Abiraterone Treatment in Castration-Resistant Prostate Cancer Selects for Progesterone Responsive Mutant Androgen Receptors

Purpose: The CYP17A1 inhibitor abiraterone markedly reduces androgen precursors and is thereby effective in castration-resistant prostate cancer (CRPC). However, abiraterone increases progesterone, which can activate certain mutant androgen receptors (AR) identified previously in flutamide-resistant...

Full description

Saved in:
Bibliographic Details
Published inClinical cancer research Vol. 21; no. 6; pp. 1273 - 1280
Main Authors Chen, Eddy J., Sowalsky, Adam G., Gao, Shuai, Cai, Changmeng, Voznesensky, Olga, Schaefer, Rachel, Loda, Massimo, True, Lawrence D., Ye, Huihui, Troncoso, Patricia, Lis, Rosina L., Kantoff, Philip W., Montgomery, Robert B., Nelson, Peter S., Bubley, Glenn J., Balk, Steven P., Taplin, Mary-Ellen
Format Journal Article
LanguageEnglish
Published United States 15.03.2015
Subjects
Online AccessGet full text
ISSN1078-0432
1557-3265
1557-3265
DOI10.1158/1078-0432.CCR-14-1220

Cover

Abstract Purpose: The CYP17A1 inhibitor abiraterone markedly reduces androgen precursors and is thereby effective in castration-resistant prostate cancer (CRPC). However, abiraterone increases progesterone, which can activate certain mutant androgen receptors (AR) identified previously in flutamide-resistant tumors. Therefore, we sought to determine if CYP17A1 inhibitor treatment selects for progesterone-activated mutant ARs. Experimental Design: AR was examined by targeted sequencing in metastatic tumor biopsies from 18 patients with CRPC who were progressing on a CYP17A1 inhibitor (17 on abiraterone, 1 on ketoconazole), alone or in combination with dutasteride, and by whole-exome sequencing in residual tumor in one patient treated with neoadjuvant leuprolide plus abiraterone. Results: The progesterone-activated T878A-mutant AR was present at high allele frequency in 3 of the 18 CRPC cases. It was also present in one focus of resistant tumor in the neoadjuvant-treated patient, but not in a second clonally related resistant focus that instead had lost one copy of PTEN and both copies of CHD1. The T878A mutation appeared to be less common in the subset of patients with CRPC treated with abiraterone plus dutasteride, and transfection studies showed that dutasteride was a more potent direct antagonist of the T878A versus the wild-type AR. Conclusions: These findings indicate that selection for tumor cells expressing progesterone-activated mutant ARs is a mechanism of resistance to CYP17A1 inhibition. Clin Cancer Res; 21(6); 1273–80. ©2014 AACR. See related commentary by Sharifi, p. 1240
AbstractList The CYP17A1 inhibitor abiraterone markedly reduces androgen precursors and is thereby effective in castration-resistant prostate cancer (CRPC). However, abiraterone increases progesterone, which can activate certain mutant androgen receptors (AR) identified previously in flutamide-resistant tumors. Therefore, we sought to determine if CYP17A1 inhibitor treatment selects for progesterone-activated mutant ARs.PURPOSEThe CYP17A1 inhibitor abiraterone markedly reduces androgen precursors and is thereby effective in castration-resistant prostate cancer (CRPC). However, abiraterone increases progesterone, which can activate certain mutant androgen receptors (AR) identified previously in flutamide-resistant tumors. Therefore, we sought to determine if CYP17A1 inhibitor treatment selects for progesterone-activated mutant ARs.AR was examined by targeted sequencing in metastatic tumor biopsies from 18 patients with CRPC who were progressing on a CYP17A1 inhibitor (17 on abiraterone, 1 on ketoconazole), alone or in combination with dutasteride, and by whole-exome sequencing in residual tumor in one patient treated with neoadjuvant leuprolide plus abiraterone.EXPERIMENTAL DESIGNAR was examined by targeted sequencing in metastatic tumor biopsies from 18 patients with CRPC who were progressing on a CYP17A1 inhibitor (17 on abiraterone, 1 on ketoconazole), alone or in combination with dutasteride, and by whole-exome sequencing in residual tumor in one patient treated with neoadjuvant leuprolide plus abiraterone.The progesterone-activated T878A-mutant AR was present at high allele frequency in 3 of the 18 CRPC cases. It was also present in one focus of resistant tumor in the neoadjuvant-treated patient, but not in a second clonally related resistant focus that instead had lost one copy of PTEN and both copies of CHD1. The T878A mutation appeared to be less common in the subset of patients with CRPC treated with abiraterone plus dutasteride, and transfection studies showed that dutasteride was a more potent direct antagonist of the T878A versus the wild-type AR.RESULTSThe progesterone-activated T878A-mutant AR was present at high allele frequency in 3 of the 18 CRPC cases. It was also present in one focus of resistant tumor in the neoadjuvant-treated patient, but not in a second clonally related resistant focus that instead had lost one copy of PTEN and both copies of CHD1. The T878A mutation appeared to be less common in the subset of patients with CRPC treated with abiraterone plus dutasteride, and transfection studies showed that dutasteride was a more potent direct antagonist of the T878A versus the wild-type AR.These findings indicate that selection for tumor cells expressing progesterone-activated mutant ARs is a mechanism of resistance to CYP17A1 inhibition.CONCLUSIONSThese findings indicate that selection for tumor cells expressing progesterone-activated mutant ARs is a mechanism of resistance to CYP17A1 inhibition.
