proovread : large-scale high-accuracy PacBio correction through iterative short read consensus

Motivation : Today, the base code of DNA is mostly determined through sequencing by synthesis as provided by the Illumina sequencers. Although highly accurate, resulting reads are short, making their analyses challenging. Recently, a new technology, single molecule real-time (SMRT) sequencing, was d...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics (Oxford, England) Vol. 30; no. 21; pp. 3004 - 3011
Main Authors Hackl, Thomas, Hedrich, Rainer, Schultz, Jörg, Förster, Frank
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.11.2014
Subjects
Online AccessGet full text
ISSN1367-4803
1367-4811
1367-4811
DOI10.1093/bioinformatics/btu392

Cover

Abstract Motivation : Today, the base code of DNA is mostly determined through sequencing by synthesis as provided by the Illumina sequencers. Although highly accurate, resulting reads are short, making their analyses challenging. Recently, a new technology, single molecule real-time (SMRT) sequencing, was developed that could address these challenges, as it generates reads of several thousand bases. But, their broad application has been hampered by a high error rate. Therefore, hybrid approaches that use high-quality short reads to correct erroneous SMRT long reads have been developed. Still, current implementations have great demands on hardware, work only in well-defined computing infrastructures and reject a substantial amount of reads. This limits their usability considerably, especially in the case of large sequencing projects. Results : Here we present proovread , a hybrid correction pipeline for SMRT reads, which can be flexibly adapted on existing hardware and infrastructure from a laptop to a high-performance computing cluster. On genomic and transcriptomic test cases covering Escherichia coli , Arabidopsis thaliana and human, proovread achieved accuracies up to 99.9% and outperformed the existing hybrid correction programs. Furthermore, proovread -corrected sequences were longer and the throughput was higher. Thus, proovread combines the most accurate correction results with an excellent adaptability to the available hardware. It will therefore increase the applicability and value of SMRT sequencing. Availability and implementation:  proovread is available at the following URL: http://proovread.bioapps.biozentrum.uni-wuerzburg.de Contact : frank.foerster@biozentrum.uni-wuerzburg.de Supplementary information:  Supplementary data are available at Bioinformatics online.
AbstractList Today, the base code of DNA is mostly determined through sequencing by synthesis as provided by the Illumina sequencers. Although highly accurate, resulting reads are short, making their analyses challenging. Recently, a new technology, single molecule real-time (SMRT) sequencing, was developed that could address these challenges, as it generates reads of several thousand bases. But, their broad application has been hampered by a high error rate. Therefore, hybrid approaches that use high-quality short reads to correct erroneous SMRT long reads have been developed. Still, current implementations have great demands on hardware, work only in well-defined computing infrastructures and reject a substantial amount of reads. This limits their usability considerably, especially in the case of large sequencing projects.MOTIVATIONToday, the base code of DNA is mostly determined through sequencing by synthesis as provided by the Illumina sequencers. Although highly accurate, resulting reads are short, making their analyses challenging. Recently, a new technology, single molecule real-time (SMRT) sequencing, was developed that could address these challenges, as it generates reads of several thousand bases. But, their broad application has been hampered by a high error rate. Therefore, hybrid approaches that use high-quality short reads to correct erroneous SMRT long reads have been developed. Still, current implementations have great demands on hardware, work only in well-defined computing infrastructures and reject a substantial amount of reads. This limits their usability considerably, especially in the case of large sequencing projects.Here we present proovread, a hybrid correction pipeline for SMRT reads, which can be flexibly adapted on existing hardware and infrastructure from a laptop to a high-performance computing cluster. On genomic and transcriptomic test cases covering Escherichia coli, Arabidopsis thaliana and human, proovread achieved accuracies up to 99.9% and outperformed the existing hybrid correction programs. Furthermore, proovread-corrected sequences were longer and the throughput was higher. Thus, proovread combines the most accurate correction results with an excellent adaptability to the available hardware. It will therefore increase the applicability and value of SMRT sequencing.RESULTSHere we present proovread, a hybrid correction pipeline for SMRT reads, which can be flexibly adapted on existing hardware and infrastructure from a laptop to a high-performance computing cluster. On genomic and transcriptomic test cases covering Escherichia coli, Arabidopsis thaliana and human, proovread achieved accuracies up to 99.9% and outperformed the existing hybrid correction programs. Furthermore, proovread-corrected sequences were longer and the throughput was higher. Thus, proovread combines the most accurate correction results with an excellent adaptability to the available hardware. It will therefore increase the applicability and value of SMRT sequencing.proovread is available at the following URL: http://proovread.bioapps.biozentrum.uni-wuerzburg.de.AVAILABILITY AND IMPLEMENTATIONproovread is available at the following URL: http://proovread.bioapps.biozentrum.uni-wuerzburg.de.
Motivation : Today, the base code of DNA is mostly determined through sequencing by synthesis as provided by the Illumina sequencers. Although highly accurate, resulting reads are short, making their analyses challenging. Recently, a new technology, single molecule real-time (SMRT) sequencing, was developed that could address these challenges, as it generates reads of several thousand bases. But, their broad application has been hampered by a high error rate. Therefore, hybrid approaches that use high-quality short reads to correct erroneous SMRT long reads have been developed. Still, current implementations have great demands on hardware, work only in well-defined computing infrastructures and reject a substantial amount of reads. This limits their usability considerably, especially in the case of large sequencing projects. Results : Here we present proovread , a hybrid correction pipeline for SMRT reads, which can be flexibly adapted on existing hardware and infrastructure from a laptop to a high-performance computing cluster. On genomic and transcriptomic test cases covering Escherichia coli , Arabidopsis thaliana and human, proovread achieved accuracies up to 99.9% and outperformed the existing hybrid correction programs. Furthermore, proovread -corrected sequences were longer and the throughput was higher. Thus, proovread combines the most accurate correction results with an excellent adaptability to the available hardware. It will therefore increase the applicability and value of SMRT sequencing. Availability and implementation: proovread is available at the following URL: http://proovread.bioapps.biozentrum.uni-wuerzburg.de Contact : frank.foerster@biozentrum.uni-wuerzburg.de Supplementary information: Supplementary data are available at Bioinformatics online.
Today, the base code of DNA is mostly determined through sequencing by synthesis as provided by the Illumina sequencers. Although highly accurate, resulting reads are short, making their analyses challenging. Recently, a new technology, single molecule real-time (SMRT) sequencing, was developed that could address these challenges, as it generates reads of several thousand bases. But, their broad application has been hampered by a high error rate. Therefore, hybrid approaches that use high-quality short reads to correct erroneous SMRT long reads have been developed. Still, current implementations have great demands on hardware, work only in well-defined computing infrastructures and reject a substantial amount of reads. This limits their usability considerably, especially in the case of large sequencing projects. Here we present proovread, a hybrid correction pipeline for SMRT reads, which can be flexibly adapted on existing hardware and infrastructure from a laptop to a high-performance computing cluster. On genomic and transcriptomic test cases covering Escherichia coli, Arabidopsis thaliana and human, proovread achieved accuracies up to 99.9% and outperformed the existing hybrid correction programs. Furthermore, proovread-corrected sequences were longer and the throughput was higher. Thus, proovread combines the most accurate correction results with an excellent adaptability to the available hardware. It will therefore increase the applicability and value of SMRT sequencing. proovread is available at the following URL: http://proovread.bioapps.biozentrum.uni-wuerzburg.de.
Motivation : Today, the base code of DNA is mostly determined through sequencing by synthesis as provided by the Illumina sequencers. Although highly accurate, resulting reads are short, making their analyses challenging. Recently, a new technology, single molecule real-time (SMRT) sequencing, was developed that could address these challenges, as it generates reads of several thousand bases. But, their broad application has been hampered by a high error rate. Therefore, hybrid approaches that use high-quality short reads to correct erroneous SMRT long reads have been developed. Still, current implementations have great demands on hardware, work only in well-defined computing infrastructures and reject a substantial amount of reads. This limits their usability considerably, especially in the case of large sequencing projects. Results : Here we present proovread , a hybrid correction pipeline for SMRT reads, which can be flexibly adapted on existing hardware and infrastructure from a laptop to a high-performance computing cluster. On genomic and transcriptomic test cases covering Escherichia coli , Arabidopsis thaliana and human, proovread achieved accuracies up to 99.9% and outperformed the existing hybrid correction programs. Furthermore, proovread -corrected sequences were longer and the throughput was higher. Thus, proovread combines the most accurate correction results with an excellent adaptability to the available hardware. It will therefore increase the applicability and value of SMRT sequencing. Availability and implementation:  proovread is available at the following URL: http://proovread.bioapps.biozentrum.uni-wuerzburg.de Contact : frank.foerster@biozentrum.uni-wuerzburg.de Supplementary information:  Supplementary data are available at Bioinformatics online.
Author Hackl, Thomas
Förster, Frank
Hedrich, Rainer
Schultz, Jörg
Author_xml – sequence: 1
  givenname: Thomas
  surname: Hackl
  fullname: Hackl, Thomas
– sequence: 2
  givenname: Rainer
  surname: Hedrich
  fullname: Hedrich, Rainer
– sequence: 3
  givenname: Jörg
  surname: Schultz
  fullname: Schultz, Jörg
– sequence: 4
  givenname: Frank
  surname: Förster
  fullname: Förster, Frank
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25015988$$D View this record in MEDLINE/PubMed
BookMark eNqFUcuO1DAQtNAi9gGfAPKRS1g7cewYJCRY8ZJWggNcsTqdzsQoYw-2M9L-PVlmGbFcOHVLXVVdqjpnJyEGYuypFC-ksM1l76MPY0xbKB7zZV-WxtYP2JlstKlUJ-XJcRfNKTvP-YcQohWtfsRO61bI1nbdGfu-SzHuE8HAX_IZ0oaqjDATn_xmqgBxSYA3_AvgWx85xpQIi4-BlynFZTNxXyitFvbE8xRT4b-lMIZMIS_5MXs4wpzpyd28YN_ev_t69bG6_vzh09Wb6wqVMaXCDvRgkBo5jogWyFoFmloNuh5qhUp2g2iG3hqNYw0apbKyRom9QVMbai7Y64Pubum3NCCFkmB2u-S3kG5cBO_uX4Kf3CbundLCClGvAs_vBFL8uVAubusz0jxDoLhkJ7VsrNJGmRX67O9fxyd_Ql0B7QGAKeacaDxCpHC35bn75blDeSvv1T889AVu014t-_k_7F9Ee6vB
CitedBy_id crossref_primary_10_1080_21505594_2023_2271688
crossref_primary_10_1038_s42003_019_0606_0
crossref_primary_10_1016_j_aquatox_2021_105953
crossref_primary_10_1038_s41467_017_00050_4
crossref_primary_10_1038_s41467_018_06910_x
crossref_primary_10_1093_nar_gky1008
crossref_primary_10_1186_s12870_019_1884_x
crossref_primary_10_1016_j_jaci_2017_11_038
crossref_primary_10_1007_s00299_021_02674_9
crossref_primary_10_1186_s12864_020_06979_z
crossref_primary_10_1016_j_csbj_2021_11_028
crossref_primary_10_1111_pbr_13125
crossref_primary_10_7717_peerj_8992
crossref_primary_10_1186_s12864_024_10446_4
crossref_primary_10_3390_f12121773
crossref_primary_10_7717_peerj_1441
crossref_primary_10_1007_s10811_018_1624_x
crossref_primary_10_1007_s40011_016_0770_7
crossref_primary_10_1186_s12864_019_6286_9
crossref_primary_10_1007_s00343_021_1248_x
crossref_primary_10_3389_fgene_2019_01246
crossref_primary_10_1016_j_jgg_2021_02_010
crossref_primary_10_3389_fgene_2019_01126
crossref_primary_10_3389_fgene_2022_841957
crossref_primary_10_1016_j_biombioe_2019_02_016
crossref_primary_10_1371_journal_pone_0217593
crossref_primary_10_1111_tpj_15689
crossref_primary_10_1101_gr_214767_116
crossref_primary_10_1007_s44281_024_00031_w
crossref_primary_10_1094_PDIS_04_22_0897_A
crossref_primary_10_7717_peerj_cs_116
crossref_primary_10_1371_journal_pone_0232973
crossref_primary_10_1038_s41559_019_0814_5
crossref_primary_10_1126_sciadv_abo6043
crossref_primary_10_1038_nature20593
crossref_primary_10_1093_jxb_erab516
crossref_primary_10_3389_fgene_2021_681680
crossref_primary_10_1016_j_gene_2021_145996
crossref_primary_10_1073_pnas_1810053115
crossref_primary_10_1186_s13059_022_02711_0
crossref_primary_10_1021_acs_jafc_9b04069
crossref_primary_10_1093_bioinformatics_btw321
crossref_primary_10_1534_g3_119_400563
crossref_primary_10_1038_s41576_024_00718_w
crossref_primary_10_3389_fgene_2019_00384
crossref_primary_10_3389_fgene_2022_813216
crossref_primary_10_1038_ncomms11706
crossref_primary_10_1080_14737159_2016_1217158
crossref_primary_10_1186_s12864_020_06894_3
crossref_primary_10_1093_gigascience_giaa051
crossref_primary_10_1111_1755_0998_12772
crossref_primary_10_1111_imb_12294
crossref_primary_10_3390_jof8030286
crossref_primary_10_1002_pld3_352
crossref_primary_10_1016_j_margen_2022_100930
crossref_primary_10_1186_s12864_018_5106_y
crossref_primary_10_1007_s10725_020_00649_6
crossref_primary_10_1094_PHYTO_02_19_0054_A
crossref_primary_10_1186_s13099_016_0117_1
crossref_primary_10_3389_fgene_2019_00709
crossref_primary_10_3389_fgene_2021_659962
crossref_primary_10_1186_s12859_016_1316_y
crossref_primary_10_1093_jac_dkaa143
crossref_primary_10_3390_ijms24010062
crossref_primary_10_1038_s41598_018_28364_3
crossref_primary_10_1016_j_jare_2023_01_007
crossref_primary_10_3389_fpls_2020_00943
crossref_primary_10_1093_bioinformatics_btv465
crossref_primary_10_1093_nargab_lqaa037
crossref_primary_10_1515_mr_2021_0013
crossref_primary_10_1016_j_indcrop_2020_112949
crossref_primary_10_1038_s41467_022_35063_1
crossref_primary_10_1371_journal_pone_0144305
crossref_primary_10_1016_j_scitotenv_2020_141238
crossref_primary_10_3389_fpls_2020_619404
crossref_primary_10_3389_fgene_2020_00996
crossref_primary_10_1002_wrna_1631
crossref_primary_10_1186_s13015_016_0075_7
crossref_primary_10_3390_plants8090354
crossref_primary_10_1101_gr_215087_116
crossref_primary_10_1016_j_molp_2024_05_006
crossref_primary_10_1111_1462_2920_14636
crossref_primary_10_1128_MRA_00878_19
crossref_primary_10_3390_f12020180
crossref_primary_10_3389_fcimb_2021_690799
crossref_primary_10_1093_bib_bbv029
crossref_primary_10_1093_jxb_eraa351
crossref_primary_10_7717_peerj_cs_2160
crossref_primary_10_1016_j_aquabot_2023_103742
crossref_primary_10_1534_genetics_119_302411
crossref_primary_10_3389_fgene_2019_01175
crossref_primary_10_1111_tpj_15871
crossref_primary_10_3390_horticulturae9020175
crossref_primary_10_1186_s40168_017_0379_y
crossref_primary_10_3389_fgene_2021_664974
crossref_primary_10_1007_s11101_015_9451_z
crossref_primary_10_3389_fmicb_2019_00048
crossref_primary_10_1093_nar_gky726
crossref_primary_10_3389_fmicb_2019_02468
crossref_primary_10_1093_nar_gky724
crossref_primary_10_1093_bioinformatics_btw463
crossref_primary_10_1111_nph_17141
crossref_primary_10_3389_fvets_2022_752521
crossref_primary_10_1186_s12864_020_6769_8
crossref_primary_10_3389_fpls_2021_720670
crossref_primary_10_1093_bfgp_ely037
crossref_primary_10_1016_j_ygeno_2017_12_011
crossref_primary_10_3390_v11111046
crossref_primary_10_1016_j_ijantimicag_2018_04_012
crossref_primary_10_3390_microarrays5020012
crossref_primary_10_1111_evo_14287
crossref_primary_10_1155_2020_6678872
crossref_primary_10_1186_s12870_018_1534_8
crossref_primary_10_3389_fgene_2021_678625
crossref_primary_10_18097_BMCRM00086
crossref_primary_10_3389_fpls_2023_1158035
crossref_primary_10_1038_s41597_024_04251_7
crossref_primary_10_1007_s12298_021_01051_w
crossref_primary_10_1038_s41598_021_81030_z
crossref_primary_10_1016_j_mib_2014_11_014
crossref_primary_10_1093_bioinformatics_btz960
crossref_primary_10_1111_1755_0998_13454
crossref_primary_10_1111_1755_0998_13332
crossref_primary_10_1038_nature16461
crossref_primary_10_1016_j_micpath_2024_106928
crossref_primary_10_1155_2016_6329217
crossref_primary_10_1186_s12864_015_1519_z
crossref_primary_10_3897_mycokeys_53_34761
crossref_primary_10_1038_s41598_021_93495_z
crossref_primary_10_1186_s13059_020_02180_3
crossref_primary_10_1186_1755_8794_8_S3_S5
crossref_primary_10_5598_imafungus_2018_09_02_01
crossref_primary_10_1016_j_gene_2020_144961
crossref_primary_10_3389_fcimb_2021_638087
crossref_primary_10_1093_bib_bbz058
crossref_primary_10_1128_spectrum_04986_22
crossref_primary_10_1093_dnares_dsy014
crossref_primary_10_1016_j_jgar_2019_06_007
crossref_primary_10_1128_AAC_00588_16
crossref_primary_10_2147_IDR_S332949
crossref_primary_10_1038_celldisc_2017_31
crossref_primary_10_1038_s42003_022_04074_5
crossref_primary_10_1093_gigascience_giy138
crossref_primary_10_7554_eLife_49658
crossref_primary_10_1093_bfgp_elad026
crossref_primary_10_1038_ismej_2017_101
crossref_primary_10_1093_gigascience_giy141
crossref_primary_10_1038_s41467_019_08734_9
crossref_primary_10_1534_g3_118_200154
crossref_primary_10_1094_MPMI_35_1
crossref_primary_10_1186_s12862_024_02331_1
crossref_primary_10_52586_5004
crossref_primary_10_1038_s41598_021_92494_4
crossref_primary_10_1093_dnares_dsy027
crossref_primary_10_2174_1574893614666190410155603
crossref_primary_10_1016_j_rsma_2024_103728
crossref_primary_10_3390_ijms24021265
crossref_primary_10_3389_fmicb_2018_03318
crossref_primary_10_3390_mi14020459
crossref_primary_10_1128_genomeA_00563_15
crossref_primary_10_3390_microorganisms8010102
crossref_primary_10_1093_gigascience_giz116
crossref_primary_10_1093_gigascience_giy029
crossref_primary_10_1371_journal_ppat_1007901
crossref_primary_10_3390_plants12234006
crossref_primary_10_3390_f12050571
crossref_primary_10_1186_s12864_021_07498_1
crossref_primary_10_1186_s40168_018_0614_1
crossref_primary_10_1093_gigascience_giy146
crossref_primary_10_1016_j_gene_2018_10_026
crossref_primary_10_1002_eco_2721
crossref_primary_10_1002_wcms_1239
crossref_primary_10_2147_IDR_S462670
crossref_primary_10_1038_s41467_019_09142_9
crossref_primary_10_1093_gbe_evab281
crossref_primary_10_1007_s00344_021_10347_w
crossref_primary_10_1534_g3_118_200287
crossref_primary_10_1186_s13073_023_01194_3
crossref_primary_10_1080_23802359_2018_1495119
crossref_primary_10_1016_j_cropd_2022_01_001
crossref_primary_10_1016_j_cub_2017_11_060
crossref_primary_10_1093_jxb_erab484
crossref_primary_10_1038_s41589_019_0446_8
crossref_primary_10_1038_s41598_018_34812_x
crossref_primary_10_1186_s12864_017_3757_8
crossref_primary_10_48130_GR_2023_0024
crossref_primary_10_1007_s00438_019_01635_y
crossref_primary_10_1073_pnas_2201113119
crossref_primary_10_1093_bib_bbad275
crossref_primary_10_1016_j_algal_2023_103222
crossref_primary_10_1038_s41598_020_66582_w
crossref_primary_10_1007_s10462_020_09951_1
crossref_primary_10_1016_j_ijbiomac_2020_01_029
crossref_primary_10_1038_s41598_020_71178_5
crossref_primary_10_1093_bib_bbab405
crossref_primary_10_3389_fmicb_2021_676113
crossref_primary_10_1093_nargab_lqab082
crossref_primary_10_3389_fgene_2020_00462
crossref_primary_10_3389_fpls_2022_1000469
crossref_primary_10_1038_s41438_019_0218_3
crossref_primary_10_1038_s41467_022_34381_8
crossref_primary_10_1186_s12864_015_1930_5
crossref_primary_10_3389_fgene_2020_00580
crossref_primary_10_1038_s41598_018_35066_3
crossref_primary_10_1166_jctn_2020_9630
crossref_primary_10_7717_peerj_2016
crossref_primary_10_1186_s12870_019_2193_0
crossref_primary_10_3389_fmars_2021_753222
crossref_primary_10_3389_fgene_2023_1064624
crossref_primary_10_1139_gen_2020_0095
crossref_primary_10_3390_ijms231911420
crossref_primary_10_1111_1755_0998_13257
crossref_primary_10_1534_g3_119_400710
crossref_primary_10_1186_s12864_015_2257_y
crossref_primary_10_1186_s12864_020_07227_0
crossref_primary_10_1094_MPMI_04_21_0075_R
crossref_primary_10_3389_fmicb_2019_02840
crossref_primary_10_3390_genes10010044
crossref_primary_10_3389_fmars_2021_688601
crossref_primary_10_1038_s41597_024_03119_0
crossref_primary_10_1186_s12870_019_2133_z
crossref_primary_10_7717_peerj_7933
crossref_primary_10_1038_srep31900
crossref_primary_10_1186_s12864_019_5709_y
crossref_primary_10_3390_plants8080267
crossref_primary_10_1038_srep31347
crossref_primary_10_1093_dnares_dsab005
crossref_primary_10_1186_s13059_019_1885_y
crossref_primary_10_1007_s11105_020_01245_8
crossref_primary_10_1126_science_aax1318
crossref_primary_10_1093_nar_gkz953
crossref_primary_10_3343_alm_2021_41_5_489
crossref_primary_10_1007_s11295_020_01448_w
crossref_primary_10_3390_ijms21051600
crossref_primary_10_1093_gigascience_giy063
crossref_primary_10_1186_s12864_020_6507_2
crossref_primary_10_3389_fgene_2020_00249
crossref_primary_10_1093_gbe_evz159
crossref_primary_10_1128_genomeA_01550_15
crossref_primary_10_1038_s41438_021_00666_0
crossref_primary_10_1016_j_jip_2020_107475
crossref_primary_10_1186_s12864_021_07416_5
crossref_primary_10_1101_gr_274266_120
crossref_primary_10_1016_j_indcrop_2020_112544
crossref_primary_10_2217_fmb_2020_0026
crossref_primary_10_1093_gigascience_giae019
crossref_primary_10_1145_3340286
crossref_primary_10_1186_s40168_019_0710_x
crossref_primary_10_1093_bib_bbw096
crossref_primary_10_1186_s12870_020_02608_9
crossref_primary_10_1038_s41586_018_0108_0
crossref_primary_10_1093_bioinformatics_btx489
crossref_primary_10_1016_j_margen_2019_04_003
crossref_primary_10_1038_s41598_019_48824_8
crossref_primary_10_1038_s41467_022_29114_w
crossref_primary_10_1186_s12864_019_5758_2
crossref_primary_10_1186_s40793_022_00419_z
crossref_primary_10_3389_fmicb_2022_976918
crossref_primary_10_3389_fphys_2018_01679
crossref_primary_10_1128_MRA_01558_19
crossref_primary_10_1186_s12864_017_4430_y
crossref_primary_10_1186_s12864_018_5272_y
crossref_primary_10_1038_s41597_020_0363_4
crossref_primary_10_1186_s12864_018_5041_y
crossref_primary_10_1093_hr_uhab036
crossref_primary_10_1111_tpj_14179
crossref_primary_10_1038_s41597_024_02962_5
crossref_primary_10_1109_TCBB_2017_2780832
crossref_primary_10_1111_tpj_14299
crossref_primary_10_1186_s12870_019_2119_x
crossref_primary_10_1016_j_scienta_2019_108576
crossref_primary_10_24072_pcjournal_128
crossref_primary_10_3389_fpls_2023_1103857
crossref_primary_10_1007_s00468_021_02252_2
crossref_primary_10_3389_fmicb_2018_00478
crossref_primary_10_1111_1462_2920_16101
crossref_primary_10_1093_bioinformatics_btv415
crossref_primary_10_1038_s41438_019_0126_6
crossref_primary_10_1111_pbi_13586
crossref_primary_10_1101_gr_235119_118
crossref_primary_10_3389_fendo_2019_00011
crossref_primary_10_1038_s41388_018_0644_y
crossref_primary_10_1093_gbe_evaa115
crossref_primary_10_1093_gbe_evaa236
crossref_primary_10_7717_peerj_17731
crossref_primary_10_3389_fmicb_2019_02508
crossref_primary_10_1002_bit_26722
crossref_primary_10_1002_mbo3_899
crossref_primary_10_3389_fmicb_2025_1561624
crossref_primary_10_1094_MPMI_04_18_0107_A
crossref_primary_10_1186_s13059_015_0729_7
crossref_primary_10_1186_s12864_019_6163_6
crossref_primary_10_1101_gr_213405_116
crossref_primary_10_3389_fgene_2023_1166975
crossref_primary_10_1038_sdata_2015_14
crossref_primary_10_3390_f9120765
crossref_primary_10_1007_s10126_022_10163_7
crossref_primary_10_1007_s11103_018_0813_y
crossref_primary_10_1007_s00253_020_10698_6
crossref_primary_10_1186_s13059_018_1605_z
crossref_primary_10_1038_s41598_017_14469_8
crossref_primary_10_1093_bioinformatics_btab017
crossref_primary_10_1093_bioinformatics_btz206
crossref_primary_10_3389_fpls_2023_1271084
crossref_primary_10_1139_gen_2015_0175
crossref_primary_10_1038_s41598_023_38402_4
crossref_primary_10_1093_molbev_msab141
crossref_primary_10_1534_g3_117_300467
crossref_primary_10_1534_g3_120_401440
crossref_primary_10_3390_genes9010043
crossref_primary_10_1007_s11105_020_01193_3
crossref_primary_10_1534_g3_120_401434
crossref_primary_10_3390_fishes6040082
crossref_primary_10_1186_s12864_020_07008_9
crossref_primary_10_1186_s43008_022_00098_y
crossref_primary_10_1186_s12864_020_6764_0
crossref_primary_10_1038_s41559_018_0719_8
crossref_primary_10_1016_j_fsi_2022_01_042
crossref_primary_10_7717_peerj_12940
crossref_primary_10_1186_s12941_022_00502_w
crossref_primary_10_1111_1755_0998_13142
crossref_primary_10_1186_s12870_021_03133_z
crossref_primary_10_1016_j_indcrop_2023_117470
crossref_primary_10_1093_gbe_evz198
crossref_primary_10_1186_s12864_021_07873_y
crossref_primary_10_1016_j_ygeno_2021_01_009
crossref_primary_10_1186_s12870_019_2098_y
crossref_primary_10_3389_fgene_2021_656137
crossref_primary_10_3835_plantgenome2019_04_0032
crossref_primary_10_3390_f10111043
crossref_primary_10_1534_g3_120_401309
crossref_primary_10_1111_zsc_12477
crossref_primary_10_1038_s41598_019_42184_z
crossref_primary_10_1080_14772000_2015_1099575
crossref_primary_10_1111_tpj_14120
crossref_primary_10_7717_peerj_12939
crossref_primary_10_1038_s41437_018_0070_5
crossref_primary_10_1038_s41597_019_0238_8
crossref_primary_10_1038_s41467_020_20340_8
crossref_primary_10_1071_MF24227
crossref_primary_10_1186_s12859_017_1610_3
crossref_primary_10_1016_j_xplc_2022_100426
crossref_primary_10_1002_jobm_202000668
crossref_primary_10_1038_s41477_021_00925_x
crossref_primary_10_1038_s41587_021_01108_x
crossref_primary_10_1016_j_fm_2023_104327
crossref_primary_10_1093_pcp_pcaa013
crossref_primary_10_1038_s41597_024_03837_5
crossref_primary_10_1038_s41467_019_13037_0
crossref_primary_10_1016_j_plaphy_2019_11_015
crossref_primary_10_1159_000517057
crossref_primary_10_1186_s12915_020_00873_6
crossref_primary_10_1093_molbev_msz116
crossref_primary_10_3389_fpls_2022_818458
crossref_primary_10_1186_s12864_019_5514_7
crossref_primary_10_1016_j_celrep_2022_110638
crossref_primary_10_1016_j_cub_2017_11_004
crossref_primary_10_1016_j_indcrop_2021_113865
crossref_primary_10_3390_life11121377
Cites_doi 10.1093/bioinformatics/btr046
10.1126/science.287.5461.2196
10.1186/gb-2011-12-2-r18
10.1093/bioinformatics/btn548
10.1126/science.1162986
10.1371/journal.pone.0046679
10.1186/1471-2164-13-375
10.1038/nmeth.1923
10.1186/2049-2618-1-10
10.1093/bioinformatics/bti310
10.1093/nar/gkq543
10.1101/gr.141705.112
10.1093/nar/gkn425
10.1186/gb-2013-14-6-405
10.1186/gb-2010-11-11-r116
10.1186/1471-2105-6-31
10.1371/journal.pone.0068824
10.1093/bioinformatics/btp352
10.1093/bioinformatics/bts649
10.1073/pnas.1017351108
10.1038/nmeth.2474
10.1101/gr.097261.109
10.1186/gb-2013-14-5-r51
10.1038/nbt.2280
ContentType Journal Article
Copyright The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2014
Copyright_xml – notice: The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
– notice: The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2014
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/bioinformatics/btu392
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1367-4811
EndPage 3011
ExternalDocumentID PMC4609002
25015988
10_1093_bioinformatics_btu392
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-E4
-~X
.2P
.DC
.I3
0R~
1TH
23N
2WC
4.4
48X
53G
5GY
5WA
70D
AAIJN
AAIMJ
AAJKP
AAJQQ
AAKPC
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
AAYXX
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
ASPBG
AVWKF
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C45
CDBKE
CITATION
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EJD
EMOBN
F5P
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
NVLIB
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RNS
ROL
RPM
RUSNO
RW1
RXO
SV3
TEORI
TJP
TLC
TOX
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c477t-c8a6d7ce31ffcc9ae994a6e56a62d24c418d03db976cf2a6c14912c1cb7c727e3
ISSN 1367-4803
1367-4811
IngestDate Thu Aug 21 14:29:46 EDT 2025
Thu Jul 10 19:24:06 EDT 2025
Mon Jul 21 05:29:00 EDT 2025
Tue Jul 01 03:27:11 EDT 2025
Thu Apr 24 23:11:08 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
License The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c477t-c8a6d7ce31ffcc9ae994a6e56a62d24c418d03db976cf2a6c14912c1cb7c727e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Associate Editor: Inanc Birol
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/4609002
PMID 25015988
PQID 1613946747
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4609002
proquest_miscellaneous_1613946747
pubmed_primary_25015988
crossref_primary_10_1093_bioinformatics_btu392
crossref_citationtrail_10_1093_bioinformatics_btu392
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-11-01
PublicationDateYYYYMMDD 2014-11-01
PublicationDate_xml – month: 11
  year: 2014
  text: 2014-11-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioinformatics (Oxford, England)
PublicationTitleAlternate Bioinformatics
PublicationYear 2014
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Jette (2023012711573655900_btu392-B11) 2002
Brown (2023012711573655900_btu392-B3) 2012
Wu (2023012711573655900_btu392-B26) 2005; 21
Roberts (2023012711573655900_btu392-B21) 2013; 14
Chin (2023012711573655900_btu392-B5) 2013; 10
David (2023012711573655900_btu392-B6) 2011; 27
Koren (2023012711573655900_btu392-B13) 2012; 30
Carneiro (2023012711573655900_btu392-B4) 2012; 13
Ono (2023012711573655900_btu392-B20) 2013; 29
Eid (2023012711573655900_btu392-B8) 2009; 323
Slater (2023012711573655900_btu392-B24) 2005; 6
Gnerre (2023012711573655900_btu392-B10) 2011; 108
Kelley (2023012711573655900_btu392-B12) 2010; 11
Miller (2023012711573655900_btu392-B18) 2008; 24
Au (2023012711573655900_btu392-B2) 2012; 7
Shin (2023012711573655900_btu392-B23) 2013; 8
Loomis (2023012711573655900_btu392-B17) 2013; 23
Li (2023012711573655900_btu392-B15) 2009; 25
Aird (2023012711573655900_btu392-B1) 2011; 12
Langmead (2023012711573655900_btu392-B14) 2012; 9
Travers (2023012711573655900_btu392-B25) 2010; 38
Fichot (2023012711573655900_btu392-B9) 2013; 1
Dohm (2023012711573655900_btu392-B7) 2008; 36
Li (2023012711573655900_btu392-B16) 2010; 20
Myers (2023012711573655900_btu392-B19) 2000; 287
Ross (2023012711573655900_btu392-B22) 2013; 14
20019144 - Genome Res. 2010 Feb;20(2):265-72
18952627 - Bioinformatics. 2008 Dec 15;24(24):2818-24
15713233 - BMC Bioinformatics. 2005;6:31
23644548 - Nat Methods. 2013 Jun;10(6):563-9
19023044 - Science. 2009 Jan 2;323(5910):133-8
23822731 - Genome Biol. 2013;14(7):405
20571086 - Nucleic Acids Res. 2010 Aug;38(15):e159
10731133 - Science. 2000 Mar 24;287(5461):2196-204
23718773 - Genome Biol. 2013;14(5):R51
21338519 - Genome Biol. 2011;12(2):R18
22750884 - Nat Biotechnol. 2012 Jul;30(7):693-700
22863213 - BMC Genomics. 2012;13:375
24450498 - Microbiome. 2013 Mar 04;1(1):10
19505943 - Bioinformatics. 2009 Aug 15;25(16):2078-9
18660515 - Nucleic Acids Res. 2008 Sep;36(16):e105
23894349 - PLoS One. 2013;8(7):e68824
22388286 - Nat Methods. 2012 Apr;9(4):357-9
21114842 - Genome Biol. 2010;11(11):R116
23056399 - PLoS One. 2012;7(10):e46679
21187386 - Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1513-8
15728110 - Bioinformatics. 2005 May 1;21(9):1859-75
23129296 - Bioinformatics. 2013 Jan 1;29(1):119-21
23064752 - Genome Res. 2013 Jan;23(1):121-8
21278192 - Bioinformatics. 2011 Apr 1;27(7):1011-2
References_xml – volume: 27
  start-page: 1011
  year: 2011
  ident: 2023012711573655900_btu392-B6
  article-title: Shrimp2: sensitive yet practical short read mapping
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr046
– volume: 287
  start-page: 2196
  year: 2000
  ident: 2023012711573655900_btu392-B19
  article-title: A whole-genome assembly of drosophila
  publication-title: Science
  doi: 10.1126/science.287.5461.2196
– volume: 12
  start-page: R18
  year: 2011
  ident: 2023012711573655900_btu392-B1
  article-title: Analyzing and minimizing pcr amplification bias in illumina sequencing libraries
  publication-title: Genome Biol.
  doi: 10.1186/gb-2011-12-2-r18
– volume: 24
  start-page: 2818
  year: 2008
  ident: 2023012711573655900_btu392-B18
  article-title: Aggressive assembly of pyrosequencing reads with mates
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn548
– volume: 323
  start-page: 133
  year: 2009
  ident: 2023012711573655900_btu392-B8
  article-title: Real-time dna sequencing from single polymerase molecules
  publication-title: Science
  doi: 10.1126/science.1162986
– volume: 7
  start-page: e46679
  year: 2012
  ident: 2023012711573655900_btu392-B2
  article-title: Improving pacbio long read accuracy by short read alignment
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0046679
– volume: 13
  start-page: 375
  year: 2012
  ident: 2023012711573655900_btu392-B4
  article-title: Pacific biosciences sequencing technology for genotyping and variation discovery in human data
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-13-375
– volume: 9
  start-page: 357
  year: 2012
  ident: 2023012711573655900_btu392-B14
  article-title: Fast gapped-read alignment with bowtie 2
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1923
– volume: 1
  start-page: 10
  year: 2013
  ident: 2023012711573655900_btu392-B9
  article-title: Microbial phylogenetic profiling with the pacific biosciences sequencing platform
  publication-title: Microbiome
  doi: 10.1186/2049-2618-1-10
– volume: 21
  start-page: 1859
  year: 2005
  ident: 2023012711573655900_btu392-B26
  article-title: Gmap: a genomic mapping and alignment program for mrna and est sequences
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti310
– volume: 38
  start-page: e159
  year: 2010
  ident: 2023012711573655900_btu392-B25
  article-title: A flexible and efficient template format for circular consensus sequencing and snp detection
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq543
– start-page: 44
  volume-title: In Lecture Notes in Computer Science: Proceedings of Job Scheduling Strategies for Parallel Processing (JSSPP) 2003
  year: 2002
  ident: 2023012711573655900_btu392-B11
  article-title: Slurm: simple linux utility for resource management
– volume: 23
  start-page: 121
  year: 2013
  ident: 2023012711573655900_btu392-B17
  article-title: Sequencing the unsequenceable: expanded cgg-repeat alleles of the fragile x gene
  publication-title: Genome Res.
  doi: 10.1101/gr.141705.112
– volume: 36
  start-page: e105
  year: 2008
  ident: 2023012711573655900_btu392-B7
  article-title: Substantial biases in ultra-short read data sets from high-throughput dna sequencing
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkn425
– volume: 14
  start-page: 405
  year: 2013
  ident: 2023012711573655900_btu392-B21
  article-title: The advantages of smrt sequencing
  publication-title: Genome Biol.
  doi: 10.1186/gb-2013-14-6-405
– volume: 11
  start-page: R116
  year: 2010
  ident: 2023012711573655900_btu392-B12
  article-title: Quake: quality-aware detection and correction of sequencing errors
  publication-title: Genome Biol.
  doi: 10.1186/gb-2010-11-11-r116
– volume: 6
  start-page: 31
  year: 2005
  ident: 2023012711573655900_btu392-B24
  article-title: Automated generation of heuristics for biological sequence comparison
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-6-31
– volume: 8
  start-page: e68824
  year: 2013
  ident: 2023012711573655900_btu392-B23
  article-title: Advantages of single-molecule real-time sequencing in high-gc content genomes
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0068824
– volume: 25
  start-page: 2078
  year: 2009
  ident: 2023012711573655900_btu392-B15
  article-title: The sequence alignment/map format and samtools
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp352
– volume: 29
  start-page: 119
  year: 2013
  ident: 2023012711573655900_btu392-B20
  article-title: Pbsim: Pacbio reads simulator–toward accurate genome assembly
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts649
– volume: 108
  start-page: 1513
  year: 2011
  ident: 2023012711573655900_btu392-B10
  article-title: High-quality draft assemblies of mammalian genomes from massively parallel sequence data
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1017351108
– volume: 10
  start-page: 563
  year: 2013
  ident: 2023012711573655900_btu392-B5
  article-title: Nonhybrid, finished microbial genome assemblies from long-read smrt sequencing data
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2474
– volume: 20
  start-page: 265
  year: 2010
  ident: 2023012711573655900_btu392-B16
  article-title: De novo assembly of human genomes with massively parallel short read sequencing
  publication-title: Genome Res
  doi: 10.1101/gr.097261.109
– volume: 14
  start-page: R51
  year: 2013
  ident: 2023012711573655900_btu392-B22
  article-title: Characterizing and measuring bias in sequence data
  publication-title: Genome Biol.
  doi: 10.1186/gb-2013-14-5-r51
– year: 2012
  ident: 2023012711573655900_btu392-B3
  article-title: A reference-free algorithm for computational normalization of shotgun sequencing data
– volume: 30
  start-page: 693
  year: 2012
  ident: 2023012711573655900_btu392-B13
  article-title: Hybrid error correction and de novo assembly of single-molecule sequencing reads
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2280
– reference: 22863213 - BMC Genomics. 2012;13:375
– reference: 21338519 - Genome Biol. 2011;12(2):R18
– reference: 18660515 - Nucleic Acids Res. 2008 Sep;36(16):e105
– reference: 23064752 - Genome Res. 2013 Jan;23(1):121-8
– reference: 21114842 - Genome Biol. 2010;11(11):R116
– reference: 19023044 - Science. 2009 Jan 2;323(5910):133-8
– reference: 20571086 - Nucleic Acids Res. 2010 Aug;38(15):e159
– reference: 15713233 - BMC Bioinformatics. 2005;6:31
– reference: 21278192 - Bioinformatics. 2011 Apr 1;27(7):1011-2
– reference: 23894349 - PLoS One. 2013;8(7):e68824
– reference: 21187386 - Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1513-8
– reference: 23129296 - Bioinformatics. 2013 Jan 1;29(1):119-21
– reference: 23718773 - Genome Biol. 2013;14(5):R51
– reference: 15728110 - Bioinformatics. 2005 May 1;21(9):1859-75
– reference: 23056399 - PLoS One. 2012;7(10):e46679
– reference: 22750884 - Nat Biotechnol. 2012 Jul;30(7):693-700
– reference: 20019144 - Genome Res. 2010 Feb;20(2):265-72
– reference: 23822731 - Genome Biol. 2013;14(7):405
– reference: 19505943 - Bioinformatics. 2009 Aug 15;25(16):2078-9
– reference: 10731133 - Science. 2000 Mar 24;287(5461):2196-204
– reference: 23644548 - Nat Methods. 2013 Jun;10(6):563-9
– reference: 22388286 - Nat Methods. 2012 Apr;9(4):357-9
– reference: 18952627 - Bioinformatics. 2008 Dec 15;24(24):2818-24
– reference: 24450498 - Microbiome. 2013 Mar 04;1(1):10
SSID ssj0005056
Score 2.6097975
Snippet Motivation : Today, the base code of DNA is mostly determined through sequencing by synthesis as provided by the Illumina sequencers. Although highly accurate,...
Today, the base code of DNA is mostly determined through sequencing by synthesis as provided by the Illumina sequencers. Although highly accurate, resulting...
Motivation : Today, the base code of DNA is mostly determined through sequencing by synthesis as provided by the Illumina sequencers. Although highly accurate,...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3004
SubjectTerms Arabidopsis - genetics
Base Sequence
Consensus Sequence
Escherichia coli - genetics
Gene Expression Profiling
Genomics
Humans
Original Papers
Sequence Analysis, DNA - methods
Software
Title proovread : large-scale high-accuracy PacBio correction through iterative short read consensus
URI https://www.ncbi.nlm.nih.gov/pubmed/25015988
https://www.proquest.com/docview/1613946747
https://pubmed.ncbi.nlm.nih.gov/PMC4609002
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bjtMwELXKIiReEHfKTUbircpuEztOwhuLQGURCIldaV9QlEySbUVJVk2CgA_gu5mxnTQpi7i8RJVTO4rPdDq2Z85h7KlK_JRqHJ0gF9KRsvDJDwZOEfqFyiORSk1f_PadWpzIo1P_dDL5Mchaapt0H75fWFfyP6hiG-JKVbL_gGw_KDbgZ8QXr4gwXv8KY_R-1ZcNoYTr-jXldDs1zjmxCJ8tnQSg3ZCa-_sEDlfVDEiIwyiDd-o8hlOZkofqJcbhMxqLEtFrEsCoRwe-q8pyrGpeZyIp_drlxVshkMGmwiKBT-ud_CO94Zqh29UbOXSutE0M_gDLdq2VZWdHdHR_qCzvFlmWbegkRLTM_HCzwpW2ak__1xgHK4hnPbQO1npgezJjLM0UTFt_SnxgFzp6Q4KVjt6dGppWGG29AfznnzX-GOxh7GZEBHc4trtbl9hlL8AYjILr12-2qUIYJXbVX5E4GD_1wDyTWKXtKOMQ55d1y2767SCeOb7OrtmFCH9urOoGm-TlTXbFSJN-u8U-9rb1jA8si48sixvL4lvL4tayeG9ZXFsWp5F4b1m32cmrl8cvFo6V4nBABkHjQJioLIBcuEUBQITukUxU7qtEeZknQbphNhdZisEtFF6iABfergcupAFghJyLO2yvrMr8HuMSIi-EVM1Tl4qssaMMU1y2ulGBrRBNmexmLwbLU09yKevY5EuIeDz_sZn_Kdvvu50bopY_dXjSQROjS6VzsqTMq7aOcREkIlLhCabsroGqH7LDeMqCEYj9F4iufXynXC01bbtU8wjjj_u_HfMBu7r9zTxke82mzR9hyNukj7U9_gQPF7V_
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=proovread%3A+large-scale+high-accuracy+PacBio+correction+through+iterative+short+read+consensus&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Hackl%2C+Thomas&rft.au=Hedrich%2C+Rainer&rft.au=Schultz%2C+J%C3%B6rg&rft.au=F%C3%B6rster%2C+Frank&rft.date=2014-11-01&rft.eissn=1367-4811&rft.volume=30&rft.issue=21&rft.spage=3004&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtu392&rft_id=info%3Apmid%2F25015988&rft.externalDocID=25015988
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon