Fast reconstruction of 3D volumes from 2D CT projection data with GPUs

Background Biomedical image reconstruction applications require producing high fidelity images in or close to real-time. We have implemented reconstruction of three dimensional conebeam computed tomography(CBCT) with two dimensional projections. The algorithm takes slices of the target, weights and...

Full description

Saved in:
Bibliographic Details
Published inBMC research notes Vol. 7; no. 1; p. 582
Main Authors Leeser, Miriam, Mukherjee, Saoni, Brock, James
Format Journal Article
LanguageEnglish
Published London BioMed Central 30.08.2014
BioMed Central Ltd
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1756-0500
1756-0500
DOI10.1186/1756-0500-7-582

Cover

Abstract Background Biomedical image reconstruction applications require producing high fidelity images in or close to real-time. We have implemented reconstruction of three dimensional conebeam computed tomography(CBCT) with two dimensional projections. The algorithm takes slices of the target, weights and filters them to backproject the data, then creates the final 3D volume. We have implemented the algorithm using several hardware and software approaches and taken advantage of different types of parallelism in modern processors. The two hardware platforms used are a Central Processing Unit (CPU) and a heterogeneous system with a combination of CPU and GPU. On the CPU we implement serial MATLAB, parallel MATLAB, C and parallel C with OpenMP extensions. These codes are compared against the heterogeneous versions written in CUDA-C and OpenCL. Findings Our results show that GPUs are particularly well suited to accelerating CBCT. Relative performance was evaluated on a mathematical phantom as well as on mouse data. Speedups of up to 200x are observed by using an AMD GPU compared to a parallel version in C with OpenMP constructs. Conclusions In this paper, we have implemented the Feldkamp-Davis-Kress algorithm, compatible with Fessler’s image reconstruction toolbox and tested it on different hardware platforms including CPU and a combination of CPU and GPU. Both NVIDIA and AMD GPUs have been used for performance evaluation. GPUs provide significant speedup over the parallel CPU version.
AbstractList Doc number: 582 Abstract Background: Biomedical image reconstruction applications require producing high fidelity images in or close to real-time. We have implemented reconstruction of three dimensional conebeam computed tomography(CBCT) with two dimensional projections. The algorithm takes slices of the target, weights and filters them to backproject the data, then creates the final 3D volume. We have implemented the algorithm using several hardware and software approaches and taken advantage of different types of parallelism in modern processors. The two hardware platforms used are a Central Processing Unit (CPU) and a heterogeneous system with a combination of CPU and GPU. On the CPU we implement serial MATLAB, parallel MATLAB, C and parallel C with OpenMP extensions. These codes are compared against the heterogeneous versions written in CUDA-C and OpenCL. Findings: Our results show that GPUs are particularly well suited to accelerating CBCT. Relative performance was evaluated on a mathematical phantom as well as on mouse data. Speedups of up to 200x are observed by using an AMD GPU compared to a parallel version in C with OpenMP constructs. Conclusions: In this paper, we have implemented the Feldkamp-Davis-Kress algorithm, compatible with Fessler's image reconstruction toolbox and tested it on different hardware platforms including CPU and a combination of CPU and GPU. Both NVIDIA and AMD GPUs have been used for performance evaluation. GPUs provide significant speedup over the parallel CPU version.
Biomedical image reconstruction applications require producing high fidelity images in or close to real-time. We have implemented reconstruction of three dimensional conebeam computed tomography(CBCT) with two dimensional projections. The algorithm takes slices of the target, weights and filters them to backproject the data, then creates the final 3D volume. We have implemented the algorithm using several hardware and software approaches and taken advantage of different types of parallelism in modern processors. The two hardware platforms used are a Central Processing Unit (CPU) and a heterogeneous system with a combination of CPU and GPU. On the CPU we implement serial MATLAB, parallel MATLAB, C and parallel C with OpenMP extensions. These codes are compared against the heterogeneous versions written in CUDA-C and OpenCL. Our results show that GPUs are particularly well suited to accelerating CBCT. Relative performance was evaluated on a mathematical phantom as well as on mouse data. Speedups of up to 200x are observed by using an AMD GPU compared to a parallel version in C with OpenMP constructs. In this paper, we have implemented the Feldkamp-Davis-Kress algorithm, compatible with Fessler's image reconstruction toolbox and tested it on different hardware platforms including CPU and a combination of CPU and GPU. Both NVIDIA and AMD GPUs have been used for performance evaluation. GPUs provide significant speedup over the parallel CPU version.