The CYP17A1 inhibitor abiraterone markedly reduces androgen precursors and is thereby effective in castration-resistant prostate cancer (CRPC). However, abiraterone increases progesterone, which can activate certain mutant androgen receptors (AR) identified previously in flutamide-resistant tumors. Therefore, we sought to determine if CYP17A1 inhibitor treatment selects for progesterone-activated mutant ARs. AR was examined by targeted sequencing in metastatic tumor biopsies from 18 patients with CRPC who were progressing on a CYP17A1 inhibitor (17 on abiraterone, 1 on ketoconazole), alone or in combination with dutasteride, and by whole-exome sequencing in residual tumor in one patient treated with neoadjuvant leuprolide plus abiraterone. The progesterone-activated T878A-mutant AR was present at high allele frequency in 3 of the 18 CRPC cases. It was also present in one focus of resistant tumor in the neoadjuvant-treated patient, but not in a second clonally related resistant focus that instead had lost one copy of PTEN and both copies of CHD1. The T878A mutation appeared to be less common in the subset of patients with CRPC treated with abiraterone plus dutasteride, and transfection studies showed that dutasteride was a more potent direct antagonist of the T878A versus the wild-type AR. These findings indicate that selection for tumor cells expressing progesterone-activated mutant ARs is a mechanism of resistance to CYP17A1 inhibition.
Purpose: The CYP17A1 inhibitor abiraterone markedly reduces androgen precursors and is thereby effective in castration-resistant prostate cancer (CRPC). However, abiraterone increases progesterone, which can activate certain mutant androgen receptors (AR) identified previously in flutamide-resistant tumors. Therefore, we sought to determine if CYP17A1 inhibitor treatment selects for progesterone-activated mutant ARs. Experimental Design: AR was examined by targeted sequencing in metastatic tumor biopsies from 18 patients with CRPC who were progressing on a CYP17A1 inhibitor (17 on abiraterone, 1 on ketoconazole), alone or in combination with dutasteride, and by whole-exome sequencing in residual tumor in one patient treated with neoadjuvant leuprolide plus abiraterone. Results: The progesterone-activated T878A-mutant AR was present at high allele frequency in 3 of the 18 CRPC cases. It was also present in one focus of resistant tumor in the neoadjuvant-treated patient, but not in a second clonally related resistant focus that instead had lost one copy of PTEN and both copies of CHD1. The T878A mutation appeared to be less common in the subset of patients with CRPC treated with abiraterone plus dutasteride, and transfection studies showed that dutasteride was a more potent direct antagonist of the T878A versus the wild-type AR. Conclusions: These findings indicate that selection for tumor cells expressing progesterone-activated mutant ARs is a mechanism of resistance to CYP17A1 inhibition. Clin Cancer Res; 21(6); 1273–80. ©2014 AACR. See related commentary by Sharifi, p. 1240
Author Gao, Shuai
Ye, Huihui
True, Lawrence D.
Kantoff, Philip W.
Voznesensky, Olga
Loda, Massimo
Sowalsky, Adam G.
Nelson, Peter S.
Montgomery, Robert B.
Bubley, Glenn J.
Lis, Rosina L.
Balk, Steven P.
Taplin, Mary-Ellen
Cai, Changmeng
Chen, Eddy J.
Schaefer, Rachel
Troncoso, Patricia
AuthorAffiliation 1 Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
2 Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
5 Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
4 University of Texas MD Anderson Cancer Center, Houston, Texas, USA
3 University of Washington, Seattle, Washington, USA
AuthorAffiliation_xml – name: 2 Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
– name: 5 Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
– name: 4 University of Texas MD Anderson Cancer Center, Houston, Texas, USA
– name: 3 University of Washington, Seattle, Washington, USA
– name: 1 Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
Author_xml – sequence: 1
  givenname: Eddy J.
  surname: Chen
  fullname: Chen, Eddy J.
– sequence: 2
  givenname: Adam G.
  surname: Sowalsky
  fullname: Sowalsky, Adam G.
– sequence: 3
  givenname: Shuai
  surname: Gao
  fullname: Gao, Shuai
– sequence: 4
  givenname: Changmeng
  surname: Cai
  fullname: Cai, Changmeng
– sequence: 5
  givenname: Olga
  surname: Voznesensky
  fullname: Voznesensky, Olga
– sequence: 6
  givenname: Rachel
  surname: Schaefer
  fullname: Schaefer, Rachel
– sequence: 7
  givenname: Massimo
  surname: Loda
  fullname: Loda, Massimo
– sequence: 8
  givenname: Lawrence D.
  surname: True
  fullname: True, Lawrence D.
– sequence: 9
  givenname: Huihui
  surname: Ye
  fullname: Ye, Huihui
– sequence: 10
  givenname: Patricia
  surname: Troncoso
  fullname: Troncoso, Patricia
– sequence: 11
  givenname: Rosina L.
  surname: Lis
  fullname: Lis, Rosina L.
– sequence: 12
  givenname: Philip W.
  surname: Kantoff
  fullname: Kantoff, Philip W.
