BET Bromodomain Inhibitors Enhance Efficacy and Disrupt Resistance to AR Antagonists in the Treatment of Prostate Cancer

Next-generation antiandrogen therapies, such as enzalutamide and abiraterone, have had a profound impact on the management of metastatic castration-resistant prostate cancer (mCRPC). However, mCRPC patients invariably develop resistance to these agents. Here, a series of clonal cell lines were devel...

Full description

Saved in:
Bibliographic Details
Published inMolecular cancer research Vol. 14; no. 4; pp. 324 - 331
Main Authors Asangani, Irfan A., Wilder-Romans, Kari, Dommeti, Vijaya L., Krishnamurthy, Pranathi M., Apel, Ingrid J., Escara-Wilke, June, Plymate, Stephen R., Navone, Nora M., Wang, Shaomeng, Feng, Felix Y., Chinnaiyan, Arul M.
Format Journal Article
LanguageEnglish
Published United States 01.04.2016
Subjects
Online AccessGet full text
ISSN1541-7786
1557-3125
1557-3125
DOI10.1158/1541-7786.MCR-15-0472

Cover

Abstract Next-generation antiandrogen therapies, such as enzalutamide and abiraterone, have had a profound impact on the management of metastatic castration-resistant prostate cancer (mCRPC). However, mCRPC patients invariably develop resistance to these agents. Here, a series of clonal cell lines were developed from enzalutamide-resistant prostate tumor xenografts to study the molecular mechanism of resistance and test their oncogenic potential under various treatment conditions. Androgen receptor (AR) signaling was maintained in these cell lines, which acquired potential resistance mechanisms, including expression of AR-variant 7 (AR-v7) and glucocorticoid receptor. BET bromodomain inhibitors were shown previously to attenuate AR signaling in mCRPC; here, we demonstrate the efficacy of bromodomain and extraterminal (BET) inhibitors in enzalutamide-resistant prostate cancer models. AR antagonists, enzalutamide, and ARN509 exhibit enhanced prostate tumor growth inhibition when combined with BET inhibitors, JQ1 and OTX015, respectively. Taken together, these data provide a compelling preclinical rationale to combine BET inhibitors with AR antagonists to subvert resistance mechanisms. Implications: Therapeutic combinations of BET inhibitors and AR antagonists may enhance the clinical efficacy in the treatment of mCRPC. Visual Overview: http://mcr.aacrjournals.org/content/14/4/324/F1.large.jpg. Mol Cancer Res; 14(4); 324–31. ©2016 AACR.
AbstractList Next-generation antiandrogen therapies, such as enzalutamide and abiraterone, have had a profound impact on the management of metastatic castration-resistant prostate cancer (mCRPC). However, mCRPC patients invariably develop resistance to these agents. Here, a series of clonal cell lines were developed from enzalutamide-resistant prostate tumor xenografts to study the molecular mechanism of resistance and test their oncogenic potential under various treatment conditions. Androgen receptor (AR) signaling was maintained in these cell lines, which acquired potential resistance mechanisms, including expression of AR-variant 7 (AR-v7) and glucocorticoid receptor. BET bromodomain inhibitors were shown previously to attenuate AR signaling in mCRPC; here, we demonstrate the efficacy of bromodomain and extraterminal (BET) inhibitors in enzalutamide-resistant prostate cancer models. AR antagonists, enzalutamide, and ARN509 exhibit enhanced prostate tumor growth inhibition when combined with BET inhibitors, JQ1 and OTX015, respectively. Taken together, these data provide a compelling preclinical rationale to combine BET inhibitors with AR antagonists to subvert resistance mechanisms. Therapeutic combinations of BET inhibitors and AR antagonists may enhance the clinical efficacy in the treatment of mCRPC. http://mcr.aacrjournals.org/content/molcanres/14/4/324/F1.large.jpg
Next-generation antiandrogen therapies, such as enzalutamide and abiraterone, have had a profound impact on the management of metastatic castration-resistant prostate cancer (mCRPC). However, mCRPC patients invariably develop resistance to these agents. Here, a series of clonal cell lines were developed from enzalutamide-resistant prostate tumor xenografts to study the molecular mechanism of resistance and test their oncogenic potential under various treatment conditions. Androgen receptor (AR) signaling was maintained in these cell lines, which acquired potential resistance mechanisms, including expression of AR-variant 7 (AR-v7) and glucocorticoid receptor. BET bromodomain inhibitors were shown previously to attenuate AR signaling in mCRPC; here, we demonstrate the efficacy of bromodomain and extraterminal (BET) inhibitors in enzalutamide-resistant prostate cancer models. AR antagonists, enzalutamide, and ARN509 exhibit enhanced prostate tumor growth inhibition when combined with BET inhibitors, JQ1 and OTX015, respectively. Taken together, these data provide a compelling preclinical rationale to combine BET inhibitors with AR antagonists to subvert resistance mechanisms. Implications: Therapeutic combinations of BET inhibitors and AR antagonists may enhance the clinical efficacy in the treatment of mCRPC. Visual Overview: http://mcr.aacrjournals.org/content/14/4/324/F1.large.jpg. Mol Cancer Res; 14(4); 324–31. ©2016 AACR.