Background Biomedical image reconstruction applications require producing high fidelity images in or close to real-time. We have implemented reconstruction of three dimensional conebeam computed tomography(CBCT) with two dimensional projections. The algorithm takes slices of the target, weights and filters them to backproject the data, then creates the final 3D volume. We have implemented the algorithm using several hardware and software approaches and taken advantage of different types of parallelism in modern processors. The two hardware platforms used are a Central Processing Unit (CPU) and a heterogeneous system with a combination of CPU and GPU. On the CPU we implement serial MATLAB, parallel MATLAB, C and parallel C with OpenMP extensions. These codes are compared against the heterogeneous versions written in CUDA-C and OpenCL. Findings Our results show that GPUs are particularly well suited to accelerating CBCT. Relative performance was evaluated on a mathematical phantom as well as on mouse data. Speedups of up to 200x are observed by using an AMD GPU compared to a parallel version in C with OpenMP constructs. Conclusions In this paper, we have implemented the Feldkamp-Davis-Kress algorithm, compatible with Fessler's image reconstruction toolbox and tested it on different hardware platforms including CPU and a combination of CPU and GPU. Both NVIDIA and AMD GPUs have been used for performance evaluation. GPUs provide significant speedup over the parallel CPU version. Keywords: Computed tomography, Graphics processing unit, Conebeam reconstruction, CUDA, OpenCL
Background Biomedical image reconstruction applications require producing high fidelity images in or close to real-time. We have implemented reconstruction of three dimensional conebeam computed tomography(CBCT) with two dimensional projections. The algorithm takes slices of the target, weights and filters them to backproject the data, then creates the final 3D volume. We have implemented the algorithm using several hardware and software approaches and taken advantage of different types of parallelism in modern processors. The two hardware platforms used are a Central Processing Unit (CPU) and a heterogeneous system with a combination of CPU and GPU. On the CPU we implement serial MATLAB, parallel MATLAB, C and parallel C with OpenMP extensions. These codes are compared against the heterogeneous versions written in CUDA-C and OpenCL. Findings Our results show that GPUs are particularly well suited to accelerating CBCT. Relative performance was evaluated on a mathematical phantom as well as on mouse data. Speedups of up to 200x are observed by using an AMD GPU compared to a parallel version in C with OpenMP constructs. Conclusions In this paper, we have implemented the Feldkamp-Davis-Kress algorithm, compatible with Fessler’s image reconstruction toolbox and tested it on different hardware platforms including CPU and a combination of CPU and GPU. Both NVIDIA and AMD GPUs have been used for performance evaluation. GPUs provide significant speedup over the parallel CPU version.
Biomedical image reconstruction applications require producing high fidelity images in or close to real-time. We have implemented reconstruction of three dimensional conebeam computed tomography(CBCT) with two dimensional projections. The algorithm takes slices of the target, weights and filters them to backproject the data, then creates the final 3D volume. We have implemented the algorithm using several hardware and software approaches and taken advantage of different types of parallelism in modern processors. The two hardware platforms used are a Central Processing Unit (CPU) and a heterogeneous system with a combination of CPU and GPU. On the CPU we implement serial MATLAB, parallel MATLAB, C and parallel C with OpenMP extensions. These codes are compared against the heterogeneous versions written in CUDA-C and OpenCL. Our results show that GPUs are particularly well suited to accelerating CBCT. Relative performance was evaluated on a mathematical phantom as well as on mouse data. Speedups of up to 200x are observed by using an AMD GPU compared to a parallel version in C with OpenMP constructs. In this paper, we have implemented the Feldkamp-Davis-Kress algorithm, compatible with Fessler's image reconstruction toolbox and tested it on different hardware platforms including CPU and a combination of CPU and GPU. Both NVIDIA and AMD GPUs have been used for performance evaluation. GPUs provide significant speedup over the parallel CPU version.
Biomedical image reconstruction applications require producing high fidelity images in or close to real-time. We have implemented reconstruction of three dimensional conebeam computed tomography(CBCT) with two dimensional projections. The algorithm takes slices of the target, weights and filters them to backproject the data, then creates the final 3D volume. We have implemented the algorithm using several hardware and software approaches and taken advantage of different types of parallelism in modern processors. The two hardware platforms used are a Central Processing Unit (CPU) and a heterogeneous system with a combination of CPU and GPU. On the CPU we implement serial MATLAB, parallel MATLAB, C and parallel C with OpenMP extensions. These codes are compared against the heterogeneous versions written in CUDA-C and OpenCL.BACKGROUNDBiomedical image reconstruction applications require producing high fidelity images in or close to real-time. We have implemented reconstruction of three dimensional conebeam computed tomography(CBCT) with two dimensional projections. The algorithm takes slices of the target, weights and filters them to backproject the data, then creates the final 3D volume. We have implemented the algorithm using several hardware and software approaches and taken advantage of different types of parallelism in modern processors. The two hardware platforms used are a Central Processing Unit (CPU) and a heterogeneous system with a combination of CPU and GPU. On the CPU we implement serial MATLAB, parallel MATLAB, C and parallel C with OpenMP extensions. These codes are compared against the heterogeneous versions written in CUDA-C and OpenCL.Our results show that GPUs are particularly well suited to accelerating CBCT. Relative performance was evaluated on a mathematical phantom as well as on mouse data. Speedups of up to 200x are observed by using an AMD GPU compared to a parallel version in C with OpenMP constructs.FINDINGSOur results show that GPUs are particularly well suited to accelerating CBCT. Relative performance was evaluated on a mathematical phantom as well as on mouse data. Speedups of up to 200x are observed by using an AMD GPU compared to a parallel version in C with OpenMP constructs.In this paper, we have implemented the Feldkamp-Davis-Kress algorithm, compatible with Fessler's image reconstruction toolbox and tested it on different hardware platforms including CPU and a combination of CPU and GPU. Both NVIDIA and AMD GPUs have been used for performance evaluation. GPUs provide significant speedup over the parallel CPU version.CONCLUSIONSIn this paper, we have implemented the Feldkamp-Davis-Kress algorithm, compatible with Fessler's image reconstruction toolbox and tested it on different hardware platforms including CPU and a combination of CPU and GPU. Both NVIDIA and AMD GPUs have been used for performance evaluation. GPUs provide significant speedup over the parallel CPU version.
ArticleNumber 582
Audience Academic
Author Brock, James
Leeser, Miriam
Mukherjee, Saoni
Author_xml – sequence: 1
  givenname: Miriam
  surname: Leeser
  fullname: Leeser, Miriam
  email: mel@coe.neu.edu
  organization: Department of Electrical and Computer Engineering, 440 Dana Building, Northeastern University
– sequence: 2
  givenname: Saoni
  surname: Mukherjee
  fullname: Mukherjee, Saoni
  organization: Department of Electrical and Computer Engineering, 440 Dana Building, Northeastern University
– sequence: 3
  givenname: James
  surname: Brock
  fullname: Brock, James
  organization: Cognitive Electronics
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25176282$$D View this record in MEDLINE/PubMed
BookMark eNqNks1PHCEYxkmjqR_13FszSS_2MArDMDCXJmbtWhMTe1CvhJ15WdnMwBYYrf99mexWd41tGg4Q3t_zAM_LAdqxzgJCHwk-IURUp4SzKscM45znTBTv0P7zzs7Geg8dhLDAuCJCkPdor2CEV4Uo9tF0qkLMPDTOhuiHJhpnM6czep49uG7oIWTauz4rzrPJTbb0bgErplVRZY8m3mcXP27DB7SrVRfgaD0fotvpt5vJ9_zq-uJycnaVNyUXRc4KpRngslW01QTKmgOZVcB0KWYEp8qM8lKousStahmpQQNWjNdtzbAitKaHCK98B7tUT4-q6-TSm175J0mwHCOR46Pl-GjJZYokSb6uJMth1kPbgI1evcicMnK7Ys29nLsHWZKKF5VIBsdrA-9-DhCi7E1ooOuUBTcESVhVlJRwTBP6-RW6cIO3KZGRIjVhgpYv1Fx1II3VLp3bjKbyjJVYUFrX471P3qDSaKE3qV2gTdrfEnzZEiQmwq84V0MI8vL6bpv9tBnKcxp_PkYCTldA410IHvR_5MxeKRoT1fhX0r1N9w_duqUhnWDn4Dcy-4vkNzxm5OQ
CitedBy_id crossref_primary_10_1186_s12938_018_0506_4
crossref_primary_10_1007_s12530_015_9139_z
crossref_primary_10_46300_91011_2021_15_33
crossref_primary_10_1016_j_ejmp_2017_07_024
crossref_primary_10_3390_s24061947
crossref_primary_10_1088_1361_6560_acd616
crossref_primary_10_1186_s12859_018_2169_3
crossref_primary_10_1002_mp_13674
crossref_primary_10_1088_2057_1976_2_5_055010
crossref_primary_10_1145_3155284_3018765
crossref_primary_10_1587_transinf_2016EDP7174
Cites_doi 10.1088/0031-9155/58/2/335
10.1109/TPDS.2012.194
10.1088/0031-9155/52/12/006
10.1145/1513895.1513898
10.1093/sysbio/syr100
10.1155/2009/149079
10.1016/j.cmpb.2009.08.006
10.1109/TPDS.2013.198
10.1145/197938.197972
10.1093/bioinformatics/bts061
10.1118/1.1759828
10.1016/j.jcp.2013.10.012
10.1364/JOSAA.1.000612
ContentType Journal Article
Copyright Leeser et al.; licensee BioMed Central Ltd. 2014
COPYRIGHT 2014 BioMed Central Ltd.