– sequence: 13
  givenname: Robert B.
  surname: Montgomery
  fullname: Montgomery, Robert B.
– sequence: 14
  givenname: Peter S.
  surname: Nelson
  fullname: Nelson, Peter S.
– sequence: 15
  givenname: Glenn J.
  surname: Bubley
  fullname: Bubley, Glenn J.
– sequence: 16
  givenname: Steven P.
  surname: Balk
  fullname: Balk, Steven P.
– sequence: 17
  givenname: Mary-Ellen
  surname: Taplin
  fullname: Taplin, Mary-Ellen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25320358$$D View this record in MEDLINE/PubMed
BookMark eNp9UVtrFDEUDlKxF_0Jyjz6MvVkMpnMIAjLYKtQaan1OWSzJzUym6xJtiD98z3T7or64FMO-W6c8x2zgxADMvaawynnsn_HQfU1tKI5Hcfrmrc1bxp4xo64lKoWTScPaN5zDtlxzj8AeMuhfcEOGykaELI_YveLpU-mYCL36iahKWsMpfKhGk0uhPgY6mvMPhdD_1cp0lCQ0GAxVV9xQlty5WKasVvMOyuSbGLI_g6rL9tH6SKsZkIgyOKmxJRfsufOTBlf7d4T9u3s4834qb64PP88Li5q2ypVapRKKbHqjKGtgA-WO4ClWALyXtmVcE65Foa2c72D3gqQAi0YZYQwAwcjTtiHJ9_NdrnGlaUFk5n0Jvm1Sb90NF7_jQT_Xd_GO90KOQyyJ4O3O4MUf25pR7322eI0mYBxmzXvOtEPSjUdUd_8mfU7ZH9xIrx_Ilg6ZU7otPXl8cwU7SfNQc_96rk7PXenqV_NWz33S2r5j3of8H_dA2gHrFo
CitedBy_id crossref_primary_10_1016_j_ajur_2018_11_005
crossref_primary_10_1016_j_jsbmb_2016_04_008
crossref_primary_10_1016_j_tranon_2023_101698
crossref_primary_10_1016_j_ejca_2016_11_027
crossref_primary_10_1038_nrc4016
crossref_primary_10_18632_oncotarget_10901
crossref_primary_10_1158_1535_7163_MCT_20_0510
crossref_primary_10_1200_EDBK_159248
crossref_primary_10_1016_j_synbio_2022_07_005
crossref_primary_10_1016_j_urolonc_2017_11_017
crossref_primary_10_1634_theoncologist_2016_0161
crossref_primary_10_1007_s12094_022_02957_x
crossref_primary_10_1158_1535_7163_MCT_16_0186
crossref_primary_10_1093_annonc_mdx155
crossref_primary_10_1158_1078_0432_CCR_16_0987
crossref_primary_10_1016_j_urolonc_2015_05_025
crossref_primary_10_1007_s11934_016_0584_4
crossref_primary_10_1158_0008_5472_CAN_18_0610
crossref_primary_10_1016_j_canlet_2021_07_013
crossref_primary_10_1007_s00210_019_01622_5
crossref_primary_10_1158_0008_5472_CAN_18_2993
crossref_primary_10_1016_j_bcp_2019_113781
crossref_primary_10_1002_cpt_256
crossref_primary_10_1097_PPO_0000000000000214
crossref_primary_10_3390_cells9122653
crossref_primary_10_1177_20514158221088689
crossref_primary_10_1158_0008_5472_CAN_17_0314
crossref_primary_10_1038_nrurol_2016_221
crossref_primary_10_1200_JCO_2018_77_9827
crossref_primary_10_18632_oncotarget_10347
crossref_primary_10_1007_s11884_023_00697_4
crossref_primary_10_1016_j_eururo_2017_01_011
crossref_primary_10_3390_cancers9060067
crossref_primary_10_1158_1078_0432_CCR_16_2414
crossref_primary_10_1016_j_urolonc_2021_01_030
crossref_primary_10_1038_s41568_023_00609_y
crossref_primary_10_1038_s41388_020_01479_6
crossref_primary_10_1158_1078_0432_CCR_18_1431
crossref_primary_10_3390_cancers13061483
crossref_primary_10_1007_s11523_016_0461_6
crossref_primary_10_1200_JCO_23_00433
crossref_primary_10_18632_oncotarget_6434
crossref_primary_10_1097_MOU_0000000000000647
crossref_primary_10_1371_journal_pone_0161959
crossref_primary_10_1038_s41598_017_16327_z
crossref_primary_10_1007_s11523_022_00929_3
crossref_primary_10_1016_j_pharmthera_2018_06_005
crossref_primary_10_1016_j_ctrv_2016_04_001
crossref_primary_10_3390_medicines6030082
crossref_primary_10_1002_jcph_2191
crossref_primary_10_1517_14656566_2015_1055249
crossref_primary_10_1530_EC_18_0425
crossref_primary_10_18632_oncotarget_12554
crossref_primary_10_1038_s41467_020_14657_7
crossref_primary_10_1038_s41391_018_0098_x
crossref_primary_10_1158_1078_0432_CCR_15_2309
crossref_primary_10_1158_1078_0432_CCR_16_1021
crossref_primary_10_1038_onc_2017_240
crossref_primary_10_1016_j_critrevonc_2018_03_002
crossref_primary_10_1126_scitranslmed_aad4008
crossref_primary_10_1074_jbc_RA120_015339
crossref_primary_10_1016_j_euo_2021_02_008
crossref_primary_10_1158_1078_0432_CCR_21_1625
crossref_primary_10_1016_j_mam_2020_100921
crossref_primary_10_3390_cancers10100345
crossref_primary_10_1111_cas_15984
crossref_primary_10_1634_theoncologist_2019_0115
crossref_primary_10_1016_j_urolonc_2015_03_021
crossref_primary_10_1002_pros_23799
crossref_primary_10_1016_j_celrep_2024_115089
crossref_primary_10_3389_fonc_2019_00801
crossref_primary_10_3390_cancers13020327
crossref_primary_10_1016_j_ctrv_2015_08_002
crossref_primary_10_1016_j_euo_2018_02_009
crossref_primary_10_1007_s00345_015_1624_2
crossref_primary_10_1530_ERC_17_0416
crossref_primary_10_1172_JCI88885
crossref_primary_10_1080_14737159_2019_1675515
crossref_primary_10_1371_journal_pone_0224081
crossref_primary_10_1016_S1470_2045_19_30688_6
crossref_primary_10_1200_PO_21_00091
crossref_primary_10_1080_14737140_2023_2207827
crossref_primary_10_15252_emmm_201303701
crossref_primary_10_1186_s13059_015_0864_1
crossref_primary_10_1016_j_xcrm_2022_100561
crossref_primary_10_1016_j_clgc_2016_10_006
crossref_primary_10_1016_S1470_2045_15_70033_1
crossref_primary_10_1016_j_semcancer_2015_08_005
crossref_primary_10_1158_1078_0432_CCR_16_2054
crossref_primary_10_1038_s41391_022_00491_z
crossref_primary_10_18632_oncotarget_4689
crossref_primary_10_18632_oncotarget_6864
crossref_primary_10_4137_CMO_Ss34534
crossref_primary_10_1158_1535_7163_MCT_20_0662
crossref_primary_10_1126_scitranslmed_aac9511
crossref_primary_10_1002_pros_23219
crossref_primary_10_1007_s11307_018_1199_6
crossref_primary_10_1200_JCO_2017_72_8808
crossref_primary_10_1016_j_eururo_2021_03_009
crossref_primary_10_1093_annonc_mdv267
crossref_primary_10_1158_1535_7163_MCT_22_0115
crossref_primary_10_1016_j_ctrv_2017_04_008
crossref_primary_10_1158_1078_0432_CCR_20_4616
crossref_primary_10_18632_oncotarget_8493
crossref_primary_10_1016_j_clgc_2017_08_017
crossref_primary_10_1530_ERC_16_0422
crossref_primary_10_1158_1078_0432_CCR_14_2899
crossref_primary_10_1021_acsptsci_9b00065
crossref_primary_10_3390_cells10051205
crossref_primary_10_1158_0008_5472_CAN_17_3615
crossref_primary_10_1038_s41585_022_00686_y
crossref_primary_10_1002_pros_24297
crossref_primary_10_3892_ol_2017_7628
crossref_primary_10_3389_fgene_2019_00730
crossref_primary_10_3390_ijms24032939
crossref_primary_10_1016_j_ejphar_2019_172783
crossref_primary_10_1172_JCI87328
crossref_primary_10_1016_j_ccell_2018_03_025
crossref_primary_10_18632_oncotarget_14926
crossref_primary_10_3390_cancers12040927
crossref_primary_10_1016_j_ucl_2022_07_005
crossref_primary_10_1093_annonc_mdx283
crossref_primary_10_1038_s41391_017_0027_4
crossref_primary_10_18632_oncotarget_3925
Cites_doi 10.1002/pros.10340
10.1101/gr.129684.111
10.1158/0008-5472.CAN-05-0817
10.1200/JCO.2003.11.102
10.1158/0008-5472.CAN-08-0249
10.1158/0008-5472.CAN-05-4000
10.1158/0008-5472.CAN-12-2799
10.1200/JCO.2007.15.9749
10.1158/1078-0432.CCR-11-0728
10.1158/2159-8290.CD-13-0142
10.7554/eLife.00499
10.1056/NEJMoa1209096
10.1158/0008-5472.CAN-11-0532
10.1056/NEJM199505253322101
10.1093/bioinformatics/btp352
10.1002/pros.1108
10.1016/S0022-5347(01)64039-4
10.1158/2159-8290.CD-13-0226
10.1002/pros.22694
10.4161/fly.19695
10.1093/bib/bbs017
10.1002/pros.22696
10.1056/NEJMoa1014618
10.1038/onc.2013.235
10.1093/bioinformatics/btr427
10.1073/pnas.1108745108
10.1158/0008-5472.CAN-07-5997
ContentType Journal Article
Copyright 2014 American Association for Cancer Research.
Copyright_xml – notice: 2014 American Association for Cancer Research.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1158/1078-0432.CCR-14-1220
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1557-3265
EndPage 1280
ExternalDocumentID PMC4359958
25320358
10_1158_1078_0432_CCR_14_1220
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: P30 CA016672
– fundername: NCI NIH HHS
  grantid: P50 CA097186
– fundername: NCI NIH HHS
  grantid: K99 CA166507
– fundername: NCI NIH HHS
  grantid: T32 CA081156
– fundername: NCI NIH HHS
  grantid: P50 CA090381
– fundername: NCI NIH HHS
  grantid: P01 CA163227
GroupedDBID ---
18M
29B
2FS
2WC
34G
39C
53G
5GY
5RE
5VS
6J9
AAFWJ
AAJMC
AAYXX
ABOCM
ACGFO
ACIWK
ACPRK
ACSVP
ADBBV
ADCOW
ADNWM
AENEX
AFHIN
AFOSN
AFRAH
AFUMD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BR6
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
IH2
KQ8
L7B
LSO
OK1
P0W
P2P
QTD
RCR
RHI
RNS
SJN
TR2
W2D
W8F
WOQ
YKV
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c477t-e57773d6aa265019c1f00b3b0e187cd3ff7f40946f8f08c3053ec0a7a33a910a3
ISSN 1078-0432
1557-3265
IngestDate Thu Aug 21 17:51:52 EDT 2025
Fri Sep 05 04:35:40 EDT 2025
Thu Apr 03 07:08:26 EDT 2025
Tue Jul 01 03:06:54 EDT 2025
Thu Apr 24 23:07:53 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License 2014 American Association for Cancer Research.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c477t-e57773d6aa265019c1f00b3b0e187cd3ff7f40946f8f08c3053ec0a7a33a910a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
E.J.C., A.G.S., and S.G. contributed equally to this work.
OpenAccessLink https://clincancerres.aacrjournals.org/content/clincanres/21/6/1273.full.pdf
PMID 25320358
PQID 1663897726
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4359958
proquest_miscellaneous_1663897726
pubmed_primary_25320358
crossref_citationtrail_10_1158_1078_0432_CCR_14_1220
crossref_primary_10_1158_1078_0432_CCR_14_1220
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-03-15
PublicationDateYYYYMMDD 2015-03-15
PublicationDate_xml – month: 03
  year: 2015
  text: 2015-03-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Clinical cancer research
PublicationTitleAlternate Clin Cancer Res
PublicationYear 2015
References Cai (2022061103101549700_bib5) 2011; 71
Taplin (2022061103101549700_bib11) 2003; 21
Korpal (2022061103101549700_bib15) 2013; 3
Joseph (2022061103101549700_bib17) 2013; 3
Attard (2022061103101549700_bib18) 2008; 26
Locke (2022061103101549700_bib4) 2008; 68
Lazier (2022061103101549700_bib26) 2004; 58
Yoshida (2022061103101549700_bib14) 2005; 65
Bonkhoff (2022061103101549700_bib30) 2001; 48
Yuan (2022061103101549700_bib1) 2013; 33
Mostaghel (2022061103101549700_bib6) 2011; 17
Balbas (2022061103101549700_bib16) 2013; 2
Grant (2022061103101549700_bib20) 2011; 27
Joyce (2022061103101549700_bib29) 1998; 159
Ryan (2022061103101549700_bib8) 2013; 368
Taplin (2022061103101549700_bib10) 1999; 59
Fenton (2022061103101549700_bib12) 1997; 3
Koboldt (2022061103101549700_bib22) 2012; 22
Cingolani (2022061103101549700_bib23) 2012; 6
Montgomery (2022061103101549700_bib3) 2008; 68
Li (2022061103101549700_bib21) 2009; 25
Kumar (2022061103101549700_bib25) 2011; 108
Chhipa (2022061103101549700_bib27) 2013; 73
Stanbrough (2022061103101549700_bib2) 2006; 66
Thorvaldsdottir (2022061103101549700_bib24) 2013; 14
Latil (2022061103101549700_bib31) 2001; 61
Sowalsky (2022061103101549700_bib19) 2013; 73
de Bono (2022061103101549700_bib7) 2011; 364
Wu (2022061103101549700_bib28) 2013; 73
Hara (2022061103101549700_bib13) 2003; 63
Taplin (2022061103101549700_bib9) 1995; 332
12860943 - J Clin Oncol. 2003 Jul 15;21(14):2673-8
10363963 - Cancer Res. 1999 Jun 1;59(11):2511-5
16510604 - Cancer Res. 2006 Mar 1;66(5):2815-25
23779130 - Cancer Discov. 2013 Sep;3(9):1020-9
14716738 - Prostate. 2004 Feb 1;58(2):130-44
7723794 - N Engl J Med. 1995 May 25;332(21):1393-8
18519708 - Cancer Res. 2008 Jun 1;68(11):4447-54
16266977 - Cancer Res. 2005 Nov 1;65(21):9611-6
9815822 - Clin Cancer Res. 1997 Aug;3(8):1383-8
22728672 - Fly (Austin). 2012 Apr-Jun;6(2):80-92
18676866 - Cancer Res. 2008 Aug 1;68(15):6407-15
12517791 - Cancer Res. 2003 Jan 1;63(1):149-53
21949389 - Proc Natl Acad Sci U S A. 2011 Oct 11;108(41):17087-92
21868758 - Cancer Res. 2011 Oct 15;71(20):6503-13
11280747 - Cancer Res. 2001 Mar 1;61(5):1919-26
23842682 - Cancer Discov. 2013 Sep;3(9):1030-43
21612468 - N Engl J Med. 2011 May 26;364(21):1995-2005
23813697 - Prostate. 2013 Sep;73(13):1470-82
25432158 - Clin Cancer Res. 2015 Mar 15;21(6):1240-2
23228172 - N Engl J Med. 2013 Jan 10;368(2):138-48
22517427 - Brief Bioinform. 2013 Mar;14(2):178-92
19505943 - Bioinformatics. 2009 Aug 15;25(16):2078-9
23813737 - Prostate. 2013 Oct;73(14):1483-94
22300766 - Genome Res. 2012 Mar;22(3):568-76
18645193 - J Clin Oncol. 2008 Oct 1;26(28):4563-71
21807635 - Clin Cancer Res. 2011 Sep 15;17(18):5913-25
23204237 - Cancer Res. 2013 Feb 1;73(3):1050-5
23752196 - Oncogene. 2014 May 29;33(22):2815-25
9400459 - J Urol. 1998 Jan;159(1):149-53
23580326 - Elife. 2013;2:e00499
11536308 - Prostate. 2001 Sep 15;48(4):285-91
21775302 - Bioinformatics. 2011 Sep 15;27(18):2518-28
References_xml – volume: 58
  start-page: 130
  year: 2004
  ident: 2022061103101549700_bib26
  article-title: Dutasteride, the dual 5alpha-reductase inhibitor, inhibits androgen action and promotes cell death in the LNCaP prostate cancer cell line
  publication-title: Prostate
  doi: 10.1002/pros.10340
– volume: 22
  start-page: 568
  year: 2012
  ident: 2022061103101549700_bib22
  article-title: VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing
  publication-title: Genome Res
  doi: 10.1101/gr.129684.111
– volume: 65
  start-page: 9611
  year: 2005
  ident: 2022061103101549700_bib14
  article-title: Antiandrogen bicalutamide promotes tumor growth in a novel androgen-dependent prostate cancer xenograft model derived from a bicalutamide-treated patient
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-05-0817
– volume: 21
  start-page: 2673
  year: 2003
  ident: 2022061103101549700_bib11
  article-title: Androgen receptor mutations in androgen-independent prostate cancer: Cancer and Leukemia Group B Study 9663
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2003.11.102
– volume: 68
  start-page: 4447
  year: 2008
  ident: 2022061103101549700_bib3
  article-title: Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-08-0249
– volume: 66
  start-page: 2815
  year: 2006
  ident: 2022061103101549700_bib2
  article-title: Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-05-4000
– volume: 3
  start-page: 1383
  year: 1997
  ident: 2022061103101549700_bib12
  article-title: Functional characterization of mutant androgen receptors from androgen-independent prostate cancer
  publication-title: Clin Cancer Res
– volume: 73
  start-page: 1050
  year: 2013
  ident: 2022061103101549700_bib19
  article-title: Clonal progression of prostate cancers from Gleason grade 3 to grade 4
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-12-2799
– volume: 61
  start-page: 1919
  year: 2001
  ident: 2022061103101549700_bib31
  article-title: Evaluation of androgen, estrogen (ER alpha and ER beta), and progesterone receptor expression in human prostate cancer by real-time quantitative reverse transcription-polymerase chain reaction assays
  publication-title: Cancer Res
– volume: 26
  start-page: 4563
  year: 2008
  ident: 2022061103101549700_bib18
  article-title: Phase I clinical trial of a selective inhibitor of CYP17, abiraterone acetate, confirms that castration-resistant prostate cancer commonly remains hormone driven
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2007.15.9749
– volume: 17
  start-page: 5913
  year: 2011
  ident: 2022061103101549700_bib6
  article-title: Resistance to CYP17A1 inhibition with abiraterone in castration-resistant prostate cancer: induction of steroidogenesis and androgen receptor splice variants
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-11-0728
– volume: 3
  start-page: 1030
  year: 2013
  ident: 2022061103101549700_bib15
  article-title: An F876L mutation in androgen receptor confers genetic and phenotypic resistance to MDV3100 (enzalutamide)
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-13-0142
– volume: 2
  start-page: e00499
  year: 2013
  ident: 2022061103101549700_bib16
  article-title: Overcoming mutation-based resistance to antiandrogens with rational drug design
  publication-title: Elife
  doi: 10.7554/eLife.00499
– volume: 368
  start-page: 138
  year: 2013
  ident: 2022061103101549700_bib8
  article-title: Abiraterone in metastatic prostate cancer without previous chemotherapy
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1209096
– volume: 71
  start-page: 6503
  year: 2011
  ident: 2022061103101549700_bib5
  article-title: Intratumoral de novo steroid synthesis activates androgen receptor in castration-resistant prostate cancer and is upregulated by treatment with CYP17A1 inhibitors
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-11-0532
– volume: 332
  start-page: 1393
  year: 1995
  ident: 2022061103101549700_bib9
  article-title: Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer
  publication-title: N Engl J Med
  doi: 10.1056/NEJM199505253322101
– volume: 25
  start-page: 2078
  year: 2009
  ident: 2022061103101549700_bib21
  article-title: The sequence alignment/map format and SAMtools
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp352
– volume: 48
  start-page: 285
  year: 2001
  ident: 2022061103101549700_bib30
  article-title: Progesterone receptor expression in human prostate cancer: correlation with tumor progression
  publication-title: Prostate
  doi: 10.1002/pros.1108
– volume: 159
  start-page: 149
  year: 1998
  ident: 2022061103101549700_bib29
  article-title: High dose bicalutamide for androgen independent prostate cancer: effect of prior hormonal therapy
  publication-title: J Urol
  doi: 10.1016/S0022-5347(01)64039-4
– volume: 59
  start-page: 2511
  year: 1999
  ident: 2022061103101549700_bib10
