYp_P5-_s83eEvCkTn7PE2LhMuIwFhAxxwQ3EPEVulZO55RYfCn-byMOp-HqanW6QSfcWBtMqO5_YOmpXWzwj34E4A0KLTKXi4-JXjFWj8Ha1K6FhQmkF96GlGLtBNjkyY43I5qeDydGPzjfLRKkkEPwkSu7A3gnxdMZYnMeZ4oO96aqHXtuirqZP9neod8itZbUwl7_NfL62TY3vkbsBX9LdlUHcJxu-ekBuripOXj4k47FpLmgbBffMsbQuabpPV36qofjghPJ9undMwzENymAmKcVDW_r5aNo8ItPxwfHeYRxKKcRWAAaAcNOUmWfCmdTB9Igi98lM-qwUagYIy7MZ0tCYQjBnHIA6X3pmsrxwRcYMgMT0MRlVdeWfEqoyWzgnpCxgLixWtwIQUIIyFBdOehWR950StQ0841juYq7beENJjVrXqHWda9B6RN71HyxWFBvXi77GWdFIXFFhZsyZWTaN_vL9RO8C9FQp0uxG5G0QKmv4sTXhoQF0H7muBpJbA0lYWXbY3E2-Diu70X_tMCKv-mb8ErPVKl8vWxmOwIylEXmyspV-ZEgRJzkOJR9YUS-AfN_Dlurnecv7Ddg55xIUvN3Z21q3rlPYdm-Q_1Pus38P9zm5DWBRtOfpbIuMwEj9CwBkF7OXYZX9AR9RLuw priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dTxQxFG0MxiAPREVhEEwlJsrDQGemX_NIFlc0EX1gDW9Nt-0oyWaWZNgQ_r33znQnOwRifO7t7vT0tvfcfpwS8qHKgmKZdWmV5TLlkDKkZW4h5ymV014qlzu8KPz9XJ5N-LdLcRlFkvAuzOr-fablMUQ3yHgFY6lKhYa59ilEKNnuysrRcsqVmdZZ1O15oNIg5NyfeFciz_1Tkf3W6AZZX9TX9u7WzmYr0Wf8gmxG2khPun5-SZ6E-hV51j0kebdFxmPb3NA2ue0FYem8osUp7aafhuI9Epqf0tEFjasvaIMHRCmuxdIvPyfNazIZf74YnaXxhYTUcQjtkEXaSgTGvS08oM5LFbKpDKLiegrEKbApqsvYkjNvPXC1UAVmhSp9KZgF7le8IWv1vA47hGrhSu-5lKUuuMNHqyC2VwCGzrmXQSfkaAmicVE-HF-xmJk2jdDSIOoGUTfKAOoJ-dRXuO6UMx43PcBeMahHUeOBl9920TTm649f5gQYpS5QPTchH6NRNYc_djbeH4DPRwmrgeXewBIGjBsWLzvfxAHbGEhjIXMV0PaEvO-LsSYeQqvDfNHa5Mi3WJGQ7c5X-pah8pvMsSlq4EW9Acp4D0vqqz-tnDdQYpVLAPhw6W8rn_UYYIe9Q_4L3N3_-N235DkQQt6umbM9sgYeG_aBdN1M37UD7i-yQB-Q priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdQJwQ88P0RGMggJNhDOjexHeex2igDibGHFY0ny7EdvkpakVZo_PXcJW7UVEwIiWefldzlbP_OufsdIc_Lkc_YyNi4HCUy5hAyxHliIObJM6uczGxisVD43bE8mvK3Z-IsUAphLUzxHcBSXc0BZw03C9BnbX0D9k_wP_YXrmyXu5L7cP5BTCwYi7NYKNiNd6QAWD4gO9Pjk_HHpiAySARqnz_M6p1K23vzxuG0nTjZ_T29Rq6sqoU5_2lms40DanKDfF2r1ualfBuulsXQ_tpiffwvut8k1wOMpePW726RS766TS63jS3P75DJxNRL2gTbHUEtnZc0PaTtdlhTrGuhySE9OKXhNghlMGGV4t0wfX0yre-S6eTV6cFRHDo2xJYD1ICo1pTCM-5M6sALeJ75USG9KLkqAMh5ViDbjck5c8YBdvSlZ0ZkucsFM4BF03tkUM0r_4BQJWzuHJcyVym32EQLsEYJFlEJd9KriAzXX0zbQGeOXTVmuglrlNRoHI3G0ZkG40TkZTdh0TJ5XCz6DF1AIz9GhQk4n8yqrvWb9x_0GBCuSpHNNyIvglA5hwdbE-oZ4PWRUqsnuduThAVs-8NrT9NhA6k1hNUQSQvQPSJPu2GciUlxlZ-vGpkE8R9LI3K_dcxOM2SikwmqkvVcthNAWvH-SPXlc0MvDhA9SyQYeG_t3BuvdZHB9jrv_5txH_6D7CNyFQAqb-7w2S4ZgMf6xwACl8WTsLx_A_drUl8 priority: 102 providerName: Unpaywall  | 
    
| Title | Fast reconstruction of 3D volumes from 2D CT projection data with GPUs | 
    
| URI | https://link.springer.com/article/10.1186/1756-0500-7-582 https://www.ncbi.nlm.nih.gov/pubmed/25176282 https://www.proquest.com/docview/1561915834 https://www.proquest.com/docview/1562431703 https://pubmed.ncbi.nlm.nih.gov/PMC4167268 https://bmcresnotes.biomedcentral.com/counter/pdf/10.1186/1756-0500-7-582  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 7 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central customDbUrl: eissn: 1756-0500 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061881 issn: 1756-0500 databaseCode: RBZ dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1756-0500 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061881 issn: 1756-0500 databaseCode: KQ8 dateStart: 20080101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1756-0500 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061881 issn: 1756-0500 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1756-0500 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061881 issn: 1756-0500 databaseCode: ABDBF dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1756-0500 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061881 issn: 1756-0500 databaseCode: DIK dateStart: 20080101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1756-0500 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061881 issn: 1756-0500 databaseCode: GX1 dateStart: 20080101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1756-0500 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061881 issn: 1756-0500 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central (LAB) customDbUrl: eissn: 1756-0500 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061881 issn: 1756-0500 databaseCode: RPM dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1756-0500 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061881 issn: 1756-0500 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1756-0500 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061881 issn: 1756-0500 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Open Access Journals customDbUrl: eissn: 1756-0500 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0061881 issn: 1756-0500 databaseCode: M48 dateStart: 20081001 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1756-0500 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061881 issn: 1756-0500 databaseCode: AAJSJ dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1756-0500 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061881 issn: 1756-0500 databaseCode: C6C dateStart: 20080112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELZgEwIeEL8JjMogJNhDhpM4tvOAUOlWRqWVCpapPFmu4wBSlQ6yCvrfc5ekoZk2IZ4ixeckPp999zn2d4S8yAMnWWCsnweh8DlABj8JDWCeRFqVCWlDiweFj8biMOWjaTz9mw6oUWB5IbTDfFLpz_ne7x-rtzDg31QDXonX4AEBFceM-dKPFczH2-CmEszjcMTbXwoiUCpouH0uqNRxS-cn5w3vdH7nZPv79Ca5vixOzeqXmc83PNTwNrnVhJa0X9vCHXLFFXfJtTrZ5OoeGQ5NeUYrANySxtJFTqN9Wk9RJcWzJjTcp4Nj2qzQoAxuIqW4XkvfT9LyPkmHB8eDQ7_JouBbDu4fkKbJY8d4ZqIMeoYn0gUz4eKcqxkEV47NkIHGJJxlJoN4zuWOmVgmWRIzA_Fh9IBsFYvCPSJUxTbJMi5EoiJuMbEV-P8clKFCngmnPLK3VqK2DcU4ZrqY6wpqKKFR6xq1rqUGrXvkVVvhtGbXuFz0OfaKRs6KAjfFfDXLstQfPp7oPkSdKkKGXY-8bITyBbzYmuaMAXw-0lx1JHc6kjCobLd43fl6bZMaoC6g2xja7pFnbTHWxI1qhVssK5kQYzIWeeRhbStty5AdToTYFNmxolYAqb67JcX3bxXlN4TNMhSg4N21vW181mUK220N8l_Kffwfz31CbkDQyKt1dbZDtsBi3VMIzM5mPXJVTmWPbPf7o88juL47GE8-wd2BGPSqxY5eNSShJB1P-l_-AMB7Nao | 
    