2014 Leeser et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Copyright_xml – notice: Leeser et al.; licensee BioMed Central Ltd. 2014
– notice: COPYRIGHT 2014 BioMed Central Ltd.
– notice: 2014 Leeser et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOI 10.1186/1756-0500-7-582
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database



MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1756-0500
ExternalDocumentID 10.1186/1756-0500-7-582
PMC4167268
3431542551
A540833992
25176282
10_1186_1756_0500_7_582
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
23N
2WC
4.4
53G
5GY
5VS
6J9
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACMJI
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AFKRA
AFPKN
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
E3Z
EBD
EBLON
EBS
EJD
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
INH
INR
IOV
ITC
KQ8
LK8
M1P
M48
M7P
MK0
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
~8M
AAYXX
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
2VQ
ADTOC
C1A
IPNFZ
LGEZI
LOTEE
NADUK
NXXTH
RIG
UNPAY
ID FETCH-LOGICAL-c4782-52af5e04da3df1e497e1b6e5f48b105e0b3748a940dad519efe0a579d950a1393
IEDL.DBID M48
ISSN 1756-0500
IngestDate Sun Oct 26 02:49:02 EDT 2025
Tue Sep 30 16:42:07 EDT 2025
Wed Oct 01 14:42:11 EDT 2025
Sat Oct 11 05:45:24 EDT 2025
Mon Oct 20 21:42:23 EDT 2025
Mon Oct 20 16:50:15 EDT 2025
Thu Oct 16 14:15:19 EDT 2025
Mon Jul 21 05:45:23 EDT 2025
Wed Oct 01 04:11:28 EDT 2025
Thu Apr 24 23:05:41 EDT 2025
Sat Sep 06 07:27:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords CUDA
OpenCL
Computed tomography
Conebeam reconstruction
Graphics processing unit
Language English
License This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4782-52af5e04da3df1e497e1b6e5f48b105e0b3748a940dad519efe0a579d950a1393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/1756-0500-7-582
PMID 25176282
PQID 1561915834
PQPubID 55247
ParticipantIDs unpaywall_primary_10_1186_1756_0500_7_582
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4167268
proquest_miscellaneous_1562431703
proquest_journals_1561915834
gale_infotracmisc_A540833992
gale_infotracacademiconefile_A540833992
gale_incontextgauss_IOV_A540833992
pubmed_primary_25176282
crossref_primary_10_1186_1756_0500_7_582
crossref_citationtrail_10_1186_1756_0500_7_582
springer_journals_10_1186_1756_0500_7_582
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20140830
PublicationDateYYYYMMDD 2014-08-30
PublicationDate_xml – month: 8
  year: 2014
  text: 20140830
  day: 30
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC research notes
PublicationTitleAbbrev BMC Res Notes
PublicationTitleAlternate BMC Res Notes
PublicationYear 2014
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
References L Jie (3133_CR11) 2014; 257 Part A
T Rodet (3133_CR17) 2004; 31
K Mueller (3133_CR22) 2007
T Okuyama (3133_CR13) 2014; 25
3133_CR5
M Leeser (3133_CR14) 2012
3133_CR4
N Valim (3133_CR12) 2013; 58
B Sukhwani (3133_CR8) 2009
S Xiao (3133_CR15) 2003
PB Noël (3133_CR20) 2010; 98
K Mueller (3133_CR3) 2006; 11
S Basu (3133_CR16) 2000; 9
F Ino (3133_CR6) 2009
DL Ayres (3133_CR10) 2012; 61
C-M Liu (3133_CR9) 2012; 28
PB Noël (3133_CR25) 2008
3133_CR24
3133_CR23
S Mukherjee (3133_CR26) 2012
B Cabral (3133_CR18) 1994
EF de O Sandes (3133_CR7) 2013; 24
3133_CR28
3133_CR27
X Zhao (3133_CR1) 2009; 2009
LA Feldkamp (3133_CR2) 1984; 1
K Mueller (3133_CR19) 2007; 52
M Knaup (3133_CR21) 2008
References_xml – start-page: 819
  volume-title: Image Processing, International Conference on (ICIP), Volume 2
  year: 2003
  ident: 3133_CR15
– volume: 11
  start-page: 1184
  year: 2006
  ident: 3133_CR3
  publication-title: IEEE Int Symp Biomed Imaging
– ident: 3133_CR27
– volume: 58
  start-page: 335
  issue: 2
  year: 2013
  ident: 3133_CR12
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/58/2/335
– ident: 3133_CR23
– ident: 3133_CR4
– volume: 24
  start-page: 1009
  issue: 5
  year: 2013
  ident: 3133_CR7
  publication-title: Parallel Distributed Syst IEEE Trans
  doi: 10.1109/TPDS.2012.194
– volume: 52
  start-page: 3405
  year: 2007
  ident: 3133_CR19
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/52/12/006
– volume-title: Proc. High-Performance Comput Biomed Image Anal
  year: 2008
  ident: 3133_CR25
– ident: 3133_CR28
– start-page: 64980
  volume-title: Electronic Imaging 2007
  year: 2007
  ident: 3133_CR22
– start-page: 725858
  volume-title: SPIE Medical Imaging
  year: 2009
  ident: 3133_CR6
– start-page: 19
  volume-title: Proceedings of 2nd Workshop on General Purpose Processing on Graphics Processing Units
  year: 2009
  ident: 3133_CR8
  doi: 10.1145/1513895.1513898
– volume-title: Workshop on Numerical Software Verification (NSV)
  year: 2012
  ident: 3133_CR14
– start-page: 5153
  volume-title: Nuclear Science Symposium Conference Record (NSS)
  year: 2008
  ident: 3133_CR21
– volume: 61
  start-page: 170
  issue: 1
  year: 2012
  ident: 3133_CR10
  publication-title: System Biol
  doi: 10.1093/sysbio/syr100
– ident: 3133_CR24
– volume: 2009
  start-page: 149079
  year: 2009
  ident: 3133_CR1
  publication-title: Int J Biomed Imaging
  doi: 10.1155/2009/149079
– ident: 3133_CR5
– volume: 98
  start-page: 271
  issue: 3
  year: 2010
  ident: 3133_CR20
  publication-title: Comput Methods Prog Biomed
  doi: 10.1016/j.cmpb.2009.08.006
– volume: 25
  start-page: 1966
  issue: 8
  year: 2014
  ident: 3133_CR13
  publication-title: Parallel Distributed Syst EEE Trans
  doi: 10.1109/TPDS.2013.198
– start-page: 1
  volume-title: High Performance Extreme Computing (HPEC), Conference On
  year: 2012
  ident: 3133_CR26
– start-page: 91
  volume-title: Proceedings of the 1994 Symposium on Volume Visualization
  year: 1994
  ident: 3133_CR18
  doi: 10.1145/197938.197972
– volume: 28
  start-page: 878
  issue: 6
  year: 2012
  ident: 3133_CR9
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts061
– volume: 31
  start-page: 1972
  year: 2004
  ident: 3133_CR17
  publication-title: Med Phys
  doi: 10.1118/1.1759828
– volume: 9
  start-page: 10
  year: 2000
  ident: 3133_CR16
  publication-title: IEEE Trans Image Process
– volume: 257 Part A
  start-page: 521
  issue: 0
  year: 2014
  ident: 3133_CR11
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2013.10.012
– volume: 1
  start-page: 612
  year: 1984
  ident: 3133_CR2
  publication-title: J Opt Soc Am
  doi: 10.1364/JOSAA.1.000612
SSID ssj0061881
Score 2.1435547
Snippet Background Biomedical image reconstruction applications require producing high fidelity images in or close to real-time. We have implemented reconstruction of...
Biomedical image reconstruction applications require producing high fidelity images in or close to real-time. We have implemented reconstruction of three...
Background Biomedical image reconstruction applications require producing high fidelity images in or close to real-time. We have implemented reconstruction of...
Doc number: 582 Abstract Background: Biomedical image reconstruction applications require producing high fidelity images in or close to real-time. We have...