  article-title: Selection for androgen receptor mutations in prostate cancers treated with androgen antagonist
  publication-title: Cancer Res
– volume: 3
  start-page: 1020
  year: 2013
  ident: 2022061103101549700_bib17
  article-title: A clinically relevant androgen receptor mutation confers resistance to second-generation antiandrogens enzalutamide and ARN-509
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-13-0226
– volume: 73
  start-page: 1470
  year: 2013
  ident: 2022061103101549700_bib28
  article-title: Prostate cancer cells differ in testosterone accumulation, dihydrotestosterone conversion, and androgen receptor signaling response to steroid 5alpha-reductase inhibitors
  publication-title: Prostate
  doi: 10.1002/pros.22694
– volume: 6
  start-page: 80
  year: 2012
  ident: 2022061103101549700_bib23
  article-title: A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3
  publication-title: Fly (Austin)
  doi: 10.4161/fly.19695
– volume: 14
  start-page: 178
  year: 2013
  ident: 2022061103101549700_bib24
  article-title: Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbs017
– volume: 73
  start-page: 1483
  year: 2013
  ident: 2022061103101549700_bib27
  article-title: The direct inhibitory effect of dutasteride or finasteride on androgen receptor activity is cell line specific
  publication-title: Prostate
  doi: 10.1002/pros.22696
– volume: 63
  start-page: 149
  year: 2003
  ident: 2022061103101549700_bib13
  article-title: Novel mutations of androgen receptor: a possible mechanism of bicalutamide withdrawal syndrome
  publication-title: Cancer Res
– volume: 364
  start-page: 1995
  year: 2011
  ident: 2022061103101549700_bib7
  article-title: Abiraterone and increased survival in metastatic prostate cancer
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1014618
– volume: 33
  start-page: 2815
  year: 2013
  ident: 2022061103101549700_bib1
  article-title: Androgen receptor functions in castration-resistant prostate cancer and mechanisms of resistance to new agents targeting the androgen axis
  publication-title: Oncogene
  doi: 10.1038/onc.2013.235
– volume: 27
  start-page: 2518
  year: 2011
  ident: 2022061103101549700_bib20
  article-title: Comparative analysis of RNA-Seq alignment algorithms and the RNA-Seq unified mapper (RUM)
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr427
– volume: 108
  start-page: 17087
  year: 2011
  ident: 2022061103101549700_bib25
  article-title: Exome sequencing identifies a spectrum of mutation frequencies in advanced and lethal prostate cancers
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1108745108
– volume: 68
  start-page: 6407
  year: 2008
  ident: 2022061103101549700_bib4
  article-title: Androgen levels increase by intratumoral de novo steroidogenesis during progression of castration-resistant prostate cancer
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-07-5997
– reference: 9815822 - Clin Cancer Res. 1997 Aug;3(8):1383-8
– reference: 12517791 - Cancer Res. 2003 Jan 1;63(1):149-53
– reference: 12860943 - J Clin Oncol. 2003 Jul 15;21(14):2673-8
– reference: 21949389 - Proc Natl Acad Sci U S A. 2011 Oct 11;108(41):17087-92
– reference: 22300766 - Genome Res. 2012 Mar;22(3):568-76
– reference: 23228172 - N Engl J Med. 2013 Jan 10;368(2):138-48
– reference: 21868758 - Cancer Res. 2011 Oct 15;71(20):6503-13
– reference: 25432158 - Clin Cancer Res. 2015 Mar 15;21(6):1240-2
– reference: 23842682 - Cancer Discov. 2013 Sep;3(9):1030-43
– reference: 23752196 - Oncogene. 2014 May 29;33(22):2815-25
– reference: 18519708 - Cancer Res. 2008 Jun 1;68(11):4447-54
– reference: 21775302 - Bioinformatics. 2011 Sep 15;27(18):2518-28
– reference: 22728672 - Fly (Austin). 2012 Apr-Jun;6(2):80-92
– reference: 14716738 - Prostate. 2004 Feb 1;58(2):130-44
– reference: 19505943 - Bioinformatics. 2009 Aug 15;25(16):2078-9
– reference: 23813697 - Prostate. 2013 Sep;73(13):1470-82
– reference: 23813737 - Prostate. 2013 Oct;73(14):1483-94
– reference: 7723794 - N Engl J Med. 1995 May 25;332(21):1393-8
– reference: 10363963 - Cancer Res. 1999 Jun 1;59(11):2511-5
– reference: 11536308 - Prostate. 2001 Sep 15;48(4):285-91
– reference: 23779130 - Cancer Discov. 2013 Sep;3(9):1020-9
– reference: 11280747 - Cancer Res. 2001 Mar 1;61(5):1919-26
– reference: 9400459 - J Urol. 1998 Jan;159(1):149-53
– reference: 18645193 - J Clin Oncol. 2008 Oct 1;26(28):4563-71
– reference: 21612468 - N Engl J Med. 2011 May 26;364(21):1995-2005
– reference: 23580326 - Elife. 2013;2:e00499
– reference: 22517427 - Brief Bioinform. 2013 Mar;14(2):178-92
– reference: 21807635 - Clin Cancer Res. 2011 Sep 15;17(18):5913-25
– reference: 16266977 - Cancer Res. 2005 Nov 1;65(21):9611-6
– reference: 23204237 - Cancer Res. 2013 Feb 1;73(3):1050-5
– reference: 18676866 - Cancer Res. 2008 Aug 1;68(15):6407-15
– reference: 16510604 - Cancer Res. 2006 Mar 1;66(5):2815-25
SSID ssj0014104
Score 2.5328012
Snippet Purpose: The CYP17A1 inhibitor abiraterone markedly reduces androgen precursors and is thereby effective in castration-resistant prostate cancer (CRPC)....
The CYP17A1 inhibitor abiraterone markedly reduces androgen precursors and is thereby effective in castration-resistant prostate cancer (CRPC). However,...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1273
SubjectTerms Aged
Aged, 80 and over
Androstenes - therapeutic use
Antineoplastic Combined Chemotherapy Protocols - therapeutic use
Cell Line, Tumor
DNA Helicases - genetics
DNA-Binding Proteins - genetics
Drug Resistance, Neoplasm - genetics
Dutasteride - therapeutic use
Humans
Ketoconazole - therapeutic use
Leuprolide - therapeutic use
Male
Middle Aged
Mutation - genetics
Progesterone - metabolism
Prostatic Neoplasms, Castration-Resistant - drug therapy
Prostatic Neoplasms, Castration-Resistant - genetics
PTEN Phosphohydrolase - genetics
Receptors, Androgen - genetics
Receptors, Androgen - metabolism
Steroid 17-alpha-Hydroxylase - antagonists & inhibitors
Title Abiraterone Treatment in Castration-Resistant Prostate Cancer Selects for Progesterone Responsive Mutant Androgen Receptors
URI https://www.ncbi.nlm.nih.gov/pubmed/25320358
https://www.proquest.com/docview/1663897726
https://pubmed.ncbi.nlm.nih.gov/PMC4359958
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIiEuiDddHjISN5QSx0ntHKtqYQEtB9iV9hY5fuxWomlV2kXAkT_OjOM8ulvE41JVeUzSfF-dGXvmG0Je6JgbkbkyMirjUWpSFklX8khxWRqXaXhDYaHw0Yfx4Un67jQ7HQx-9rKWNutypL_vrCv5H1RhG-CKVbL_gGxrFDbAd8AXPgFh-PwrjCclrpLb1QI8xS5jHDPLVSOHG0E4jS4ibF9igQccjoleGkWcfQscr8fg07S8ZgKaWoW82Qv7cr7xpyqUNYDbgF2YBrMIS0CNwkFTXRkMBwGhdqJ5GipADoz51luGWnyFB1RP3U6Mmnddvt4oP3_76XyjZt0aySxkB1Rn8CvP-rMVLMN0rbpeMwywMSr6pnxrBK5rpAPT-sMpS-o-J1fH-Uz6KYdgbDSdfowYCjD6yrp1D_vl3IOfYAMMXqvEXxLYbnZdI9cTAQ4YetZv37dLUSnzPSjba4UyMLiDVzuvj_LSweK2r3MlgLmch9tzbI5vk1shIqGTml53yMBWd8mNo5BzcY_86LGMtiyjs4ruYhltWEZrMtDAMgoso32W0Y5ltGYZbVhGW5bdJyevD46nh1Fo2RHpVIh1ZDMhBDdjpRJw_VmumYvjkpexZVJow50TDmcUxk66WGp42XCrYyUU5wqGBcUfkL0K7uERoboUWqZJbJ1kaaZNyWyeCGcVeFBG53JI0ubhFjro2WNblc-Fj2szWSA8BcJTADwQ4xYIz5CM2tOWtaDLn0543iBXwNCL62mqsovNl4KN0d2H8HQ8JA9rJFuTDQWGRGxh3B6Asu7be6rZuZd3hwAmzzO5_1ubj8nN7q_1hOytVxv7FFzjdfnMU_cXPd27yw
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Abiraterone+treatment+in+castration-resistant+prostate+cancer+selects+for+progesterone+responsive+mutant+androgen+receptors&rft.jtitle=Clinical+cancer+research&rft.au=Chen%2C+Eddy+J&rft.au=Sowalsky%2C+Adam+G&rft.au=Gao%2C+Shuai&rft.au=Cai%2C+Changmeng&rft.date=2015-03-15&rft.issn=1078-0432&rft.volume=21&rft.issue=6&rft.spage=1273&rft_id=info:doi/10.1158%2F1078-0432.CCR-14-1220&rft_id=info%3Apmid%2F25320358&rft.externalDocID=25320358
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-0432&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-0432&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-0432&client=summon