A 12-Gene Set Predicts Survival Benefits from Adjuvant Chemotherapy in Non–Small Cell Lung Cancer Patients
Purpose: Prospectively identifying who will benefit from adjuvant chemotherapy (ACT) would improve clinical decisions for non–small cell lung cancer (NSCLC) patients. In this study, we aim to develop and validate a functional gene set that predicts the clinical benefits of ACT in NSCLC. Experimental...
Saved in:
Published in | Clinical cancer research Vol. 19; no. 6; pp. 1577 - 1586 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
15.03.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 1078-0432 1557-3265 1557-3265 |
DOI | 10.1158/1078-0432.CCR-12-2321 |
Cover
Abstract | Purpose: Prospectively identifying who will benefit from adjuvant chemotherapy (ACT) would improve clinical decisions for non–small cell lung cancer (NSCLC) patients. In this study, we aim to develop and validate a functional gene set that predicts the clinical benefits of ACT in NSCLC.
Experimental Design: An 18-hub-gene prognosis signature was developed through a systems biology approach, and its prognostic value was evaluated in six independent cohorts. The 18-hub-gene set was then integrated with genome-wide functional (RNAi) data and genetic aberration data to derive a 12-gene predictive signature for ACT benefits in NSCLC.
Results: Using a cohort of 442 stage I to III NSCLC patients who underwent surgical resection, we identified an 18-hub-gene set that robustly predicted the prognosis of patients with adenocarcinoma in all validation datasets across four microarray platforms. The hub genes, identified through a purely data-driven approach, have significant biological implications in tumor pathogenesis, including NKX2-1, Aurora Kinase A, PRC1, CDKN3, MBIP, and RRM2. The 12-gene predictive signature was successfully validated in two independent datasets (n = 90 and 176). The predicted benefit group showed significant improvement in survival after ACT (UT Lung SPORE data: HR = 0.34, P = 0.017; JBR.10 clinical trial data: HR = 0.36, P = 0.038), whereas the predicted nonbenefit group showed no survival benefit for 2 datasets (HR = 0.80, P = 0.70; HR = 0.91, P = 0.82).
Conclusions: This is the first study to integrate genetic aberration, genome-wide RNAi data, and mRNA expression data to identify a functional gene set that predicts which resectable patients with non–small cell lung cancer will have a survival benefit with ACT. Clin Cancer Res; 19(6); 1577–86. ©2013 AACR. |
---|---|
AbstractList | Prospectively identifying who will benefit from adjuvant chemotherapy (ACT) would improve clinical decisions for non-small cell lung cancer (NSCLC) patients. In this study, we aim to develop and validate a functional gene set that predicts the clinical benefits of ACT in NSCLC.
An 18-hub-gene prognosis signature was developed through a systems biology approach, and its prognostic value was evaluated in six independent cohorts. The 18-hub-gene set was then integrated with genome-wide functional (RNAi) data and genetic aberration data to derive a 12-gene predictive signature for ACT benefits in NSCLC.
Using a cohort of 442 stage I to III NSCLC patients who underwent surgical resection, we identified an 18-hub-gene set that robustly predicted the prognosis of patients with adenocarcinoma in all validation datasets across four microarray platforms. The hub genes, identified through a purely data-driven approach, have significant biological implications in tumor pathogenesis, including NKX2-1, Aurora Kinase A, PRC1, CDKN3, MBIP, and RRM2. The 12-gene predictive signature was successfully validated in two independent datasets (n = 90 and 176). The predicted benefit group showed significant improvement in survival after ACT (UT Lung SPORE data: HR = 0.34, P = 0.017; JBR.10 clinical trial data: HR = 0.36, P = 0.038), whereas the predicted nonbenefit group showed no survival benefit for 2 datasets (HR = 0.80, P = 0.70; HR = 0.91, P = 0.82).
This is the first study to integrate genetic aberration, genome-wide RNAi data, and mRNA expression data to identify a functional gene set that predicts which resectable patients with non-small cell lung cancer will have a survival benefit with ACT. Purpose: Prospectively identifying who will benefit from adjuvant chemotherapy (ACT) would improve clinical decisions for non–small cell lung cancer (NSCLC) patients. In this study, we aim to develop and validate a functional gene set that predicts the clinical benefits of ACT in NSCLC. Experimental Design: An 18-hub-gene prognosis signature was developed through a systems biology approach, and its prognostic value was evaluated in six independent cohorts. The 18-hub-gene set was then integrated with genome-wide functional (RNAi) data and genetic aberration data to derive a 12-gene predictive signature for ACT benefits in NSCLC. Results: Using a cohort of 442 stage I to III NSCLC patients who underwent surgical resection, we identified an 18-hub-gene set that robustly predicted the prognosis of patients with adenocarcinoma in all validation datasets across four microarray platforms. The hub genes, identified through a purely data-driven approach, have significant biological implications in tumor pathogenesis, including NKX2-1, Aurora Kinase A, PRC1, CDKN3, MBIP, and RRM2. The 12-gene predictive signature was successfully validated in two independent datasets (n = 90 and 176). The predicted benefit group showed significant improvement in survival after ACT (UT Lung SPORE data: HR = 0.34, P = 0.017; JBR.10 clinical trial data: HR = 0.36, P = 0.038), whereas the predicted nonbenefit group showed no survival benefit for 2 datasets (HR = 0.80, P = 0.70; HR = 0.91, P = 0.82). Conclusions: This is the first study to integrate genetic aberration, genome-wide RNAi data, and mRNA expression data to identify a functional gene set that predicts which resectable patients with non–small cell lung cancer will have a survival benefit with ACT. Clin Cancer Res; 19(6); 1577–86. ©2013 AACR. Prospectively identifying who will benefit from adjuvant chemotherapy (ACT) would improve clinical decisions for non-small cell lung cancer (NSCLC) patients. In this study, we aim to develop and validate a functional gene set that predicts the clinical benefits of ACT in NSCLC.PURPOSEProspectively identifying who will benefit from adjuvant chemotherapy (ACT) would improve clinical decisions for non-small cell lung cancer (NSCLC) patients. In this study, we aim to develop and validate a functional gene set that predicts the clinical benefits of ACT in NSCLC.An 18-hub-gene prognosis signature was developed through a systems biology approach, and its prognostic value was evaluated in six independent cohorts. The 18-hub-gene set was then integrated with genome-wide functional (RNAi) data and genetic aberration data to derive a 12-gene predictive signature for ACT benefits in NSCLC.EXPERIMENTAL DESIGNAn 18-hub-gene prognosis signature was developed through a systems biology approach, and its prognostic value was evaluated in six independent cohorts. The 18-hub-gene set was then integrated with genome-wide functional (RNAi) data and genetic aberration data to derive a 12-gene predictive signature for ACT benefits in NSCLC.Using a cohort of 442 stage I to III NSCLC patients who underwent surgical resection, we identified an 18-hub-gene set that robustly predicted the prognosis of patients with adenocarcinoma in all validation datasets across four microarray platforms. The hub genes, identified through a purely data-driven approach, have significant biological implications in tumor pathogenesis, including NKX2-1, Aurora Kinase A, PRC1, CDKN3, MBIP, and RRM2. The 12-gene predictive signature was successfully validated in two independent datasets (n = 90 and 176). The predicted benefit group showed significant improvement in survival after ACT (UT Lung SPORE data: HR = 0.34, P = 0.017; JBR.10 clinical trial data: HR = 0.36, P = 0.038), whereas the predicted nonbenefit group showed no survival benefit for 2 datasets (HR = 0.80, P = 0.70; HR = 0.91, P = 0.82).RESULTSUsing a cohort of 442 stage I to III NSCLC patients who underwent surgical resection, we identified an 18-hub-gene set that robustly predicted the prognosis of patients with adenocarcinoma in all validation datasets across four microarray platforms. The hub genes, identified through a purely data-driven approach, have significant biological implications in tumor pathogenesis, including NKX2-1, Aurora Kinase A, PRC1, CDKN3, MBIP, and RRM2. The 12-gene predictive signature was successfully validated in two independent datasets (n = 90 and 176). The predicted benefit group showed significant improvement in survival after ACT (UT Lung SPORE data: HR = 0.34, P = 0.017; JBR.10 clinical trial data: HR = 0.36, P = 0.038), whereas the predicted nonbenefit group showed no survival benefit for 2 datasets (HR = 0.80, P = 0.70; HR = 0.91, P = 0.82).This is the first study to integrate genetic aberration, genome-wide RNAi data, and mRNA expression data to identify a functional gene set that predicts which resectable patients with non-small cell lung cancer will have a survival benefit with ACT.CONCLUSIONSThis is the first study to integrate genetic aberration, genome-wide RNAi data, and mRNA expression data to identify a functional gene set that predicts which resectable patients with non-small cell lung cancer will have a survival benefit with ACT. |
Author | Suraokar, Milind Mao, Jianhua Allen, Jeffrey Xiao, Guanghua Minna, John D. Tang, Hao Corvalan, Alejandro Xie, Yang White, Michael A. Behrens, Carmen Chow, Chi-Wan Schiller, Joan Wistuba, Ignacio I. |
AuthorAffiliation | 10 Life Sciences Division, Lawrence Berkeley National Laboratory 9 Department of Pathology, University of Texas, MD Anderson Cancer Center 7 Hamon Center for Therapeutic Oncology, University of Texas Southwestern Medical Center 3 Simmons Cancer Center, University of Texas Southwestern Medical Center 5 Department of Cell Biology, University of Texas Southwestern Medical Center 1 Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center 2 Department of Clinical Sciences, University of Texas Southwestern Medical Center 8 Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center 6 Department of Pharmacology, University of Texas Southwestern Medical Center 4 Department of Internal Medicine, University of Texas Southwestern Medical Center |
AuthorAffiliation_xml | – name: 10 Life Sciences Division, Lawrence Berkeley National Laboratory – name: 6 Department of Pharmacology, University of Texas Southwestern Medical Center – name: 2 Department of Clinical Sciences, University of Texas Southwestern Medical Center – name: 5 Department of Cell Biology, University of Texas Southwestern Medical Center – name: 7 Hamon Center for Therapeutic Oncology, University of Texas Southwestern Medical Center – name: 8 Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center – name: 9 Department of Pathology, University of Texas, MD Anderson Cancer Center – name: 3 Simmons Cancer Center, University of Texas Southwestern Medical Center – name: 1 Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center – name: 4 Department of Internal Medicine, University of Texas Southwestern Medical Center |
Author_xml | – sequence: 1 givenname: Hao surname: Tang fullname: Tang, Hao – sequence: 2 givenname: Guanghua surname: Xiao fullname: Xiao, Guanghua – sequence: 3 givenname: Carmen surname: Behrens fullname: Behrens, Carmen – sequence: 4 givenname: Joan surname: Schiller fullname: Schiller, Joan – sequence: 5 givenname: Jeffrey surname: Allen fullname: Allen, Jeffrey – sequence: 6 givenname: Chi-Wan surname: Chow fullname: Chow, Chi-Wan – sequence: 7 givenname: Milind surname: Suraokar fullname: Suraokar, Milind – sequence: 8 givenname: Alejandro surname: Corvalan fullname: Corvalan, Alejandro – sequence: 9 givenname: Jianhua surname: Mao fullname: Mao, Jianhua – sequence: 10 givenname: Michael A. surname: White fullname: White, Michael A. – sequence: 11 givenname: Ignacio I. surname: Wistuba fullname: Wistuba, Ignacio I. – sequence: 12 givenname: John D. surname: Minna fullname: Minna, John D. – sequence: 13 givenname: Yang surname: Xie fullname: Xie, Yang |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23357979$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kd9uFCEUxompsX_0ETRcejMtB4b5ExOT7URbk41tXL0mDAtdmhlYgdmkd76Db9gnKZN2jXrRGyDnfN_5wvkdowPnnUboLZBTAN6cAambgpSMnnbdtwJoQRmFF-gIOK8LRit-kN97zSE6jvGWECiBlK_QIWWM123dHqFhgbP3QjuNVzrh66DXVqWIV1PY2Z0c8HluGZsrJvgRL9a30066hLuNHn3a6CC3d9g6_NW7-1-_V6McBtzpfCwnd4M76ZQO-Fomq12Kr9FLI4eo3zzdJ-jH50_fu8tieXXxpVssC1XWdSpaDlzRRlLd1wSqsjeaE1aZCtYtMQ00VBFaAWWgVS8J1NKYnnOgBnjfy5KdoI-Pc7dTP-q1ytlBDmIb7CjDnfDSin87zm7Ejd8JVkFLCM0D3j8NCP7npGMSo40qf0s67acogJVVpsDKNkvf_Z31J2S_4iz48ChQwccYtBHKprwQP0fbQQARM1AxwxIzLJGBCqBiBprd_D_3PuB53wPbeaT3 |
CitedBy_id | crossref_primary_10_1126_scitranslmed_3008291 crossref_primary_10_1038_s41419_023_06256_3 crossref_primary_10_1016_j_biopha_2016_01_004 crossref_primary_10_18632_oncotarget_19161 crossref_primary_10_3389_fcell_2023_1224069 crossref_primary_10_3892_ol_2023_14105 crossref_primary_10_18632_oncotarget_9129 crossref_primary_10_1158_1078_0432_CCR_14_3286 crossref_primary_10_1038_ncomms12619 crossref_primary_10_1097_JTO_0000000000000470 crossref_primary_10_1177_09622802221104239 crossref_primary_10_1016_j_lungcan_2024_107791 crossref_primary_10_18632_oncotarget_23663 crossref_primary_10_1186_2049_3002_2_20 crossref_primary_10_1172_JCI74725 crossref_primary_10_3892_ijo_2019_4926 crossref_primary_10_1007_s10489_020_01740_1 crossref_primary_10_1016_j_jtho_2016_07_023 crossref_primary_10_1016_j_semcancer_2016_09_002 crossref_primary_10_3892_ol_2018_9044 crossref_primary_10_1111_jcmm_18516 crossref_primary_10_1172_jci_insight_152815 crossref_primary_10_1016_j_cellsig_2024_111040 crossref_primary_10_1039_D0FO02675A crossref_primary_10_1158_2159_8290_CD_18_0099 crossref_primary_10_1016_j_artmed_2018_09_005 crossref_primary_10_1093_bib_bbv064 crossref_primary_10_1371_journal_pone_0127380 crossref_primary_10_1038_s42003_022_03135_z crossref_primary_10_1186_s12885_023_10622_x crossref_primary_10_1158_1078_0432_CCR_15_1434 crossref_primary_10_1007_s40291_019_00420_2 crossref_primary_10_1177_1176935117690778 crossref_primary_10_1049_iet_syb_2018_5060 crossref_primary_10_1111_jpi_12803 crossref_primary_10_18632_aging_103475 crossref_primary_10_1016_j_intimp_2023_111286 crossref_primary_10_1097_JTO_0000000000000365 crossref_primary_10_1158_1078_0432_CCR_17_2543 crossref_primary_10_1093_biostatistics_kxv013 crossref_primary_10_1109_LLS_2015_2488438 crossref_primary_10_1155_2015_312047 crossref_primary_10_1016_j_biopha_2016_07_047 crossref_primary_10_1158_2159_8290_CD_20_1114 crossref_primary_10_1002_aic_17574 crossref_primary_10_1038_s41598_023_47659_8 crossref_primary_10_18632_oncotarget_12124 crossref_primary_10_1002_ijc_28428 crossref_primary_10_1214_19_AOAS1249 crossref_primary_10_1016_j_bbagrm_2019_194418 crossref_primary_10_1038_onc_2014_155 crossref_primary_10_1111_1759_7714_14475 crossref_primary_10_7717_peerj_8349 crossref_primary_10_1371_journal_pone_0133562 crossref_primary_10_1038_s41467_022_29230_7 crossref_primary_10_1158_2159_8290_CD_17_1033 crossref_primary_10_1016_j_heliyon_2024_e24816 crossref_primary_10_1038_s41598_020_80453_4 crossref_primary_10_1093_abbs_gmaa036 crossref_primary_10_1093_bib_bbab154 crossref_primary_10_1007_s10489_016_0850_7 crossref_primary_10_1186_s13045_016_0339_1 crossref_primary_10_1093_bioinformatics_btz399 crossref_primary_10_1016_j_repbio_2022_100680 crossref_primary_10_3389_fonc_2019_01103 crossref_primary_10_1186_s12918_018_0642_2 crossref_primary_10_1016_j_cllc_2015_02_008 crossref_primary_10_1371_journal_pone_0127600 crossref_primary_10_18632_oncotarget_12672 crossref_primary_10_18632_oncotarget_19349 crossref_primary_10_1186_s12859_018_2560_0 crossref_primary_10_1158_1078_0432_CCR_13_2127 crossref_primary_10_2217_bmm_2019_0052 crossref_primary_10_1080_14737159_2021_1947798 crossref_primary_10_1016_j_ebiom_2014_10_012 crossref_primary_10_1007_s13402_020_00494_9 crossref_primary_10_1038_s41389_025_00546_5 crossref_primary_10_18632_oncotarget_24361 crossref_primary_10_1016_j_jfma_2016_01_009 crossref_primary_10_1158_1078_0432_CCR_15_0529 crossref_primary_10_1016_j_athoracsur_2020_03_114 crossref_primary_10_7465_jkdi_2016_27_2_381 crossref_primary_10_18632_oncotarget_10641 crossref_primary_10_18632_oncotarget_10002 crossref_primary_10_1038_s41698_024_00680_0 crossref_primary_10_18632_oncotarget_13357 crossref_primary_10_3346_jkms_2022_37_e84 crossref_primary_10_1038_s41598_021_85246_x crossref_primary_10_1136_jitc_2024_010008 crossref_primary_10_1155_2022_1560199 crossref_primary_10_1016_j_ejca_2015_07_015 crossref_primary_10_1016_j_xcrm_2024_101661 crossref_primary_10_1186_s12920_022_01340_7 crossref_primary_10_1111_cpr_13703 crossref_primary_10_1109_TCBB_2020_2992605 crossref_primary_10_1016_j_bbamcr_2018_08_010 crossref_primary_10_7314_APJCP_2015_16_5_1693 crossref_primary_10_3389_fimmu_2023_1161869 crossref_primary_10_1038_bjc_2016_370 crossref_primary_10_1007_s10238_024_01439_4 crossref_primary_10_1016_j_cmet_2018_02_024 crossref_primary_10_1016_j_isci_2023_106517 crossref_primary_10_1158_2159_8290_CD_14_1236 crossref_primary_10_3390_cancers14092054 crossref_primary_10_1002_path_4275 crossref_primary_10_1158_1078_0432_CCR_13_0928 crossref_primary_10_1093_jnci_djv211 crossref_primary_10_1016_j_jtho_2021_07_002 crossref_primary_10_1007_s13277_015_3714_6 crossref_primary_10_1016_j_bbe_2017_05_002 crossref_primary_10_3390_microarrays2040318 crossref_primary_10_1002_ijc_33242 crossref_primary_10_3390_cancers11071009 crossref_primary_10_3892_ol_2019_10211 crossref_primary_10_1186_s12859_019_2922_2 crossref_primary_10_2147_PGPM_S271516 crossref_primary_10_1186_s40001_025_02327_7 crossref_primary_10_1038_s41591_019_0595_z crossref_primary_10_1146_annurev_physiol_042022_030310 crossref_primary_10_1186_s40425_019_0827_2 crossref_primary_10_6061_clinics_2021_e3222 crossref_primary_10_1080_19768354_2022_2079718 crossref_primary_10_1172_JCI72171 crossref_primary_10_1097_JTO_0000000000000042 crossref_primary_10_1186_s12859_017_1576_1 crossref_primary_10_3892_ol_2017_6012 crossref_primary_10_1089_dna_2019_4899 crossref_primary_10_1186_s12885_020_07657_9 crossref_primary_10_1093_bioinformatics_btz441 crossref_primary_10_1016_j_biopha_2019_01_051 crossref_primary_10_1158_1078_0432_CCR_14_0246 crossref_primary_10_1038_s41598_022_14323_6 crossref_primary_10_1158_1078_0432_CCR_15_1071 crossref_primary_10_5351_KJAS_2016_29_4_643 crossref_primary_10_1016_j_ccell_2023_01_007 crossref_primary_10_1371_journal_pone_0279503 crossref_primary_10_1038_s41598_017_06922_5 crossref_primary_10_1136_jitc_2024_010787 crossref_primary_10_3389_fonc_2019_01515 crossref_primary_10_1016_j_thorsurg_2013_04_005 crossref_primary_10_1016_j_jtcvs_2015_06_001 crossref_primary_10_1073_pnas_1717776115 crossref_primary_10_1177_0300060521989200 crossref_primary_10_1371_journal_pone_0243891 crossref_primary_10_18632_genesandcancer_53 crossref_primary_10_1158_0008_5472_CAN_13_2775 crossref_primary_10_1186_s40425_019_0520_5 crossref_primary_10_1007_s12094_021_02638_1 crossref_primary_10_1080_14737140_2021_1908132 crossref_primary_10_1002_cam4_4386 crossref_primary_10_1016_j_isci_2023_106616 crossref_primary_10_1158_1055_9965_EPI_14_0182 crossref_primary_10_1038_srep19857 crossref_primary_10_1016_j_trecan_2017_11_002 crossref_primary_10_3390_cancers11060886 crossref_primary_10_1002_bimj_201500075 crossref_primary_10_3389_fonc_2023_1274439 crossref_primary_10_1007_s41688_019_0035_8 crossref_primary_10_18632_oncotarget_14257 crossref_primary_10_1038_s41467_019_14273_0 crossref_primary_10_3892_ol_2019_10431 crossref_primary_10_1586_14737159_2015_1028371 crossref_primary_10_1186_s13073_020_00780_z crossref_primary_10_3389_fonc_2021_615967 crossref_primary_10_1080_10543406_2023_2269251 crossref_primary_10_1126_scitranslmed_aao4307 crossref_primary_10_1371_journal_pone_0134682 crossref_primary_10_1093_bib_bbab180 crossref_primary_10_1126_scitranslmed_aad6066 crossref_primary_10_1038_s41420_021_00737_0 crossref_primary_10_1016_j_jmoldx_2015_03_005 crossref_primary_10_1186_s13045_018_0597_1 crossref_primary_10_1038_s42003_019_0572_6 crossref_primary_10_1136_esmoopen_2020_000679 crossref_primary_10_1002_path_5435 crossref_primary_10_1016_j_jbi_2015_05_006 crossref_primary_10_1038_s41598_025_91401_5 crossref_primary_10_1371_journal_pone_0106319 crossref_primary_10_1038_modpathol_2017_14 crossref_primary_10_1002_cam4_2492 crossref_primary_10_1016_j_neo_2020_04_005 crossref_primary_10_3390_ijms22073752 crossref_primary_10_1590_1678_4685_gmb_2019_0164 crossref_primary_10_1002_1878_0261_13555 crossref_primary_10_1002_pst_1842 crossref_primary_10_1002_sim_9250 crossref_primary_10_1016_j_heliyon_2024_e26061 crossref_primary_10_1016_j_lungcan_2022_08_007 crossref_primary_10_1007_s13402_014_0203_7 crossref_primary_10_1016_j_ebiom_2018_05_025 crossref_primary_10_1038_s41467_021_25260_9 crossref_primary_10_1158_2326_6066_CIR_16_0392 |
Cites_doi | 10.1371/journal.pmed.1000378 10.1158/1078-0432.CCR-11-0196 10.1056/NEJMoa032792 10.1158/0008-5472.CAN-06-1191 10.1200/JCO.2008.16.4855 10.1056/NEJMoa031644 10.1200/JCO.2005.01.112 10.1158/1078-0432.CCR-08-1258 10.1073/pnas.1014506108 10.1158/1078-0432.CCR-07-4937 10.1038/nature06358 10.1038/nature09881 10.1371/journal.pbio.0020108 10.1056/NEJMra0802714 10.1038/ng1490 10.1371/journal.pmed.0030467 10.1016/S1470-2045(06)70804-X 10.1056/NEJMoa043623 10.1080/01621459.1958.10501452 10.1038/nm.1790 10.1097/MCP.0b013e32816b5c63 10.1056/NEJMoa060096 10.1038/nature04296 10.1038/nature08822 10.1093/jnci/djr420 10.1073/pnas.0809444106 10.1200/JCO.2009.26.4325 10.1038/ng1060 10.1038/sj.onc.1207697 10.1093/nar/gng015 10.3322/CA.2007.0010 10.1198/jasa.2009.0126 10.1200/JCO.2008.19.7053 10.1016/S0140-6736(11)61941-7 10.1038/nature05697 10.1093/bioinformatics/btp040 10.1172/JCI32007 10.2174/1566524013364121 10.1002/mc.20632 10.1056/NEJMoa060570 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1158/1078-0432.CCR-12-2321 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1557-3265 |
EndPage | 1586 |
ExternalDocumentID | PMC3619002 23357979 10_1158_1078_0432_CCR_12_2321 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDA NIH HHS grantid: R33 DA027592 – fundername: NCI NIH HHS grantid: P30 CA142543 – fundername: NCI NIH HHS grantid: R01 CA152301 – fundername: NCI NIH HHS grantid: P50 CA070907 – fundername: NCI NIH HHS grantid: P50CA70907 – fundername: NCI NIH HHS grantid: 5R01CA152301 – fundername: NCI NIH HHS grantid: P30CA142543 – fundername: NIDA NIH HHS grantid: 4R33DA027592 – fundername: National Cancer Institute : NCI grantid: R01 CA152301 || CA – fundername: National Institute on Drug Abuse : NIDA grantid: R33 DA027592 || DA – fundername: National Cancer Institute : NCI grantid: P50 CA070907 || CA |
GroupedDBID | --- 18M 29B 2FS 2WC 34G 39C 53G 5GY 5RE 5VS 6J9 AAFWJ AAJMC AAYXX ABOCM ACGFO ACIWK ACPRK ADBBV ADCOW ADNWM AENEX AFHIN AFRAH ALMA_UNASSIGNED_HOLDINGS BAWUL BR6 BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 IH2 KQ8 L7B LSO OK1 P0W P2P QTD RCR RHI RNS SJN TR2 UDS W2D W8F WOQ YKV ACSVP AFOSN AFUMD CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c477t-9515c28a2eb70164bfe5036f61d90f8182c0261231ecba017affb5512f15bba43 |
ISSN | 1078-0432 1557-3265 |
IngestDate | Thu Aug 21 18:07:49 EDT 2025 Thu Sep 04 20:02:42 EDT 2025 Thu Apr 03 06:53:41 EDT 2025 Wed Oct 01 03:48:53 EDT 2025 Thu Apr 24 23:11:53 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c477t-9515c28a2eb70164bfe5036f61d90f8182c0261231ecba017affb5512f15bba43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://clincancerres.aacrjournals.org/content/clincanres/19/6/1577.full.pdf |
PMID | 23357979 |
PQID | 1346115349 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3619002 proquest_miscellaneous_1346115349 pubmed_primary_23357979 crossref_citationtrail_10_1158_1078_0432_CCR_12_2321 crossref_primary_10_1158_1078_0432_CCR_12_2321 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-03-15 |
PublicationDateYYYYMMDD | 2013-03-15 |
PublicationDate_xml | – month: 03 year: 2013 text: 2013-03-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Clinical cancer research |
PublicationTitleAlternate | Clin Cancer Res |
PublicationYear | 2013 |
References | Strauss (2022061106515316700_bib6) 2008; 26 Schwarzer (2022061106515316700_bib34) Herbst (2022061106515316700_bib39) 2008; 359 Winslow (2022061106515316700_bib44) 2011; 473 Ramaswamy (2022061106515316700_bib41) 2003; 33 Sargent (2022061106515316700_bib45) 2005; 23 Chen (2022061106515316700_bib9) 2007; 356 Douillard (2022061106515316700_bib2) 2006; 7 Tomida (2022061106515316700_bib14) 2004; 23 Beroukhim (2022061106515316700_bib24) 2010; 463 Weir (2022061106515316700_bib23) 2007; 450 Maitra (2022061106515316700_bib25) 2001; 1 Lu (2022061106515316700_bib11) 2006; 3 Zhu (2022061106515316700_bib17) 2010; 28 Wigle (2022061106515316700_bib15) 2002; 62 Kaplan (2022061106515316700_bib32) 1958 Chen (2022061106515316700_bib8) 2011; 103 Irizarry (2022061106515316700_bib31) 2003; 31 Breiman (2022061106515316700_bib38) 1984 Kato (2022061106515316700_bib3) 2004; 350 Raponi (2022061106515316700_bib28) 2006; 66 Lee (2022061106515316700_bib10) 2008; 14 Xie (2022061106515316700_bib16) 2011; 17 Jemal (2022061106515316700_bib1) 2008; 58 Shedden (2022061106515316700_bib13) 2008; 14 Jeong (2022061106515316700_bib18) 2010; 7 Xie (2022061106515316700_bib30) 2009; 25 The International Adjuvant Lung Cancer Trial Collaborative Group (2022061106515316700_bib4) 2004; 350 Olaussen (2022061106515316700_bib7) 2007; 13 Navab (2022061106515316700_bib12) 2011; 108 Kratz (2022061106515316700_bib19) 2012; 379 Peng (2022061106515316700_bib36) 2009; 104 Sweet-Cordero (2022061106515316700_bib43) 2005; 37 Bianchi (2022061106515316700_bib42) 2007; 117 Roepman (2022061106515316700_bib21) 2009; 15 Bair (2022061106515316700_bib37) 2004; 2 Whitehurst (2022061106515316700_bib22) 2007; 446 Boutros (2022061106515316700_bib20) 2009; 106 Pounds (2022061106515316700_bib35) 2003; 19 Matsuyama (2022061106515316700_bib27) 2011; 50 Winton (2022061106515316700_bib5) 2005; 352 Tomida (2022061106515316700_bib29) 2009; 27 Collett (2022061106515316700_bib33) 2003 Olaussen (2022061106515316700_bib40) 2006; 355 Bild (2022061106515316700_bib26) 2006; 439 |
References_xml | – volume: 7 start-page: e1000378 year: 2010 ident: 2022061106515316700_bib18 article-title: Nuclear receptor expression defines a set of prognostic biomarkers for lung cancer publication-title: PLoS Med doi: 10.1371/journal.pmed.1000378 – volume: 62 start-page: 3005 year: 2002 ident: 2022061106515316700_bib15 article-title: Molecular profiling of non-small cell lung cancer and correlation with disease-free survival publication-title: Cancer Res – volume: 19 start-page: 1236 year: 2003 ident: 2022061106515316700_bib35 publication-title: . Estimating the occurrence of false positives and false negatives in microarray studies by approximating and partitioning the empirical distribution of p-values. Bioinformatics – volume: 17 start-page: 5705 year: 2011 ident: 2022061106515316700_bib16 article-title: Robust gene expression signature from formalin-fixed paraffin-embedded samples predicts prognosis of non-small-cell lung cancer patients publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-11-0196 – volume: 350 start-page: 1713 year: 2004 ident: 2022061106515316700_bib3 article-title: A randomized trial of adjuvant chemotherapy with uracil-tegafur for adenocarcinoma of the lung publication-title: N Engl J Med doi: 10.1056/NEJMoa032792 – volume: 66 start-page: 7466 year: 2006 ident: 2022061106515316700_bib28 article-title: Gene expression signatures for predicting prognosis of squamous cell and adenocarcinomas of the lung publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-06-1191 – year: 2003 ident: 2022061106515316700_bib33 article-title: Modelling survival data in medical research – volume: 26 start-page: 5043 year: 2008 ident: 2022061106515316700_bib6 article-title: Adjuvant paclitaxel plus carboplatin compared with observation in stage Ib non-small-cell lung cancer: Calgb 9633 with the cancer and leukemia group b, radiation therapy oncology group, and north central cancer treatment group study groups publication-title: J Clin Oncol doi: 10.1200/JCO.2008.16.4855 – volume: 350 start-page: 351 year: 2004 ident: 2022061106515316700_bib4 article-title: Cisplatin-based adjuvant chemotherapy in patients with completely resected non-small-cell lung cancer publication-title: N Engl J Med doi: 10.1056/NEJMoa031644 – volume: 23 start-page: 2020 year: 2005 ident: 2022061106515316700_bib45 article-title: Clinical trial designs for predictive marker validation in cancer treatment trials publication-title: J Clin Oncol doi: 10.1200/JCO.2005.01.112 – volume: 15 start-page: 284 year: 2009 ident: 2022061106515316700_bib21 article-title: An immune response enriched 72-gene prognostic profile for early-stage non-small-cell lung cancer publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-08-1258 – volume: 108 start-page: 7160 year: 2011 ident: 2022061106515316700_bib12 article-title: Prognostic gene-expression signature of carcinoma-associated fibroblasts in non-small cell lung cancer publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1014506108 – volume: 14 start-page: 7397 year: 2008 ident: 2022061106515316700_bib10 article-title: Prediction of recurrence-free survival in postoperative non-small cell lung cancer patients by using an integrated model of clinical information and gene expression publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-07-4937 – volume: 450 start-page: 893 year: 2007 ident: 2022061106515316700_bib23 article-title: Characterizing the cancer genome in lung adenocarcinoma publication-title: Nature doi: 10.1038/nature06358 – volume: 473 start-page: 101 year: 2011 ident: 2022061106515316700_bib44 article-title: Suppression of lung adenocarcinoma progression by nkx2-1 publication-title: Nature doi: 10.1038/nature09881 – volume: 2 start-page: E108 year: 2004 ident: 2022061106515316700_bib37 article-title: Semi-supervised methods to predict patient survival from gene expression data publication-title: PLoS Biol doi: 10.1371/journal.pbio.0020108 – year: 1984 ident: 2022061106515316700_bib38 article-title: Classification and regression trees – volume: 359 start-page: 1367 year: 2008 ident: 2022061106515316700_bib39 article-title: Lung cancer publication-title: N Engl J Med doi: 10.1056/NEJMra0802714 – ident: 2022061106515316700_bib34 article-title: Meta: Meta-analysis with r.2012 – volume: 37 start-page: 48 year: 2005 ident: 2022061106515316700_bib43 article-title: An oncogenic kras2 expression signature identified by cross-species gene-expression analysis publication-title: Nat Genet doi: 10.1038/ng1490 – volume: 3 start-page: e467 year: 2006 ident: 2022061106515316700_bib11 article-title: A gene expression signature predicts survival of patients with stage I non-small cell lung cancer publication-title: PLoS Med doi: 10.1371/journal.pmed.0030467 – volume: 7 start-page: 719 year: 2006 ident: 2022061106515316700_bib2 article-title: Adjuvant vinorelbine plus cisplatin versus observation in patients with completely resected stage Ib-IIIa non-small-cell lung cancer (adjuvant navelbine international trialist association [anita]): a randomised controlled trial publication-title: Lancet Oncol doi: 10.1016/S1470-2045(06)70804-X – volume: 352 start-page: 2589 year: 2005 ident: 2022061106515316700_bib5 article-title: Vinorelbine plus cisplatin vs. Observation in resected non-small-cell lung cancer publication-title: N Engl J Med doi: 10.1056/NEJMoa043623 – start-page: 457 year: 1958 ident: 2022061106515316700_bib32 article-title: Nonparametric estimation from incomplete observations publication-title: J Am Stat Assoc doi: 10.1080/01621459.1958.10501452 – volume: 14 start-page: 822 year: 2008 ident: 2022061106515316700_bib13 article-title: Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study publication-title: Nat Med doi: 10.1038/nm.1790 – volume: 13 start-page: 284 year: 2007 ident: 2022061106515316700_bib7 article-title: Ercc1 as a risk stratifier in platinum-based chemotherapy for nonsmall-cell lung cancer publication-title: Curr Opin Pulm Med doi: 10.1097/MCP.0b013e32816b5c63 – volume: 356 start-page: 11 year: 2007 ident: 2022061106515316700_bib9 article-title: A five-gene signature and clinical outcome in non-small-cell lung cancer publication-title: N Engl J Med doi: 10.1056/NEJMoa060096 – volume: 439 start-page: 353 year: 2006 ident: 2022061106515316700_bib26 article-title: Oncogenic pathway signatures in human cancers as a guide to targeted therapies publication-title: Nature doi: 10.1038/nature04296 – volume: 463 start-page: 899 year: 2010 ident: 2022061106515316700_bib24 article-title: The landscape of somatic copy-number alteration across human cancers publication-title: Nature doi: 10.1038/nature08822 – volume: 103 start-page: 1859 year: 2011 ident: 2022061106515316700_bib8 article-title: Prognostic and predictive value of a malignancy-risk gene signature in early-stage non-small cell lung cancer publication-title: J Natl Cancer Inst doi: 10.1093/jnci/djr420 – volume: 106 start-page: 2824 year: 2009 ident: 2022061106515316700_bib20 article-title: Prognostic gene signatures for non-small-cell lung cancer publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0809444106 – volume: 28 start-page: 4417 year: 2010 ident: 2022061106515316700_bib17 article-title: Prognostic and predictive gene signature for adjuvant chemotherapy in resected non-small-cell lung cancer publication-title: J Clin Oncol doi: 10.1200/JCO.2009.26.4325 – volume: 33 start-page: 49 year: 2003 ident: 2022061106515316700_bib41 article-title: A molecular signature of metastasis in primary solid tumors publication-title: Nat Genet doi: 10.1038/ng1060 – volume: 23 start-page: 5360 year: 2004 ident: 2022061106515316700_bib14 article-title: Gene expression-based, individualized outcome prediction for surgically treated lung cancer patients publication-title: Oncogene doi: 10.1038/sj.onc.1207697 – volume: 31 start-page: e15 year: 2003 ident: 2022061106515316700_bib31 article-title: Summaries of affymetrix genechip probe level data publication-title: Nucleic Acids Res doi: 10.1093/nar/gng015 – volume: 58 start-page: 71 year: 2008 ident: 2022061106515316700_bib1 article-title: Cancer statistics, 2008 publication-title: CA Cancer J Clin doi: 10.3322/CA.2007.0010 – volume: 104 start-page: 735 year: 2009 ident: 2022061106515316700_bib36 article-title: Partial correlation estimation by joint sparse regression models publication-title: J Am Stat Assoc doi: 10.1198/jasa.2009.0126 – volume: 27 start-page: 2793 year: 2009 ident: 2022061106515316700_bib29 article-title: Relapse-related molecular signature in lung adenocarcinomas identifies patients with dismal prognosis publication-title: J Clin Oncol doi: 10.1200/JCO.2008.19.7053 – volume: 379 start-page: 823 year: 2012 ident: 2022061106515316700_bib19 article-title: A practical molecular assay to predict survival in resected non-squamous, non-small-cell lung cancer: development and international validation studies publication-title: Lancet doi: 10.1016/S0140-6736(11)61941-7 – volume: 446 start-page: 815 year: 2007 ident: 2022061106515316700_bib22 article-title: Synthetic lethal screen identification of chemosensitizer loci in cancer cells publication-title: Nature doi: 10.1038/nature05697 – volume: 25 start-page: 751 year: 2009 ident: 2022061106515316700_bib30 article-title: Statistical methods of background correction for illumina bead array data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp040 – volume: 117 start-page: 3436 year: 2007 ident: 2022061106515316700_bib42 article-title: Survival prediction of stage I lung adenocarcinomas by expression of 10 genes publication-title: J Clin Invest doi: 10.1172/JCI32007 – volume: 1 start-page: 153 year: 2001 ident: 2022061106515316700_bib25 article-title: Microdissection and the study of cancer pathways publication-title: Curr Mol Med doi: 10.2174/1566524013364121 – volume: 50 start-page: 301 year: 2011 ident: 2022061106515316700_bib27 article-title: Proteasomal non-catalytic subunit psmd2 as a potential therapeutic target in association with various clinicopathologic features in lung adenocarcinomas publication-title: Mol Carcinog doi: 10.1002/mc.20632 – volume: 355 start-page: 983 year: 2006 ident: 2022061106515316700_bib40 article-title: DNA repair by ercc1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy publication-title: N Engl J Med doi: 10.1056/NEJMoa060570 |
SSID | ssj0014104 |
Score | 2.54177 |
Snippet | Purpose: Prospectively identifying who will benefit from adjuvant chemotherapy (ACT) would improve clinical decisions for non–small cell lung cancer (NSCLC)... Prospectively identifying who will benefit from adjuvant chemotherapy (ACT) would improve clinical decisions for non-small cell lung cancer (NSCLC) patients.... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1577 |
SubjectTerms | Adult Aged Carcinoma, Non-Small-Cell Lung - drug therapy Carcinoma, Non-Small-Cell Lung - genetics Carcinoma, Non-Small-Cell Lung - pathology Chemotherapy, Adjuvant Clinical Trials as Topic Female Gene Expression Regulation, Neoplastic Genome, Human Humans Kaplan-Meier Estimate Lung Neoplasms - drug therapy Lung Neoplasms - genetics Lung Neoplasms - mortality Male Middle Aged Neoplasm Proteins - genetics Neoplasm Staging Prognosis RNA Interference Systems Biology Treatment Outcome |
Title | A 12-Gene Set Predicts Survival Benefits from Adjuvant Chemotherapy in Non–Small Cell Lung Cancer Patients |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23357979 https://www.proquest.com/docview/1346115349 https://pubmed.ncbi.nlm.nih.gov/PMC3619002 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1557-3265 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014104 issn: 1078-0432 databaseCode: KQ8 dateStart: 19950101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1557-3265 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0014104 issn: 1078-0432 databaseCode: DIK dateStart: 19950101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1557-3265 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014104 issn: 1078-0432 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZB2MvY_dlNzQYewnKYsmX-LGEdqG0HWwJ5E1IttymNE5X2y996G_fObbkOGtg3V5MkGzL-Pt8ciSd7xxCPmsdq1GQhIyDc8H8KEmZ4plhoZ-O4jQTmR-j3vnkNJzO_aNFsOj1brvqklIPk5udupL_QRXaAFdUyf4Dsu1NoQF-A75wBITheC-MYTLPGfSaQWFKlPunS4zNKCr4_mGcgYauDHcGahGJSi8q8JvLAeC0ssKrWvWXr3NWrHCPGpfxB5cV6nCRDdcu7WrR9WEnTkxpz7H5gtp15Zldgp6qtWtaLFW9JAuEzM_Oq80igMFov8JGnqw2srSfKDK3IsWjtWWwXZzAQhGCNfJMZ08DsGG8KQcxNDvanBGOO2TrWlQvaMq83DX1wbhedcAMwb7gw8nkB4aZgIfobf7b3H7-6Xd5OD8-lrODxezL1S-GVcdwd96WYHlAHvIoDLECxrdFGyKEIbB1VIJ7YKsAg5G_7hx327e5M2H5M-6248jMnpIndgZC9xs6PSM9kz8nj05sjMULcrFPLasosIo6VlHHKupYRZFV1LGKdllFlzltWUWRVRRZRRvGUMeql2R-eDCbTJmtyMESP4pKBu54kPCx4kZHmJtNZyYAFygLvTQeZeD78aTOSSc8k2gFxl5lmQafnGdeoLXyxSuyB6ObN4QKLdQ4TFAZrv0kVVoIL0OZttCe8rjuE9-9S5nYdPVYNeVS1tPWYCwRAokQSIBAelwiBH0ybC-7avK1_O2CTw4oCZYV34jKzboqpCf8EK4Tftwnrxvg2ltyIYIojqAn2oK0PQGztm_35MvzOnu7CMEHH_G39xj3HXm8-ajek73yujIfwAcu9ceaqL8BHjqyhQ |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+12-gene+set+predicts+survival+benefits+from+adjuvant+chemotherapy+in+non-small+cell+lung+cancer+patients&rft.jtitle=Clinical+cancer+research&rft.au=Tang%2C+Hao&rft.au=Xiao%2C+Guanghua&rft.au=Behrens%2C+Carmen&rft.au=Schiller%2C+Joan&rft.date=2013-03-15&rft.issn=1557-3265&rft.eissn=1557-3265&rft.volume=19&rft.issue=6&rft.spage=1577&rft_id=info:doi/10.1158%2F1078-0432.CCR-12-2321&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-0432&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-0432&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-0432&client=summon |