SourceID unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 582
SubjectTerms Algorithms
Analysis
Biomedical and Life Sciences
Biomedicine
Codes
CT imaging
Life Sciences
Medical Imaging
Medicine/Public Health
Open source software
Programming languages
Protein folding
Sensors
Studies
Technical Note
Tomography
Tomography, X-Ray Computed - methods
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fb9MwELZGJwQ8IH4TGMggJNhDmOM4jvOA0NhWBhJlQuu0N8u1nQ2pSoqyCu2_5y51QjNp8OyLYp_P5-_s83eEvCkTn7PE2LhMuIwFhAxxwQ3EPEVulZO55RYfCn-byMOp-HqanW6QSfcWBtMqO5_YOmpXWzwj34E4A0KLTKXi4-JXjFWj8Ha1K6FhQmkF96GlGLtBNjkyY43I5qeDydGPzjfLRKkkEPwkSu7A3gnxdMZYnMeZ4oO96aqHXtuirqZP9neod8itZbUwl7_NfL62TY3vkbsBX9LdlUHcJxu-ekBuripOXj4k47FpLmgbBffMsbQuabpPV36qofjghPJ9undMwzENymAmKcVDW_r5aNo8ItPxwfHeYRxKKcRWAAaAcNOUmWfCmdTB9Igi98lM-qwUagYIy7MZ0tCYQjBnHIA6X3pmsrxwRcYMgMT0MRlVdeWfEqoyWzgnpCxgLixWtwIQUIIyFBdOehWR950StQ0841juYq7beENJjVrXqHWda9B6RN71HyxWFBvXi77GWdFIXFFhZsyZWTaN_vL9RO8C9FQp0uxG5G0QKmv4sTXhoQF0H7muBpJbA0lYWXbY3E2-Diu70X_tMCKv-mb8ErPVKl8vWxmOwIylEXmyspV-ZEgRJzkOJR9YUS-AfN_Dlurnecv7Ddg55xIUvN3Z21q3rlPYdm-Q_1Pus38P9zm5DWBRtOfpbIuMwEj9CwBkF7OXYZX9AR9RLuw
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dTxQxFG0MxiAPREVhEEwlJsrDQGemX_NIFlc0EX1gDW9Nt-0oyWaWZNgQ_r33znQnOwRifO7t7vT0tvfcfpwS8qHKgmKZdWmV5TLlkDKkZW4h5ymV014qlzu8KPz9XJ5N-LdLcRlFkvAuzOr-fablMUQ3yHgFY6lKhYa59ilEKNnuysrRcsqVmdZZ1O15oNIg5NyfeFciz_1Tkf3W6AZZX9TX9u7WzmYr0Wf8gmxG2khPun5-SZ6E-hV51j0kebdFxmPb3NA2ue0FYem8osUp7aafhuI9Epqf0tEFjasvaIMHRCmuxdIvPyfNazIZf74YnaXxhYTUcQjtkEXaSgTGvS08oM5LFbKpDKLiegrEKbApqsvYkjNvPXC1UAVmhSp9KZgF7le8IWv1vA47hGrhSu-5lKUuuMNHqyC2VwCGzrmXQSfkaAmicVE-HF-xmJk2jdDSIOoGUTfKAOoJ-dRXuO6UMx43PcBeMahHUeOBl9920TTm649f5gQYpS5QPTchH6NRNYc_djbeH4DPRwmrgeXewBIGjBsWLzvfxAHbGEhjIXMV0PaEvO-LsSYeQqvDfNHa5Mi3WJGQ7c5X-pah8pvMsSlq4EW9Acp4D0vqqz-tnDdQYpVLAPhw6W8rn_UYYIe9Q_4L3N3_-N235DkQQt6umbM9sgYeG_aBdN1M37UD7i-yQB-Q
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdQJwQ88P0RGMggJNhDOjexHeex2igDibGHFY0ny7EdvkpakVZo_PXcJW7UVEwIiWefldzlbP_OufsdIc_Lkc_YyNi4HCUy5hAyxHliIObJM6uczGxisVD43bE8mvK3Z-IsUAphLUzxHcBSXc0BZw03C9BnbX0D9k_wP_YXrmyXu5L7cP5BTCwYi7NYKNiNd6QAWD4gO9Pjk_HHpiAySARqnz_M6p1K23vzxuG0nTjZ_T29Rq6sqoU5_2lms40DanKDfF2r1ualfBuulsXQ_tpiffwvut8k1wOMpePW726RS766TS63jS3P75DJxNRL2gTbHUEtnZc0PaTtdlhTrGuhySE9OKXhNghlMGGV4t0wfX0yre-S6eTV6cFRHDo2xJYD1ICo1pTCM-5M6sALeJ75USG9KLkqAMh5ViDbjck5c8YBdvSlZ0ZkucsFM4BF03tkUM0r_4BQJWzuHJcyVym32EQLsEYJFlEJd9KriAzXX0zbQGeOXTVmuglrlNRoHI3G0ZkG40TkZTdh0TJ5XCz6DF1AIz9GhQk4n8yqrvWb9x_0GBCuSpHNNyIvglA5hwdbE-oZ4PWRUqsnuduThAVs-8NrT9NhA6k1hNUQSQvQPSJPu2GciUlxlZ-vGpkE8R9LI3K_dcxOM2SikwmqkvVcthNAWvH-SPXlc0MvDhA9SyQYeG_t3BuvdZHB9jrv_5txH_6D7CNyFQAqb-7w2S4ZgMf6xwACl8WTsLx_A_drUl8
  priority: 102
  providerName: Unpaywall
Title Fast reconstruction of 3D volumes from 2D CT projection data with GPUs
URI https://link.springer.com/article/10.1186/1756-0500-7-582
https://www.ncbi.nlm.nih.gov/pubmed/25176282
https://www.proquest.com/docview/1561915834
https://www.proquest.com/docview/1562431703
https://pubmed.ncbi.nlm.nih.gov/PMC4167268
