Abiraterone Treatment in Castration-Resistant Prostate Cancer Selects for Progesterone Responsive Mutant Androgen Receptors
Purpose: The CYP17A1 inhibitor abiraterone markedly reduces androgen precursors and is thereby effective in castration-resistant prostate cancer (CRPC). However, abiraterone increases progesterone, which can activate certain mutant androgen receptors (AR) identified previously in flutamide-resistant...
Saved in:
Published in | Clinical cancer research Vol. 21; no. 6; pp. 1273 - 1280 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
15.03.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 1078-0432 1557-3265 1557-3265 |
DOI | 10.1158/1078-0432.CCR-14-1220 |
Cover
Abstract | Purpose: The CYP17A1 inhibitor abiraterone markedly reduces androgen precursors and is thereby effective in castration-resistant prostate cancer (CRPC). However, abiraterone increases progesterone, which can activate certain mutant androgen receptors (AR) identified previously in flutamide-resistant tumors. Therefore, we sought to determine if CYP17A1 inhibitor treatment selects for progesterone-activated mutant ARs.
Experimental Design: AR was examined by targeted sequencing in metastatic tumor biopsies from 18 patients with CRPC who were progressing on a CYP17A1 inhibitor (17 on abiraterone, 1 on ketoconazole), alone or in combination with dutasteride, and by whole-exome sequencing in residual tumor in one patient treated with neoadjuvant leuprolide plus abiraterone.
Results: The progesterone-activated T878A-mutant AR was present at high allele frequency in 3 of the 18 CRPC cases. It was also present in one focus of resistant tumor in the neoadjuvant-treated patient, but not in a second clonally related resistant focus that instead had lost one copy of PTEN and both copies of CHD1. The T878A mutation appeared to be less common in the subset of patients with CRPC treated with abiraterone plus dutasteride, and transfection studies showed that dutasteride was a more potent direct antagonist of the T878A versus the wild-type AR.
Conclusions: These findings indicate that selection for tumor cells expressing progesterone-activated mutant ARs is a mechanism of resistance to CYP17A1 inhibition. Clin Cancer Res; 21(6); 1273–80. ©2014 AACR.
See related commentary by Sharifi, p. 1240 |
---|---|
AbstractList | The CYP17A1 inhibitor abiraterone markedly reduces androgen precursors and is thereby effective in castration-resistant prostate cancer (CRPC). However, abiraterone increases progesterone, which can activate certain mutant androgen receptors (AR) identified previously in flutamide-resistant tumors. Therefore, we sought to determine if CYP17A1 inhibitor treatment selects for progesterone-activated mutant ARs.PURPOSEThe CYP17A1 inhibitor abiraterone markedly reduces androgen precursors and is thereby effective in castration-resistant prostate cancer (CRPC). However, abiraterone increases progesterone, which can activate certain mutant androgen receptors (AR) identified previously in flutamide-resistant tumors. Therefore, we sought to determine if CYP17A1 inhibitor treatment selects for progesterone-activated mutant ARs.AR was examined by targeted sequencing in metastatic tumor biopsies from 18 patients with CRPC who were progressing on a CYP17A1 inhibitor (17 on abiraterone, 1 on ketoconazole), alone or in combination with dutasteride, and by whole-exome sequencing in residual tumor in one patient treated with neoadjuvant leuprolide plus abiraterone.EXPERIMENTAL DESIGNAR was examined by targeted sequencing in metastatic tumor biopsies from 18 patients with CRPC who were progressing on a CYP17A1 inhibitor (17 on abiraterone, 1 on ketoconazole), alone or in combination with dutasteride, and by whole-exome sequencing in residual tumor in one patient treated with neoadjuvant leuprolide plus abiraterone.The progesterone-activated T878A-mutant AR was present at high allele frequency in 3 of the 18 CRPC cases. It was also present in one focus of resistant tumor in the neoadjuvant-treated patient, but not in a second clonally related resistant focus that instead had lost one copy of PTEN and both copies of CHD1. The T878A mutation appeared to be less common in the subset of patients with CRPC treated with abiraterone plus dutasteride, and transfection studies showed that dutasteride was a more potent direct antagonist of the T878A versus the wild-type AR.RESULTSThe progesterone-activated T878A-mutant AR was present at high allele frequency in 3 of the 18 CRPC cases. It was also present in one focus of resistant tumor in the neoadjuvant-treated patient, but not in a second clonally related resistant focus that instead had lost one copy of PTEN and both copies of CHD1. The T878A mutation appeared to be less common in the subset of patients with CRPC treated with abiraterone plus dutasteride, and transfection studies showed that dutasteride was a more potent direct antagonist of the T878A versus the wild-type AR.These findings indicate that selection for tumor cells expressing progesterone-activated mutant ARs is a mechanism of resistance to CYP17A1 inhibition.CONCLUSIONSThese findings indicate that selection for tumor cells expressing progesterone-activated mutant ARs is a mechanism of resistance to CYP17A1 inhibition. The CYP17A1 inhibitor abiraterone markedly reduces androgen precursors and is thereby effective in castration-resistant prostate cancer (CRPC). However, abiraterone increases progesterone, which can activate certain mutant androgen receptors (AR) identified previously in flutamide-resistant tumors. Therefore, we sought to determine if CYP17A1 inhibitor treatment selects for progesterone-activated mutant ARs. AR was examined by targeted sequencing in metastatic tumor biopsies from 18 patients with CRPC who were progressing on a CYP17A1 inhibitor (17 on abiraterone, 1 on ketoconazole), alone or in combination with dutasteride, and by whole-exome sequencing in residual tumor in one patient treated with neoadjuvant leuprolide plus abiraterone. The progesterone-activated T878A-mutant AR was present at high allele frequency in 3 of the 18 CRPC cases. It was also present in one focus of resistant tumor in the neoadjuvant-treated patient, but not in a second clonally related resistant focus that instead had lost one copy of PTEN and both copies of CHD1. The T878A mutation appeared to be less common in the subset of patients with CRPC treated with abiraterone plus dutasteride, and transfection studies showed that dutasteride was a more potent direct antagonist of the T878A versus the wild-type AR. These findings indicate that selection for tumor cells expressing progesterone-activated mutant ARs is a mechanism of resistance to CYP17A1 inhibition. Purpose: The CYP17A1 inhibitor abiraterone markedly reduces androgen precursors and is thereby effective in castration-resistant prostate cancer (CRPC). However, abiraterone increases progesterone, which can activate certain mutant androgen receptors (AR) identified previously in flutamide-resistant tumors. Therefore, we sought to determine if CYP17A1 inhibitor treatment selects for progesterone-activated mutant ARs. Experimental Design: AR was examined by targeted sequencing in metastatic tumor biopsies from 18 patients with CRPC who were progressing on a CYP17A1 inhibitor (17 on abiraterone, 1 on ketoconazole), alone or in combination with dutasteride, and by whole-exome sequencing in residual tumor in one patient treated with neoadjuvant leuprolide plus abiraterone. Results: The progesterone-activated T878A-mutant AR was present at high allele frequency in 3 of the 18 CRPC cases. It was also present in one focus of resistant tumor in the neoadjuvant-treated patient, but not in a second clonally related resistant focus that instead had lost one copy of PTEN and both copies of CHD1. The T878A mutation appeared to be less common in the subset of patients with CRPC treated with abiraterone plus dutasteride, and transfection studies showed that dutasteride was a more potent direct antagonist of the T878A versus the wild-type AR. Conclusions: These findings indicate that selection for tumor cells expressing progesterone-activated mutant ARs is a mechanism of resistance to CYP17A1 inhibition. Clin Cancer Res; 21(6); 1273–80. ©2014 AACR. See related commentary by Sharifi, p. 1240 |
Author | Gao, Shuai Ye, Huihui True, Lawrence D. Kantoff, Philip W. Voznesensky, Olga Loda, Massimo Sowalsky, Adam G. Nelson, Peter S. Montgomery, Robert B. Bubley, Glenn J. Lis, Rosina L. Balk, Steven P. Taplin, Mary-Ellen Cai, Changmeng Chen, Eddy J. Schaefer, Rachel Troncoso, Patricia |
AuthorAffiliation | 1 Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA 2 Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA 5 Fred Hutchinson Cancer Research Center, Seattle, Washington, USA 4 University of Texas MD Anderson Cancer Center, Houston, Texas, USA 3 University of Washington, Seattle, Washington, USA |
AuthorAffiliation_xml | – name: 2 Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA – name: 5 Fred Hutchinson Cancer Research Center, Seattle, Washington, USA – name: 4 University of Texas MD Anderson Cancer Center, Houston, Texas, USA – name: 3 University of Washington, Seattle, Washington, USA – name: 1 Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA |
Author_xml | – sequence: 1 givenname: Eddy J. surname: Chen fullname: Chen, Eddy J. – sequence: 2 givenname: Adam G. surname: Sowalsky fullname: Sowalsky, Adam G. – sequence: 3 givenname: Shuai surname: Gao fullname: Gao, Shuai – sequence: 4 givenname: Changmeng surname: Cai fullname: Cai, Changmeng – sequence: 5 givenname: Olga surname: Voznesensky fullname: Voznesensky, Olga – sequence: 6 givenname: Rachel surname: Schaefer fullname: Schaefer, Rachel – sequence: 7 givenname: Massimo surname: Loda fullname: Loda, Massimo – sequence: 8 givenname: Lawrence D. surname: True fullname: True, Lawrence D. – sequence: 9 givenname: Huihui surname: Ye fullname: Ye, Huihui – sequence: 10 givenname: Patricia surname: Troncoso fullname: Troncoso, Patricia – sequence: 11 givenname: Rosina L. surname: Lis fullname: Lis, Rosina L. – sequence: 12 givenname: Philip W. surname: Kantoff fullname: Kantoff, Philip W. – sequence: 13 givenname: Robert B. surname: Montgomery fullname: Montgomery, Robert B. – sequence: 14 givenname: Peter S. surname: Nelson fullname: Nelson, Peter S. – sequence: 15 givenname: Glenn J. surname: Bubley fullname: Bubley, Glenn J. – sequence: 16 givenname: Steven P. surname: Balk fullname: Balk, Steven P. – sequence: 17 givenname: Mary-Ellen surname: Taplin fullname: Taplin, Mary-Ellen |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25320358$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UVtrFDEUDlKxF_0Jyjz6MvVkMpnMIAjLYKtQaan1OWSzJzUym6xJtiD98z3T7or64FMO-W6c8x2zgxADMvaawynnsn_HQfU1tKI5Hcfrmrc1bxp4xo64lKoWTScPaN5zDtlxzj8AeMuhfcEOGykaELI_YveLpU-mYCL36iahKWsMpfKhGk0uhPgY6mvMPhdD_1cp0lCQ0GAxVV9xQlty5WKasVvMOyuSbGLI_g6rL9tH6SKsZkIgyOKmxJRfsufOTBlf7d4T9u3s4834qb64PP88Li5q2ypVapRKKbHqjKGtgA-WO4ClWALyXtmVcE65Foa2c72D3gqQAi0YZYQwAwcjTtiHJ9_NdrnGlaUFk5n0Jvm1Sb90NF7_jQT_Xd_GO90KOQyyJ4O3O4MUf25pR7322eI0mYBxmzXvOtEPSjUdUd_8mfU7ZH9xIrx_Ilg6ZU7otPXl8cwU7SfNQc_96rk7PXenqV_NWz33S2r5j3of8H_dA2gHrFo |
CitedBy_id | crossref_primary_10_1016_j_ajur_2018_11_005 crossref_primary_10_1016_j_jsbmb_2016_04_008 crossref_primary_10_1016_j_tranon_2023_101698 crossref_primary_10_1016_j_ejca_2016_11_027 crossref_primary_10_1038_nrc4016 crossref_primary_10_18632_oncotarget_10901 crossref_primary_10_1158_1535_7163_MCT_20_0510 crossref_primary_10_1200_EDBK_159248 crossref_primary_10_1016_j_synbio_2022_07_005 crossref_primary_10_1016_j_urolonc_2017_11_017 crossref_primary_10_1634_theoncologist_2016_0161 crossref_primary_10_1007_s12094_022_02957_x crossref_primary_10_1158_1535_7163_MCT_16_0186 crossref_primary_10_1093_annonc_mdx155 crossref_primary_10_1158_1078_0432_CCR_16_0987 crossref_primary_10_1016_j_urolonc_2015_05_025 crossref_primary_10_1007_s11934_016_0584_4 crossref_primary_10_1158_0008_5472_CAN_18_0610 crossref_primary_10_1016_j_canlet_2021_07_013 crossref_primary_10_1007_s00210_019_01622_5 crossref_primary_10_1158_0008_5472_CAN_18_2993 crossref_primary_10_1016_j_bcp_2019_113781 crossref_primary_10_1002_cpt_256 crossref_primary_10_1097_PPO_0000000000000214 crossref_primary_10_3390_cells9122653 crossref_primary_10_1177_20514158221088689 crossref_primary_10_1158_0008_5472_CAN_17_0314 crossref_primary_10_1038_nrurol_2016_221 crossref_primary_10_1200_JCO_2018_77_9827 crossref_primary_10_18632_oncotarget_10347 crossref_primary_10_1007_s11884_023_00697_4 crossref_primary_10_1016_j_eururo_2017_01_011 crossref_primary_10_3390_cancers9060067 crossref_primary_10_1158_1078_0432_CCR_16_2414 crossref_primary_10_1016_j_urolonc_2021_01_030 crossref_primary_10_1038_s41568_023_00609_y crossref_primary_10_1038_s41388_020_01479_6 crossref_primary_10_1158_1078_0432_CCR_18_1431 crossref_primary_10_3390_cancers13061483 crossref_primary_10_1007_s11523_016_0461_6 crossref_primary_10_1200_JCO_23_00433 crossref_primary_10_18632_oncotarget_6434 crossref_primary_10_1097_MOU_0000000000000647 crossref_primary_10_1371_journal_pone_0161959 crossref_primary_10_1038_s41598_017_16327_z crossref_primary_10_1007_s11523_022_00929_3 crossref_primary_10_1016_j_pharmthera_2018_06_005 crossref_primary_10_1016_j_ctrv_2016_04_001 crossref_primary_10_3390_medicines6030082 crossref_primary_10_1002_jcph_2191 crossref_primary_10_1517_14656566_2015_1055249 crossref_primary_10_1530_EC_18_0425 crossref_primary_10_18632_oncotarget_12554 crossref_primary_10_1038_s41467_020_14657_7 crossref_primary_10_1038_s41391_018_0098_x crossref_primary_10_1158_1078_0432_CCR_15_2309 crossref_primary_10_1158_1078_0432_CCR_16_1021 crossref_primary_10_1038_onc_2017_240 crossref_primary_10_1016_j_critrevonc_2018_03_002 crossref_primary_10_1126_scitranslmed_aad4008 crossref_primary_10_1074_jbc_RA120_015339 crossref_primary_10_1016_j_euo_2021_02_008 crossref_primary_10_1158_1078_0432_CCR_21_1625 crossref_primary_10_1016_j_mam_2020_100921 crossref_primary_10_3390_cancers10100345 crossref_primary_10_1111_cas_15984 crossref_primary_10_1634_theoncologist_2019_0115 crossref_primary_10_1016_j_urolonc_2015_03_021 crossref_primary_10_1002_pros_23799 crossref_primary_10_1016_j_celrep_2024_115089 crossref_primary_10_3389_fonc_2019_00801 crossref_primary_10_3390_cancers13020327 crossref_primary_10_1016_j_ctrv_2015_08_002 crossref_primary_10_1016_j_euo_2018_02_009 crossref_primary_10_1007_s00345_015_1624_2 crossref_primary_10_1530_ERC_17_0416 crossref_primary_10_1172_JCI88885 crossref_primary_10_1080_14737159_2019_1675515 crossref_primary_10_1371_journal_pone_0224081 crossref_primary_10_1016_S1470_2045_19_30688_6 crossref_primary_10_1200_PO_21_00091 crossref_primary_10_1080_14737140_2023_2207827 crossref_primary_10_15252_emmm_201303701 crossref_primary_10_1186_s13059_015_0864_1 crossref_primary_10_1016_j_xcrm_2022_100561 crossref_primary_10_1016_j_clgc_2016_10_006 crossref_primary_10_1016_S1470_2045_15_70033_1 crossref_primary_10_1016_j_semcancer_2015_08_005 crossref_primary_10_1158_1078_0432_CCR_16_2054 crossref_primary_10_1038_s41391_022_00491_z crossref_primary_10_18632_oncotarget_4689 crossref_primary_10_18632_oncotarget_6864 crossref_primary_10_4137_CMO_Ss34534 crossref_primary_10_1158_1535_7163_MCT_20_0662 crossref_primary_10_1126_scitranslmed_aac9511 crossref_primary_10_1002_pros_23219 crossref_primary_10_1007_s11307_018_1199_6 crossref_primary_10_1200_JCO_2017_72_8808 crossref_primary_10_1016_j_eururo_2021_03_009 crossref_primary_10_1093_annonc_mdv267 crossref_primary_10_1158_1535_7163_MCT_22_0115 crossref_primary_10_1016_j_ctrv_2017_04_008 crossref_primary_10_1158_1078_0432_CCR_20_4616 crossref_primary_10_18632_oncotarget_8493 crossref_primary_10_1016_j_clgc_2017_08_017 crossref_primary_10_1530_ERC_16_0422 crossref_primary_10_1158_1078_0432_CCR_14_2899 crossref_primary_10_1021_acsptsci_9b00065 crossref_primary_10_3390_cells10051205 crossref_primary_10_1158_0008_5472_CAN_17_3615 crossref_primary_10_1038_s41585_022_00686_y crossref_primary_10_1002_pros_24297 crossref_primary_10_3892_ol_2017_7628 crossref_primary_10_3389_fgene_2019_00730 crossref_primary_10_3390_ijms24032939 crossref_primary_10_1016_j_ejphar_2019_172783 crossref_primary_10_1172_JCI87328 crossref_primary_10_1016_j_ccell_2018_03_025 crossref_primary_10_18632_oncotarget_14926 crossref_primary_10_3390_cancers12040927 crossref_primary_10_1016_j_ucl_2022_07_005 crossref_primary_10_1093_annonc_mdx283 crossref_primary_10_1038_s41391_017_0027_4 crossref_primary_10_18632_oncotarget_3925 |
Cites_doi | 10.1002/pros.10340 10.1101/gr.129684.111 10.1158/0008-5472.CAN-05-0817 10.1200/JCO.2003.11.102 10.1158/0008-5472.CAN-08-0249 10.1158/0008-5472.CAN-05-4000 10.1158/0008-5472.CAN-12-2799 10.1200/JCO.2007.15.9749 10.1158/1078-0432.CCR-11-0728 10.1158/2159-8290.CD-13-0142 10.7554/eLife.00499 10.1056/NEJMoa1209096 10.1158/0008-5472.CAN-11-0532 10.1056/NEJM199505253322101 10.1093/bioinformatics/btp352 10.1002/pros.1108 10.1016/S0022-5347(01)64039-4 10.1158/2159-8290.CD-13-0226 10.1002/pros.22694 10.4161/fly.19695 10.1093/bib/bbs017 10.1002/pros.22696 10.1056/NEJMoa1014618 10.1038/onc.2013.235 10.1093/bioinformatics/btr427 10.1073/pnas.1108745108 10.1158/0008-5472.CAN-07-5997 |
ContentType | Journal Article |
Copyright | 2014 American Association for Cancer Research. |
Copyright_xml | – notice: 2014 American Association for Cancer Research. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1158/1078-0432.CCR-14-1220 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1557-3265 |