| linkProvider | Scholars Portal | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZGJ7TxgPg5CgMMAsEewhLHcZyHCY11pWVbmVCL9mZcxwGkKi3Kqqn_HH8bd6kTmkmDpz373Nrns-875_wdIa-ywMZ-oI2XBUx4HEIGL2EaYp4kNjIVsWEGHwqfDERvxD-dRWdr5Hf1FgbTKqszsTyo06nBO_JdiDMgtIhkyN_PfnlYNQq_rlYlNLQrrZDulRRj7mHHkV1cQAhX7PU7sN6vGeseDg96nqsy4BkO7hEiMZ1F1uepDlMYOU9iG4yFjTIuxwA-rD9GhhadcD_VKeAdm1lfR3GSJpGvAT-F8Ls3yDoPoWeLrH84HJx-qXyBCKQMHKFQIMUu-GqI3yPf92IvkqzhCy97hBWXeDlds_5me4tszPOZXlzoyWTFLXbvkNsOz9L9pQHeJWs2v0duLitcLu6TblcX57SMumumWjrNaNihy3OxoPjAhbIOPRhSdy2EMpi5SvGSmH48HRUPyOhalPqQtPJpbh8RKiOTpCkXIoG1N1hNC0BHBsqQjKfCyjZ5VylRGcdrjuU1JqqMb6RQqHWFWlexAq23ydu6w2xJ6XG16EtcFYVEGTlm4nzX86JQ_c9f1T5AXRkirW-bvHFC2RT-2Gj3sAGGj9xaDcnthiTsZNNsrhZfuZOkUH_tvk1e1M3YE7PjcjudlzIMgaAftsnW0lbqmSElnWA4lbhhRbUA8os3W_KfP0qeccDqMROg4J3K3laGdZXCdmqD_J9yH_97us_JRm94cqyO-4OjJ2QTgCov7_L9bdICg7VPAQyej5-5HUfJt-ve5H8AUEdrkA | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQEa8D4lUIFDAICXoIdRLbcY7VLqHlUXroot4srx-AtMqulF2h_ntm8tKmokKcPU7i8djzjTP-hpA3IfE5S4yNQ5LKmEPIEBepgZinyK1yMrepxYvCX0_k0Yx_OhfnXW5O3We7978k2zsNyNJUrQ9WLrRLXMkD8HkQBwvG4jwWCnbg6xxcGxYwmMhJvxHLRKmkY_P5S6eRI7q8HW_5o8u5ksMP0zvk1qZamYvfZrHY8knlPXK3A5P0sJ39--Sarx6QG215yYuHpCxNvaZNyDvQxNJloNmUtptSTfF2CU2ndHJGuzMZlMG0UYontPTj6ax-RGblh7PJUdzVTYgtB4cPsaUJwjPuTOZgLniR-2QuvQhczQFOeTZHzhlTcOaMAwTng2dG5IUrBDOACLNdslMtK_-EUCVs4RyXslAZt1jKCjx-AGWolDvpVUTe90rUtiMVx9oWC90EF0pq1LpGretcg9Yj8m7osGr5NK4WfY2zopGlosI0mB9mU9f6-Nt3fQg4U2XIqRuRt51QWMKLreluFcDnI7HVSHJvJAnLyI6b-8nX3TKuNQS3EM8KGHtEXg3N2BNT0yq_3DQyKaIwlkXkcWsrw8iQD06mOJR8ZEWDAJJ7j1uqXz8bkm8AynkqQcH7vb1tfdZVCtsfDPJfyn36H899SW6eTkv95fjk8zNyGxAjbw7V2R7ZAeP1zwGVrecvmrX3B42jKsY | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdQJwQ88P0RGMggJNhDOjexHeex2igDibGHFY0ny7EdvkpakVZo_PXcJW7UVEwIiWefldzlbP_OufsdIc_Lkc_YyNi4HCUy5hAyxHliIObJM6uczGxisVD43bE8mvK3Z-IsUAphLUzxHcBSXc0BZw03C9BnbX0D9k_wP_YXrmyXu5L7cP5BTCwYi7NYKNiNd6QAWD4gO9Pjk_HHpiAySARqnz_M6p1K23vzxuG0nTjZ_T29Rq6sqoU5_2lms40DanKDfF2r1ualfBuulsXQ_tpiffwvut8k1wOMpePW726RS766TS63jS3P75DJxNRL2gTbHUEtnZc0PaTtdlhTrGuhySE9OKXhNghlMGGV4t0wfX0yre-S6eTV6cFRHDo2xJYD1ICo1pTCM-5M6sALeJ75USG9KLkqAMh5ViDbjck5c8YBdvSlZ0ZkucsFM4BF03tkUM0r_4BQJWzuHJcyVym32EQLsEYJFlEJd9KriAzXX0zbQGeOXTVmuglrlNRoHI3G0ZkG40TkZTdh0TJ5XCz6DF1AIz9GhQk4n8yqrvWb9x_0GBCuSpHNNyIvglA5hwdbE-oZ4PWRUqsnuduThAVs-8NrT9NhA6k1hNUQSQvQPSJPu2GciUlxlZ-vGpkE8R9LI3K_dcxOM2SikwmqkvVcthNAWvH-SPXlc0MvDhA9SyQYeG_t3BuvdZHB9jrv_5txH_6D7CNyFQAqb-7w2S4ZgMf6xwACl8WTsLx_A_drUl8 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+reconstruction+of+3D+volumes+from+2D+CT+projection+data+with+GPUs&rft.jtitle=BMC+research+notes&rft.au=Leeser%2C+Miriam&rft.au=Mukherjee%2C+Saoni&rft.au=Brock%2C+James&rft.date=2014-08-30&rft.pub=BioMed+Central&rft.eissn=1756-0500&rft.volume=7&rft.issue=1&rft_id=info:doi/10.1186%2F1756-0500-7-582&rft.externalDocID=10_1186_1756_0500_7_582 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1756-0500&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1756-0500&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1756-0500&client=summon |