https://bmcresnotes.biomedcentral.com/counter/pdf/10.1186/1756-0500-7-582
UnpaywallVersion publishedVersion
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central
  customDbUrl:
  eissn: 1756-0500
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0061881
  issn: 1756-0500
  databaseCode: RBZ
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1756-0500
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0061881
  issn: 1756-0500
  databaseCode: KQ8
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1756-0500
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0061881
  issn: 1756-0500
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1756-0500
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0061881
  issn: 1756-0500
  databaseCode: ABDBF
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1756-0500
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0061881
  issn: 1756-0500
  databaseCode: DIK
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1756-0500
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0061881
  issn: 1756-0500
  databaseCode: GX1
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1756-0500
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0061881
  issn: 1756-0500
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central (LAB)
  customDbUrl:
  eissn: 1756-0500
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0061881
  issn: 1756-0500
  databaseCode: RPM
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1756-0500
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0061881
  issn: 1756-0500
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1756-0500
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0061881
  issn: 1756-0500
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Open Access Journals
  customDbUrl:
  eissn: 1756-0500
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0061881
  issn: 1756-0500
  databaseCode: M48
  dateStart: 20081001
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1756-0500
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0061881
  issn: 1756-0500
  databaseCode: AAJSJ
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1756-0500
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0061881
  issn: 1756-0500
  databaseCode: C6C
  dateStart: 20080112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELZgEwIeEL8JjMogJNhDhpM4tvOAUOlWRqWVCpapPFmu4wBSlQ6yCvrfc5ekoZk2IZ4ixeckPp999zn2d4S8yAMnWWCsnweh8DlABj8JDWCeRFqVCWlDiweFj8biMOWjaTz9mw6oUWB5IbTDfFLpz_ne7x-rtzDg31QDXonX4AEBFceM-dKPFczH2-CmEszjcMTbXwoiUCpouH0uqNRxS-cn5w3vdH7nZPv79Ca5vixOzeqXmc83PNTwNrnVhJa0X9vCHXLFFXfJtTrZ5OoeGQ5NeUYrANySxtJFTqN9Wk9RJcWzJjTcp4Nj2qzQoAxuIqW4XkvfT9LyPkmHB8eDQ7_JouBbDu4fkKbJY8d4ZqIMeoYn0gUz4eKcqxkEV47NkIHGJJxlJoN4zuWOmVgmWRIzA_Fh9IBsFYvCPSJUxTbJMi5EoiJuMbEV-P8clKFCngmnPLK3VqK2DcU4ZrqY6wpqKKFR6xq1rqUGrXvkVVvhtGbXuFz0OfaKRs6KAjfFfDXLstQfPp7oPkSdKkKGXY-8bITyBbzYmuaMAXw-0lx1JHc6kjCobLd43fl6bZMaoC6g2xja7pFnbTHWxI1qhVssK5kQYzIWeeRhbStty5AdToTYFNmxolYAqb67JcX3bxXlN4TNMhSg4N21vW181mUK220N8l_Kffwfz31CbkDQyKt1dbZDtsBi3VMIzM5mPXJVTmWPbPf7o88juL47GE8-wd2BGPSqxY5eNSShJB1P-l_-AMB7Nao
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZGJ7TxgPg5CgMMAsEewhLHcZyHCY11pWVbmVCL9mZcxwGkKi3Kqqn_HH8bd6kTmkmDpz373Nrns-875_wdIa-ywMZ-oI2XBUx4HEIGL2EaYp4kNjIVsWEGHwqfDERvxD-dRWdr5Hf1FgbTKqszsTyo06nBO_JdiDMgtIhkyN_PfnlYNQq_rlYlNLQrrZDulRRj7mHHkV1cQAhX7PU7sN6vGeseDg96nqsy4BkO7hEiMZ1F1uepDlMYOU9iG4yFjTIuxwA-rD9GhhadcD_VKeAdm1lfR3GSJpGvAT-F8Ls3yDoPoWeLrH84HJx-qXyBCKQMHKFQIMUu-GqI3yPf92IvkqzhCy97hBWXeDlds_5me4tszPOZXlzoyWTFLXbvkNsOz9L9pQHeJWs2v0duLitcLu6TblcX57SMumumWjrNaNihy3OxoPjAhbIOPRhSdy2EMpi5SvGSmH48HRUPyOhalPqQtPJpbh8RKiOTpCkXIoG1N1hNC0BHBsqQjKfCyjZ5VylRGcdrjuU1JqqMb6RQqHWFWlexAq23ydu6w2xJ6XG16EtcFYVEGTlm4nzX86JQ_c9f1T5AXRkirW-bvHFC2RT-2Gj3sAGGj9xaDcnthiTsZNNsrhZfuZOkUH_tvk1e1M3YE7PjcjudlzIMgaAftsnW0lbqmSElnWA4lbhhRbUA8os3W_KfP0qeccDqMROg4J3K3laGdZXCdmqD_J9yH_97us_JRm94cqyO-4OjJ2QTgCov7_L9bdICg7VPAQyej5-5HUfJt-ve5H8AUEdrkA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQEa8D4lUIFDAICXoIdRLbcY7VLqHlUXroot4srx-AtMqulF2h_ntm8tKmokKcPU7i8djzjTP-hpA3IfE5S4yNQ5LKmEPIEBepgZinyK1yMrepxYvCX0_k0Yx_OhfnXW5O3We7978k2zsNyNJUrQ9WLrRLXMkD8HkQBwvG4jwWCnbg6xxcGxYwmMhJvxHLRKmkY_P5S6eRI7q8HW_5o8u5ksMP0zvk1qZamYvfZrHY8knlPXK3A5P0sJ39--Sarx6QG215yYuHpCxNvaZNyDvQxNJloNmUtptSTfF2CU2ndHJGuzMZlMG0UYontPTj6ax-RGblh7PJUdzVTYgtB4cPsaUJwjPuTOZgLniR-2QuvQhczQFOeTZHzhlTcOaMAwTng2dG5IUrBDOACLNdslMtK_-EUCVs4RyXslAZt1jKCjx-AGWolDvpVUTe90rUtiMVx9oWC90EF0pq1LpGretcg9Yj8m7osGr5NK4WfY2zopGlosI0mB9mU9f6-Nt3fQg4U2XIqRuRt51QWMKLreluFcDnI7HVSHJvJAnLyI6b-8nX3TKuNQS3EM8KGHtEXg3N2BNT0yq_3DQyKaIwlkXkcWsrw8iQD06mOJR8ZEWDAJJ7j1uqXz8bkm8AynkqQcH7vb1tfdZVCtsfDPJfyn36H899SW6eTkv95fjk8zNyGxAjbw7V2R7ZAeP1zwGVrecvmrX3B42jKsY
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdQJwQ88P0RGMggJNhDOjexHeex2igDibGHFY0ny7EdvkpakVZo_PXcJW7UVEwIiWefldzlbP_OufsdIc_Lkc_YyNi4HCUy5hAyxHliIObJM6uczGxisVD43bE8mvK3Z-IsUAphLUzxHcBSXc0BZw03C9BnbX0D9k_wP_YXrmyXu5L7cP5BTCwYi7NYKNiNd6QAWD4gO9Pjk_HHpiAySARqnz_M6p1K23vzxuG0nTjZ_T29Rq6sqoU5_2lms40DanKDfF2r1ualfBuulsXQ_tpiffwvut8k1wOMpePW726RS766TS63jS3P75DJxNRL2gTbHUEtnZc0PaTtdlhTrGuhySE9OKXhNghlMGGV4t0wfX0yre-S6eTV6cFRHDo2xJYD1ICo1pTCM-5M6sALeJ75USG9KLkqAMh5ViDbjck5c8YBdvSlZ0ZkucsFM4BF03tkUM0r_4BQJWzuHJcyVym32EQLsEYJFlEJd9KriAzXX0zbQGeOXTVmuglrlNRoHI3G0ZkG40TkZTdh0TJ5XCz6DF1AIz9GhQk4n8yqrvWb9x_0GBCuSpHNNyIvglA5hwdbE-oZ4PWRUqsnuduThAVs-8NrT9NhA6k1hNUQSQvQPSJPu2GciUlxlZ-vGpkE8R9LI3K_dcxOM2SikwmqkvVcthNAWvH-SPXlc0MvDhA9SyQYeG_t3BuvdZHB9jrv_5txH_6D7CNyFQAqb-7w2S4ZgMf6xwACl8WTsLx_A_drUl8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+reconstruction+of+3D+volumes+from+2D+CT+projection+data+with+GPUs&rft.jtitle=BMC+research+notes&rft.au=Leeser%2C+Miriam&rft.au=Mukherjee%2C+Saoni&rft.au=Brock%2C+James&rft.date=2014-08-30&rft.pub=BioMed+Central&rft.eissn=1756-0500&rft.volume=7&rft.issue=1&rft_id=info:doi/10.1186%2F1756-0500-7-582&rft.externalDocID=10_1186_1756_0500_7_582
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1756-0500&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1756-0500&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1756-0500&client=summon