EndPage | 1280 |
ExternalDocumentID | PMC4359958 25320358 10_1158_1078_0432_CCR_14_1220 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: P30 CA016672 – fundername: NCI NIH HHS grantid: P50 CA097186 – fundername: NCI NIH HHS grantid: K99 CA166507 – fundername: NCI NIH HHS grantid: T32 CA081156 – fundername: NCI NIH HHS grantid: P50 CA090381 – fundername: NCI NIH HHS grantid: P01 CA163227 |
GroupedDBID | --- 18M 29B 2FS 2WC 34G 39C 53G 5GY 5RE 5VS 6J9 AAFWJ AAJMC AAYXX ABOCM ACGFO ACIWK ACPRK ACSVP ADBBV ADCOW ADNWM AENEX AFHIN AFOSN AFRAH AFUMD ALMA_UNASSIGNED_HOLDINGS BAWUL BR6 BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 IH2 KQ8 L7B LSO OK1 P0W P2P QTD RCR RHI RNS SJN TR2 W2D W8F WOQ YKV CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c477t-e57773d6aa265019c1f00b3b0e187cd3ff7f40946f8f08c3053ec0a7a33a910a3 |
ISSN | 1078-0432 1557-3265 |
IngestDate | Thu Aug 21 17:51:52 EDT 2025 Fri Sep 05 04:35:40 EDT 2025 Thu Apr 03 07:08:26 EDT 2025 Tue Jul 01 03:06:54 EDT 2025 Thu Apr 24 23:07:53 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | 2014 American Association for Cancer Research. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c477t-e57773d6aa265019c1f00b3b0e187cd3ff7f40946f8f08c3053ec0a7a33a910a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 E.J.C., A.G.S., and S.G. contributed equally to this work. |
OpenAccessLink | https://clincancerres.aacrjournals.org/content/clincanres/21/6/1273.full.pdf |
PMID | 25320358 |
PQID | 1663897726 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4359958 proquest_miscellaneous_1663897726 pubmed_primary_25320358 crossref_citationtrail_10_1158_1078_0432_CCR_14_1220 crossref_primary_10_1158_1078_0432_CCR_14_1220 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-03-15 |
PublicationDateYYYYMMDD | 2015-03-15 |
PublicationDate_xml | – month: 03 year: 2015 text: 2015-03-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Clinical cancer research |
PublicationTitleAlternate | Clin Cancer Res |
PublicationYear | 2015 |
References | Cai (2022061103101549700_bib5) 2011; 71 Taplin (2022061103101549700_bib11) 2003; 21 Korpal (2022061103101549700_bib15) 2013; 3 Joseph (2022061103101549700_bib17) 2013; 3 Attard (2022061103101549700_bib18) 2008; 26 Locke (2022061103101549700_bib4) 2008; 68 Lazier (2022061103101549700_bib26) 2004; 58 Yoshida (2022061103101549700_bib14) 2005; 65 Bonkhoff (2022061103101549700_bib30) 2001; 48 Yuan (2022061103101549700_bib1) 2013; 33 Mostaghel (2022061103101549700_bib6) 2011; 17 Balbas (2022061103101549700_bib16) 2013; 2 Grant (2022061103101549700_bib20) 2011; 27 Joyce (2022061103101549700_bib29) 1998; 159 Ryan (2022061103101549700_bib8) 2013; 368 Taplin (2022061103101549700_bib10) 1999; 59 Fenton (2022061103101549700_bib12) 1997; 3 Koboldt (2022061103101549700_bib22) 2012; 22 Cingolani (2022061103101549700_bib23) 2012; 6 Montgomery (2022061103101549700_bib3) 2008; 68 Li (2022061103101549700_bib21) 2009; 25 Kumar (2022061103101549700_bib25) 2011; 108 Chhipa (2022061103101549700_bib27) 2013; 73 Stanbrough (2022061103101549700_bib2) 2006; 66 Thorvaldsdottir (2022061103101549700_bib24) 2013; 14 Latil (2022061103101549700_bib31) 2001; 61 Sowalsky (2022061103101549700_bib19) 2013; 73 de Bono (2022061103101549700_bib7) 2011; 364 Wu (2022061103101549700_bib28) 2013; 73 Hara (2022061103101549700_bib13) 2003; 63 Taplin (2022061103101549700_bib9) 1995; 332 12860943 - J Clin Oncol. 2003 Jul 15;21(14):2673-8 10363963 - Cancer Res. 1999 Jun 1;59(11):2511-5 16510604 - Cancer Res. 2006 Mar 1;66(5):2815-25 23779130 - Cancer Discov. 2013 Sep;3(9):1020-9 14716738 - Prostate. 2004 Feb 1;58(2):130-44 7723794 - N Engl J Med. 1995 May 25;332(21):1393-8 18519708 - Cancer Res. 2008 Jun 1;68(11):4447-54 16266977 - Cancer Res. 2005 Nov 1;65(21):9611-6 9815822 - Clin Cancer Res. 1997 Aug;3(8):1383-8 22728672 - Fly (Austin). 2012 Apr-Jun;6(2):80-92 18676866 - Cancer Res. 2008 Aug 1;68(15):6407-15 12517791 - Cancer Res. 2003 Jan 1;63(1):149-53 21949389 - Proc Natl Acad Sci U S A. 2011 Oct 11;108(41):17087-92 21868758 - Cancer Res. 2011 Oct 15;71(20):6503-13 11280747 - Cancer Res. 2001 Mar 1;61(5):1919-26 23842682 - Cancer Discov. 2013 Sep;3(9):1030-43 21612468 - N Engl J Med. 2011 May 26;364(21):1995-2005 23813697 - Prostate. 2013 Sep;73(13):1470-82 25432158 - Clin Cancer Res. 2015 Mar 15;21(6):1240-2 23228172 - N Engl J Med. 2013 Jan 10;368(2):138-48 22517427 - Brief Bioinform. 2013 Mar;14(2):178-92 19505943 - Bioinformatics. 2009 Aug 15;25(16):2078-9 23813737 - Prostate. 2013 Oct;73(14):1483-94 22300766 - Genome Res. 2012 Mar;22(3):568-76 18645193 - J Clin Oncol. 2008 Oct 1;26(28):4563-71 21807635 - Clin Cancer Res. 2011 Sep 15;17(18):5913-25 23204237 - Cancer Res. 2013 Feb 1;73(3):1050-5 23752196 - Oncogene. 2014 May 29;33(22):2815-25 9400459 - J Urol. 1998 Jan;159(1):149-53 23580326 - Elife. 2013;2:e00499 11536308 - Prostate. 2001 Sep 15;48(4):285-91 21775302 - Bioinformatics. 2011 Sep 15;27(18):2518-28 |
References_xml | – volume: 58 start-page: 130 year: 2004 ident: 2022061103101549700_bib26 article-title: Dutasteride, the dual 5alpha-reductase inhibitor, inhibits androgen action and promotes cell death in the LNCaP prostate cancer cell line publication-title: Prostate doi: 10.1002/pros.10340 – volume: 22 start-page: 568 year: 2012 ident: 2022061103101549700_bib22 article-title: VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing publication-title: Genome Res doi: 10.1101/gr.129684.111 – volume: 65 start-page: 9611 year: 2005 ident: 2022061103101549700_bib14 article-title: Antiandrogen bicalutamide promotes tumor growth in a novel androgen-dependent prostate cancer xenograft model derived from a bicalutamide-treated patient publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-05-0817 – volume: 21 start-page: 2673 year: 2003 ident: 2022061103101549700_bib11 article-title: Androgen receptor mutations in androgen-independent prostate cancer: Cancer and Leukemia Group B Study 9663 publication-title: J Clin Oncol doi: 10.1200/JCO.2003.11.102 – volume: 68 start-page: 4447 year: 2008 ident: 2022061103101549700_bib3 article-title: Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-08-0249 – volume: 66 start-page: 2815 year: 2006 ident: 2022061103101549700_bib2 article-title: Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-05-4000 – volume: 3 start-page: 1383 year: 1997 ident: 2022061103101549700_bib12 article-title: Functional characterization of mutant androgen receptors from androgen-independent prostate cancer publication-title: Clin Cancer Res – volume: 73 start-page: 1050 year: 2013 ident: 2022061103101549700_bib19 article-title: Clonal progression of prostate cancers from Gleason grade 3 to grade 4 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-12-2799 – volume: 61 start-page: 1919 year: 2001 ident: 2022061103101549700_bib31 article-title: Evaluation of androgen, estrogen (ER alpha and ER beta), and progesterone receptor expression in human prostate cancer by real-time quantitative reverse transcription-polymerase chain reaction assays publication-title: Cancer Res – volume: 26 start-page: 4563 year: 2008 ident: 2022061103101549700_bib18 article-title: Phase I clinical trial of a selective inhibitor of CYP17, abiraterone acetate, confirms that castration-resistant prostate cancer commonly remains hormone driven publication-title: J Clin Oncol doi: 10.1200/JCO.2007.15.9749 – volume: 17 start-page: 5913 year: 2011 ident: 2022061103101549700_bib6 article-title: Resistance to CYP17A1 inhibition with abiraterone in castration-resistant prostate cancer: induction of steroidogenesis and androgen receptor splice variants publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-11-0728 – volume: 3 start-page: 1030 year: 2013 ident: 2022061103101549700_bib15 article-title: An F876L mutation in androgen receptor confers genetic and phenotypic resistance to MDV3100 (enzalutamide) publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-13-0142 – volume: 2 start-page: e00499 year: 2013 ident: 2022061103101549700_bib16 article-title: Overcoming mutation-based resistance to antiandrogens with rational drug design publication-title: Elife doi: 10.7554/eLife.00499 – volume: 368 start-page: 138 year: 2013 ident: 2022061103101549700_bib8 article-title: Abiraterone in metastatic prostate cancer without previous chemotherapy publication-title: N Engl J Med doi: 10.1056/NEJMoa1209096 – volume: 71 start-page: 6503 year: 2011 ident: 2022061103101549700_bib5 article-title: Intratumoral de novo steroid synthesis activates androgen receptor in castration-resistant prostate cancer and is upregulated by treatment with CYP17A1 inhibitors publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-11-0532 – volume: 332 start-page: 1393 year: 1995 ident: 2022061103101549700_bib9 article-title: Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer publication-title: N Engl J Med doi: 10.1056/NEJM199505253322101 – volume: 25 start-page: 2078 year: 2009 ident: 2022061103101549700_bib21 article-title: The sequence alignment/map format and SAMtools publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp352 – volume: 48 start-page: 285 year: 2001 ident: 2022061103101549700_bib30 article-title: Progesterone receptor expression in human prostate cancer: correlation with tumor progression publication-title: Prostate doi: 10.1002/pros.1108 – volume: 159 start-page: 149 year: 1998 ident: 2022061103101549700_bib29 article-title: High dose bicalutamide for androgen independent prostate cancer: effect of prior hormonal therapy publication-title: J Urol doi: 10.1016/S0022-5347(01)64039-4 – volume: 59 start-page: 2511 year: 1999 ident: 2022061103101549700_bib10 article-title: Selection for androgen receptor mutations in prostate cancers treated with androgen antagonist publication-title: Cancer Res – volume: 3 start-page: 1020 year: 2013 ident: 2022061103101549700_bib17 article-title: A clinically relevant androgen receptor mutation confers resistance to second-generation antiandrogens enzalutamide and ARN-509 publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-13-0226 – volume: 73 start-page: 1470 year: 2013 ident: 2022061103101549700_bib28 article-title: Prostate cancer cells differ in testosterone accumulation, dihydrotestosterone conversion, and androgen receptor signaling response to steroid 5alpha-reductase inhibitors publication-title: Prostate doi: 10.1002/pros.22694 – volume: 6 start-page: 80 year: 2012 ident: 2022061103101549700_bib23 article-title: A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3 publication-title: Fly (Austin) doi: 10.4161/fly.19695 – volume: 14 start-page: 178 year: 2013 ident: 2022061103101549700_bib24 article-title: Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration publication-title: Brief Bioinform doi: 10.1093/bib/bbs017 – volume: 73 start-page: 1483 year: 2013 ident: 2022061103101549700_bib27 article-title: The direct inhibitory effect of dutasteride or finasteride on androgen receptor activity is cell line specific publication-title: Prostate doi: 10.1002/pros.22696 – volume: 63 start-page: 149 year: 2003 ident: 2022061103101549700_bib13 article-title: Novel mutations of androgen receptor: a possible mechanism of bicalutamide withdrawal syndrome publication-title: Cancer Res – volume: 364 start-page: 1995 year: 2011 ident: 2022061103101549700_bib7 article-title: Abiraterone and increased survival in metastatic prostate cancer publication-title: N Engl J Med doi: 10.1056/NEJMoa1014618 – volume: 33 start-page: 2815 year: 2013 ident: 2022061103101549700_bib1 article-title: Androgen receptor functions in castration-resistant prostate cancer and mechanisms of resistance to new agents targeting the androgen axis publication-title: Oncogene doi: 10.1038/onc.2013.235 – volume: 27 start-page: 2518 year: 2011 ident: 2022061103101549700_bib20 article-title: Comparative analysis of RNA-Seq alignment algorithms and the RNA-Seq unified mapper (RUM) publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr427 – volume: 108 start-page: 17087 year: 2011 ident: 2022061103101549700_bib25 article-title: Exome sequencing identifies a spectrum of mutation frequencies in advanced and lethal prostate cancers publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1108745108 – volume: 68 start-page: 6407 year: 2008 ident: 2022061103101549700_bib4 article-title: Androgen levels increase by intratumoral de novo steroidogenesis during progression of castration-resistant prostate cancer publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-07-5997 – reference: 9815822 - Clin Cancer Res. 1997 Aug;3(8):1383-8 – reference: 12517791 - Cancer Res. 2003 Jan 1;63(1):149-53 – reference: 12860943 - J Clin Oncol. 2003 Jul 15;21(14):2673-8 – reference: 21949389 - Proc Natl Acad Sci U S A. 2011 Oct 11;108(41):17087-92 – reference: 22300766 - Genome Res. 2012 Mar;22(3):568-76 – reference: 23228172 - N Engl J Med. 2013 Jan 10;368(2):138-48 – reference: 21868758 - Cancer Res. 2011 Oct 15;71(20):6503-13 – reference: 25432158 - Clin Cancer Res. 2015 Mar 15;21(6):1240-2 – reference: 23842682 - Cancer Discov. 2013 Sep;3(9):1030-43 – reference: 23752196 - Oncogene. 2014 May 29;33(22):2815-25 – reference: 18519708 - Cancer Res. 2008 Jun 1;68(11):4447-54 – reference: 21775302 - Bioinformatics. 2011 Sep 15;27(18):2518-28 – reference: 22728672 - Fly (Austin). 2012 Apr-Jun;6(2):80-92 – reference: 14716738 - Prostate. 2004 Feb 1;58(2):130-44 – reference: 19505943 - Bioinformatics. 2009 Aug 15;25(16):2078-9 – reference: 23813697 - Prostate. 2013 Sep;73(13):1470-82 – reference: 23813737 - Prostate. 2013 Oct;73(14):1483-94 – reference: 7723794 - N Engl J Med. 1995 May 25;332(21):1393-8 – reference: 10363963 - Cancer Res. 1999 Jun 1;59(11):2511-5 – reference: 11536308 - Prostate. 2001 Sep 15;48(4):285-91 – reference: 23779130 - Cancer Discov. 2013 Sep;3(9):1020-9 – reference: 11280747 - Cancer Res. 2001 Mar 1;61(5):1919-26 – reference: 9400459 - J Urol. 1998 Jan;159(1):149-53 – reference: 18645193 - J Clin Oncol. 2008 Oct 1;26(28):4563-71 – reference: 21612468 - N Engl J Med. 2011 May 26;364(21):1995-2005 – reference: 23580326 - Elife. 2013;2:e00499 – reference: 22517427 - Brief Bioinform. 2013 Mar;14(2):178-92 – reference: 21807635 - Clin Cancer Res. 2011 Sep 15;17(18):5913-25 – reference: 16266977 - Cancer Res. 2005 Nov 1;65(21):9611-6 – reference: 23204237 - Cancer Res. 2013 Feb 1;73(3):1050-5 – reference: 18676866 - Cancer Res. 2008 Aug 1;68(15):6407-15 – reference: 16510604 - Cancer Res. 2006 Mar 1;66(5):2815-25 |
SSID | ssj0014104 |
Score | 2.5328012 |
Snippet | Purpose: The CYP17A1 inhibitor abiraterone markedly reduces androgen precursors and is thereby effective in castration-resistant prostate cancer (CRPC).... The CYP17A1 inhibitor abiraterone markedly reduces androgen precursors and is thereby effective in castration-resistant prostate cancer (CRPC). However,... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1273 |
SubjectTerms | Aged Aged, 80 and over Androstenes - therapeutic use Antineoplastic Combined Chemotherapy Protocols - therapeutic use Cell Line, Tumor DNA Helicases - genetics DNA-Binding Proteins - genetics Drug Resistance, Neoplasm - genetics Dutasteride - therapeutic use Humans Ketoconazole - therapeutic use Leuprolide - therapeutic use Male Middle Aged Mutation - genetics Progesterone - metabolism Prostatic Neoplasms, Castration-Resistant - drug therapy Prostatic Neoplasms, Castration-Resistant - genetics PTEN Phosphohydrolase - genetics Receptors, Androgen - genetics Receptors, Androgen - metabolism Steroid 17-alpha-Hydroxylase - antagonists & inhibitors |
Title | Abiraterone Treatment in Castration-Resistant Prostate Cancer Selects for Progesterone Responsive Mutant Androgen Receptors |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25320358 https://www.proquest.com/docview/1663897726 https://pubmed.ncbi.nlm.nih.gov/PMC4359958 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIiEuiDddHjISN5QSx0ntHKtqYQEtB9iV9hY5fuxWomlV2kXAkT_OjOM8ulvE41JVeUzSfF-dGXvmG0Je6JgbkbkyMirjUWpSFklX8khxWRqXaXhDYaHw0Yfx4Un67jQ7HQx-9rKWNutypL_vrCv5H1RhG-CKVbL_gGxrFDbAd8AXPgFh-PwrjCclrpLb1QI8xS5jHDPLVSOHG0E4jS4ibF9igQccjoleGkWcfQscr8fg07S8ZgKaWoW82Qv7cr7xpyqUNYDbgF2YBrMIS0CNwkFTXRkMBwGhdqJ5GipADoz51luGWnyFB1RP3U6Mmnddvt4oP3_76XyjZt0aySxkB1Rn8CvP-rMVLMN0rbpeMwywMSr6pnxrBK5rpAPT-sMpS-o-J1fH-Uz6KYdgbDSdfowYCjD6yrp1D_vl3IOfYAMMXqvEXxLYbnZdI9cTAQ4YetZv37dLUSnzPSjba4UyMLiDVzuvj_LSweK2r3MlgLmch9tzbI5vk1shIqGTml53yMBWd8mNo5BzcY_86LGMtiyjs4ruYhltWEZrMtDAMgoso32W0Y5ltGYZbVhGW5bdJyevD46nh1Fo2RHpVIh1ZDMhBDdjpRJw_VmumYvjkpexZVJow50TDmcUxk66WGp42XCrYyUU5wqGBcUfkL0K7uERoboUWqZJbJ1kaaZNyWyeCGcVeFBG53JI0ubhFjro2WNblc-Fj2szWSA8BcJTADwQ4xYIz5CM2tOWtaDLn0543iBXwNCL62mqsovNl4KN0d2H8HQ8JA9rJFuTDQWGRGxh3B6Asu7be6rZuZd3hwAmzzO5_1ubj8nN7q_1hOytVxv7FFzjdfnMU_cXPd27yw |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Abiraterone+treatment+in+castration-resistant+prostate+cancer+selects+for+progesterone+responsive+mutant+androgen+receptors&rft.jtitle=Clinical+cancer+research&rft.au=Chen%2C+Eddy+J&rft.au=Sowalsky%2C+Adam+G&rft.au=Gao%2C+Shuai&rft.au=Cai%2C+Changmeng&rft.date=2015-03-15&rft.issn=1078-0432&rft.volume=21&rft.issue=6&rft.spage=1273&rft_id=info:doi/10.1158%2F1078-0432.CCR-14-1220&rft_id=info%3Apmid%2F25320358&rft.externalDocID=25320358 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-0432&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-0432&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-0432&client=summon |