Functional module identification in protein interaction networks by interaction patterns

Motivation: Identifying functional modules in protein–protein interaction (PPI) networks may shed light on cellular functional organization and thereafter underlying cellular mechanisms. Many existing module identification algorithms aim to detect densely connected groups of proteins as potential mo...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics Vol. 30; no. 1; pp. 81 - 93
Main Authors Wang, Yijie, Qian, Xiaoning
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.01.2014
Subjects
Online AccessGet full text
ISSN1367-4803
1367-4811
1367-4811
1460-2059
DOI10.1093/bioinformatics/btt569

Cover

Abstract Motivation: Identifying functional modules in protein–protein interaction (PPI) networks may shed light on cellular functional organization and thereafter underlying cellular mechanisms. Many existing module identification algorithms aim to detect densely connected groups of proteins as potential modules. However, based on this simple topological criterion of ‘higher than expected connectivity’, those algorithms may miss biologically meaningful modules of functional significance, in which proteins have similar interaction patterns to other proteins in networks but may not be densely connected to each other. A few blockmodel module identification algorithms have been proposed to address the problem but the lack of global optimum guarantee and the prohibitive computational complexity have been the bottleneck of their applications in real-world large-scale PPI networks. Results: In this article, we propose a novel optimization formulation LCP2 (low two-hop conductance sets) using the concept of Markov random walk on graphs, which enables simultaneous identification of both dense and sparse modules based on protein interaction patterns in given networks through searching for LCP2 by random walk. A spectral approximate algorithm SLCP2 is derived to identify non-overlapping functional modules. Based on a bottom-up greedy strategy, we further extend LCP2 to a new algorithm (greedy algorithm for LCP2) GLCP2 to identify overlapping functional modules. We compare SLCP2 and GLCP2 with a range of state-of-the-art algorithms on synthetic networks and real-world PPI networks. The performance evaluation based on several criteria with respect to protein complex prediction, high level Gene Ontology term prediction and especially sparse module detection, has demonstrated that our algorithms based on searching for LCP2 outperform all other compared algorithms. Availability and implementation: All data and code are available at http://www.cse.usf.edu/∼xqian/fmi/slcp2hop/. Contact:  yijie@mail.usf.edu or xqian@ece.tamu.edu Supplementary information:  Supplementary data are available at Bioinformatics online.
AbstractList Identifying functional modules in protein-protein interaction (PPI) networks may shed light on cellular functional organization and thereafter underlying cellular mechanisms. Many existing module identification algorithms aim to detect densely connected groups of proteins as potential modules. However, based on this simple topological criterion of 'higher than expected connectivity', those algorithms may miss biologically meaningful modules of functional significance, in which proteins have similar interaction patterns to other proteins in networks but may not be densely connected to each other. A few blockmodel module identification algorithms have been proposed to address the problem but the lack of global optimum guarantee and the prohibitive computational complexity have been the bottleneck of their applications in real-world large-scale PPI networks. In this article, we propose a novel optimization formulation LCP(2) (low two-hop conductance sets) using the concept of Markov random walk on graphs, which enables simultaneous identification of both dense and sparse modules based on protein interaction patterns in given networks through searching for LCP(2) by random walk. A spectral approximate algorithm SLCP(2) is derived to identify non-overlapping functional modules. Based on a bottom-up greedy strategy, we further extend LCP(2) to a new algorithm (greedy algorithm for LCP(2)) GLCP(2) to identify overlapping functional modules. We compare SLCP(2) and GLCP(2) with a range of state-of-the-art algorithms on synthetic networks and real-world PPI networks. The performance evaluation based on several criteria with respect to protein complex prediction, high level Gene Ontology term prediction and especially sparse module detection, has demonstrated that our algorithms based on searching for LCP(2) outperform all other compared algorithms. All data and code are available at http://www.cse.usf.edu/~xqian/fmi/slcp2hop/.
Motivation: Identifying functional modules in protein-protein interaction (PPI) networks may shed light on cellular functional organization and thereafter underlying cellular mechanisms. Many existing module identification algorithms aim to detect densely connected groups of proteins as potential modules. However, based on this simple topological criterion of 'higher than expected connectivity', those algorithms may miss biologically meaningful modules of functional significance, in which proteins have similar interaction patterns to other proteins in networks but may not be densely connected to each other. A few blockmodel module identification algorithms have been proposed to address the problem but the lack of global optimum guarantee and the prohibitive computational complexity have been the bottleneck of their applications in real-world large-scale PPI networks.Results: In this article, we propose a novel optimization formulation LCP super(2) (low two-hop conductance sets) using the concept of Markov random walk on graphs, which enables simultaneous identification of both dense and sparse modules based on protein interaction patterns in given networks through searching for LCP super(2) by random walk. A spectral approximate algorithm SLCP super(2) is derived to identify non-overlapping functional modules. Based on a bottom-up greedy strategy, we further extend LCP super(2) to a new algorithm (greedy algorithm for LCP super(2)) GLCP super(2) to identify overlapping functional modules. We compare SLCP super(2) and GLCP super(2) with a range of state-of-the-art algorithms on synthetic networks and real-world PPI networks. The performance evaluation based on several criteria with respect to protein complex prediction, high level Gene Ontology term prediction and especially sparse module detection, has demonstrated that our algorithms based on searching for LCP super(2) outperform all other compared algorithms.
Identifying functional modules in protein-protein interaction (PPI) networks may shed light on cellular functional organization and thereafter underlying cellular mechanisms. Many existing module identification algorithms aim to detect densely connected groups of proteins as potential modules. However, based on this simple topological criterion of 'higher than expected connectivity', those algorithms may miss biologically meaningful modules of functional significance, in which proteins have similar interaction patterns to other proteins in networks but may not be densely connected to each other. A few blockmodel module identification algorithms have been proposed to address the problem but the lack of global optimum guarantee and the prohibitive computational complexity have been the bottleneck of their applications in real-world large-scale PPI networks.MOTIVATIONIdentifying functional modules in protein-protein interaction (PPI) networks may shed light on cellular functional organization and thereafter underlying cellular mechanisms. Many existing module identification algorithms aim to detect densely connected groups of proteins as potential modules. However, based on this simple topological criterion of 'higher than expected connectivity', those algorithms may miss biologically meaningful modules of functional significance, in which proteins have similar interaction patterns to other proteins in networks but may not be densely connected to each other. A few blockmodel module identification algorithms have been proposed to address the problem but the lack of global optimum guarantee and the prohibitive computational complexity have been the bottleneck of their applications in real-world large-scale PPI networks.In this article, we propose a novel optimization formulation LCP(2) (low two-hop conductance sets) using the concept of Markov random walk on graphs, which enables simultaneous identification of both dense and sparse modules based on protein interaction patterns in given networks through searching for LCP(2) by random walk. A spectral approximate algorithm SLCP(2) is derived to identify non-overlapping functional modules. Based on a bottom-up greedy strategy, we further extend LCP(2) to a new algorithm (greedy algorithm for LCP(2)) GLCP(2) to identify overlapping functional modules. We compare SLCP(2) and GLCP(2) with a range of state-of-the-art algorithms on synthetic networks and real-world PPI networks. The performance evaluation based on several criteria with respect to protein complex prediction, high level Gene Ontology term prediction and especially sparse module detection, has demonstrated that our algorithms based on searching for LCP(2) outperform all other compared algorithms.RESULTSIn this article, we propose a novel optimization formulation LCP(2) (low two-hop conductance sets) using the concept of Markov random walk on graphs, which enables simultaneous identification of both dense and sparse modules based on protein interaction patterns in given networks through searching for LCP(2) by random walk. A spectral approximate algorithm SLCP(2) is derived to identify non-overlapping functional modules. Based on a bottom-up greedy strategy, we further extend LCP(2) to a new algorithm (greedy algorithm for LCP(2)) GLCP(2) to identify overlapping functional modules. We compare SLCP(2) and GLCP(2) with a range of state-of-the-art algorithms on synthetic networks and real-world PPI networks. The performance evaluation based on several criteria with respect to protein complex prediction, high level Gene Ontology term prediction and especially sparse module detection, has demonstrated that our algorithms based on searching for LCP(2) outperform all other compared algorithms.All data and code are available at http://www.cse.usf.edu/~xqian/fmi/slcp2hop/.AVAILABILITY AND IMPLEMENTATIONAll data and code are available at http://www.cse.usf.edu/~xqian/fmi/slcp2hop/.
Motivation: Identifying functional modules in protein–protein interaction (PPI) networks may shed light on cellular functional organization and thereafter underlying cellular mechanisms. Many existing module identification algorithms aim to detect densely connected groups of proteins as potential modules. However, based on this simple topological criterion of ‘higher than expected connectivity’, those algorithms may miss biologically meaningful modules of functional significance, in which proteins have similar interaction patterns to other proteins in networks but may not be densely connected to each other. A few blockmodel module identification algorithms have been proposed to address the problem but the lack of global optimum guarantee and the prohibitive computational complexity have been the bottleneck of their applications in real-world large-scale PPI networks. Results: In this article, we propose a novel optimization formulation LCP2 (low two-hop conductance sets) using the concept of Markov random walk on graphs, which enables simultaneous identification of both dense and sparse modules based on protein interaction patterns in given networks through searching for LCP2 by random walk. A spectral approximate algorithm SLCP2 is derived to identify non-overlapping functional modules. Based on a bottom-up greedy strategy, we further extend LCP2 to a new algorithm (greedy algorithm for LCP2) GLCP2 to identify overlapping functional modules. We compare SLCP2 and GLCP2 with a range of state-of-the-art algorithms on synthetic networks and real-world PPI networks. The performance evaluation based on several criteria with respect to protein complex prediction, high level Gene Ontology term prediction and especially sparse module detection, has demonstrated that our algorithms based on searching for LCP2 outperform all other compared algorithms. Availability and implementation: All data and code are available at http://www.cse.usf.edu/∼xqian/fmi/slcp2hop/. Contact:  yijie@mail.usf.edu or xqian@ece.tamu.edu Supplementary information:  Supplementary data are available at Bioinformatics online.
Motivation: Identifying functional modules in protein–protein interaction (PPI) networks may shed light on cellular functional organization and thereafter underlying cellular mechanisms. Many existing module identification algorithms aim to detect densely connected groups of proteins as potential modules. However, based on this simple topological criterion of ‘higher than expected connectivity’, those algorithms may miss biologically meaningful modules of functional significance, in which proteins have similar interaction patterns to other proteins in networks but may not be densely connected to each other. A few blockmodel module identification algorithms have been proposed to address the problem but the lack of global optimum guarantee and the prohibitive computational complexity have been the bottleneck of their applications in real-world large-scale PPI networks. Results: In this article, we propose a novel optimization formulation LCP2 (low two-hop conductance sets) using the concept of Markov random walk on graphs, which enables simultaneous identification of both dense and sparse modules based on protein interaction patterns in given networks through searching for LCP2 by random walk. A spectral approximate algorithm SLCP2 is derived to identify non-overlapping functional modules. Based on a bottom-up greedy strategy, we further extend LCP2 to a new algorithm (greedy algorithm for LCP2) GLCP2 to identify overlapping functional modules. We compare SLCP2 and GLCP2 with a range of state-of-the-art algorithms on synthetic networks and real-world PPI networks. The performance evaluation based on several criteria with respect to protein complex prediction, high level Gene Ontology term prediction and especially sparse module detection, has demonstrated that our algorithms based on searching for LCP2 outperform all other compared algorithms. Availability and implementation: All data and code are available at http://www.cse.usf.edu/∼xqian/fmi/slcp2hop/. Contact: yijie@mail.usf.edu or xqian@ece.tamu.edu Supplementary information: Supplementary data are available at Bioinformatics online.
Author Wang, Yijie
Qian, Xiaoning
Author_xml – sequence: 1
  givenname: Yijie
  surname: Wang
  fullname: Wang, Yijie
– sequence: 2
  givenname: Xiaoning
  surname: Qian
  fullname: Qian, Xiaoning
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24085567$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1P3DAQhq2Kiu-fAMqRy4Idf8WqVAmhQishceHQm-U4k-I2sYPtgPbf18sC7XKBk8czzzuaee09tOWDB4SOCD4lWNGz1gXn-xBHk51NZ23OXKhPaJdQIResIWTrNcZ0B-2l9BtjzDEX22inZrjhXMhd9PNy9ja74M1QjaGbB6hcBz673lmzylfOV1MMGdwqzBDNE155yI8h_klVu9zITyaXi08H6HNvhgSHz-c-ur38dnvxfXF9c_Xj4vx6YZmUeQEMS257RUXTKt6R3kom60bRulXQGRCG8QYMYYJYalRrlKyhbilvFKl7SveRWLed_WSWj2YY9BTdaOJSE6xXTulNp_TaqSL8uhZOcztCZ8vO0fwTB-P0ZsW7O_0rPGiqinuMlQYnzw1iuJ8hZT26ZGEYjIcwJ02EJLwM38j3UaZqUQup2EdQLBte4IIe_7_B6-gvj1sAvgZsDClF6D9szZc3Ouvy02coRrjhHfVflG_Yrg
CitedBy_id crossref_primary_10_1016_j_physa_2016_10_021
crossref_primary_10_1093_bfgp_elac054
crossref_primary_10_1155_2014_720960
crossref_primary_10_3354_ame01939
crossref_primary_10_1088_1367_2630_17_1_013044
crossref_primary_10_1002_sim_9202
crossref_primary_10_1093_bib_bbz085
crossref_primary_10_1038_s41467_018_06382_z
crossref_primary_10_1109_TCBB_2015_2401014
crossref_primary_10_3390_genes12111670
crossref_primary_10_1007_s11390_014_1492_z
crossref_primary_10_1016_j_ins_2017_10_013
crossref_primary_10_12677_BIPHY_2018_6464007
crossref_primary_10_3390_app13116388
crossref_primary_10_1186_s12918_017_0495_0
crossref_primary_10_1109_TEVC_2016_2530311
crossref_primary_10_1093_bioinformatics_btw655
crossref_primary_10_1016_j_micpath_2017_02_012
crossref_primary_10_1016_j_ygeno_2018_10_003
crossref_primary_10_1093_bib_bbaa372
crossref_primary_10_1186_s12918_017_0405_5
crossref_primary_10_1007_s12038_022_00284_5
crossref_primary_10_1109_ACCESS_2018_2852275
crossref_primary_10_12677_BIPHY_2018_64007
crossref_primary_10_1155_2017_3618213
crossref_primary_10_1128_msystems_01456_21
crossref_primary_10_1007_s00894_022_05133_8
crossref_primary_10_1049_iet_syb_2017_0085
crossref_primary_10_1093_bib_bbz154
Cites_doi 10.1093/nar/gkj109
10.1103/PhysRevE.74.036104
10.1186/1752-0509-6-S2-S7
10.1103/PhysRevE.69.026113
10.1186/1471-2164-11-S1-S3
10.1186/1759-4499-2-2
10.1088/1367-2630/11/3/033015
10.1093/nar/gkh092
10.1093/nar/gkm936
10.1093/nar/gkm1001
10.1371/journal.pcbi.1000108
10.1186/1471-2105-10-297
10.1126/science.1065103
10.1093/bioinformatics/bts370
10.1093/nar/gkn892
10.1038/nature09182
10.1186/1471-2105-14-S2-S23
10.1103/PhysRevLett.100.258701
10.1038/nmeth.1938
10.1093/bioinformatics/btl338
10.1371/journal.pcbi.1000807
10.1371/journal.pcbi.1000659
10.1145/1951365.1951407
10.1126/science.275.5303.1129
10.1128/mr.59.1.94-123.1995
10.1145/2382936.2382952
10.1093/nar/gkm909
10.1093/nar/gkh086
10.1089/cmb.2008.11TT
10.1145/1557019.1557101
10.1073/pnas.0308531101
10.1038/75556
ContentType Journal Article
Copyright The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2013
Copyright_xml – notice: The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2013
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
7TM
8FD
FR3
P64
7SC
JQ2
L7M
L~C
L~D
5PM
ADTOC
UNPAY
DOI 10.1093/bioinformatics/btt569
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList MEDLINE
Computer and Information Systems Abstracts
MEDLINE - Academic
CrossRef
Engineering Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1367-4811
1460-2059
EndPage 93
ExternalDocumentID oai:pubmedcentral.nih.gov:3924044
PMC3924044
24085567
10_1093_bioinformatics_btt569
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: R21 DK092845
– fundername: NIDDK NIH HHS
  grantid: R21DK092845
GroupedDBID ---
-E4
-~X
.2P
.DC
.I3
0R~
1TH
23N
2WC
4.4
48X
53G
5GY
5WA
70D
AAIJN
AAIMJ
AAJKP
AAJQQ
AAKPC
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
AAYXX
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
ASPBG
AVWKF
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C45
CDBKE
CITATION
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EJD
EMOBN
F5P
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
NVLIB
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RNS
ROL
RPM
RUSNO
RW1
RXO
SV3
TEORI
TJP
TLC
TOX
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
~KM
ABQTQ
CGR
CUY
CVF
ECM
EIF
M49
NPM
7X8
482
7QO
7TM
8FD
ABJNI
FR3
P64
ROZ
TN5
WH7
7SC
JQ2
L7M
L~C
L~D
5PM
O0~
.-4
.GJ
ABEFU
ABNGD
ACUKT
ADTOC
AFFNX
AGQPQ
AI.
AQDSO
ATTQO
AZFZN
C1A
CAG
COF
ELUNK
HVGLF
NTWIH
O~Y
PB-
RNI
RZF
RZO
UNPAY
VH1
ZGI
ID FETCH-LOGICAL-c477t-e4075cf9368b95d1fc74728932b9edae6a458ea1461c3a9ba972e2b358912f33
IEDL.DBID UNPAY
ISSN 1367-4803
1367-4811
IngestDate Sun Oct 26 03:52:23 EDT 2025
Tue Sep 30 16:36:49 EDT 2025
Thu Oct 02 07:11:40 EDT 2025
Tue Oct 07 10:03:34 EDT 2025
Thu Oct 02 09:41:21 EDT 2025
Thu Apr 03 07:07:34 EDT 2025
Thu Apr 24 22:55:54 EDT 2025
Tue Jul 01 03:27:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c477t-e4075cf9368b95d1fc74728932b9edae6a458ea1461c3a9ba972e2b358912f33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Associate Editor: Martin Bishop
OpenAccessLink https://proxy.k.utb.cz/login?url=http://doi.org/10.1093/bioinformatics/btt569
PMID 24085567
PQID 1490785267
PQPubID 23479
PageCount 13
ParticipantIDs unpaywall_primary_10_1093_bioinformatics_btt569
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3924044
proquest_miscellaneous_1671545887
proquest_miscellaneous_1492626794
proquest_miscellaneous_1490785267
pubmed_primary_24085567
crossref_primary_10_1093_bioinformatics_btt569
crossref_citationtrail_10_1093_bioinformatics_btt569
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-01-01
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-01-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioinformatics
PublicationTitleAlternate Bioinformatics
PublicationYear 2014
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Hofman (2023012710383699600_btt569-B6) 2008; 100
Phizicky (2023012710383699600_btt569-B20) 1995; 59
Zha (2023012710383699600_btt569-B41) 2001
Rivas (2023012710383699600_btt569-B26) 2010; 6
Satuluri (2023012710383699600_btt569-B31) 2011
Xing (2023012710383699600_btt569-B39) 2003
Prasad (2023012710383699600_btt569-B23) 2009; 37
Nepusz (2023012710383699600_btt569-B17) 2012; 9
Ruepp (2023012710383699600_btt569-B28) 2008; 36
Stark (2023012710383699600_btt569-B34) 2006; 34
Breitkreutz (2023012710383699600_btt569-B4) 2008; 36
Ahn (2023012710383699600_btt569-B1) 2010; 466
Mewes (2023012710383699600_btt569-B13) 2004; 32
Powers (2023012710383699600_btt569-B22) 2002; 7
Wang (2023012710383699600_btt569-B38) 2013; 14
Lancichinetti (2023012710383699600_btt569-B10) 2009; 11
Satuluri (2023012710383699600_btt569-B32) 2010
Pinkert (2023012710383699600_btt569-B21) 2010; 6
Maslov (2023012710383699600_btt569-B12) 2002; 296
Morrison (2023012710383699600_btt569-B14) 2006; 22
Voevodski (2023012710383699600_btt569-B36) 2009; 10
Yang (2023012710383699600_btt569-B40) 1997; 275
Kikugawa (2023012710383699600_btt569-B8) 2012; 6
Bisgin (2023012710383699600_btt569-B3) 2008
Li (2023012710383699600_btt569-B11) 2010; 11
Shih (2023012710383699600_btt569-B33) 2012; 28
Royer (2023012710383699600_btt569-B27) 2008; 4
Navlakha (2023012710383699600_btt569-B16) 2009; 16
Newman (2023012710383699600_btt569-B19) 2004; 69
van Dongen (2023012710383699600_btt569-B35) 2000
Raman (2023012710383699600_btt569-B24) 2010; 2
Satuluri (2023012710383699600_btt569-B30) 2009
Ashburner (2023012710383699600_btt569-B2) 2000; 25
Wang (2023012710383699600_btt569-B37) 2012
Navlakha (2023012710383699600_btt569-B15) 2008
Reichardt (2023012710383699600_btt569-B25) 2009
King (2023012710383699600_btt569-B9) 2003
Salwinski (2023012710383699600_btt569-B29) 2004; 32
Hong (2023012710383699600_btt569-B7) 2008; 36
Brunet (2023012710383699600_btt569-B5) 2004; 101
Newman (2023012710383699600_btt569-B18) 2006; 74
18617988 - PLoS Comput Biol. 2008;4(7):e1000108
23282181 - BMC Syst Biol. 2012;6 Suppl 2:S7
7708014 - Microbiol Rev. 1995 Mar;59(1):94-123
19765306 - BMC Bioinformatics. 2009;10:297
20334628 - Autom Exp. 2010 Feb 15;2(1):2
17025705 - Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Sep;74(3 Pt 2):036104
19183002 - J Comput Biol. 2009 Feb;16(2):253-64
18988627 - Nucleic Acids Res. 2009 Jan;37(Database issue):D767-72
20589078 - PLoS Comput Biol. 2010 Jun;6(6):e1000807
11988575 - Science. 2002 May 3;296(5569):910-3
14681354 - Nucleic Acids Res. 2004 Jan 1;32(Database issue):D41-4
15016911 - Proc Natl Acad Sci U S A. 2004 Mar 23;101(12):4164-9
17982175 - Nucleic Acids Res. 2008 Jan;36(Database issue):D577-81
23368964 - BMC Bioinformatics. 2013;14 Suppl 2:S23
18643711 - Phys Rev Lett. 2008 Jun 27;100(25):258701
18000002 - Nucleic Acids Res. 2008 Jan;36(Database issue):D637-40
20158874 - BMC Genomics. 2010;11 Suppl 1:S3
14681454 - Nucleic Acids Res. 2004 Jan 1;32(Database issue):D449-51
11021964 - Endocr Relat Cancer. 2000 Sep;7(3):165-97
16381927 - Nucleic Acids Res. 2006 Jan 1;34(Database issue):D535-9
20126533 - PLoS Comput Biol. 2010 Jan;6(1):e1000659
16787977 - Bioinformatics. 2006 Aug 15;22(16):2012-9
22426491 - Nat Methods. 2012 May;9(5):471-2
10802651 - Nat Genet. 2000 May;25(1):25-9
14995526 - Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Feb;69(2 Pt 2):026113
9027314 - Science. 1997 Feb 21;275(5303):1129-32
20562860 - Nature. 2010 Aug 5;466(7307):761-4
17965090 - Nucleic Acids Res. 2008 Jan;36(Database issue):D646-50
22962469 - Bioinformatics. 2012 Sep 15;28(18):i473-i479
References_xml – volume: 34
  start-page: D535
  year: 2006
  ident: 2023012710383699600_btt569-B34
  article-title: BioGRID: a general repository for interaction datasets
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkj109
– volume: 74
  start-page: 036104
  year: 2006
  ident: 2023012710383699600_btt569-B18
  article-title: Finding community structure in networks using the eigenvectors of matrices
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.74.036104
– volume: 6
  start-page: S7
  year: 2012
  ident: 2023012710383699600_btt569-B8
  article-title: PCDq: human protein complex database with quality index which summarizes different levels of evidences of protein complexes predicted from H-invitational protein-protein interactions integrative dataset
  publication-title: BMC Syst. Biol.
  doi: 10.1186/1752-0509-6-S2-S7
– volume: 69
  start-page: 026113
  year: 2004
  ident: 2023012710383699600_btt569-B19
  article-title: Finding and evaluating community structure in networks
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.69.026113
– volume: 11
  start-page: S3
  year: 2010
  ident: 2023012710383699600_btt569-B11
  article-title: Computational approaches for detecting protein complexes from protein interaction networks: a survey
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-11-S1-S3
– volume: 2
  start-page: 2
  year: 2010
  ident: 2023012710383699600_btt569-B24
  article-title: Construction and analysis of protein–protein interaction networks
  publication-title: Autom. Exp.
  doi: 10.1186/1759-4499-2-2
– volume-title: Technical report UCB/CSD-03-1265
  year: 2003
  ident: 2023012710383699600_btt569-B39
  article-title: On semidefinite relaxation for normalized k-cut and connections to spectral clustering
– volume: 11
  start-page: 033015
  year: 2009
  ident: 2023012710383699600_btt569-B10
  article-title: Detecting the overlapping and hierarchical community structure in complex networks
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/11/3/033015
– volume-title: ACM Conference on Bioinformatics, Computational Biology and Biomedicine 2010
  year: 2010
  ident: 2023012710383699600_btt569-B32
  article-title: Markov clustering of protein interaction networks
– volume-title: Technical report
  year: 2008
  ident: 2023012710383699600_btt569-B3
  article-title: Parallel clustering algorithms with application to climatology
– volume: 32
  start-page: D41
  year: 2004
  ident: 2023012710383699600_btt569-B13
  article-title: MIPS: analysis and annotation of proteins from whole genomes
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkh092
– volume: 36
  start-page: D646
  year: 2008
  ident: 2023012710383699600_btt569-B28
  article-title: Corum: the comprehensive resource of mammalian protein complexes
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkm936
– volume: 36
  start-page: D637
  year: 2008
  ident: 2023012710383699600_btt569-B4
  article-title: The BioGRID Interaction Database: 2008 update
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkm1001
– volume: 4
  start-page: e1000108
  year: 2008
  ident: 2023012710383699600_btt569-B27
  article-title: Unraveling protein networks with power graph analysis
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1000108
– volume: 10
  start-page: 297
  year: 2009
  ident: 2023012710383699600_btt569-B36
  article-title: Finding local communities in protein networks
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-10-297
– volume-title: Technical report
  year: 2003
  ident: 2023012710383699600_btt569-B9
  article-title: Conductance and rapidly mixing markov chains
– volume: 296
  start-page: 910
  year: 2002
  ident: 2023012710383699600_btt569-B12
  article-title: Specificity and stability in topology of protein networks
  publication-title: Science
  doi: 10.1126/science.1065103
– volume: 28
  start-page: i473
  year: 2012
  ident: 2023012710383699600_btt569-B33
  article-title: Identifying functional modules in interaction networks through overlapping markov clustering
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts370
– volume: 37
  start-page: D767
  year: 2009
  ident: 2023012710383699600_btt569-B23
  article-title: Human Protein Reference Database—2009 update
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkn892
– volume: 466
  start-page: 761
  year: 2010
  ident: 2023012710383699600_btt569-B1
  article-title: Link communities reveal multiscale complexity in networks
  publication-title: Nature
  doi: 10.1038/nature09182
– volume: 14
  start-page: S23
  year: 2013
  ident: 2023012710383699600_btt569-B38
  article-title: A novel subgradient-based optimization algorithm for block model functional module identification
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-14-S2-S23
– volume: 100
  start-page: 258701
  year: 2008
  ident: 2023012710383699600_btt569-B6
  article-title: A bayesian approach to network modularity
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.258701
– volume: 9
  start-page: 471
  year: 2012
  ident: 2023012710383699600_btt569-B17
  article-title: Detecting overlapping protein complexes in protein-protein interaction networks
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1938
– volume: 22
  start-page: 2012
  year: 2006
  ident: 2023012710383699600_btt569-B14
  article-title: A lock-and-key model for protein-protein interactions
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl338
– volume: 6
  start-page: e1000807
  year: 2010
  ident: 2023012710383699600_btt569-B26
  article-title: Protein–protein interactions essentials: Key concepts to building and analyzing interactome networks
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1000807
– volume: 6
  start-page: e1000659
  year: 2010
  ident: 2023012710383699600_btt569-B21
  article-title: Protein interaction networks: more than mere modules
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1000659
– volume-title: 14th International Conference on Extending Database Technology (EDBT11)
  year: 2011
  ident: 2023012710383699600_btt569-B31
  article-title: Symmetrizations for clustering directed graphs
  doi: 10.1145/1951365.1951407
– volume: 275
  start-page: 1129
  year: 1997
  ident: 2023012710383699600_btt569-B40
  article-title: Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked
  publication-title: Science
  doi: 10.1126/science.275.5303.1129
– volume: 59
  start-page: 94
  year: 1995
  ident: 2023012710383699600_btt569-B20
  article-title: Protein-protein interactions: methods for detection and analysis
  publication-title: Microbiol. Rev.
  doi: 10.1128/mr.59.1.94-123.1995
– volume-title: Structure in Complex Networks
  year: 2009
  ident: 2023012710383699600_btt569-B25
– volume: 7
  start-page: 165
  year: 2002
  ident: 2023012710383699600_btt569-B22
  article-title: Fibroblast growth factors, their receptors and signaling
  publication-title: Endocr. Relat.Cancer
– volume-title: ACM Conference on Bioinformatics, Computational Biology and Biomedicine 2012
  year: 2012
  ident: 2023012710383699600_btt569-B37
  article-title: Functional module identification by block modeling using simulated annealing with path relinking
  doi: 10.1145/2382936.2382952
– volume: 36
  start-page: D577
  year: 2008
  ident: 2023012710383699600_btt569-B7
  article-title: Gene ontology annotations at SGD: new data sources and annotation methods
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkm909
– volume-title: Technical Report INS-R0010
  year: 2000
  ident: 2023012710383699600_btt569-B35
  article-title: A cluster algorithm for graphs
– volume: 32
  start-page: D449
  year: 2004
  ident: 2023012710383699600_btt569-B29
  article-title: The Database of Interacting Proteins: 2004 update
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkh086
– volume: 16
  start-page: 253
  year: 2009
  ident: 2023012710383699600_btt569-B16
  article-title: Revealing biological modules via graph summarization
  publication-title: J. Comp. Biol.
  doi: 10.1089/cmb.2008.11TT
– volume-title: 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’09)
  year: 2009
  ident: 2023012710383699600_btt569-B30
  article-title: Scalable graph clustering using stochastic flows: Applications to community discovery
  doi: 10.1145/1557019.1557101
– start-page: 419
  volume-title: Processing of the 33rd International Conference on Management of Data (ACM SIGMOD Conference)
  year: 2008
  ident: 2023012710383699600_btt569-B15
  article-title: Graph summarization with bounded error
– volume: 101
  start-page: 4164
  year: 2004
  ident: 2023012710383699600_btt569-B5
  article-title: Metagenes and molecular pattern discovery using matrix factorization
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0308531101
– volume: 25
  start-page: 25
  year: 2000
  ident: 2023012710383699600_btt569-B2
  article-title: Gene ontology: tool for the unification of biology. the gene ontology consortium
  publication-title: Nat. Genet.
  doi: 10.1038/75556
– start-page: 1057
  volume-title: Advances in Neural Information Processing Systems
  year: 2001
  ident: 2023012710383699600_btt569-B41
  article-title: Spectral relaxation for k-means clustering
– reference: 11988575 - Science. 2002 May 3;296(5569):910-3
– reference: 16381927 - Nucleic Acids Res. 2006 Jan 1;34(Database issue):D535-9
– reference: 18988627 - Nucleic Acids Res. 2009 Jan;37(Database issue):D767-72
– reference: 23282181 - BMC Syst Biol. 2012;6 Suppl 2:S7
– reference: 11021964 - Endocr Relat Cancer. 2000 Sep;7(3):165-97
– reference: 17025705 - Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Sep;74(3 Pt 2):036104
– reference: 20589078 - PLoS Comput Biol. 2010 Jun;6(6):e1000807
– reference: 7708014 - Microbiol Rev. 1995 Mar;59(1):94-123
– reference: 14681454 - Nucleic Acids Res. 2004 Jan 1;32(Database issue):D449-51
– reference: 14681354 - Nucleic Acids Res. 2004 Jan 1;32(Database issue):D41-4
– reference: 19183002 - J Comput Biol. 2009 Feb;16(2):253-64
– reference: 9027314 - Science. 1997 Feb 21;275(5303):1129-32
– reference: 17965090 - Nucleic Acids Res. 2008 Jan;36(Database issue):D646-50
– reference: 19765306 - BMC Bioinformatics. 2009;10:297
– reference: 18617988 - PLoS Comput Biol. 2008;4(7):e1000108
– reference: 20126533 - PLoS Comput Biol. 2010 Jan;6(1):e1000659
– reference: 20158874 - BMC Genomics. 2010;11 Suppl 1:S3
– reference: 15016911 - Proc Natl Acad Sci U S A. 2004 Mar 23;101(12):4164-9
– reference: 10802651 - Nat Genet. 2000 May;25(1):25-9
– reference: 17982175 - Nucleic Acids Res. 2008 Jan;36(Database issue):D577-81
– reference: 20562860 - Nature. 2010 Aug 5;466(7307):761-4
– reference: 22962469 - Bioinformatics. 2012 Sep 15;28(18):i473-i479
– reference: 18643711 - Phys Rev Lett. 2008 Jun 27;100(25):258701
– reference: 20334628 - Autom Exp. 2010 Feb 15;2(1):2
– reference: 18000002 - Nucleic Acids Res. 2008 Jan;36(Database issue):D637-40
– reference: 16787977 - Bioinformatics. 2006 Aug 15;22(16):2012-9
– reference: 23368964 - BMC Bioinformatics. 2013;14 Suppl 2:S23
– reference: 14995526 - Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Feb;69(2 Pt 2):026113
– reference: 22426491 - Nat Methods. 2012 May;9(5):471-2
SSID ssj0005056
ssj0051444
Score 2.2999904
Snippet Motivation: Identifying functional modules in protein–protein interaction (PPI) networks may shed light on cellular functional organization and thereafter...
Identifying functional modules in protein-protein interaction (PPI) networks may shed light on cellular functional organization and thereafter underlying...
Motivation: Identifying functional modules in protein-protein interaction (PPI) networks may shed light on cellular functional organization and thereafter...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 81
SubjectTerms Algorithms
Bioinformatics
Cellular
Cluster Analysis
Criteria
Humans
Modules
Networks
Original Papers
Protein Interaction Mapping - methods
Protein Interaction Maps
Proteins
Proteins - metabolism
Searching
Signal Transduction
Title Functional module identification in protein interaction networks by interaction patterns
URI https://www.ncbi.nlm.nih.gov/pubmed/24085567
https://www.proquest.com/docview/1490785267
https://www.proquest.com/docview/1492626794
https://www.proquest.com/docview/1671545887
https://pubmed.ncbi.nlm.nih.gov/PMC3924044
http://doi.org/10.1093/bioinformatics/btt569
UnpaywallVersion submittedVersion
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: KQ8
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: ADMLS
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: DIK
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: GX1
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVOVD
  databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: OVEED
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://ovidsp.ovid.com/
  providerName: Ovid
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 20220930
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9tAEB4Sh9Jcmr7yaNqgQq6yI-2upD2GUhMKeRwccE5iX6Ki7trEEsH59ZnVSqbCNE1vQpp9z2pmdma_AThlEXbPRYnrtJAhSrw4FJLSkBtDBAoIzQt3Dnl5lVzc0h9TNt2CLpVcz33PyUiW8xZA1IEWj2RVsYRvw07CUPMewM7t1c35nb9alYY0axIht89R1F3Y-Vs9fVG0oV9uhkm-ru1CrB7EbPaHDBrvwWV3k8eHnvwa1pUcqsdNYMcXDe8tvGmV0eDcc8872DL2Pbzy6SlXH2A6RqHnzwqD33Ndz0xQ6ja6qFnQoLRBA_RQukd3l7khD6yPLV8GctV7v2jAPO3yI0zG3yffLsI2E0OoaJpWoUGzj6mCkySTnOmoUGiFoKlGYsmNFiYRlGVGuBzhigguBU9jE0viUhbGBSH7MLBzaw4hcJCHZ9JFt6iCaq1EFElUSgqdcaGKhB0B7dYkVy1KuUuWMcu9t5zk_TnL_ZwdwXBdbOFhOv5V4Gu34DluKOclEdbM6yXaQhzVJhYn6bM0MVqC-C97hiZJG69khvUceEZad63BlWOuhbTHYmsCB_rd_2LLnw34N-4mekax3dGaGV824k__XeIYdlE9pP7A6TMMqvvafEEVrJInsD25np60--8J8l08kw
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Li9swEB7ShNJe2m6f6WNxoVcna0uyrWMoDUshoYcspCejl6lpVgmNzZL99R1ZdqgJ3W5vxh69R54ZzegbgE8swu65KHGdFjJEiReHQlIacmOIQAGheeHOIRfL5PKKfl2z9QC6VHI99z0nU1luWwBRB1o8lVXFEv4ARglDzXsIo6vlt9l3f7UqDWnWJEJun6Oou7Dzt3r6ouhEvzwNk3xU25043IjN5g8ZNH8Ki-4mjw89-TmpKzlRt6fAjvca3jN40iqjwcxzzxkMjH0OD316ysMLWM9R6PmzwuB6q-uNCUrdRhc1CxqUNmiAHkr36O4yN-SB9bHl-0Aeeu93DZin3b-E1fzL6vNl2GZiCBVN0yo0aPYxVXCSZJIzHRUKrRA01UgsudHCJIKyzAiXI1wRwaXgaWxiSVzKwrgg5BUM7daaNxA4yMML6aJbVEG1ViKKJColhc64UEXCxkC7NclVi1LukmVscu8tJ3l_znI_Z2OYHIvtPEzHvwp87BY8xw3lvCTCmm29R1uIo9rE4iS9kyZGSxD_ZXfQJGnjlcywnteekY5da3DlmGsh7bHYkcCBfve_2PJHA_6Nu4leUGx3emTG-4347X-XeAePUT2k_sDpPQyrX7X5gCpYJc_bnfcbjBI7dw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+module+identification+in+protein+interaction+networks+by+interaction+patterns&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Wang%2C+Yijie&rft.au=Qian%2C+Xiaoning&rft.date=2014-01-01&rft.issn=1367-4811&rft.eissn=1367-4811&rft.volume=30&rft.issue=1&rft.spage=81&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtt569&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon