proovread : large-scale high-accuracy PacBio correction through iterative short read consensus
Motivation : Today, the base code of DNA is mostly determined through sequencing by synthesis as provided by the Illumina sequencers. Although highly accurate, resulting reads are short, making their analyses challenging. Recently, a new technology, single molecule real-time (SMRT) sequencing, was d...
Saved in:
Published in | Bioinformatics (Oxford, England) Vol. 30; no. 21; pp. 3004 - 3011 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.11.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 1367-4803 1367-4811 1367-4811 |
DOI | 10.1093/bioinformatics/btu392 |
Cover
Abstract | Motivation : Today, the base code of DNA is mostly determined through sequencing by synthesis as provided by the Illumina sequencers. Although highly accurate, resulting reads are short, making their analyses challenging. Recently, a new technology, single molecule real-time (SMRT) sequencing, was developed that could address these challenges, as it generates reads of several thousand bases. But, their broad application has been hampered by a high error rate. Therefore, hybrid approaches that use high-quality short reads to correct erroneous SMRT long reads have been developed. Still, current implementations have great demands on hardware, work only in well-defined computing infrastructures and reject a substantial amount of reads. This limits their usability considerably, especially in the case of large sequencing projects.
Results : Here we present proovread , a hybrid correction pipeline for SMRT reads, which can be flexibly adapted on existing hardware and infrastructure from a laptop to a high-performance computing cluster. On genomic and transcriptomic test cases covering Escherichia coli , Arabidopsis thaliana and human, proovread achieved accuracies up to 99.9% and outperformed the existing hybrid correction programs. Furthermore, proovread -corrected sequences were longer and the throughput was higher. Thus, proovread combines the most accurate correction results with an excellent adaptability to the available hardware. It will therefore increase the applicability and value of SMRT sequencing.
Availability and implementation: proovread is available at the following URL: http://proovread.bioapps.biozentrum.uni-wuerzburg.de
Contact : frank.foerster@biozentrum.uni-wuerzburg.de
Supplementary information: Supplementary data are available at Bioinformatics online. |
---|---|
AbstractList | Today, the base code of DNA is mostly determined through sequencing by synthesis as provided by the Illumina sequencers. Although highly accurate, resulting reads are short, making their analyses challenging. Recently, a new technology, single molecule real-time (SMRT) sequencing, was developed that could address these challenges, as it generates reads of several thousand bases. But, their broad application has been hampered by a high error rate. Therefore, hybrid approaches that use high-quality short reads to correct erroneous SMRT long reads have been developed. Still, current implementations have great demands on hardware, work only in well-defined computing infrastructures and reject a substantial amount of reads. This limits their usability considerably, especially in the case of large sequencing projects.MOTIVATIONToday, the base code of DNA is mostly determined through sequencing by synthesis as provided by the Illumina sequencers. Although highly accurate, resulting reads are short, making their analyses challenging. Recently, a new technology, single molecule real-time (SMRT) sequencing, was developed that could address these challenges, as it generates reads of several thousand bases. But, their broad application has been hampered by a high error rate. Therefore, hybrid approaches that use high-quality short reads to correct erroneous SMRT long reads have been developed. Still, current implementations have great demands on hardware, work only in well-defined computing infrastructures and reject a substantial amount of reads. This limits their usability considerably, especially in the case of large sequencing projects.Here we present proovread, a hybrid correction pipeline for SMRT reads, which can be flexibly adapted on existing hardware and infrastructure from a laptop to a high-performance computing cluster. On genomic and transcriptomic test cases covering Escherichia coli, Arabidopsis thaliana and human, proovread achieved accuracies up to 99.9% and outperformed the existing hybrid correction programs. Furthermore, proovread-corrected sequences were longer and the throughput was higher. Thus, proovread combines the most accurate correction results with an excellent adaptability to the available hardware. It will therefore increase the applicability and value of SMRT sequencing.RESULTSHere we present proovread, a hybrid correction pipeline for SMRT reads, which can be flexibly adapted on existing hardware and infrastructure from a laptop to a high-performance computing cluster. On genomic and transcriptomic test cases covering Escherichia coli, Arabidopsis thaliana and human, proovread achieved accuracies up to 99.9% and outperformed the existing hybrid correction programs. Furthermore, proovread-corrected sequences were longer and the throughput was higher. Thus, proovread combines the most accurate correction results with an excellent adaptability to the available hardware. It will therefore increase the applicability and value of SMRT sequencing.proovread is available at the following URL: http://proovread.bioapps.biozentrum.uni-wuerzburg.de.AVAILABILITY AND IMPLEMENTATIONproovread is available at the following URL: http://proovread.bioapps.biozentrum.uni-wuerzburg.de. Motivation : Today, the base code of DNA is mostly determined through sequencing by synthesis as provided by the Illumina sequencers. Although highly accurate, resulting reads are short, making their analyses challenging. Recently, a new technology, single molecule real-time (SMRT) sequencing, was developed that could address these challenges, as it generates reads of several thousand bases. But, their broad application has been hampered by a high error rate. Therefore, hybrid approaches that use high-quality short reads to correct erroneous SMRT long reads have been developed. Still, current implementations have great demands on hardware, work only in well-defined computing infrastructures and reject a substantial amount of reads. This limits their usability considerably, especially in the case of large sequencing projects. Results : Here we present proovread , a hybrid correction pipeline for SMRT reads, which can be flexibly adapted on existing hardware and infrastructure from a laptop to a high-performance computing cluster. On genomic and transcriptomic test cases covering Escherichia coli , Arabidopsis thaliana and human, proovread achieved accuracies up to 99.9% and outperformed the existing hybrid correction programs. Furthermore, proovread -corrected sequences were longer and the throughput was higher. Thus, proovread combines the most accurate correction results with an excellent adaptability to the available hardware. It will therefore increase the applicability and value of SMRT sequencing. Availability and implementation: proovread is available at the following URL: http://proovread.bioapps.biozentrum.uni-wuerzburg.de Contact : frank.foerster@biozentrum.uni-wuerzburg.de Supplementary information: Supplementary data are available at Bioinformatics online. Today, the base code of DNA is mostly determined through sequencing by synthesis as provided by the Illumina sequencers. Although highly accurate, resulting reads are short, making their analyses challenging. Recently, a new technology, single molecule real-time (SMRT) sequencing, was developed that could address these challenges, as it generates reads of several thousand bases. But, their broad application has been hampered by a high error rate. Therefore, hybrid approaches that use high-quality short reads to correct erroneous SMRT long reads have been developed. Still, current implementations have great demands on hardware, work only in well-defined computing infrastructures and reject a substantial amount of reads. This limits their usability considerably, especially in the case of large sequencing projects. Here we present proovread, a hybrid correction pipeline for SMRT reads, which can be flexibly adapted on existing hardware and infrastructure from a laptop to a high-performance computing cluster. On genomic and transcriptomic test cases covering Escherichia coli, Arabidopsis thaliana and human, proovread achieved accuracies up to 99.9% and outperformed the existing hybrid correction programs. Furthermore, proovread-corrected sequences were longer and the throughput was higher. Thus, proovread combines the most accurate correction results with an excellent adaptability to the available hardware. It will therefore increase the applicability and value of SMRT sequencing. proovread is available at the following URL: http://proovread.bioapps.biozentrum.uni-wuerzburg.de. Motivation : Today, the base code of DNA is mostly determined through sequencing by synthesis as provided by the Illumina sequencers. Although highly accurate, resulting reads are short, making their analyses challenging. Recently, a new technology, single molecule real-time (SMRT) sequencing, was developed that could address these challenges, as it generates reads of several thousand bases. But, their broad application has been hampered by a high error rate. Therefore, hybrid approaches that use high-quality short reads to correct erroneous SMRT long reads have been developed. Still, current implementations have great demands on hardware, work only in well-defined computing infrastructures and reject a substantial amount of reads. This limits their usability considerably, especially in the case of large sequencing projects. Results : Here we present proovread , a hybrid correction pipeline for SMRT reads, which can be flexibly adapted on existing hardware and infrastructure from a laptop to a high-performance computing cluster. On genomic and transcriptomic test cases covering Escherichia coli , Arabidopsis thaliana and human, proovread achieved accuracies up to 99.9% and outperformed the existing hybrid correction programs. Furthermore, proovread -corrected sequences were longer and the throughput was higher. Thus, proovread combines the most accurate correction results with an excellent adaptability to the available hardware. It will therefore increase the applicability and value of SMRT sequencing. Availability and implementation: proovread is available at the following URL: http://proovread.bioapps.biozentrum.uni-wuerzburg.de Contact : frank.foerster@biozentrum.uni-wuerzburg.de Supplementary information: Supplementary data are available at Bioinformatics online. |
Author | Hackl, Thomas Förster, Frank Hedrich, Rainer Schultz, Jörg |
Author_xml | – sequence: 1 givenname: Thomas surname: Hackl fullname: Hackl, Thomas – sequence: 2 givenname: Rainer surname: Hedrich fullname: Hedrich, Rainer – sequence: 3 givenname: Jörg surname: Schultz fullname: Schultz, Jörg – sequence: 4 givenname: Frank surname: Förster fullname: Förster, Frank |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25015988$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUcuO1DAQtNAi9gGfAPKRS1g7cewYJCRY8ZJWggNcsTqdzsQoYw-2M9L-PVlmGbFcOHVLXVVdqjpnJyEGYuypFC-ksM1l76MPY0xbKB7zZV-WxtYP2JlstKlUJ-XJcRfNKTvP-YcQohWtfsRO61bI1nbdGfu-SzHuE8HAX_IZ0oaqjDATn_xmqgBxSYA3_AvgWx85xpQIi4-BlynFZTNxXyitFvbE8xRT4b-lMIZMIS_5MXs4wpzpyd28YN_ev_t69bG6_vzh09Wb6wqVMaXCDvRgkBo5jogWyFoFmloNuh5qhUp2g2iG3hqNYw0apbKyRom9QVMbai7Y64Pubum3NCCFkmB2u-S3kG5cBO_uX4Kf3CbundLCClGvAs_vBFL8uVAubusz0jxDoLhkJ7VsrNJGmRX67O9fxyd_Ql0B7QGAKeacaDxCpHC35bn75blDeSvv1T889AVu014t-_k_7F9Ee6vB |
CitedBy_id | crossref_primary_10_1080_21505594_2023_2271688 crossref_primary_10_1038_s42003_019_0606_0 crossref_primary_10_1016_j_aquatox_2021_105953 crossref_primary_10_1038_s41467_017_00050_4 crossref_primary_10_1038_s41467_018_06910_x crossref_primary_10_1093_nar_gky1008 crossref_primary_10_1186_s12870_019_1884_x crossref_primary_10_1016_j_jaci_2017_11_038 crossref_primary_10_1007_s00299_021_02674_9 crossref_primary_10_1186_s12864_020_06979_z crossref_primary_10_1016_j_csbj_2021_11_028 crossref_primary_10_1111_pbr_13125 crossref_primary_10_7717_peerj_8992 crossref_primary_10_1186_s12864_024_10446_4 crossref_primary_10_3390_f12121773 crossref_primary_10_7717_peerj_1441 crossref_primary_10_1007_s10811_018_1624_x crossref_primary_10_1007_s40011_016_0770_7 crossref_primary_10_1186_s12864_019_6286_9 crossref_primary_10_1007_s00343_021_1248_x crossref_primary_10_3389_fgene_2019_01246 crossref_primary_10_1016_j_jgg_2021_02_010 crossref_primary_10_3389_fgene_2019_01126 crossref_primary_10_3389_fgene_2022_841957 crossref_primary_10_1016_j_biombioe_2019_02_016 crossref_primary_10_1371_journal_pone_0217593 crossref_primary_10_1111_tpj_15689 crossref_primary_10_1101_gr_214767_116 crossref_primary_10_1007_s44281_024_00031_w crossref_primary_10_1094_PDIS_04_22_0897_A crossref_primary_10_7717_peerj_cs_116 crossref_primary_10_1371_journal_pone_0232973 crossref_primary_10_1038_s41559_019_0814_5 crossref_primary_10_1126_sciadv_abo6043 crossref_primary_10_1038_nature20593 crossref_primary_10_1093_jxb_erab516 crossref_primary_10_3389_fgene_2021_681680 crossref_primary_10_1016_j_gene_2021_145996 crossref_primary_10_1073_pnas_1810053115 crossref_primary_10_1186_s13059_022_02711_0 crossref_primary_10_1021_acs_jafc_9b04069 crossref_primary_10_1093_bioinformatics_btw321 crossref_primary_10_1534_g3_119_400563 crossref_primary_10_1038_s41576_024_00718_w crossref_primary_10_3389_fgene_2019_00384 crossref_primary_10_3389_fgene_2022_813216 crossref_primary_10_1038_ncomms11706 crossref_primary_10_1080_14737159_2016_1217158 crossref_primary_10_1186_s12864_020_06894_3 crossref_primary_10_1093_gigascience_giaa051 crossref_primary_10_1111_1755_0998_12772 crossref_primary_10_1111_imb_12294 crossref_primary_10_3390_jof8030286 crossref_primary_10_1002_pld3_352 crossref_primary_10_1016_j_margen_2022_100930 crossref_primary_10_1186_s12864_018_5106_y crossref_primary_10_1007_s10725_020_00649_6 crossref_primary_10_1094_PHYTO_02_19_0054_A crossref_primary_10_1186_s13099_016_0117_1 crossref_primary_10_3389_fgene_2019_00709 crossref_primary_10_3389_fgene_2021_659962 crossref_primary_10_1186_s12859_016_1316_y crossref_primary_10_1093_jac_dkaa143 crossref_primary_10_3390_ijms24010062 crossref_primary_10_1038_s41598_018_28364_3 crossref_primary_10_1016_j_jare_2023_01_007 crossref_primary_10_3389_fpls_2020_00943 crossref_primary_10_1093_bioinformatics_btv465 crossref_primary_10_1093_nargab_lqaa037 crossref_primary_10_1515_mr_2021_0013 crossref_primary_10_1016_j_indcrop_2020_112949 crossref_primary_10_1038_s41467_022_35063_1 crossref_primary_10_1371_journal_pone_0144305 crossref_primary_10_1016_j_scitotenv_2020_141238 crossref_primary_10_3389_fpls_2020_619404 crossref_primary_10_3389_fgene_2020_00996 crossref_primary_10_1002_wrna_1631 crossref_primary_10_1186_s13015_016_0075_7 crossref_primary_10_3390_plants8090354 crossref_primary_10_1101_gr_215087_116 crossref_primary_10_1016_j_molp_2024_05_006 crossref_primary_10_1111_1462_2920_14636 crossref_primary_10_1128_MRA_00878_19 crossref_primary_10_3390_f12020180 crossref_primary_10_3389_fcimb_2021_690799 crossref_primary_10_1093_bib_bbv029 crossref_primary_10_1093_jxb_eraa351 crossref_primary_10_7717_peerj_cs_2160 crossref_primary_10_1016_j_aquabot_2023_103742 crossref_primary_10_1534_genetics_119_302411 crossref_primary_10_3389_fgene_2019_01175 crossref_primary_10_1111_tpj_15871 crossref_primary_10_3390_horticulturae9020175 crossref_primary_10_1186_s40168_017_0379_y crossref_primary_10_3389_fgene_2021_664974 crossref_primary_10_1007_s11101_015_9451_z crossref_primary_10_3389_fmicb_2019_00048 crossref_primary_10_1093_nar_gky726 crossref_primary_10_3389_fmicb_2019_02468 crossref_primary_10_1093_nar_gky724 crossref_primary_10_1093_bioinformatics_btw463 crossref_primary_10_1111_nph_17141 crossref_primary_10_3389_fvets_2022_752521 crossref_primary_10_1186_s12864_020_6769_8 crossref_primary_10_3389_fpls_2021_720670 crossref_primary_10_1093_bfgp_ely037 crossref_primary_10_1016_j_ygeno_2017_12_011 crossref_primary_10_3390_v11111046 crossref_primary_10_1016_j_ijantimicag_2018_04_012 crossref_primary_10_3390_microarrays5020012 crossref_primary_10_1111_evo_14287 crossref_primary_10_1155_2020_6678872 crossref_primary_10_1186_s12870_018_1534_8 crossref_primary_10_3389_fgene_2021_678625 crossref_primary_10_18097_BMCRM00086 crossref_primary_10_3389_fpls_2023_1158035 crossref_primary_10_1038_s41597_024_04251_7 crossref_primary_10_1007_s12298_021_01051_w crossref_primary_10_1038_s41598_021_81030_z crossref_primary_10_1016_j_mib_2014_11_014 crossref_primary_10_1093_bioinformatics_btz960 crossref_primary_10_1111_1755_0998_13454 crossref_primary_10_1111_1755_0998_13332 crossref_primary_10_1038_nature16461 crossref_primary_10_1016_j_micpath_2024_106928 crossref_primary_10_1155_2016_6329217 crossref_primary_10_1186_s12864_015_1519_z crossref_primary_10_3897_mycokeys_53_34761 crossref_primary_10_1038_s41598_021_93495_z crossref_primary_10_1186_s13059_020_02180_3 crossref_primary_10_1186_1755_8794_8_S3_S5 crossref_primary_10_5598_imafungus_2018_09_02_01 crossref_primary_10_1016_j_gene_2020_144961 crossref_primary_10_3389_fcimb_2021_638087 crossref_primary_10_1093_bib_bbz058 crossref_primary_10_1128_spectrum_04986_22 crossref_primary_10_1093_dnares_dsy014 crossref_primary_10_1016_j_jgar_2019_06_007 crossref_primary_10_1128_AAC_00588_16 crossref_primary_10_2147_IDR_S332949 crossref_primary_10_1038_celldisc_2017_31 crossref_primary_10_1038_s42003_022_04074_5 crossref_primary_10_1093_gigascience_giy138 crossref_primary_10_7554_eLife_49658 crossref_primary_10_1093_bfgp_elad026 crossref_primary_10_1038_ismej_2017_101 crossref_primary_10_1093_gigascience_giy141 crossref_primary_10_1038_s41467_019_08734_9 crossref_primary_10_1534_g3_118_200154 crossref_primary_10_1094_MPMI_35_1 crossref_primary_10_1186_s12862_024_02331_1 crossref_primary_10_52586_5004 crossref_primary_10_1038_s41598_021_92494_4 crossref_primary_10_1093_dnares_dsy027 crossref_primary_10_2174_1574893614666190410155603 crossref_primary_10_1016_j_rsma_2024_103728 crossref_primary_10_3390_ijms24021265 crossref_primary_10_3389_fmicb_2018_03318 crossref_primary_10_3390_mi14020459 crossref_primary_10_1128_genomeA_00563_15 crossref_primary_10_3390_microorganisms8010102 crossref_primary_10_1093_gigascience_giz116 crossref_primary_10_1093_gigascience_giy029 crossref_primary_10_1371_journal_ppat_1007901 crossref_primary_10_3390_plants12234006 crossref_primary_10_3390_f12050571 crossref_primary_10_1186_s12864_021_07498_1 crossref_primary_10_1186_s40168_018_0614_1 crossref_primary_10_1093_gigascience_giy146 crossref_primary_10_1016_j_gene_2018_10_026 crossref_primary_10_1002_eco_2721 crossref_primary_10_1002_wcms_1239 crossref_primary_10_2147_IDR_S462670 crossref_primary_10_1038_s41467_019_09142_9 crossref_primary_10_1093_gbe_evab281 crossref_primary_10_1007_s00344_021_10347_w crossref_primary_10_1534_g3_118_200287 crossref_primary_10_1186_s13073_023_01194_3 crossref_primary_10_1080_23802359_2018_1495119 crossref_primary_10_1016_j_cropd_2022_01_001 crossref_primary_10_1016_j_cub_2017_11_060 crossref_primary_10_1093_jxb_erab484 crossref_primary_10_1038_s41589_019_0446_8 crossref_primary_10_1038_s41598_018_34812_x crossref_primary_10_1186_s12864_017_3757_8 crossref_primary_10_48130_GR_2023_0024 crossref_primary_10_1007_s00438_019_01635_y crossref_primary_10_1073_pnas_2201113119 crossref_primary_10_1093_bib_bbad275 crossref_primary_10_1016_j_algal_2023_103222 crossref_primary_10_1038_s41598_020_66582_w crossref_primary_10_1007_s10462_020_09951_1 crossref_primary_10_1016_j_ijbiomac_2020_01_029 crossref_primary_10_1038_s41598_020_71178_5 crossref_primary_10_1093_bib_bbab405 crossref_primary_10_3389_fmicb_2021_676113 crossref_primary_10_1093_nargab_lqab082 crossref_primary_10_3389_fgene_2020_00462 crossref_primary_10_3389_fpls_2022_1000469 crossref_primary_10_1038_s41438_019_0218_3 crossref_primary_10_1038_s41467_022_34381_8 crossref_primary_10_1186_s12864_015_1930_5 crossref_primary_10_3389_fgene_2020_00580 crossref_primary_10_1038_s41598_018_35066_3 crossref_primary_10_1166_jctn_2020_9630 crossref_primary_10_7717_peerj_2016 crossref_primary_10_1186_s12870_019_2193_0 crossref_primary_10_3389_fmars_2021_753222 crossref_primary_10_3389_fgene_2023_1064624 crossref_primary_10_1139_gen_2020_0095 crossref_primary_10_3390_ijms231911420 crossref_primary_10_1111_1755_0998_13257 crossref_primary_10_1534_g3_119_400710 crossref_primary_10_1186_s12864_015_2257_y crossref_primary_10_1186_s12864_020_07227_0 crossref_primary_10_1094_MPMI_04_21_0075_R crossref_primary_10_3389_fmicb_2019_02840 crossref_primary_10_3390_genes10010044 crossref_primary_10_3389_fmars_2021_688601 crossref_primary_10_1038_s41597_024_03119_0 crossref_primary_10_1186_s12870_019_2133_z crossref_primary_10_7717_peerj_7933 crossref_primary_10_1038_srep31900 crossref_primary_10_1186_s12864_019_5709_y crossref_primary_10_3390_plants8080267 crossref_primary_10_1038_srep31347 crossref_primary_10_1093_dnares_dsab005 crossref_primary_10_1186_s13059_019_1885_y crossref_primary_10_1007_s11105_020_01245_8 crossref_primary_10_1126_science_aax1318 crossref_primary_10_1093_nar_gkz953 crossref_primary_10_3343_alm_2021_41_5_489 crossref_primary_10_1007_s11295_020_01448_w crossref_primary_10_3390_ijms21051600 crossref_primary_10_1093_gigascience_giy063 crossref_primary_10_1186_s12864_020_6507_2 crossref_primary_10_3389_fgene_2020_00249 crossref_primary_10_1093_gbe_evz159 crossref_primary_10_1128_genomeA_01550_15 crossref_primary_10_1038_s41438_021_00666_0 crossref_primary_10_1016_j_jip_2020_107475 crossref_primary_10_1186_s12864_021_07416_5 crossref_primary_10_1101_gr_274266_120 crossref_primary_10_1016_j_indcrop_2020_112544 crossref_primary_10_2217_fmb_2020_0026 crossref_primary_10_1093_gigascience_giae019 crossref_primary_10_1145_3340286 crossref_primary_10_1186_s40168_019_0710_x crossref_primary_10_1093_bib_bbw096 crossref_primary_10_1186_s12870_020_02608_9 crossref_primary_10_1038_s41586_018_0108_0 crossref_primary_10_1093_bioinformatics_btx489 crossref_primary_10_1016_j_margen_2019_04_003 crossref_primary_10_1038_s41598_019_48824_8 crossref_primary_10_1038_s41467_022_29114_w crossref_primary_10_1186_s12864_019_5758_2 crossref_primary_10_1186_s40793_022_00419_z crossref_primary_10_3389_fmicb_2022_976918 crossref_primary_10_3389_fphys_2018_01679 crossref_primary_10_1128_MRA_01558_19 crossref_primary_10_1186_s12864_017_4430_y crossref_primary_10_1186_s12864_018_5272_y crossref_primary_10_1038_s41597_020_0363_4 crossref_primary_10_1186_s12864_018_5041_y crossref_primary_10_1093_hr_uhab036 crossref_primary_10_1111_tpj_14179 crossref_primary_10_1038_s41597_024_02962_5 crossref_primary_10_1109_TCBB_2017_2780832 crossref_primary_10_1111_tpj_14299 crossref_primary_10_1186_s12870_019_2119_x crossref_primary_10_1016_j_scienta_2019_108576 crossref_primary_10_24072_pcjournal_128 crossref_primary_10_3389_fpls_2023_1103857 crossref_primary_10_1007_s00468_021_02252_2 crossref_primary_10_3389_fmicb_2018_00478 crossref_primary_10_1111_1462_2920_16101 crossref_primary_10_1093_bioinformatics_btv415 crossref_primary_10_1038_s41438_019_0126_6 crossref_primary_10_1111_pbi_13586 crossref_primary_10_1101_gr_235119_118 crossref_primary_10_3389_fendo_2019_00011 crossref_primary_10_1038_s41388_018_0644_y crossref_primary_10_1093_gbe_evaa115 crossref_primary_10_1093_gbe_evaa236 crossref_primary_10_7717_peerj_17731 crossref_primary_10_3389_fmicb_2019_02508 crossref_primary_10_1002_bit_26722 crossref_primary_10_1002_mbo3_899 crossref_primary_10_3389_fmicb_2025_1561624 crossref_primary_10_1094_MPMI_04_18_0107_A crossref_primary_10_1186_s13059_015_0729_7 crossref_primary_10_1186_s12864_019_6163_6 crossref_primary_10_1101_gr_213405_116 crossref_primary_10_3389_fgene_2023_1166975 crossref_primary_10_1038_sdata_2015_14 crossref_primary_10_3390_f9120765 crossref_primary_10_1007_s10126_022_10163_7 crossref_primary_10_1007_s11103_018_0813_y crossref_primary_10_1007_s00253_020_10698_6 crossref_primary_10_1186_s13059_018_1605_z crossref_primary_10_1038_s41598_017_14469_8 crossref_primary_10_1093_bioinformatics_btab017 crossref_primary_10_1093_bioinformatics_btz206 crossref_primary_10_3389_fpls_2023_1271084 crossref_primary_10_1139_gen_2015_0175 crossref_primary_10_1038_s41598_023_38402_4 crossref_primary_10_1093_molbev_msab141 crossref_primary_10_1534_g3_117_300467 crossref_primary_10_1534_g3_120_401440 crossref_primary_10_3390_genes9010043 crossref_primary_10_1007_s11105_020_01193_3 crossref_primary_10_1534_g3_120_401434 crossref_primary_10_3390_fishes6040082 crossref_primary_10_1186_s12864_020_07008_9 crossref_primary_10_1186_s43008_022_00098_y crossref_primary_10_1186_s12864_020_6764_0 crossref_primary_10_1038_s41559_018_0719_8 crossref_primary_10_1016_j_fsi_2022_01_042 crossref_primary_10_7717_peerj_12940 crossref_primary_10_1186_s12941_022_00502_w crossref_primary_10_1111_1755_0998_13142 crossref_primary_10_1186_s12870_021_03133_z crossref_primary_10_1016_j_indcrop_2023_117470 crossref_primary_10_1093_gbe_evz198 crossref_primary_10_1186_s12864_021_07873_y crossref_primary_10_1016_j_ygeno_2021_01_009 crossref_primary_10_1186_s12870_019_2098_y crossref_primary_10_3389_fgene_2021_656137 crossref_primary_10_3835_plantgenome2019_04_0032 crossref_primary_10_3390_f10111043 crossref_primary_10_1534_g3_120_401309 crossref_primary_10_1111_zsc_12477 crossref_primary_10_1038_s41598_019_42184_z crossref_primary_10_1080_14772000_2015_1099575 crossref_primary_10_1111_tpj_14120 crossref_primary_10_7717_peerj_12939 crossref_primary_10_1038_s41437_018_0070_5 crossref_primary_10_1038_s41597_019_0238_8 crossref_primary_10_1038_s41467_020_20340_8 crossref_primary_10_1071_MF24227 crossref_primary_10_1186_s12859_017_1610_3 crossref_primary_10_1016_j_xplc_2022_100426 crossref_primary_10_1002_jobm_202000668 crossref_primary_10_1038_s41477_021_00925_x crossref_primary_10_1038_s41587_021_01108_x crossref_primary_10_1016_j_fm_2023_104327 crossref_primary_10_1093_pcp_pcaa013 crossref_primary_10_1038_s41597_024_03837_5 crossref_primary_10_1038_s41467_019_13037_0 crossref_primary_10_1016_j_plaphy_2019_11_015 crossref_primary_10_1159_000517057 crossref_primary_10_1186_s12915_020_00873_6 crossref_primary_10_1093_molbev_msz116 crossref_primary_10_3389_fpls_2022_818458 crossref_primary_10_1186_s12864_019_5514_7 crossref_primary_10_1016_j_celrep_2022_110638 crossref_primary_10_1016_j_cub_2017_11_004 crossref_primary_10_1016_j_indcrop_2021_113865 crossref_primary_10_3390_life11121377 |
Cites_doi | 10.1093/bioinformatics/btr046 10.1126/science.287.5461.2196 10.1186/gb-2011-12-2-r18 10.1093/bioinformatics/btn548 10.1126/science.1162986 10.1371/journal.pone.0046679 10.1186/1471-2164-13-375 10.1038/nmeth.1923 10.1186/2049-2618-1-10 10.1093/bioinformatics/bti310 10.1093/nar/gkq543 10.1101/gr.141705.112 10.1093/nar/gkn425 10.1186/gb-2013-14-6-405 10.1186/gb-2010-11-11-r116 10.1186/1471-2105-6-31 10.1371/journal.pone.0068824 10.1093/bioinformatics/btp352 10.1093/bioinformatics/bts649 10.1073/pnas.1017351108 10.1038/nmeth.2474 10.1101/gr.097261.109 10.1186/gb-2013-14-5-r51 10.1038/nbt.2280 |
ContentType | Journal Article |
Copyright | The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com. The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2014 |
Copyright_xml | – notice: The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com. – notice: The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2014 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/bioinformatics/btu392 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1367-4811 |
EndPage | 3011 |
ExternalDocumentID | PMC4609002 25015988 10_1093_bioinformatics_btu392 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -E4 -~X .2P .DC .I3 0R~ 1TH 23N 2WC 4.4 48X 53G 5GY 5WA 70D AAIJN AAIMJ AAJKP AAJQQ AAKPC AAMDB AAMVS AAOGV AAPQZ AAPXW AAUQX AAVAP AAVLN AAYXX ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABPTD ABQLI ABWST ABXVV ABZBJ ACGFS ACIWK ACPRK ACUFI ACUXJ ACYTK ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADMLS ADOCK ADPDF ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIJHB AJEEA AJEUX AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC AMNDL APIBT APWMN ARIXL ASPBG AVWKF AXUDD AYOIW AZVOD BAWUL BAYMD BHONS BQDIO BQUQU BSWAC BTQHN C45 CDBKE CITATION CS3 CZ4 DAKXR DIK DILTD DU5 D~K EBD EBS EE~ EJD EMOBN F5P F9B FEDTE FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ KAQDR KOP KQ8 KSI KSN M-Z MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- NVLIB O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 RNS ROL RPM RUSNO RW1 RXO SV3 TEORI TJP TLC TOX TR2 W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ~91 ~KM CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c477t-c8a6d7ce31ffcc9ae994a6e56a62d24c418d03db976cf2a6c14912c1cb7c727e3 |
ISSN | 1367-4803 1367-4811 |
IngestDate | Thu Aug 21 14:29:46 EDT 2025 Thu Jul 10 19:24:06 EDT 2025 Mon Jul 21 05:29:00 EDT 2025 Tue Jul 01 03:27:11 EDT 2025 Thu Apr 24 23:11:08 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
License | The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c477t-c8a6d7ce31ffcc9ae994a6e56a62d24c418d03db976cf2a6c14912c1cb7c727e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Associate Editor: Inanc Birol |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/4609002 |
PMID | 25015988 |
PQID | 1613946747 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4609002 proquest_miscellaneous_1613946747 pubmed_primary_25015988 crossref_primary_10_1093_bioinformatics_btu392 crossref_citationtrail_10_1093_bioinformatics_btu392 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-11-01 |
PublicationDateYYYYMMDD | 2014-11-01 |
PublicationDate_xml | – month: 11 year: 2014 text: 2014-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioinformatics (Oxford, England) |
PublicationTitleAlternate | Bioinformatics |
PublicationYear | 2014 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Jette (2023012711573655900_btu392-B11) 2002 Brown (2023012711573655900_btu392-B3) 2012 Wu (2023012711573655900_btu392-B26) 2005; 21 Roberts (2023012711573655900_btu392-B21) 2013; 14 Chin (2023012711573655900_btu392-B5) 2013; 10 David (2023012711573655900_btu392-B6) 2011; 27 Koren (2023012711573655900_btu392-B13) 2012; 30 Carneiro (2023012711573655900_btu392-B4) 2012; 13 Ono (2023012711573655900_btu392-B20) 2013; 29 Eid (2023012711573655900_btu392-B8) 2009; 323 Slater (2023012711573655900_btu392-B24) 2005; 6 Gnerre (2023012711573655900_btu392-B10) 2011; 108 Kelley (2023012711573655900_btu392-B12) 2010; 11 Miller (2023012711573655900_btu392-B18) 2008; 24 Au (2023012711573655900_btu392-B2) 2012; 7 Shin (2023012711573655900_btu392-B23) 2013; 8 Loomis (2023012711573655900_btu392-B17) 2013; 23 Li (2023012711573655900_btu392-B15) 2009; 25 Aird (2023012711573655900_btu392-B1) 2011; 12 Langmead (2023012711573655900_btu392-B14) 2012; 9 Travers (2023012711573655900_btu392-B25) 2010; 38 Fichot (2023012711573655900_btu392-B9) 2013; 1 Dohm (2023012711573655900_btu392-B7) 2008; 36 Li (2023012711573655900_btu392-B16) 2010; 20 Myers (2023012711573655900_btu392-B19) 2000; 287 Ross (2023012711573655900_btu392-B22) 2013; 14 20019144 - Genome Res. 2010 Feb;20(2):265-72 18952627 - Bioinformatics. 2008 Dec 15;24(24):2818-24 15713233 - BMC Bioinformatics. 2005;6:31 23644548 - Nat Methods. 2013 Jun;10(6):563-9 19023044 - Science. 2009 Jan 2;323(5910):133-8 23822731 - Genome Biol. 2013;14(7):405 20571086 - Nucleic Acids Res. 2010 Aug;38(15):e159 10731133 - Science. 2000 Mar 24;287(5461):2196-204 23718773 - Genome Biol. 2013;14(5):R51 21338519 - Genome Biol. 2011;12(2):R18 22750884 - Nat Biotechnol. 2012 Jul;30(7):693-700 22863213 - BMC Genomics. 2012;13:375 24450498 - Microbiome. 2013 Mar 04;1(1):10 19505943 - Bioinformatics. 2009 Aug 15;25(16):2078-9 18660515 - Nucleic Acids Res. 2008 Sep;36(16):e105 23894349 - PLoS One. 2013;8(7):e68824 22388286 - Nat Methods. 2012 Apr;9(4):357-9 21114842 - Genome Biol. 2010;11(11):R116 23056399 - PLoS One. 2012;7(10):e46679 21187386 - Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1513-8 15728110 - Bioinformatics. 2005 May 1;21(9):1859-75 23129296 - Bioinformatics. 2013 Jan 1;29(1):119-21 23064752 - Genome Res. 2013 Jan;23(1):121-8 21278192 - Bioinformatics. 2011 Apr 1;27(7):1011-2 |
References_xml | – volume: 27 start-page: 1011 year: 2011 ident: 2023012711573655900_btu392-B6 article-title: Shrimp2: sensitive yet practical short read mapping publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr046 – volume: 287 start-page: 2196 year: 2000 ident: 2023012711573655900_btu392-B19 article-title: A whole-genome assembly of drosophila publication-title: Science doi: 10.1126/science.287.5461.2196 – volume: 12 start-page: R18 year: 2011 ident: 2023012711573655900_btu392-B1 article-title: Analyzing and minimizing pcr amplification bias in illumina sequencing libraries publication-title: Genome Biol. doi: 10.1186/gb-2011-12-2-r18 – volume: 24 start-page: 2818 year: 2008 ident: 2023012711573655900_btu392-B18 article-title: Aggressive assembly of pyrosequencing reads with mates publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn548 – volume: 323 start-page: 133 year: 2009 ident: 2023012711573655900_btu392-B8 article-title: Real-time dna sequencing from single polymerase molecules publication-title: Science doi: 10.1126/science.1162986 – volume: 7 start-page: e46679 year: 2012 ident: 2023012711573655900_btu392-B2 article-title: Improving pacbio long read accuracy by short read alignment publication-title: PLoS One doi: 10.1371/journal.pone.0046679 – volume: 13 start-page: 375 year: 2012 ident: 2023012711573655900_btu392-B4 article-title: Pacific biosciences sequencing technology for genotyping and variation discovery in human data publication-title: BMC Genomics doi: 10.1186/1471-2164-13-375 – volume: 9 start-page: 357 year: 2012 ident: 2023012711573655900_btu392-B14 article-title: Fast gapped-read alignment with bowtie 2 publication-title: Nat. Methods doi: 10.1038/nmeth.1923 – volume: 1 start-page: 10 year: 2013 ident: 2023012711573655900_btu392-B9 article-title: Microbial phylogenetic profiling with the pacific biosciences sequencing platform publication-title: Microbiome doi: 10.1186/2049-2618-1-10 – volume: 21 start-page: 1859 year: 2005 ident: 2023012711573655900_btu392-B26 article-title: Gmap: a genomic mapping and alignment program for mrna and est sequences publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti310 – volume: 38 start-page: e159 year: 2010 ident: 2023012711573655900_btu392-B25 article-title: A flexible and efficient template format for circular consensus sequencing and snp detection publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq543 – start-page: 44 volume-title: In Lecture Notes in Computer Science: Proceedings of Job Scheduling Strategies for Parallel Processing (JSSPP) 2003 year: 2002 ident: 2023012711573655900_btu392-B11 article-title: Slurm: simple linux utility for resource management – volume: 23 start-page: 121 year: 2013 ident: 2023012711573655900_btu392-B17 article-title: Sequencing the unsequenceable: expanded cgg-repeat alleles of the fragile x gene publication-title: Genome Res. doi: 10.1101/gr.141705.112 – volume: 36 start-page: e105 year: 2008 ident: 2023012711573655900_btu392-B7 article-title: Substantial biases in ultra-short read data sets from high-throughput dna sequencing publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn425 – volume: 14 start-page: 405 year: 2013 ident: 2023012711573655900_btu392-B21 article-title: The advantages of smrt sequencing publication-title: Genome Biol. doi: 10.1186/gb-2013-14-6-405 – volume: 11 start-page: R116 year: 2010 ident: 2023012711573655900_btu392-B12 article-title: Quake: quality-aware detection and correction of sequencing errors publication-title: Genome Biol. doi: 10.1186/gb-2010-11-11-r116 – volume: 6 start-page: 31 year: 2005 ident: 2023012711573655900_btu392-B24 article-title: Automated generation of heuristics for biological sequence comparison publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-6-31 – volume: 8 start-page: e68824 year: 2013 ident: 2023012711573655900_btu392-B23 article-title: Advantages of single-molecule real-time sequencing in high-gc content genomes publication-title: PLoS One doi: 10.1371/journal.pone.0068824 – volume: 25 start-page: 2078 year: 2009 ident: 2023012711573655900_btu392-B15 article-title: The sequence alignment/map format and samtools publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp352 – volume: 29 start-page: 119 year: 2013 ident: 2023012711573655900_btu392-B20 article-title: Pbsim: Pacbio reads simulator–toward accurate genome assembly publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts649 – volume: 108 start-page: 1513 year: 2011 ident: 2023012711573655900_btu392-B10 article-title: High-quality draft assemblies of mammalian genomes from massively parallel sequence data publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1017351108 – volume: 10 start-page: 563 year: 2013 ident: 2023012711573655900_btu392-B5 article-title: Nonhybrid, finished microbial genome assemblies from long-read smrt sequencing data publication-title: Nat. Methods doi: 10.1038/nmeth.2474 – volume: 20 start-page: 265 year: 2010 ident: 2023012711573655900_btu392-B16 article-title: De novo assembly of human genomes with massively parallel short read sequencing publication-title: Genome Res doi: 10.1101/gr.097261.109 – volume: 14 start-page: R51 year: 2013 ident: 2023012711573655900_btu392-B22 article-title: Characterizing and measuring bias in sequence data publication-title: Genome Biol. doi: 10.1186/gb-2013-14-5-r51 – year: 2012 ident: 2023012711573655900_btu392-B3 article-title: A reference-free algorithm for computational normalization of shotgun sequencing data – volume: 30 start-page: 693 year: 2012 ident: 2023012711573655900_btu392-B13 article-title: Hybrid error correction and de novo assembly of single-molecule sequencing reads publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2280 – reference: 22863213 - BMC Genomics. 2012;13:375 – reference: 21338519 - Genome Biol. 2011;12(2):R18 – reference: 18660515 - Nucleic Acids Res. 2008 Sep;36(16):e105 – reference: 23064752 - Genome Res. 2013 Jan;23(1):121-8 – reference: 21114842 - Genome Biol. 2010;11(11):R116 – reference: 19023044 - Science. 2009 Jan 2;323(5910):133-8 – reference: 20571086 - Nucleic Acids Res. 2010 Aug;38(15):e159 – reference: 15713233 - BMC Bioinformatics. 2005;6:31 – reference: 21278192 - Bioinformatics. 2011 Apr 1;27(7):1011-2 – reference: 23894349 - PLoS One. 2013;8(7):e68824 – reference: 21187386 - Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1513-8 – reference: 23129296 - Bioinformatics. 2013 Jan 1;29(1):119-21 – reference: 23718773 - Genome Biol. 2013;14(5):R51 – reference: 15728110 - Bioinformatics. 2005 May 1;21(9):1859-75 – reference: 23056399 - PLoS One. 2012;7(10):e46679 – reference: 22750884 - Nat Biotechnol. 2012 Jul;30(7):693-700 – reference: 20019144 - Genome Res. 2010 Feb;20(2):265-72 – reference: 23822731 - Genome Biol. 2013;14(7):405 – reference: 19505943 - Bioinformatics. 2009 Aug 15;25(16):2078-9 – reference: 10731133 - Science. 2000 Mar 24;287(5461):2196-204 – reference: 23644548 - Nat Methods. 2013 Jun;10(6):563-9 – reference: 22388286 - Nat Methods. 2012 Apr;9(4):357-9 – reference: 18952627 - Bioinformatics. 2008 Dec 15;24(24):2818-24 – reference: 24450498 - Microbiome. 2013 Mar 04;1(1):10 |
SSID | ssj0005056 |
Score | 2.6097975 |
Snippet | Motivation : Today, the base code of DNA is mostly determined through sequencing by synthesis as provided by the Illumina sequencers. Although highly accurate,... Today, the base code of DNA is mostly determined through sequencing by synthesis as provided by the Illumina sequencers. Although highly accurate, resulting... Motivation : Today, the base code of DNA is mostly determined through sequencing by synthesis as provided by the Illumina sequencers. Although highly accurate,... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 3004 |
SubjectTerms | Arabidopsis - genetics Base Sequence Consensus Sequence Escherichia coli - genetics Gene Expression Profiling Genomics Humans Original Papers Sequence Analysis, DNA - methods Software |
Title | proovread : large-scale high-accuracy PacBio correction through iterative short read consensus |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25015988 https://www.proquest.com/docview/1613946747 https://pubmed.ncbi.nlm.nih.gov/PMC4609002 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bjtMwELXKIiReEHfKTUbircpuEztOwhuLQGURCIldaV9QlEySbUVJVk2CgA_gu5mxnTQpi7i8RJVTO4rPdDq2Z85h7KlK_JRqHJ0gF9KRsvDJDwZOEfqFyiORSk1f_PadWpzIo1P_dDL5Mchaapt0H75fWFfyP6hiG-JKVbL_gGw_KDbgZ8QXr4gwXv8KY_R-1ZcNoYTr-jXldDs1zjmxCJ8tnQSg3ZCa-_sEDlfVDEiIwyiDd-o8hlOZkofqJcbhMxqLEtFrEsCoRwe-q8pyrGpeZyIp_drlxVshkMGmwiKBT-ud_CO94Zqh29UbOXSutE0M_gDLdq2VZWdHdHR_qCzvFlmWbegkRLTM_HCzwpW2ak__1xgHK4hnPbQO1npgezJjLM0UTFt_SnxgFzp6Q4KVjt6dGppWGG29AfznnzX-GOxh7GZEBHc4trtbl9hlL8AYjILr12-2qUIYJXbVX5E4GD_1wDyTWKXtKOMQ55d1y2767SCeOb7OrtmFCH9urOoGm-TlTXbFSJN-u8U-9rb1jA8si48sixvL4lvL4tayeG9ZXFsWp5F4b1m32cmrl8cvFo6V4nBABkHjQJioLIBcuEUBQITukUxU7qtEeZknQbphNhdZisEtFF6iABfergcupAFghJyLO2yvrMr8HuMSIi-EVM1Tl4qssaMMU1y2ulGBrRBNmexmLwbLU09yKevY5EuIeDz_sZn_Kdvvu50bopY_dXjSQROjS6VzsqTMq7aOcREkIlLhCabsroGqH7LDeMqCEYj9F4iufXynXC01bbtU8wjjj_u_HfMBu7r9zTxke82mzR9hyNukj7U9_gQPF7V_ |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=proovread%3A+large-scale+high-accuracy+PacBio+correction+through+iterative+short+read+consensus&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Hackl%2C+Thomas&rft.au=Hedrich%2C+Rainer&rft.au=Schultz%2C+J%C3%B6rg&rft.au=F%C3%B6rster%2C+Frank&rft.date=2014-11-01&rft.eissn=1367-4811&rft.volume=30&rft.issue=21&rft.spage=3004&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtu392&rft_id=info%3Apmid%2F25015988&rft.externalDocID=25015988 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon |