Functional module identification in protein interaction networks by interaction patterns
Motivation: Identifying functional modules in protein–protein interaction (PPI) networks may shed light on cellular functional organization and thereafter underlying cellular mechanisms. Many existing module identification algorithms aim to detect densely connected groups of proteins as potential mo...
        Saved in:
      
    
          | Published in | Bioinformatics Vol. 30; no. 1; pp. 81 - 93 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        England
          Oxford University Press
    
        01.01.2014
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1367-4803 1367-4811 1367-4811 1460-2059  | 
| DOI | 10.1093/bioinformatics/btt569 | 
Cover
| Abstract | Motivation: Identifying functional modules in protein–protein interaction (PPI) networks may shed light on cellular functional organization and thereafter underlying cellular mechanisms. Many existing module identification algorithms aim to detect densely connected groups of proteins as potential modules. However, based on this simple topological criterion of ‘higher than expected connectivity’, those algorithms may miss biologically meaningful modules of functional significance, in which proteins have similar interaction patterns to other proteins in networks but may not be densely connected to each other. A few blockmodel module identification algorithms have been proposed to address the problem but the lack of global optimum guarantee and the prohibitive computational complexity have been the bottleneck of their applications in real-world large-scale PPI networks.
Results: In this article, we propose a novel optimization formulation LCP2 (low two-hop conductance sets) using the concept of Markov random walk on graphs, which enables simultaneous identification of both dense and sparse modules based on protein interaction patterns in given networks through searching for LCP2 by random walk. A spectral approximate algorithm SLCP2 is derived to identify non-overlapping functional modules. Based on a bottom-up greedy strategy, we further extend LCP2 to a new algorithm (greedy algorithm for LCP2) GLCP2 to identify overlapping functional modules. We compare SLCP2 and GLCP2 with a range of state-of-the-art algorithms on synthetic networks and real-world PPI networks. The performance evaluation based on several criteria with respect to protein complex prediction, high level Gene Ontology term prediction and especially sparse module detection, has demonstrated that our algorithms based on searching for LCP2 outperform all other compared algorithms.
Availability and implementation: All data and code are available at http://www.cse.usf.edu/∼xqian/fmi/slcp2hop/.
Contact:  yijie@mail.usf.edu or xqian@ece.tamu.edu
Supplementary information:  Supplementary data are available at Bioinformatics online. | 
    