Next-generation antiandrogen therapies, such as enzalutamide and abiraterone, have had a profound impact on the management of metastatic castration-resistant prostate cancer (mCRPC). However, mCRPC patients invariably develop resistance to these agents. Here, a series of clonal cell lines were developed from enzalutamide-resistant prostate tumor xenografts to study the molecular mechanism of resistance and test their oncogenic potential under various treatment conditions. Androgen receptor (AR) signaling was maintained in these cell lines, which acquired potential resistance mechanisms, including expression of AR-variant 7 (AR-v7) and glucocorticoid receptor. BET bromodomain inhibitors were shown previously to attenuate AR signaling in mCRPC; here, we demonstrate the efficacy of bromodomain and extraterminal (BET) inhibitors in enzalutamide-resistant prostate cancer models. AR antagonists, enzalutamide, and ARN509 exhibit enhanced prostate tumor growth inhibition when combined with BET inhibitors, JQ1 and OTX015, respectively. Taken together, these data provide a compelling preclinical rationale to combine BET inhibitors with AR antagonists to subvert resistance mechanisms.UNLABELLEDNext-generation antiandrogen therapies, such as enzalutamide and abiraterone, have had a profound impact on the management of metastatic castration-resistant prostate cancer (mCRPC). However, mCRPC patients invariably develop resistance to these agents. Here, a series of clonal cell lines were developed from enzalutamide-resistant prostate tumor xenografts to study the molecular mechanism of resistance and test their oncogenic potential under various treatment conditions. Androgen receptor (AR) signaling was maintained in these cell lines, which acquired potential resistance mechanisms, including expression of AR-variant 7 (AR-v7) and glucocorticoid receptor. BET bromodomain inhibitors were shown previously to attenuate AR signaling in mCRPC; here, we demonstrate the efficacy of bromodomain and extraterminal (BET) inhibitors in enzalutamide-resistant prostate cancer models. AR antagonists, enzalutamide, and ARN509 exhibit enhanced prostate tumor growth inhibition when combined with BET inhibitors, JQ1 and OTX015, respectively. Taken together, these data provide a compelling preclinical rationale to combine BET inhibitors with AR antagonists to subvert resistance mechanisms.Therapeutic combinations of BET inhibitors and AR antagonists may enhance the clinical efficacy in the treatment of mCRPC.IMPLICATIONSTherapeutic combinations of BET inhibitors and AR antagonists may enhance the clinical efficacy in the treatment of mCRPC.http://mcr.aacrjournals.org/content/molcanres/14/4/324/F1.large.jpgVISUAL OVERVIEWhttp://mcr.aacrjournals.org/content/molcanres/14/4/324/F1.large.jpg
Next generation anti-androgen therapies such as enzalutamide and abiraterone have had a profound impact on the management of metastatic castration-resistant prostate cancer (mCRPC). However, mCRPC patients invariably develop resistance to these agents. Here, a series of clonal cell lines were developed from enzalutamide-resistant prostate tumor xenografts to study the molecular mechanism of resistance and test their oncogenic potential under various treatment conditions. Androgen receptor (AR) signaling was maintained in these cell lines which acquired potential resistance mechanisms including expression of AR-variant 7 (AR-v7) and glucocorticoid receptor (GR). BET bromodomain inhibitors were shown previously to attenuate AR signaling in mCRPC; here, we demonstrate the efficacy of BET inhibitors in enzalutamide-resistant prostate cancer models. AR antagonists, enzalutamide and ARN509 exhibit enhanced prostate tumor growth inhibition when combined with BET inhibitors, JQ1 and OTX015, respectively. Taken together, these data provide a compelling pre-clinical rationale to combine BET inhibitors with AR antagonists to subvert resistance mechanisms.
Author Asangani, Irfan A.
Wang, Shaomeng
Chinnaiyan, Arul M.
Plymate, Stephen R.
Navone, Nora M.
Wilder-Romans, Kari
Krishnamurthy, Pranathi M.
Feng, Felix Y.
Dommeti, Vijaya L.
Apel, Ingrid J.
Escara-Wilke, June
AuthorAffiliation 2 Department of Pathology, University of Michigan, Ann Arbor, Michigan
5 Department of Urology, University of Michigan, Ann Arbor, Michigan
9 Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan
4 Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
6 Department of Medicine, University of Washington and VAPSHCS, Seattle
3 Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan
8 Department of Internal Medicine, Pharmacology, and Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan
1 Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
7 Department of Genitourinary Medical Oncology, M. D. Anderson Cancer Center, Houston
AuthorAffiliation_xml – name: 1 Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
– name: 6 Department of Medicine, University of Washington and VAPSHCS, Seattle
– name: 8 Department of Internal Medicine, Pharmacology, and Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan
– name: 5 Department of Urology, University of Michigan, Ann Arbor, Michigan
– name: 7 Department of Genitourinary Medical Oncology, M. D. Anderson Cancer Center, Houston
– name: 9 Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan
– name: 2 Department of Pathology, University of Michigan, Ann Arbor, Michigan
– name: 4 Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
– name: 3 Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan
Author_xml – sequence: 1
  givenname: Irfan A.
  surname: Asangani
  fullname: Asangani, Irfan A.
– sequence: 2
  givenname: Kari
  surname: Wilder-Romans
  fullname: Wilder-Romans, Kari
– sequence: 3
  givenname: Vijaya L.
  surname: Dommeti
  fullname: Dommeti, Vijaya L.
– sequence: 4
  givenname: Pranathi M.
  surname: Krishnamurthy
  fullname: Krishnamurthy, Pranathi M.
– sequence: 5
  givenname: Ingrid J.
  surname: Apel
  fullname: Apel, Ingrid J.
– sequence: 6
  givenname: June
  surname: Escara-Wilke
  fullname: Escara-Wilke, June
– sequence: 7
  givenname: Stephen R.
  surname: Plymate
  fullname: Plymate, Stephen R.
– sequence: 8
  givenname: Nora M.
  surname: Navone
  fullname: Navone, Nora M.
– sequence: 9
  givenname: Shaomeng
  surname: Wang
  fullname: Wang, Shaomeng
– sequence: 10
  givenname: Felix Y.
  surname: Feng
  fullname: Feng, Felix Y.
– sequence: 11
  givenname: Arul M.
  surname: Chinnaiyan
  fullname: Chinnaiyan, Arul M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26792867$$D View this record in MEDLINE/PubMed
BookMark eNp9UV2PEyEUJWaN-6E_QcOjL7MCHQYmJibdWnWTNZqmPhNgLlvMDFSgxv33Mm7XqA8-AfeeD3LOOToJMQBCzym5pJTLV5S3tBFCdpcfV5uG8oa0gj1CZ5Rz0Swo4yfz_Yg5Rec5fyWEESq6J-iUdaJnshNn6MfVeouvUpziECftA74OO298iSnjddjpYAGvnfNW2zusw4Df-pwO-4I3kH0uv_Yl4uUGL0PRtzHUYcZVp-wAbxPoMkEoODr8OcWKL4BXMyk9RY-dHjM8O54X6Mu79Xb1obn59P56tbxpbCtEabS2UlpKO25ta9xAYKALwjkDMhjQxvTGEAk96RknRIDjQy9dZ6gzfa87WFygN_e6-4OZYLD1N0mPap_8pNOditqrvzfB79Rt_K5auWgZ76vAy6NAit8OkIuafLYwjjpAPGRFhaw5s46zCn3xp9dvk4e4K-D1PcDWMHICp6yvmfg4W_tRUaLmctVcnJqLU7Xc-lJzuZXN_2E_GPyf9xPxB6si
CitedBy_id crossref_primary_10_1186_s13148_016_0264_8
crossref_primary_10_18632_oncotarget_13181
crossref_primary_10_1080_13543784_2017_1393518
crossref_primary_10_18632_oncotarget_9804
crossref_primary_10_1016_j_mce_2017_06_007
crossref_primary_10_1038_s41467_021_26042_z
crossref_primary_10_3389_fgene_2022_1085391
crossref_primary_10_1016_j_critrevonc_2020_103185
crossref_primary_10_3390_ijms22041877
crossref_primary_10_1016_j_celrep_2017_05_049
crossref_primary_10_7554_eLife_25306
crossref_primary_10_1158_1541_7786_MCR_18_1279
crossref_primary_10_2174_0929867325666181031132007
crossref_primary_10_1158_0008_5472_CAN_20_1807
crossref_primary_10_1016_j_molcel_2018_08_029
crossref_primary_10_1016_j_crchbi_2021_100006
crossref_primary_10_1016_j_ejmech_2018_04_034
crossref_primary_10_1111_iju_13134
crossref_primary_10_1530_ERC_17_0108
crossref_primary_10_1016_j_cbpa_2020_02_003
crossref_primary_10_1158_1535_7163_MCT_20_0228
crossref_primary_10_1172_jci_insight_151851
crossref_primary_10_1200_JCO_2018_78_2292
crossref_primary_10_3389_fonc_2021_678559
crossref_primary_10_1038_s41391_020_0215_5
crossref_primary_10_3390_cancers9060067
crossref_primary_10_1073_pnas_1804205115
crossref_primary_10_1016_j_bcp_2020_113946
crossref_primary_10_1016_j_ddtec_2016_07_001
crossref_primary_10_1016_j_trecan_2019_05_008
crossref_primary_10_1007_s00345_018_2382_8
crossref_primary_10_1038_s41573_019_0030_7
crossref_primary_10_1158_1078_0432_CCR_16_1137
crossref_primary_10_1038_s41591_019_0376_8
crossref_primary_10_1158_1541_7786_MCR_17_0196
crossref_primary_10_1042_BCJ20220550
crossref_primary_10_3390_medicines6030082
crossref_primary_10_1007_s12032_016_0759_3
crossref_primary_10_1074_mcp_M116_065375
crossref_primary_10_1007_s40610_018_0095_9
crossref_primary_10_1172_JCI175023
crossref_primary_10_1016_j_breast_2020_08_005
crossref_primary_10_1038_s41598_019_50220_1
crossref_primary_10_1158_2159_8290_CD_20_0751
crossref_primary_10_1002_pros_23424
crossref_primary_10_1172_JCI122819
crossref_primary_10_3390_cancers9030022
crossref_primary_10_1016_j_molmed_2019_07_001
crossref_primary_10_1080_17460441_2018_1455662
crossref_primary_10_1080_17460441_2017_1356286
crossref_primary_10_1016_j_pharmthera_2021_107932
crossref_primary_10_3390_ijms18051017
crossref_primary_10_1016_j_biochi_2023_07_012
crossref_primary_10_1016_j_critrevonc_2017_08_009
crossref_primary_10_3390_cancers13133325
crossref_primary_10_1016_j_bcp_2023_115848
crossref_primary_10_3390_cancers13040715
crossref_primary_10_1038_s41419_024_06422_1
crossref_primary_10_3389_fonc_2020_581515
crossref_primary_10_1186_s13148_021_01069_7
crossref_primary_10_1038_s41571_018_0085_0
crossref_primary_10_1158_2159_8290_CD_17_0605
crossref_primary_10_3389_fonc_2018_00180
crossref_primary_10_1080_14728222_2018_1439016
crossref_primary_10_1146_annurev_cancerbio_030617_050400
crossref_primary_10_1101_gad_315739_118
crossref_primary_10_3390_ijms24065665
crossref_primary_10_1007_s40610_017_0079_1
crossref_primary_10_1101_cshperspect_a030452
crossref_primary_10_3390_diagnostics8030062
crossref_primary_10_1002_jcp_25427
crossref_primary_10_1038_s41585_021_00438_4
crossref_primary_10_1128_MMBR_00047_16
crossref_primary_10_3390_molecules27248790
crossref_primary_10_1016_j_biopha_2019_108793
crossref_primary_10_1002_1878_0261_12770
crossref_primary_10_1038_nrc_2017_20
crossref_primary_10_1002_cmdc_202100033
crossref_primary_10_1021_acs_jmedchem_8b00103
crossref_primary_10_1158_1078_0432_CCR_22_0175
crossref_primary_10_18632_oncotarget_13814
crossref_primary_10_1101_cshperspect_a030601
crossref_primary_10_3389_fonc_2019_00385
crossref_primary_10_1111_iju_15628
crossref_primary_10_1158_1078_0432_CCR_18_3776
crossref_primary_10_3390_ijms222011102
crossref_primary_10_1038_s41598_017_18210_3
crossref_primary_10_1016_j_bulcan_2016_07_005
crossref_primary_10_3389_fendo_2023_1191311
crossref_primary_10_1530_ERC_18_0289
crossref_primary_10_1038_onc_2017_330
crossref_primary_10_1016_j_celrep_2018_02_011
crossref_primary_10_1038_s41585_019_0237_8
crossref_primary_10_1016_j_eururo_2021_03_005
crossref_primary_10_1530_ERC_16_0422
crossref_primary_10_1097_MOU_0000000000001027
crossref_primary_10_1007_s00018_016_2320_0
crossref_primary_10_1200_JCO_21_00169
crossref_primary_10_4103_tcmj_tcmj_220_20
crossref_primary_10_1016_j_drup_2024_101144
crossref_primary_10_1007_s11255_016_1476_8
crossref_primary_10_3390_cancers16030523
crossref_primary_10_1016_j_euo_2019_07_013
crossref_primary_10_1158_1078_0432_CCR_17_3571
crossref_primary_10_1530_ERC_18_0579
crossref_primary_10_1186_s12929_021_00721_x
crossref_primary_10_1038_s41571_019_0267_4
crossref_primary_10_1016_j_bmcl_2022_128952
crossref_primary_10_1016_j_jpha_2025_101232
crossref_primary_10_7554_eLife_21253
crossref_primary_10_1007_s11912_025_01643_9
crossref_primary_10_1021_acs_jmedchem_2c01770
crossref_primary_10_1016_j_ddtec_2017_10_003
crossref_primary_10_1158_2159_8290_CD_19_0189
crossref_primary_10_1097_CCO_0000000000000520
crossref_primary_10_1038_s41698_020_00137_0
crossref_primary_10_1016_j_cmet_2019_05_004
crossref_primary_10_1038_s41467_021_25623_2
crossref_primary_10_1158_1535_7163_MCT_18_0365
crossref_primary_10_3390_cancers13112563
crossref_primary_10_1038_s41467_023_40760_6
Cites_doi 10.1016/j.ccr.2013.11.003
10.1016/j.cell.2013.03.036
10.1056/NEJMoa1315815
10.1158/0008-5472.CAN-09-0395
10.1371/journal.pone.0063563
10.1038/nature10509
10.1016/j.cell.2015.05.001
10.1200/JCO.2013.50.1684
10.1056/NEJMoa1014618
10.1158/0008-5472.CAN-12-1335
10.1016/j.cell.2011.08.017
10.1038/nm972
10.1093/nar/gkv262
10.1038/onc.2013.284
10.1038/nature09504
10.7554/eLife.00499
10.1158/0008-5472.CAN-11-3948
10.18632/oncotarget.1572
10.1056/NEJMoa1207506
10.1038/ng0495-401
10.1016/j.cell.2013.11.012
10.1038/nature13229
10.1126/science.1168175
ContentType Journal Article
Copyright 2016 American Association for Cancer Research.
Copyright_xml – notice: 2016 American Association for Cancer Research.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1158/1541-7786.MCR-15-0472
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1557-3125
EndPage 331
ExternalDocumentID PMC4834259
26792867
10_1158_1541_7786_MCR_15_0472
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R00 CA187664
– fundername: NCI NIH HHS
  grantid: P50CA186786
– fundername: NCI NIH HHS
  grantid: P50 CA186786
– fundername: Howard Hughes Medical Institute
– fundername: NCI NIH HHS
  grantid: P50 CA 097186
– fundername: NCI NIH HHS
  grantid: K99 CA187664
– fundername: NCI NIH HHS
  grantid: 1K99CA187665-01
– fundername: NCI NIH HHS
  grantid: P01CA163227
– fundername: NCI NIH HHS
  grantid: P50 CA140388
GroupedDBID ---
123
18M
2FS
2WC
34G
39C
53G
5RE
5VS
AAJMC
AAYXX
ACGFO
ACPRK
ADBBV
ADCOW
AENEX
AFHIN
AFRAH
AFUMD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BR6
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
H13
HH5
IH2
KQ8
L7B
OK1
QTD
RCR
RHI
TR2
W8F
WOQ
YKV
.55
.GJ
3O-
ABEFU
AFFNX
C1A
CGR
CUY
CVF
ECM
EIF
H~9
MVM
NPM
WHG
X7M
ZGI
7X8
5PM
ID FETCH-LOGICAL-c477t-aac88c1165cc4bfd0ed130552e0dbeabb9bb08e90925007ef5d98f6b1fb99a6e3
ISSN 1541-7786
1557-3125
IngestDate Thu Aug 21 18:30:43 EDT 2025
Thu Sep 04 18:24:58 EDT 2025
Sat May 31 02:12:47 EDT 2025
Thu Apr 24 22:57:59 EDT 2025
Tue Jul 01 04:31:23 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License 2016 American Association for Cancer Research.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c477t-aac88c1165cc4bfd0ed130552e0dbeabb9bb08e90925007ef5d98f6b1fb99a6e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Current Address: Department of Cancer Biology, University of Pennsylvania, Philadelphia, USA.
OpenAccessLink http://doi.org/10.1158/1541-7786.MCR-15-0472
PMID 26792867
PQID 1781542652
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4834259
proquest_miscellaneous_1781542652
pubmed_primary_26792867
crossref_citationtrail_10_1158_1541_7786_MCR_15_0472
crossref_primary_10_1158_1541_7786_MCR_15_0472
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-04-01
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 04
  year: 2016
  text: 2016-04-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular cancer research
PublicationTitleAlternate Mol Cancer Res
PublicationYear 2016
References Scher (2022060705052044200_bib6) 2012; 367
Robinson (2022060705052044200_bib3) 2015; 161
Visakorpi (2022060705052044200_bib4) 1995; 9
Asangani (2022060705052044200_bib7) 2014; 510
Arora (2022060705052044200_bib18) 2013; 155
Loven (2022060705052044200_bib13) 2013; 153
Korenchuk (2022060705052044200_bib20) 2001; 15
Chan (2022060705052044200_bib8) 2015; 43
Cai (2022060705052044200_bib21) 2009; 69
Antonarakis (2022060705052044200_bib16) 2014; 371
Filippakopoulos (2022060705052044200_bib11) 2010; 468
Chapuy (2022060705052044200_bib14) 2013; 24
de Bono (2022060705052044200_bib5) 2011; 364
Gao (2022060705052044200_bib15) 2013; 8
American Cancer Society (2022060705052044200_bib1)
Delmore (2022060705052044200_bib12) 2011; 146
Liu (2022060705052044200_bib19) 2014; 33
Dawson (2022060705052044200_bib10) 2011; 478
Rathkopf (2022060705052044200_bib22) 2013; 31
Clegg (2022060705052044200_bib23) 2012; 72
Wyce (2022060705052044200_bib9) 2013; 4
Tran (2022060705052044200_bib17) 2009; 324
Chen (2022060705052044200_bib2) 2004; 10
Mitsiades (2022060705052044200_bib25) 2012; 72
Balbas (2022060705052044200_bib24) 2013; 2
References_xml – volume: 24
  start-page: 777
  year: 2013
  ident: 2022060705052044200_bib14
  article-title: Discovery and characterization of super-enhancer-associated dependencies in diffuse large B cell lymphoma
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2013.11.003
– volume: 153
  start-page: 320
  year: 2013
  ident: 2022060705052044200_bib13
  article-title: Selective inhibition of tumor oncogenes by disruption of super-enhancers
  publication-title: Cell
  doi: 10.1016/j.cell.2013.03.036
– volume: 371
  start-page: 1028
  year: 2014
  ident: 2022060705052044200_bib16
  article-title: AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1315815
– volume: 69
  start-page: 6027
  year: 2009
  ident: 2022060705052044200_bib21
  article-title: Reactivation of androgen receptor-regulated TMPRSS2:ERG gene expression in castration-resistant prostate cancer
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-09-0395
– volume: 8
  start-page: e63563
  year: 2013
  ident: 2022060705052044200_bib15
  article-title: Androgen receptor promotes ligand-independent prostate cancer progression through c-Myc upregulation
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0063563
– volume: 478
  start-page: 529
  year: 2011
  ident: 2022060705052044200_bib10
  article-title: Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia
  publication-title: Nature
  doi: 10.1038/nature10509
– volume: 161
  start-page: 1215
  year: 2015
  ident: 2022060705052044200_bib3
  article-title: Integrative clinical genomics of advanced prostate cancer
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.001
– volume: 31
  start-page: 3525
  year: 2013
  ident: 2022060705052044200_bib22
  article-title: Phase I study of ARN-509, a novel antiandrogen, in the treatment of castration-resistant prostate cancer
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2013.50.1684
– volume: 364
  start-page: 1995
  year: 2011
  ident: 2022060705052044200_bib5
  article-title: Abiraterone and increased survival in metastatic prostate cancer
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1014618
– volume: 72
  start-page: 6142
  year: 2012
  ident: 2022060705052044200_bib25
  article-title: Distinct patterns of dysregulated expression of enzymes involved in androgen synthesis and metabolism in metastatic prostate cancer tumors
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-12-1335
– volume: 146
  start-page: 904
  year: 2011
  ident: 2022060705052044200_bib12
  article-title: BET bromodomain inhibition as a therapeutic strategy to target c-Myc
  publication-title: Cell
  doi: 10.1016/j.cell.2011.08.017
– volume: 10
  start-page: 33
  year: 2004
  ident: 2022060705052044200_bib2
  article-title: Molecular determinants of resistance to antiandrogen therapy
  publication-title: Nat Med
  doi: 10.1038/nm972
– volume: 43
  start-page: 5880
  year: 2015
  ident: 2022060705052044200_bib8
  article-title: Targeting chromatin binding regulation of constitutively active AR variants to overcome prostate cancer resistance to endocrine-based therapies
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv262
– volume: 33
  start-page: 3140
  year: 2014
  ident: 2022060705052044200_bib19
  article-title: Mechanisms of the androgen receptor splicing in prostate cancer cells
  publication-title: Oncogene
  doi: 10.1038/onc.2013.284
– volume: 468
  start-page: 1067
  year: 2010
  ident: 2022060705052044200_bib11
  article-title: Selective inhibition of BET bromodomains
  publication-title: Nature
  doi: 10.1038/nature09504
– volume: 2
  start-page: e00499
  year: 2013
  ident: 2022060705052044200_bib24
  article-title: Overcoming mutation-based resistance to antiandrogens with rational drug design
  publication-title: Elife
  doi: 10.7554/eLife.00499
– volume: 72
  start-page: 1494
  year: 2012
  ident: 2022060705052044200_bib23
  article-title: ARN-509: a novel antiandrogen for prostate cancer treatment
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-11-3948
– ident: 2022060705052044200_bib1
– volume: 4
  start-page: 2419
  year: 2013
  ident: 2022060705052044200_bib9
  article-title: Inhibition of BET bromodomain proteins as a therapeutic approach in prostate cancer
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.1572
– volume: 367
  start-page: 1187
  year: 2012
  ident: 2022060705052044200_bib6
  article-title: Increased survival with enzalutamide in prostate cancer after chemotherapy
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1207506
– volume: 9
  start-page: 401
  year: 1995
  ident: 2022060705052044200_bib4
  article-title: In vivo amplification of the androgen receptor gene and progression of human prostate cancer
  publication-title: Nat Genet
  doi: 10.1038/ng0495-401
– volume: 155
  start-page: 1309
  year: 2013
  ident: 2022060705052044200_bib18
  article-title: Glucocorticoid receptor confers resistance to antiandrogens by bypassing androgen receptor blockade
  publication-title: Cell
  doi: 10.1016/j.cell.2013.11.012
– volume: 510
  start-page: 278
  year: 2014
  ident: 2022060705052044200_bib7
  article-title: Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer
  publication-title: Nature
  doi: 10.1038/nature13229
– volume: 15
  start-page: 163
  year: 2001
  ident: 2022060705052044200_bib20
  article-title: VCaP, a cell-based model system of human prostate cancer
  publication-title: In Vivo
– volume: 324
  start-page: 787
  year: 2009
  ident: 2022060705052044200_bib17
  article-title: Development of a second-generation antiandrogen for treatment of advanced prostate cancer
  publication-title: Science
  doi: 10.1126/science.1168175
SSID ssj0020176
Score 2.5193322
Snippet Next-generation antiandrogen therapies, such as enzalutamide and abiraterone, have had a profound impact on the management of metastatic castration-resistant...
Next generation anti-androgen therapies such as enzalutamide and abiraterone have had a profound impact on the management of metastatic castration-resistant...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 324
SubjectTerms Acetanilides - administration & dosage
Acetanilides - pharmacology
Androgen Receptor Antagonists - administration & dosage
Androgen Receptor Antagonists - pharmacology
Animals
Antineoplastic Combined Chemotherapy Protocols - administration & dosage
Antineoplastic Combined Chemotherapy Protocols - pharmacology
Azepines - administration & dosage
Azepines - pharmacology
Benzamides
Cell Line, Tumor
Cell Proliferation - drug effects
Cell Survival - drug effects
Drug Resistance, Neoplasm - drug effects
Heterocyclic Compounds, 3-Ring - administration & dosage
Heterocyclic Compounds, 3-Ring - pharmacology
Humans
Male
Mice
Nitriles
Phenylthiohydantoin - administration & dosage
Phenylthiohydantoin - analogs & derivatives
Phenylthiohydantoin - pharmacology
Prostatic Neoplasms, Castration-Resistant - drug therapy
Prostatic Neoplasms, Castration-Resistant - metabolism
Receptors, Androgen - metabolism
Signal Transduction - drug effects
Triazoles - administration & dosage
Triazoles - pharmacology
Xenograft Model Antitumor Assays
Title BET Bromodomain Inhibitors Enhance Efficacy and Disrupt Resistance to AR Antagonists in the Treatment of Prostate Cancer
URI https://www.ncbi.nlm.nih.gov/pubmed/26792867
https://www.proquest.com/docview/1781542652
https://pubmed.ncbi.nlm.nih.gov/PMC4834259
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKItBeECyv8pKRuFUpeTs-lqqoPIpQ1UV7i-zE2RbRZJWm0i7_kf_ETOK46e4KWC5RG8cTK_NlPHa-mSHkTeAz6Ybcs4TwbcuXmWMJO1UW80JfOlIox8Pg5NmXcHrsfzwJTnq9Xx3W0raSw-TntXEl_6NVOAd6xSjZG2jWCIUT8Bv0C0fQMBz_ScfvJgtQTrGGpeUaVvjwsi9XclXXz5nkyzoYYIIpIrCke005Xm3K7RnykDfoNmI7uJ6jOaYQEKcFJtHdtMTHhWGgI0sOY0PAKx2MsVPZ9WhnbX1d5I9B20CnDzLbzKONyHXlqMGHMgN7Mhp2dntSVVpzGH7jz3-CpbvxrYv1WjVsg2-r7-JCDD6bjmiblrlYb8uqgclXmHORSDmYDbsbGU7Y4b9o2-s7Fqaza6YmfS7AbdQmNtoYbL8DTL9jfb0mHFtP5DoU7OocEWDcg7nbcDaeW05gYdrM3aTYEgEuzZWGwVivnYIoRjExiolBDPyLUcwtcttlrGYNTKe71I9g_Opgt_bOOqAMxLy9djT7rtKV9c9lGm_HL1rcJ_f0goaOGnQ-ID2VH5E7TYnTiyNyd6bJGw_JOcCVduBKd3ClGq60hSsFuFINV7qDK60KOprTDlwpyAG4UgNXWmS0hStt4PqIHL-fLMZTSxf-sBKfsQrsRhJFCSaGShIwH6mtUgcz07nKTqUSUnIp7Uhxm4MDbzOVBSmPslA6meRchMp7TA7yIldPCeWpH_HUy1iG37NDW6YZVxHHnX9X8DTtE799xnGis-JjcZYf8R813CdD0-2sSQvztw6vWwXGYMDxq5zIVbHdxA6LoIcbBnDNk0ahRqQbMu5GIesTtqdqcwEmh99vyVfLOkk8fiRwA_7spgN9Tg53L-cLclCVW_US_O5KvqrR_BtimNYf
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BET+Bromodomain+Inhibitors+Enhance+Efficacy+and+Disrupt+Resistance+to+AR+Antagonists+in+the+Treatment+of+Prostate+Cancer&rft.jtitle=Molecular+cancer+research&rft.au=Asangani%2C+Irfan+A.&rft.au=Wilder-Romans%2C+Kari&rft.au=Dommeti%2C+Vijaya+L.&rft.au=Krishnamurthy%2C+Pranathi+M.&rft.date=2016-04-01&rft.issn=1541-7786&rft.eissn=1557-3125&rft.volume=14&rft.issue=4&rft.spage=324&rft.epage=331&rft_id=info:doi/10.1158%2F1541-7786.MCR-15-0472&rft.externalDBID=n%2Fa&rft.externalDocID=10_1158_1541_7786_MCR_15_0472
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1541-7786&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1541-7786&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1541-7786&client=summon