|---|---|
| AbstractList | Identifying functional modules in protein-protein interaction (PPI) networks may shed light on cellular functional organization and thereafter underlying cellular mechanisms. Many existing module identification algorithms aim to detect densely connected groups of proteins as potential modules. However, based on this simple topological criterion of 'higher than expected connectivity', those algorithms may miss biologically meaningful modules of functional significance, in which proteins have similar interaction patterns to other proteins in networks but may not be densely connected to each other. A few blockmodel module identification algorithms have been proposed to address the problem but the lack of global optimum guarantee and the prohibitive computational complexity have been the bottleneck of their applications in real-world large-scale PPI networks.
In this article, we propose a novel optimization formulation LCP(2) (low two-hop conductance sets) using the concept of Markov random walk on graphs, which enables simultaneous identification of both dense and sparse modules based on protein interaction patterns in given networks through searching for LCP(2) by random walk. A spectral approximate algorithm SLCP(2) is derived to identify non-overlapping functional modules. Based on a bottom-up greedy strategy, we further extend LCP(2) to a new algorithm (greedy algorithm for LCP(2)) GLCP(2) to identify overlapping functional modules. We compare SLCP(2) and GLCP(2) with a range of state-of-the-art algorithms on synthetic networks and real-world PPI networks. The performance evaluation based on several criteria with respect to protein complex prediction, high level Gene Ontology term prediction and especially sparse module detection, has demonstrated that our algorithms based on searching for LCP(2) outperform all other compared algorithms.
All data and code are available at http://www.cse.usf.edu/~xqian/fmi/slcp2hop/. Motivation: Identifying functional modules in protein-protein interaction (PPI) networks may shed light on cellular functional organization and thereafter underlying cellular mechanisms. Many existing module identification algorithms aim to detect densely connected groups of proteins as potential modules. However, based on this simple topological criterion of 'higher than expected connectivity', those algorithms may miss biologically meaningful modules of functional significance, in which proteins have similar interaction patterns to other proteins in networks but may not be densely connected to each other. A few blockmodel module identification algorithms have been proposed to address the problem but the lack of global optimum guarantee and the prohibitive computational complexity have been the bottleneck of their applications in real-world large-scale PPI networks.Results: In this article, we propose a novel optimization formulation LCP super(2) (low two-hop conductance sets) using the concept of Markov random walk on graphs, which enables simultaneous identification of both dense and sparse modules based on protein interaction patterns in given networks through searching for LCP super(2) by random walk. A spectral approximate algorithm SLCP super(2) is derived to identify non-overlapping functional modules. Based on a bottom-up greedy strategy, we further extend LCP super(2) to a new algorithm (greedy algorithm for LCP super(2)) GLCP super(2) to identify overlapping functional modules. We compare SLCP super(2) and GLCP super(2) with a range of state-of-the-art algorithms on synthetic networks and real-world PPI networks. The performance evaluation based on several criteria with respect to protein complex prediction, high level Gene Ontology term prediction and especially sparse module detection, has demonstrated that our algorithms based on searching for LCP super(2) outperform all other compared algorithms. Identifying functional modules in protein-protein interaction (PPI) networks may shed light on cellular functional organization and thereafter underlying cellular mechanisms. Many existing module identification algorithms aim to detect densely connected groups of proteins as potential modules. However, based on this simple topological criterion of 'higher than expected connectivity', those algorithms may miss biologically meaningful modules of functional significance, in which proteins have similar interaction patterns to other proteins in networks but may not be densely connected to each other. A few blockmodel module identification algorithms have been proposed to address the problem but the lack of global optimum guarantee and the prohibitive computational complexity have been the bottleneck of their applications in real-world large-scale PPI networks.MOTIVATIONIdentifying functional modules in protein-protein interaction (PPI) networks may shed light on cellular functional organization and thereafter underlying cellular mechanisms. Many existing module identification algorithms aim to detect densely connected groups of proteins as potential modules. However, based on this simple topological criterion of 'higher than expected connectivity', those algorithms may miss biologically meaningful modules of functional significance, in which proteins have similar interaction patterns to other proteins in networks but may not be densely connected to each other. A few blockmodel module identification algorithms have been proposed to address the problem but the lack of global optimum guarantee and the prohibitive computational complexity have been the bottleneck of their applications in real-world large-scale PPI networks.In this article, we propose a novel optimization formulation LCP(2) (low two-hop conductance sets) using the concept of Markov random walk on graphs, which enables simultaneous identification of both dense and sparse modules based on protein interaction patterns in given networks through searching for LCP(2) by random walk. A spectral approximate algorithm SLCP(2) is derived to identify non-overlapping functional modules. Based on a bottom-up greedy strategy, we further extend LCP(2) to a new algorithm (greedy algorithm for LCP(2)) GLCP(2) to identify overlapping functional modules. We compare SLCP(2) and GLCP(2) with a range of state-of-the-art algorithms on synthetic networks and real-world PPI networks. The performance evaluation based on several criteria with respect to protein complex prediction, high level Gene Ontology term prediction and especially sparse module detection, has demonstrated that our algorithms based on searching for LCP(2) outperform all other compared algorithms.RESULTSIn this article, we propose a novel optimization formulation LCP(2) (low two-hop conductance sets) using the concept of Markov random walk on graphs, which enables simultaneous identification of both dense and sparse modules based on protein interaction patterns in given networks through searching for LCP(2) by random walk. A spectral approximate algorithm SLCP(2) is derived to identify non-overlapping functional modules. Based on a bottom-up greedy strategy, we further extend LCP(2) to a new algorithm (greedy algorithm for LCP(2)) GLCP(2) to identify overlapping functional modules. We compare SLCP(2) and GLCP(2) with a range of state-of-the-art algorithms on synthetic networks and real-world PPI networks. The performance evaluation based on several criteria with respect to protein complex prediction, high level Gene Ontology term prediction and especially sparse module detection, has demonstrated that our algorithms based on searching for LCP(2) outperform all other compared algorithms.All data and code are available at http://www.cse.usf.edu/~xqian/fmi/slcp2hop/.AVAILABILITY AND IMPLEMENTATIONAll data and code are available at http://www.cse.usf.edu/~xqian/fmi/slcp2hop/. Motivation: Identifying functional modules in protein–protein interaction (PPI) networks may shed light on cellular functional organization and thereafter underlying cellular mechanisms. Many existing module identification algorithms aim to detect densely connected groups of proteins as potential modules. However, based on this simple topological criterion of ‘higher than expected connectivity’, those algorithms may miss biologically meaningful modules of functional significance, in which proteins have similar interaction patterns to other proteins in networks but may not be densely connected to each other. A few blockmodel module identification algorithms have been proposed to address the problem but the lack of global optimum guarantee and the prohibitive computational complexity have been the bottleneck of their applications in real-world large-scale PPI networks. Results: In this article, we propose a novel optimization formulation LCP2 (low two-hop conductance sets) using the concept of Markov random walk on graphs, which enables simultaneous identification of both dense and sparse modules based on protein interaction patterns in given networks through searching for LCP2 by random walk. A spectral approximate algorithm SLCP2 is derived to identify non-overlapping functional modules. Based on a bottom-up greedy strategy, we further extend LCP2 to a new algorithm (greedy algorithm for LCP2) GLCP2 to identify overlapping functional modules. We compare SLCP2 and GLCP2 with a range of state-of-the-art algorithms on synthetic networks and real-world PPI networks. The performance evaluation based on several criteria with respect to protein complex prediction, high level Gene Ontology term prediction and especially sparse module detection, has demonstrated that our algorithms based on searching for LCP2 outperform all other compared algorithms. Availability and implementation: All data and code are available at http://www.cse.usf.edu/∼xqian/fmi/slcp2hop/. Contact: yijie@mail.usf.edu or xqian@ece.tamu.edu Supplementary information: Supplementary data are available at Bioinformatics online. Motivation: Identifying functional modules in protein–protein interaction (PPI) networks may shed light on cellular functional organization and thereafter underlying cellular mechanisms. Many existing module identification algorithms aim to detect densely connected groups of proteins as potential modules. However, based on this simple topological criterion of ‘higher than expected connectivity’, those algorithms may miss biologically meaningful modules of functional significance, in which proteins have similar interaction patterns to other proteins in networks but may not be densely connected to each other. A few blockmodel module identification algorithms have been proposed to address the problem but the lack of global optimum guarantee and the prohibitive computational complexity have been the bottleneck of their applications in real-world large-scale PPI networks. Results: In this article, we propose a novel optimization formulation LCP2 (low two-hop conductance sets) using the concept of Markov random walk on graphs, which enables simultaneous identification of both dense and sparse modules based on protein interaction patterns in given networks through searching for LCP2 by random walk. A spectral approximate algorithm SLCP2 is derived to identify non-overlapping functional modules. Based on a bottom-up greedy strategy, we further extend LCP2 to a new algorithm (greedy algorithm for LCP2) GLCP2 to identify overlapping functional modules. We compare SLCP2 and GLCP2 with a range of state-of-the-art algorithms on synthetic networks and real-world PPI networks. The performance evaluation based on several criteria with respect to protein complex prediction, high level Gene Ontology term prediction and especially sparse module detection, has demonstrated that our algorithms based on searching for LCP2 outperform all other compared algorithms. Availability and implementation: All data and code are available at http://www.cse.usf.edu/∼xqian/fmi/slcp2hop/. Contact: yijie@mail.usf.edu or xqian@ece.tamu.edu Supplementary information: Supplementary data are available at Bioinformatics online.  | 
    
| Author | Wang, Yijie Qian, Xiaoning  | 
    
| Author_xml | – sequence: 1 givenname: Yijie surname: Wang fullname: Wang, Yijie – sequence: 2 givenname: Xiaoning surname: Qian fullname: Qian, Xiaoning  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24085567$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkk1P3DAQhq2Kiu-fAMqRy4Idf8WqVAmhQishceHQm-U4k-I2sYPtgPbf18sC7XKBk8czzzuaee09tOWDB4SOCD4lWNGz1gXn-xBHk51NZ23OXKhPaJdQIResIWTrNcZ0B-2l9BtjzDEX22inZrjhXMhd9PNy9ja74M1QjaGbB6hcBz673lmzylfOV1MMGdwqzBDNE155yI8h_klVu9zITyaXi08H6HNvhgSHz-c-ur38dnvxfXF9c_Xj4vx6YZmUeQEMS257RUXTKt6R3kom60bRulXQGRCG8QYMYYJYalRrlKyhbilvFKl7SveRWLed_WSWj2YY9BTdaOJSE6xXTulNp_TaqSL8uhZOcztCZ8vO0fwTB-P0ZsW7O_0rPGiqinuMlQYnzw1iuJ8hZT26ZGEYjIcwJ02EJLwM38j3UaZqUQup2EdQLBte4IIe_7_B6-gvj1sAvgZsDClF6D9szZc3Ouvy02coRrjhHfVflG_Yrg | 
    
| CitedBy_id | crossref_primary_10_1016_j_physa_2016_10_021 crossref_primary_10_1093_bfgp_elac054 crossref_primary_10_1155_2014_720960 crossref_primary_10_3354_ame01939 crossref_primary_10_1088_1367_2630_17_1_013044 crossref_primary_10_1002_sim_9202 crossref_primary_10_1093_bib_bbz085 crossref_primary_10_1038_s41467_018_06382_z crossref_primary_10_1109_TCBB_2015_2401014 crossref_primary_10_3390_genes12111670 crossref_primary_10_1007_s11390_014_1492_z crossref_primary_10_1016_j_ins_2017_10_013 crossref_primary_10_12677_BIPHY_2018_6464007 crossref_primary_10_3390_app13116388 crossref_primary_10_1186_s12918_017_0495_0 crossref_primary_10_1109_TEVC_2016_2530311 crossref_primary_10_1093_bioinformatics_btw655 crossref_primary_10_1016_j_micpath_2017_02_012 crossref_primary_10_1016_j_ygeno_2018_10_003 crossref_primary_10_1093_bib_bbaa372 crossref_primary_10_1186_s12918_017_0405_5 crossref_primary_10_1007_s12038_022_00284_5 crossref_primary_10_1109_ACCESS_2018_2852275 crossref_primary_10_12677_BIPHY_2018_64007 crossref_primary_10_1155_2017_3618213 crossref_primary_10_1128_msystems_01456_21 crossref_primary_10_1007_s00894_022_05133_8 crossref_primary_10_1049_iet_syb_2017_0085 crossref_primary_10_1093_bib_bbz154  | 
    
| Cites_doi | 10.1093/nar/gkj109 10.1103/PhysRevE.74.036104 10.1186/1752-0509-6-S2-S7 10.1103/PhysRevE.69.026113 10.1186/1471-2164-11-S1-S3 10.1186/1759-4499-2-2 10.1088/1367-2630/11/3/033015 10.1093/nar/gkh092 10.1093/nar/gkm936 10.1093/nar/gkm1001 10.1371/journal.pcbi.1000108 10.1186/1471-2105-10-297 10.1126/science.1065103 10.1093/bioinformatics/bts370 10.1093/nar/gkn892 10.1038/nature09182 10.1186/1471-2105-14-S2-S23 10.1103/PhysRevLett.100.258701 10.1038/nmeth.1938 10.1093/bioinformatics/btl338 10.1371/journal.pcbi.1000807 10.1371/journal.pcbi.1000659 10.1145/1951365.1951407 10.1126/science.275.5303.1129 10.1128/mr.59.1.94-123.1995 10.1145/2382936.2382952 10.1093/nar/gkm909 10.1093/nar/gkh086 10.1089/cmb.2008.11TT 10.1145/1557019.1557101 10.1073/pnas.0308531101 10.1038/75556  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2013 | 
    
| Copyright_xml | – notice: The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2013 | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 7TM 8FD FR3 P64 7SC JQ2 L7M L~C L~D 5PM ADTOC UNPAY  | 
    
| DOI | 10.1093/bioinformatics/btt569 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | MEDLINE Computer and Information Systems Abstracts MEDLINE - Academic CrossRef Engineering Research Database  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Biology | 
    
| EISSN | 1367-4811 1460-2059  | 
    
| EndPage | 93 | 
    
| ExternalDocumentID | oai:pubmedcentral.nih.gov:3924044 PMC3924044 24085567 10_1093_bioinformatics_btt569  | 
    
| Genre | Journal Article Research Support, N.I.H., Extramural  | 
    
| GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: R21 DK092845 – fundername: NIDDK NIH HHS grantid: R21DK092845  | 
    
| GroupedDBID | --- -E4 -~X .2P .DC .I3 0R~ 1TH 23N 2WC 4.4 48X 53G 5GY 5WA 70D AAIJN AAIMJ AAJKP AAJQQ AAKPC AAMDB AAMVS AAOGV AAPQZ AAPXW AAUQX AAVAP AAVLN AAYXX ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABPTD ABQLI ABWST ABXVV ABZBJ ACGFS ACIWK ACPRK ACUFI ACUXJ ACYTK ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADMLS ADOCK ADPDF ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIJHB AJEEA AJEUX AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC AMNDL APIBT APWMN ARIXL ASPBG AVWKF AXUDD AYOIW AZVOD BAWUL BAYMD BHONS BQDIO BQUQU BSWAC BTQHN C45 CDBKE CITATION CS3 CZ4 DAKXR DIK DILTD DU5 D~K EBD EBS EE~ EJD EMOBN F5P F9B FEDTE FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ KAQDR KOP KQ8 KSI KSN M-Z MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- NVLIB O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 RNS ROL RPM RUSNO RW1 RXO SV3 TEORI TJP TLC TOX TR2 W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ~91 ~KM ABQTQ CGR CUY CVF ECM EIF M49 NPM 7X8 482 7QO 7TM 8FD ABJNI FR3 P64 ROZ TN5 WH7 7SC JQ2 L7M L~C L~D 5PM O0~ .-4 .GJ ABEFU ABNGD ACUKT ADTOC AFFNX AGQPQ AI. AQDSO ATTQO AZFZN C1A CAG COF ELUNK HVGLF NTWIH O~Y PB- RNI RZF RZO UNPAY VH1 ZGI  | 
    
| ID | FETCH-LOGICAL-c477t-e4075cf9368b95d1fc74728932b9edae6a458ea1461c3a9ba972e2b358912f33 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1367-4803 1367-4811  | 
    
| IngestDate | Sun Oct 26 03:52:23 EDT 2025 Tue Sep 30 16:36:49 EDT 2025 Thu Oct 02 07:11:40 EDT 2025 Tue Oct 07 10:03:34 EDT 2025 Thu Oct 02 09:41:21 EDT 2025 Thu Apr 03 07:07:34 EDT 2025 Thu Apr 24 22:55:54 EDT 2025 Tue Jul 01 03:27:09 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c477t-e4075cf9368b95d1fc74728932b9edae6a458ea1461c3a9ba972e2b358912f33 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Associate Editor: Martin Bishop  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://doi.org/10.1093/bioinformatics/btt569 | 
    
| PMID | 24085567 | 
    
| PQID | 1490785267 | 
    
| PQPubID | 23479 | 
    
| PageCount | 13 | 
    
| ParticipantIDs | unpaywall_primary_10_1093_bioinformatics_btt569 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3924044 proquest_miscellaneous_1671545887 proquest_miscellaneous_1492626794 proquest_miscellaneous_1490785267 pubmed_primary_24085567 crossref_primary_10_1093_bioinformatics_btt569 crossref_citationtrail_10_1093_bioinformatics_btt569  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2014-01-01 | 
    
| PublicationDateYYYYMMDD | 2014-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2014 text: 2014-01-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | England | 
    
| PublicationPlace_xml | – name: England | 
    
| PublicationTitle | Bioinformatics | 
    
| PublicationTitleAlternate | Bioinformatics | 
    
| PublicationYear | 2014 | 
    
| Publisher | Oxford University Press | 
    
| Publisher_xml | – name: Oxford University Press | 
    
| References | Hofman (2023012710383699600_btt569-B6) 2008; 100 Phizicky (2023012710383699600_btt569-B20) 1995; 59 Zha (2023012710383699600_btt569-B41) 2001 Rivas (2023012710383699600_btt569-B26) 2010; 6 Satuluri (2023012710383699600_btt569-B31) 2011 Xing (2023012710383699600_btt569-B39) 2003 Prasad (2023012710383699600_btt569-B23) 2009; 37 Nepusz (2023012710383699600_btt569-B17) 2012; 9 Ruepp (2023012710383699600_btt569-B28) 2008; 36 Stark (2023012710383699600_btt569-B34) 2006; 34 Breitkreutz (2023012710383699600_btt569-B4) 2008; 36 Ahn (2023012710383699600_btt569-B1) 2010; 466 Mewes (2023012710383699600_btt569-B13) 2004; 32 Powers (2023012710383699600_btt569-B22) 2002; 7 Wang (2023012710383699600_btt569-B38) 2013; 14 Lancichinetti (2023012710383699600_btt569-B10) 2009; 11 Satuluri (2023012710383699600_btt569-B32) 2010 Pinkert (2023012710383699600_btt569-B21) 2010; 6 Maslov (2023012710383699600_btt569-B12) 2002; 296 Morrison (2023012710383699600_btt569-B14) 2006; 22 Voevodski (2023012710383699600_btt569-B36) 2009; 10 Yang (2023012710383699600_btt569-B40) 1997; 275 Kikugawa (2023012710383699600_btt569-B8) 2012; 6 Bisgin (2023012710383699600_btt569-B3) 2008 Li (2023012710383699600_btt569-B11) 2010; 11 Shih (2023012710383699600_btt569-B33) 2012; 28 Royer (2023012710383699600_btt569-B27) 2008; 4 Navlakha (2023012710383699600_btt569-B16) 2009; 16 Newman (2023012710383699600_btt569-B19) 2004; 69 van Dongen (2023012710383699600_btt569-B35) 2000 Raman (2023012710383699600_btt569-B24) 2010; 2 Satuluri (2023012710383699600_btt569-B30) 2009 Ashburner (2023012710383699600_btt569-B2) 2000; 25 Wang (2023012710383699600_btt569-B37) 2012 Navlakha (2023012710383699600_btt569-B15) 2008 Reichardt (2023012710383699600_btt569-B25) 2009 King (2023012710383699600_btt569-B9) 2003 Salwinski (2023012710383699600_btt569-B29) 2004; 32 Hong (2023012710383699600_btt569-B7) 2008; 36 Brunet (2023012710383699600_btt569-B5) 2004; 101 Newman (2023012710383699600_btt569-B18) 2006; 74 18617988 - PLoS Comput Biol. 2008;4(7):e1000108 23282181 - BMC Syst Biol. 2012;6 Suppl 2:S7 7708014 - Microbiol Rev. 1995 Mar;59(1):94-123 19765306 - BMC Bioinformatics. 2009;10:297 20334628 - Autom Exp. 2010 Feb 15;2(1):2 17025705 - Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Sep;74(3 Pt 2):036104 19183002 - J Comput Biol. 2009 Feb;16(2):253-64 18988627 - Nucleic Acids Res. 2009 Jan;37(Database issue):D767-72 20589078 - PLoS Comput Biol. 2010 Jun;6(6):e1000807 11988575 - Science. 2002 May 3;296(5569):910-3 14681354 - Nucleic Acids Res. 2004 Jan 1;32(Database issue):D41-4 15016911 - Proc Natl Acad Sci U S A. 2004 Mar 23;101(12):4164-9 17982175 - Nucleic Acids Res. 2008 Jan;36(Database issue):D577-81 23368964 - BMC Bioinformatics. 2013;14 Suppl 2:S23 18643711 - Phys Rev Lett. 2008 Jun 27;100(25):258701 18000002 - Nucleic Acids Res. 2008 Jan;36(Database issue):D637-40 20158874 - BMC Genomics. 2010;11 Suppl 1:S3 14681454 - Nucleic Acids Res. 2004 Jan 1;32(Database issue):D449-51 11021964 - Endocr Relat Cancer. 2000 Sep;7(3):165-97 16381927 - Nucleic Acids Res. 2006 Jan 1;34(Database issue):D535-9 20126533 - PLoS Comput Biol. 2010 Jan;6(1):e1000659 16787977 - Bioinformatics. 2006 Aug 15;22(16):2012-9 22426491 - Nat Methods. 2012 May;9(5):471-2 10802651 - Nat Genet. 2000 May;25(1):25-9 14995526 - Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Feb;69(2 Pt 2):026113 9027314 - Science. 1997 Feb 21;275(5303):1129-32 20562860 - Nature. 2010 Aug 5;466(7307):761-4 17965090 - Nucleic Acids Res. 2008 Jan;36(Database issue):D646-50 22962469 - Bioinformatics. 2012 Sep 15;28(18):i473-i479  | 
    
| References_xml | – volume: 34 start-page: D535 year: 2006 ident: 2023012710383699600_btt569-B34 article-title: BioGRID: a general repository for interaction datasets publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkj109 – volume: 74 start-page: 036104 year: 2006 ident: 2023012710383699600_btt569-B18 article-title: Finding community structure in networks using the eigenvectors of matrices publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.74.036104 – volume: 6 start-page: S7 year: 2012 ident: 2023012710383699600_btt569-B8 article-title: PCDq: human protein complex database with quality index which summarizes different levels of evidences of protein complexes predicted from H-invitational protein-protein interactions integrative dataset publication-title: BMC Syst. Biol. doi: 10.1186/1752-0509-6-S2-S7 – volume: 69 start-page: 026113 year: 2004 ident: 2023012710383699600_btt569-B19 article-title: Finding and evaluating community structure in networks publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.69.026113 – volume: 11 start-page: S3 year: 2010 ident: 2023012710383699600_btt569-B11 article-title: Computational approaches for detecting protein complexes from protein interaction networks: a survey publication-title: BMC Genomics doi: 10.1186/1471-2164-11-S1-S3 – volume: 2 start-page: 2 year: 2010 ident: 2023012710383699600_btt569-B24 article-title: Construction and analysis of protein–protein interaction networks publication-title: Autom. Exp. doi: 10.1186/1759-4499-2-2 – volume-title: Technical report UCB/CSD-03-1265 year: 2003 ident: 2023012710383699600_btt569-B39 article-title: On semidefinite relaxation for normalized k-cut and connections to spectral clustering – volume: 11 start-page: 033015 year: 2009 ident: 2023012710383699600_btt569-B10 article-title: Detecting the overlapping and hierarchical community structure in complex networks publication-title: New J. Phys. doi: 10.1088/1367-2630/11/3/033015 – volume-title: ACM Conference on Bioinformatics, Computational Biology and Biomedicine 2010 year: 2010 ident: 2023012710383699600_btt569-B32 article-title: Markov clustering of protein interaction networks – volume-title: Technical report year: 2008 ident: 2023012710383699600_btt569-B3 article-title: Parallel clustering algorithms with application to climatology – volume: 32 start-page: D41 year: 2004 ident: 2023012710383699600_btt569-B13 article-title: MIPS: analysis and annotation of proteins from whole genomes publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkh092 – volume: 36 start-page: D646 year: 2008 ident: 2023012710383699600_btt569-B28 article-title: Corum: the comprehensive resource of mammalian protein complexes publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkm936 – volume: 36 start-page: D637 year: 2008 ident: 2023012710383699600_btt569-B4 article-title: The BioGRID Interaction Database: 2008 update publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkm1001 – volume: 4 start-page: e1000108 year: 2008 ident: 2023012710383699600_btt569-B27 article-title: Unraveling protein networks with power graph analysis publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1000108 – volume: 10 start-page: 297 year: 2009 ident: 2023012710383699600_btt569-B36 article-title: Finding local communities in protein networks publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-10-297 – volume-title: Technical report year: 2003 ident: 2023012710383699600_btt569-B9 article-title: Conductance and rapidly mixing markov chains – volume: 296 start-page: 910 year: 2002 ident: 2023012710383699600_btt569-B12 article-title: Specificity and stability in topology of protein networks publication-title: Science doi: 10.1126/science.1065103 – volume: 28 start-page: i473 year: 2012 ident: 2023012710383699600_btt569-B33 article-title: Identifying functional modules in interaction networks through overlapping markov clustering publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts370 – volume: 37 start-page: D767 year: 2009 ident: 2023012710383699600_btt569-B23 article-title: Human Protein Reference Database—2009 update publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn892 – volume: 466 start-page: 761 year: 2010 ident: 2023012710383699600_btt569-B1 article-title: Link communities reveal multiscale complexity in networks publication-title: Nature doi: 10.1038/nature09182 – volume: 14 start-page: S23 year: 2013 ident: 2023012710383699600_btt569-B38 article-title: A novel subgradient-based optimization algorithm for block model functional module identification publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-14-S2-S23 – volume: 100 start-page: 258701 year: 2008 ident: 2023012710383699600_btt569-B6 article-title: A bayesian approach to network modularity publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.258701 – volume: 9 start-page: 471 year: 2012 ident: 2023012710383699600_btt569-B17 article-title: Detecting overlapping protein complexes in protein-protein interaction networks publication-title: Nat. Methods doi: 10.1038/nmeth.1938 – volume: 22 start-page: 2012 year: 2006 ident: 2023012710383699600_btt569-B14 article-title: A lock-and-key model for protein-protein interactions publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl338 – volume: 6 start-page: e1000807 year: 2010 ident: 2023012710383699600_btt569-B26 article-title: Protein–protein interactions essentials: Key concepts to building and analyzing interactome networks publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1000807 – volume: 6 start-page: e1000659 year: 2010 ident: 2023012710383699600_btt569-B21 article-title: Protein interaction networks: more than mere modules publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1000659 – volume-title: 14th International Conference on Extending Database Technology (EDBT11) year: 2011 ident: 2023012710383699600_btt569-B31 article-title: Symmetrizations for clustering directed graphs doi: 10.1145/1951365.1951407 – volume: 275 start-page: 1129 year: 1997 ident: 2023012710383699600_btt569-B40 article-title: Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked publication-title: Science doi: 10.1126/science.275.5303.1129 – volume: 59 start-page: 94 year: 1995 ident: 2023012710383699600_btt569-B20 article-title: Protein-protein interactions: methods for detection and analysis publication-title: Microbiol. Rev. doi: 10.1128/mr.59.1.94-123.1995 – volume-title: Structure in Complex Networks year: 2009 ident: 2023012710383699600_btt569-B25 – volume: 7 start-page: 165 year: 2002 ident: 2023012710383699600_btt569-B22 article-title: Fibroblast growth factors, their receptors and signaling publication-title: Endocr. Relat.Cancer – volume-title: ACM Conference on Bioinformatics, Computational Biology and Biomedicine 2012 year: 2012 ident: 2023012710383699600_btt569-B37 article-title: Functional module identification by block modeling using simulated annealing with path relinking doi: 10.1145/2382936.2382952 – volume: 36 start-page: D577 year: 2008 ident: 2023012710383699600_btt569-B7 article-title: Gene ontology annotations at SGD: new data sources and annotation methods publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkm909 – volume-title: Technical Report INS-R0010 year: 2000 ident: 2023012710383699600_btt569-B35 article-title: A cluster algorithm for graphs – volume: 32 start-page: D449 year: 2004 ident: 2023012710383699600_btt569-B29 article-title: The Database of Interacting Proteins: 2004 update publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkh086 – volume: 16 start-page: 253 year: 2009 ident: 2023012710383699600_btt569-B16 article-title: Revealing biological modules via graph summarization publication-title: J. Comp. Biol. doi: 10.1089/cmb.2008.11TT – volume-title: 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’09) year: 2009 ident: 2023012710383699600_btt569-B30 article-title: Scalable graph clustering using stochastic flows: Applications to community discovery doi: 10.1145/1557019.1557101 – start-page: 419 volume-title: Processing of the 33rd International Conference on Management of Data (ACM SIGMOD Conference) year: 2008 ident: 2023012710383699600_btt569-B15 article-title: Graph summarization with bounded error – volume: 101 start-page: 4164 year: 2004 ident: 2023012710383699600_btt569-B5 article-title: Metagenes and molecular pattern discovery using matrix factorization publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0308531101 – volume: 25 start-page: 25 year: 2000 ident: 2023012710383699600_btt569-B2 article-title: Gene ontology: tool for the unification of biology. the gene ontology consortium publication-title: Nat. Genet. doi: 10.1038/75556 – start-page: 1057 volume-title: Advances in Neural Information Processing Systems year: 2001 ident: 2023012710383699600_btt569-B41 article-title: Spectral relaxation for k-means clustering – reference: 11988575 - Science. 2002 May 3;296(5569):910-3 – reference: 16381927 - Nucleic Acids Res. 2006 Jan 1;34(Database issue):D535-9 – reference: 18988627 - Nucleic Acids Res. 2009 Jan;37(Database issue):D767-72 – reference: 23282181 - BMC Syst Biol. 2012;6 Suppl 2:S7 – reference: 11021964 - Endocr Relat Cancer. 2000 Sep;7(3):165-97 – reference: 17025705 - Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Sep;74(3 Pt 2):036104 – reference: 20589078 - PLoS Comput Biol. 2010 Jun;6(6):e1000807 – reference: 7708014 - Microbiol Rev. 1995 Mar;59(1):94-123 – reference: 14681454 - Nucleic Acids Res. 2004 Jan 1;32(Database issue):D449-51 – reference: 14681354 - Nucleic Acids Res. 2004 Jan 1;32(Database issue):D41-4 – reference: 19183002 - J Comput Biol. 2009 Feb;16(2):253-64 – reference: 9027314 - Science. 1997 Feb 21;275(5303):1129-32 – reference: 17965090 - Nucleic Acids Res. 2008 Jan;36(Database issue):D646-50 – reference: 19765306 - BMC Bioinformatics. 2009;10:297 – reference: 18617988 - PLoS Comput Biol. 2008;4(7):e1000108 – reference: 20126533 - PLoS Comput Biol. 2010 Jan;6(1):e1000659 – reference: 20158874 - BMC Genomics. 2010;11 Suppl 1:S3 – reference: 15016911 - Proc Natl Acad Sci U S A. 2004 Mar 23;101(12):4164-9 – reference: 10802651 - Nat Genet. 2000 May;25(1):25-9 – reference: 17982175 - Nucleic Acids Res. 2008 Jan;36(Database issue):D577-81 – reference: 20562860 - Nature. 2010 Aug 5;466(7307):761-4 – reference: 22962469 - Bioinformatics. 2012 Sep 15;28(18):i473-i479 – reference: 18643711 - Phys Rev Lett. 2008 Jun 27;100(25):258701 – reference: 20334628 - Autom Exp. 2010 Feb 15;2(1):2 – reference: 18000002 - Nucleic Acids Res. 2008 Jan;36(Database issue):D637-40 – reference: 16787977 - Bioinformatics. 2006 Aug 15;22(16):2012-9 – reference: 23368964 - BMC Bioinformatics. 2013;14 Suppl 2:S23 – reference: 14995526 - Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Feb;69(2 Pt 2):026113 – reference: 22426491 - Nat Methods. 2012 May;9(5):471-2  | 
    
| SSID | ssj0005056 ssj0051444  | 
    
| Score | 2.2999904 | 
    
| Snippet | Motivation: Identifying functional modules in protein–protein interaction (PPI) networks may shed light on cellular functional organization and thereafter... Identifying functional modules in protein-protein interaction (PPI) networks may shed light on cellular functional organization and thereafter underlying... Motivation: Identifying functional modules in protein-protein interaction (PPI) networks may shed light on cellular functional organization and thereafter...  | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source  | 
    
| StartPage | 81 | 
    
| SubjectTerms | Algorithms Bioinformatics Cellular Cluster Analysis Criteria Humans Modules Networks Original Papers Protein Interaction Mapping - methods Protein Interaction Maps Proteins Proteins - metabolism Searching Signal Transduction  | 
    
| Title | Functional module identification in protein interaction networks by interaction patterns | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/24085567 https://www.proquest.com/docview/1490785267 https://www.proquest.com/docview/1492626794 https://www.proquest.com/docview/1671545887 https://pubmed.ncbi.nlm.nih.gov/PMC3924044 http://doi.org/10.1093/bioinformatics/btt569  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 30 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: KQ8 dateStart: 19960101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: ADMLS dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1367-4811 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: DIK dateStart: 19960101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1367-4811 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: GX1 dateStart: 19960101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: RPM dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVOVD databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: OVEED dateStart: 20010101 isFulltext: true titleUrlDefault: http://ovidsp.ovid.com/ providerName: Ovid – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: TOX dateStart: 19850101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1367-4811 dateEnd: 20220930 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: TOX dateStart: 19850101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9tAEB4Sh9Jcmr7yaNqgQq6yI-2upD2GUhMKeRwccE5iX6Ki7trEEsH59ZnVSqbCNE1vQpp9z2pmdma_AThlEXbPRYnrtJAhSrw4FJLSkBtDBAoIzQt3Dnl5lVzc0h9TNt2CLpVcz33PyUiW8xZA1IEWj2RVsYRvw07CUPMewM7t1c35nb9alYY0axIht89R1F3Y-Vs9fVG0oV9uhkm-ru1CrB7EbPaHDBrvwWV3k8eHnvwa1pUcqsdNYMcXDe8tvGmV0eDcc8872DL2Pbzy6SlXH2A6RqHnzwqD33Ndz0xQ6ja6qFnQoLRBA_RQukd3l7khD6yPLV8GctV7v2jAPO3yI0zG3yffLsI2E0OoaJpWoUGzj6mCkySTnOmoUGiFoKlGYsmNFiYRlGVGuBzhigguBU9jE0viUhbGBSH7MLBzaw4hcJCHZ9JFt6iCaq1EFElUSgqdcaGKhB0B7dYkVy1KuUuWMcu9t5zk_TnL_ZwdwXBdbOFhOv5V4Gu34DluKOclEdbM6yXaQhzVJhYn6bM0MVqC-C97hiZJG69khvUceEZad63BlWOuhbTHYmsCB_rd_2LLnw34N-4mekax3dGaGV824k__XeIYdlE9pP7A6TMMqvvafEEVrJInsD25np60--8J8l08kw | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Li9swEB7ShNJe2m6f6WNxoVcna0uyrWMoDUshoYcspCejl6lpVgmNzZL99R1ZdqgJ3W5vxh69R54ZzegbgE8swu65KHGdFjJEiReHQlIacmOIQAGheeHOIRfL5PKKfl2z9QC6VHI99z0nU1luWwBRB1o8lVXFEv4ARglDzXsIo6vlt9l3f7UqDWnWJEJun6Oou7Dzt3r6ouhEvzwNk3xU25043IjN5g8ZNH8Ki-4mjw89-TmpKzlRt6fAjvca3jN40iqjwcxzzxkMjH0OD316ysMLWM9R6PmzwuB6q-uNCUrdRhc1CxqUNmiAHkr36O4yN-SB9bHl-0Aeeu93DZin3b-E1fzL6vNl2GZiCBVN0yo0aPYxVXCSZJIzHRUKrRA01UgsudHCJIKyzAiXI1wRwaXgaWxiSVzKwrgg5BUM7daaNxA4yMML6aJbVEG1ViKKJColhc64UEXCxkC7NclVi1LukmVscu8tJ3l_znI_Z2OYHIvtPEzHvwp87BY8xw3lvCTCmm29R1uIo9rE4iS9kyZGSxD_ZXfQJGnjlcywnteekY5da3DlmGsh7bHYkcCBfve_2PJHA_6Nu4leUGx3emTG-4347X-XeAePUT2k_sDpPQyrX7X5gCpYJc_bnfcbjBI7dw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+module+identification+in+protein+interaction+networks+by+interaction+patterns&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Wang%2C+Yijie&rft.au=Qian%2C+Xiaoning&rft.date=2014-01-01&rft.issn=1367-4811&rft.eissn=1367-4811&rft.volume=30&rft.issue=1&rft.spage=81&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtt569&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon |