A 12-Gene Set Predicts Survival Benefits from Adjuvant Chemotherapy in Non–Small Cell Lung Cancer Patients

Purpose: Prospectively identifying who will benefit from adjuvant chemotherapy (ACT) would improve clinical decisions for non–small cell lung cancer (NSCLC) patients. In this study, we aim to develop and validate a functional gene set that predicts the clinical benefits of ACT in NSCLC. Experimental...

Full description

Saved in:
Bibliographic Details
Published inClinical cancer research Vol. 19; no. 6; pp. 1577 - 1586
Main Authors Tang, Hao, Xiao, Guanghua, Behrens, Carmen, Schiller, Joan, Allen, Jeffrey, Chow, Chi-Wan, Suraokar, Milind, Corvalan, Alejandro, Mao, Jianhua, White, Michael A., Wistuba, Ignacio I., Minna, John D., Xie, Yang
Format Journal Article
LanguageEnglish
Published United States 15.03.2013
Subjects
Online AccessGet full text
ISSN1078-0432
1557-3265
1557-3265
DOI10.1158/1078-0432.CCR-12-2321

Cover

Abstract Purpose: Prospectively identifying who will benefit from adjuvant chemotherapy (ACT) would improve clinical decisions for non–small cell lung cancer (NSCLC) patients. In this study, we aim to develop and validate a functional gene set that predicts the clinical benefits of ACT in NSCLC. Experimental Design: An 18-hub-gene prognosis signature was developed through a systems biology approach, and its prognostic value was evaluated in six independent cohorts. The 18-hub-gene set was then integrated with genome-wide functional (RNAi) data and genetic aberration data to derive a 12-gene predictive signature for ACT benefits in NSCLC. Results: Using a cohort of 442 stage I to III NSCLC patients who underwent surgical resection, we identified an 18-hub-gene set that robustly predicted the prognosis of patients with adenocarcinoma in all validation datasets across four microarray platforms. The hub genes, identified through a purely data-driven approach, have significant biological implications in tumor pathogenesis, including NKX2-1, Aurora Kinase A, PRC1, CDKN3, MBIP, and RRM2. The 12-gene predictive signature was successfully validated in two independent datasets (n = 90 and 176). The predicted benefit group showed significant improvement in survival after ACT (UT Lung SPORE data: HR = 0.34, P = 0.017; JBR.10 clinical trial data: HR = 0.36, P = 0.038), whereas the predicted nonbenefit group showed no survival benefit for 2 datasets (HR = 0.80, P = 0.70; HR = 0.91, P = 0.82). Conclusions: This is the first study to integrate genetic aberration, genome-wide RNAi data, and mRNA expression data to identify a functional gene set that predicts which resectable patients with non–small cell lung cancer will have a survival benefit with ACT. Clin Cancer Res; 19(6); 1577–86. ©2013 AACR.
AbstractList Prospectively identifying who will benefit from adjuvant chemotherapy (ACT) would improve clinical decisions for non-small cell lung cancer (NSCLC) patients. In this study, we aim to develop and validate a functional gene set that predicts the clinical benefits of ACT in NSCLC. An 18-hub-gene prognosis signature was developed through a systems biology approach, and its prognostic value was evaluated in six independent cohorts. The 18-hub-gene set was then integrated with genome-wide functional (RNAi) data and genetic aberration data to derive a 12-gene predictive signature for ACT benefits in NSCLC. Using a cohort of 442 stage I to III NSCLC patients who underwent surgical resection, we identified an 18-hub-gene set that robustly predicted the prognosis of patients with adenocarcinoma in all validation datasets across four microarray platforms. The hub genes, identified through a purely data-driven approach, have significant biological implications in tumor pathogenesis, including NKX2-1, Aurora Kinase A, PRC1, CDKN3, MBIP, and RRM2. The 12-gene predictive signature was successfully validated in two independent datasets (n = 90 and 176). The predicted benefit group showed significant improvement in survival after ACT (UT Lung SPORE data: HR = 0.34, P = 0.017; JBR.10 clinical trial data: HR = 0.36, P = 0.038), whereas the predicted nonbenefit group showed no survival benefit for 2 datasets (HR = 0.80, P = 0.70; HR = 0.91, P = 0.82). This is the first study to integrate genetic aberration, genome-wide RNAi data, and mRNA expression data to identify a functional gene set that predicts which resectable patients with non-small cell lung cancer will have a survival benefit with ACT.
Purpose: Prospectively identifying who will benefit from adjuvant chemotherapy (ACT) would improve clinical decisions for non–small cell lung cancer (NSCLC) patients. In this study, we aim to develop and validate a functional gene set that predicts the clinical benefits of ACT in NSCLC. Experimental Design: An 18-hub-gene prognosis signature was developed through a systems biology approach, and its prognostic value was evaluated in six independent cohorts. The 18-hub-gene set was then integrated with genome-wide functional (RNAi) data and genetic aberration data to derive a 12-gene predictive signature for ACT benefits in NSCLC. Results: Using a cohort of 442 stage I to III NSCLC patients who underwent surgical resection, we identified an 18-hub-gene set that robustly predicted the prognosis of patients with adenocarcinoma in all validation datasets across four microarray platforms. The hub genes, identified through a purely data-driven approach, have significant biological implications in tumor pathogenesis, including NKX2-1, Aurora Kinase A, PRC1, CDKN3, MBIP, and RRM2. The 12-gene predictive signature was successfully validated in two independent datasets (n = 90 and 176). The predicted benefit group showed significant improvement in survival after ACT (UT Lung SPORE data: HR = 0.34, P = 0.017; JBR.10 clinical trial data: HR = 0.36, P = 0.038), whereas the predicted nonbenefit group showed no survival benefit for 2 datasets (HR = 0.80, P = 0.70; HR = 0.91, P = 0.82). Conclusions: This is the first study to integrate genetic aberration, genome-wide RNAi data, and mRNA expression data to identify a functional gene set that predicts which resectable patients with non–small cell lung cancer will have a survival benefit with ACT. Clin Cancer Res; 19(6); 1577–86. ©2013 AACR.
Prospectively identifying who will benefit from adjuvant chemotherapy (ACT) would improve clinical decisions for non-small cell lung cancer (NSCLC) patients. In this study, we aim to develop and validate a functional gene set that predicts the clinical benefits of ACT in NSCLC.PURPOSEProspectively identifying who will benefit from adjuvant chemotherapy (ACT) would improve clinical decisions for non-small cell lung cancer (NSCLC) patients. In this study, we aim to develop and validate a functional gene set that predicts the clinical benefits of ACT in NSCLC.An 18-hub-gene prognosis signature was developed through a systems biology approach, and its prognostic value was evaluated in six independent cohorts. The 18-hub-gene set was then integrated with genome-wide functional (RNAi) data and genetic aberration data to derive a 12-gene predictive signature for ACT benefits in NSCLC.EXPERIMENTAL DESIGNAn 18-hub-gene prognosis signature was developed through a systems biology approach, and its prognostic value was evaluated in six independent cohorts. The 18-hub-gene set was then integrated with genome-wide functional (RNAi) data and genetic aberration data to derive a 12-gene predictive signature for ACT benefits in NSCLC.Using a cohort of 442 stage I to III NSCLC patients who underwent surgical resection, we identified an 18-hub-gene set that robustly predicted the prognosis of patients with adenocarcinoma in all validation datasets across four microarray platforms. The hub genes, identified through a purely data-driven approach, have significant biological implications in tumor pathogenesis, including NKX2-1, Aurora Kinase A, PRC1, CDKN3, MBIP, and RRM2. The 12-gene predictive signature was successfully validated in two independent datasets (n = 90 and 176). The predicted benefit group showed significant improvement in survival after ACT (UT Lung SPORE data: HR = 0.34, P = 0.017; JBR.10 clinical trial data: HR = 0.36, P = 0.038), whereas the predicted nonbenefit group showed no survival benefit for 2 datasets (HR = 0.80, P = 0.70; HR = 0.91, P = 0.82).RESULTSUsing a cohort of 442 stage I to III NSCLC patients who underwent surgical resection, we identified an 18-hub-gene set that robustly predicted the prognosis of patients with adenocarcinoma in all validation datasets across four microarray platforms. The hub genes, identified through a purely data-driven approach, have significant biological implications in tumor pathogenesis, including NKX2-1, Aurora Kinase A, PRC1, CDKN3, MBIP, and RRM2. The 12-gene predictive signature was successfully validated in two independent datasets (n = 90 and 176). The predicted benefit group showed significant improvement in survival after ACT (UT Lung SPORE data: HR = 0.34, P = 0.017; JBR.10 clinical trial data: HR = 0.36, P = 0.038), whereas the predicted nonbenefit group showed no survival benefit for 2 datasets (HR = 0.80, P = 0.70; HR = 0.91, P = 0.82).This is the first study to integrate genetic aberration, genome-wide RNAi data, and mRNA expression data to identify a functional gene set that predicts which resectable patients with non-small cell lung cancer will have a survival benefit with ACT.CONCLUSIONSThis is the first study to integrate genetic aberration, genome-wide RNAi data, and mRNA expression data to identify a functional gene set that predicts which resectable patients with non-small cell lung cancer will have a survival benefit with ACT.
Author Suraokar, Milind
Mao, Jianhua
Allen, Jeffrey
Xiao, Guanghua
Minna, John D.
Tang, Hao
Corvalan, Alejandro
Xie, Yang
White, Michael A.
Behrens, Carmen
Chow, Chi-Wan
Schiller, Joan
Wistuba, Ignacio I.
AuthorAffiliation 10 Life Sciences Division, Lawrence Berkeley National Laboratory
9 Department of Pathology, University of Texas, MD Anderson Cancer Center
7 Hamon Center for Therapeutic Oncology, University of Texas Southwestern Medical Center
3 Simmons Cancer Center, University of Texas Southwestern Medical Center
5 Department of Cell Biology, University of Texas Southwestern Medical Center
1 Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center
2 Department of Clinical Sciences, University of Texas Southwestern Medical Center
8 Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center
6 Department of Pharmacology, University of Texas Southwestern Medical Center
4 Department of Internal Medicine, University of Texas Southwestern Medical Center
AuthorAffiliation_xml – name: 10 Life Sciences Division, Lawrence Berkeley National Laboratory
– name: 6 Department of Pharmacology, University of Texas Southwestern Medical Center
– name: 2 Department of Clinical Sciences, University of Texas Southwestern Medical Center
– name: 5 Department of Cell Biology, University of Texas Southwestern Medical Center
– name: 7 Hamon Center for Therapeutic Oncology, University of Texas Southwestern Medical Center
– name: 8 Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center
– name: 9 Department of Pathology, University of Texas, MD Anderson Cancer Center
– name: 3 Simmons Cancer Center, University of Texas Southwestern Medical Center
– name: 1 Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center
– name: 4 Department of Internal Medicine, University of Texas Southwestern Medical Center
Author_xml – sequence: 1
  givenname: Hao
  surname: Tang
  fullname: Tang, Hao
– sequence: 2
  givenname: Guanghua
  surname: Xiao
  fullname: Xiao, Guanghua
– sequence: 3
  givenname: Carmen
  surname: Behrens
  fullname: Behrens, Carmen
– sequence: 4
  givenname: Joan
  surname: Schiller
  fullname: Schiller, Joan
– sequence: 5
  givenname: Jeffrey
  surname: Allen
  fullname: Allen, Jeffrey
– sequence: 6
  givenname: Chi-Wan
  surname: Chow
  fullname: Chow, Chi-Wan
– sequence: 7
  givenname: Milind
  surname: Suraokar
  fullname: Suraokar, Milind
– sequence: 8
  givenname: Alejandro
  surname: Corvalan
  fullname: Corvalan, Alejandro
– sequence: 9
  givenname: Jianhua
  surname: Mao
  fullname: Mao, Jianhua
– sequence: 10
  givenname: Michael A.
  surname: White
  fullname: White, Michael A.
– sequence: 11
  givenname: Ignacio I.
  surname: Wistuba
  fullname: Wistuba, Ignacio I.
– sequence: 12
  givenname: John D.
  surname: Minna
  fullname: Minna, John D.
– sequence: 13
  givenname: Yang
  surname: Xie
  fullname: Xie, Yang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23357979$$D View this record in MEDLINE/PubMed
BookMark eNp9kd9uFCEUxompsX_0ETRcejMtB4b5ExOT7URbk41tXL0mDAtdmhlYgdmkd76Db9gnKZN2jXrRGyDnfN_5wvkdowPnnUboLZBTAN6cAambgpSMnnbdtwJoQRmFF-gIOK8LRit-kN97zSE6jvGWECiBlK_QIWWM123dHqFhgbP3QjuNVzrh66DXVqWIV1PY2Z0c8HluGZsrJvgRL9a30066hLuNHn3a6CC3d9g6_NW7-1-_V6McBtzpfCwnd4M76ZQO-Fomq12Kr9FLI4eo3zzdJ-jH50_fu8tieXXxpVssC1XWdSpaDlzRRlLd1wSqsjeaE1aZCtYtMQ00VBFaAWWgVS8J1NKYnnOgBnjfy5KdoI-Pc7dTP-q1ytlBDmIb7CjDnfDSin87zm7Ejd8JVkFLCM0D3j8NCP7npGMSo40qf0s67acogJVVpsDKNkvf_Z31J2S_4iz48ChQwccYtBHKprwQP0fbQQARM1AxwxIzLJGBCqBiBprd_D_3PuB53wPbeaT3
CitedBy_id crossref_primary_10_1126_scitranslmed_3008291
crossref_primary_10_1038_s41419_023_06256_3
crossref_primary_10_1016_j_biopha_2016_01_004
crossref_primary_10_18632_oncotarget_19161
crossref_primary_10_3389_fcell_2023_1224069
crossref_primary_10_3892_ol_2023_14105
crossref_primary_10_18632_oncotarget_9129
crossref_primary_10_1158_1078_0432_CCR_14_3286
crossref_primary_10_1038_ncomms12619
crossref_primary_10_1097_JTO_0000000000000470
crossref_primary_10_1177_09622802221104239
crossref_primary_10_1016_j_lungcan_2024_107791
crossref_primary_10_18632_oncotarget_23663
crossref_primary_10_1186_2049_3002_2_20
crossref_primary_10_1172_JCI74725
crossref_primary_10_3892_ijo_2019_4926
crossref_primary_10_1007_s10489_020_01740_1
crossref_primary_10_1016_j_jtho_2016_07_023
crossref_primary_10_1016_j_semcancer_2016_09_002
crossref_primary_10_3892_ol_2018_9044
crossref_primary_10_1111_jcmm_18516
crossref_primary_10_1172_jci_insight_152815
crossref_primary_10_1016_j_cellsig_2024_111040
crossref_primary_10_1039_D0FO02675A
crossref_primary_10_1158_2159_8290_CD_18_0099
crossref_primary_10_1016_j_artmed_2018_09_005
crossref_primary_10_1093_bib_bbv064
crossref_primary_10_1371_journal_pone_0127380
crossref_primary_10_1038_s42003_022_03135_z
crossref_primary_10_1186_s12885_023_10622_x
crossref_primary_10_1158_1078_0432_CCR_15_1434
crossref_primary_10_1007_s40291_019_00420_2
crossref_primary_10_1177_1176935117690778
crossref_primary_10_1049_iet_syb_2018_5060
crossref_primary_10_1111_jpi_12803
crossref_primary_10_18632_aging_103475
crossref_primary_10_1016_j_intimp_2023_111286
crossref_primary_10_1097_JTO_0000000000000365
crossref_primary_10_1158_1078_0432_CCR_17_2543
crossref_primary_10_1093_biostatistics_kxv013
crossref_primary_10_1109_LLS_2015_2488438
crossref_primary_10_1155_2015_312047
crossref_primary_10_1016_j_biopha_2016_07_047
crossref_primary_10_1158_2159_8290_CD_20_1114
crossref_primary_10_1002_aic_17574
crossref_primary_10_1038_s41598_023_47659_8
crossref_primary_10_18632_oncotarget_12124
crossref_primary_10_1002_ijc_28428
crossref_primary_10_1214_19_AOAS1249
crossref_primary_10_1016_j_bbagrm_2019_194418
crossref_primary_10_1038_onc_2014_155
crossref_primary_10_1111_1759_7714_14475
crossref_primary_10_7717_peerj_8349
crossref_primary_10_1371_journal_pone_0133562
crossref_primary_10_1038_s41467_022_29230_7
crossref_primary_10_1158_2159_8290_CD_17_1033
crossref_primary_10_1016_j_heliyon_2024_e24816
crossref_primary_10_1038_s41598_020_80453_4
crossref_primary_10_1093_abbs_gmaa036
crossref_primary_10_1093_bib_bbab154
crossref_primary_10_1007_s10489_016_0850_7
crossref_primary_10_1186_s13045_016_0339_1
crossref_primary_10_1093_bioinformatics_btz399
crossref_primary_10_1016_j_repbio_2022_100680
crossref_primary_10_3389_fonc_2019_01103
crossref_primary_10_1186_s12918_018_0642_2
crossref_primary_10_1016_j_cllc_2015_02_008
crossref_primary_10_1371_journal_pone_0127600
crossref_primary_10_18632_oncotarget_12672
crossref_primary_10_18632_oncotarget_19349
crossref_primary_10_1186_s12859_018_2560_0
crossref_primary_10_1158_1078_0432_CCR_13_2127
crossref_primary_10_2217_bmm_2019_0052
crossref_primary_10_1080_14737159_2021_1947798
crossref_primary_10_1016_j_ebiom_2014_10_012
crossref_primary_10_1007_s13402_020_00494_9
crossref_primary_10_1038_s41389_025_00546_5
crossref_primary_10_18632_oncotarget_24361
crossref_primary_10_1016_j_jfma_2016_01_009
crossref_primary_10_1158_1078_0432_CCR_15_0529
crossref_primary_10_1016_j_athoracsur_2020_03_114
crossref_primary_10_7465_jkdi_2016_27_2_381
crossref_primary_10_18632_oncotarget_10641
crossref_primary_10_18632_oncotarget_10002
crossref_primary_10_1038_s41698_024_00680_0
crossref_primary_10_18632_oncotarget_13357
crossref_primary_10_3346_jkms_2022_37_e84
crossref_primary_10_1038_s41598_021_85246_x
crossref_primary_10_1136_jitc_2024_010008
crossref_primary_10_1155_2022_1560199
crossref_primary_10_1016_j_ejca_2015_07_015
crossref_primary_10_1016_j_xcrm_2024_101661
crossref_primary_10_1186_s12920_022_01340_7
crossref_primary_10_1111_cpr_13703
crossref_primary_10_1109_TCBB_2020_2992605
crossref_primary_10_1016_j_bbamcr_2018_08_010
crossref_primary_10_7314_APJCP_2015_16_5_1693
crossref_primary_10_3389_fimmu_2023_1161869
crossref_primary_10_1038_bjc_2016_370
crossref_primary_10_1007_s10238_024_01439_4
crossref_primary_10_1016_j_cmet_2018_02_024
crossref_primary_10_1016_j_isci_2023_106517
crossref_primary_10_1158_2159_8290_CD_14_1236
crossref_primary_10_3390_cancers14092054
crossref_primary_10_1002_path_4275
crossref_primary_10_1158_1078_0432_CCR_13_0928
crossref_primary_10_1093_jnci_djv211
crossref_primary_10_1016_j_jtho_2021_07_002
crossref_primary_10_1007_s13277_015_3714_6
crossref_primary_10_1016_j_bbe_2017_05_002
crossref_primary_10_3390_microarrays2040318
crossref_primary_10_1002_ijc_33242
crossref_primary_10_3390_cancers11071009
crossref_primary_10_3892_ol_2019_10211
crossref_primary_10_1186_s12859_019_2922_2
crossref_primary_10_2147_PGPM_S271516
crossref_primary_10_1186_s40001_025_02327_7
crossref_primary_10_1038_s41591_019_0595_z
crossref_primary_10_1146_annurev_physiol_042022_030310
crossref_primary_10_1186_s40425_019_0827_2
crossref_primary_10_6061_clinics_2021_e3222
crossref_primary_10_1080_19768354_2022_2079718
crossref_primary_10_1172_JCI72171
crossref_primary_10_1097_JTO_0000000000000042
crossref_primary_10_1186_s12859_017_1576_1
crossref_primary_10_3892_ol_2017_6012
crossref_primary_10_1089_dna_2019_4899
crossref_primary_10_1186_s12885_020_07657_9
crossref_primary_10_1093_bioinformatics_btz441
crossref_primary_10_1016_j_biopha_2019_01_051
crossref_primary_10_1158_1078_0432_CCR_14_0246
crossref_primary_10_1038_s41598_022_14323_6
crossref_primary_10_1158_1078_0432_CCR_15_1071
crossref_primary_10_5351_KJAS_2016_29_4_643
crossref_primary_10_1016_j_ccell_2023_01_007
crossref_primary_10_1371_journal_pone_0279503
crossref_primary_10_1038_s41598_017_06922_5
crossref_primary_10_1136_jitc_2024_010787
crossref_primary_10_3389_fonc_2019_01515
crossref_primary_10_1016_j_thorsurg_2013_04_005
crossref_primary_10_1016_j_jtcvs_2015_06_001
crossref_primary_10_1073_pnas_1717776115
crossref_primary_10_1177_0300060521989200
crossref_primary_10_1371_journal_pone_0243891
crossref_primary_10_18632_genesandcancer_53
crossref_primary_10_1158_0008_5472_CAN_13_2775
crossref_primary_10_1186_s40425_019_0520_5
crossref_primary_10_1007_s12094_021_02638_1
crossref_primary_10_1080_14737140_2021_1908132
crossref_primary_10_1002_cam4_4386
crossref_primary_10_1016_j_isci_2023_106616
crossref_primary_10_1158_1055_9965_EPI_14_0182
crossref_primary_10_1038_srep19857
crossref_primary_10_1016_j_trecan_2017_11_002
crossref_primary_10_3390_cancers11060886
crossref_primary_10_1002_bimj_201500075
crossref_primary_10_3389_fonc_2023_1274439
crossref_primary_10_1007_s41688_019_0035_8
crossref_primary_10_18632_oncotarget_14257
crossref_primary_10_1038_s41467_019_14273_0
crossref_primary_10_3892_ol_2019_10431
crossref_primary_10_1586_14737159_2015_1028371
crossref_primary_10_1186_s13073_020_00780_z
crossref_primary_10_3389_fonc_2021_615967
crossref_primary_10_1080_10543406_2023_2269251
crossref_primary_10_1126_scitranslmed_aao4307
crossref_primary_10_1371_journal_pone_0134682
crossref_primary_10_1093_bib_bbab180
crossref_primary_10_1126_scitranslmed_aad6066
crossref_primary_10_1038_s41420_021_00737_0
crossref_primary_10_1016_j_jmoldx_2015_03_005
crossref_primary_10_1186_s13045_018_0597_1
crossref_primary_10_1038_s42003_019_0572_6
crossref_primary_10_1136_esmoopen_2020_000679
crossref_primary_10_1002_path_5435
crossref_primary_10_1016_j_jbi_2015_05_006
crossref_primary_10_1038_s41598_025_91401_5
crossref_primary_10_1371_journal_pone_0106319
crossref_primary_10_1038_modpathol_2017_14
crossref_primary_10_1002_cam4_2492
crossref_primary_10_1016_j_neo_2020_04_005
crossref_primary_10_3390_ijms22073752
crossref_primary_10_1590_1678_4685_gmb_2019_0164
crossref_primary_10_1002_1878_0261_13555
crossref_primary_10_1002_pst_1842
crossref_primary_10_1002_sim_9250
crossref_primary_10_1016_j_heliyon_2024_e26061
crossref_primary_10_1016_j_lungcan_2022_08_007
crossref_primary_10_1007_s13402_014_0203_7
crossref_primary_10_1016_j_ebiom_2018_05_025
crossref_primary_10_1038_s41467_021_25260_9
crossref_primary_10_1158_2326_6066_CIR_16_0392
Cites_doi 10.1371/journal.pmed.1000378
10.1158/1078-0432.CCR-11-0196
10.1056/NEJMoa032792
10.1158/0008-5472.CAN-06-1191
10.1200/JCO.2008.16.4855
10.1056/NEJMoa031644
10.1200/JCO.2005.01.112
10.1158/1078-0432.CCR-08-1258
10.1073/pnas.1014506108
10.1158/1078-0432.CCR-07-4937
10.1038/nature06358
10.1038/nature09881
10.1371/journal.pbio.0020108
10.1056/NEJMra0802714
10.1038/ng1490
10.1371/journal.pmed.0030467
10.1016/S1470-2045(06)70804-X
10.1056/NEJMoa043623
10.1080/01621459.1958.10501452
10.1038/nm.1790
10.1097/MCP.0b013e32816b5c63
10.1056/NEJMoa060096
10.1038/nature04296
10.1038/nature08822
10.1093/jnci/djr420
10.1073/pnas.0809444106
10.1200/JCO.2009.26.4325
10.1038/ng1060
10.1038/sj.onc.1207697
10.1093/nar/gng015
10.3322/CA.2007.0010
10.1198/jasa.2009.0126
10.1200/JCO.2008.19.7053
10.1016/S0140-6736(11)61941-7
10.1038/nature05697
10.1093/bioinformatics/btp040
10.1172/JCI32007
10.2174/1566524013364121
10.1002/mc.20632
10.1056/NEJMoa060570
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1158/1078-0432.CCR-12-2321
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1557-3265
EndPage 1586
ExternalDocumentID PMC3619002
23357979
10_1158_1078_0432_CCR_12_2321
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDA NIH HHS
  grantid: R33 DA027592
– fundername: NCI NIH HHS
  grantid: P30 CA142543
– fundername: NCI NIH HHS
  grantid: R01 CA152301
– fundername: NCI NIH HHS
  grantid: P50 CA070907
– fundername: NCI NIH HHS
  grantid: P50CA70907
– fundername: NCI NIH HHS
  grantid: 5R01CA152301
– fundername: NCI NIH HHS
  grantid: P30CA142543
– fundername: NIDA NIH HHS
  grantid: 4R33DA027592
– fundername: National Cancer Institute : NCI
  grantid: R01 CA152301 || CA
– fundername: National Institute on Drug Abuse : NIDA
  grantid: R33 DA027592 || DA
– fundername: National Cancer Institute : NCI
  grantid: P50 CA070907 || CA
GroupedDBID ---
18M
29B
2FS
2WC
34G
39C
53G
5GY
5RE
5VS
6J9
AAFWJ
AAJMC
AAYXX
ABOCM
ACGFO
ACIWK
ACPRK
ADBBV
ADCOW
ADNWM
AENEX
AFHIN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BR6
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
IH2
KQ8
L7B
LSO
OK1
P0W
P2P
QTD
RCR
RHI
RNS
SJN
TR2
UDS
W2D
W8F
WOQ
YKV
ACSVP
AFOSN
AFUMD
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c477t-9515c28a2eb70164bfe5036f61d90f8182c0261231ecba017affb5512f15bba43
ISSN 1078-0432
1557-3265
IngestDate Thu Aug 21 18:07:49 EDT 2025
Thu Sep 04 20:02:42 EDT 2025
Thu Apr 03 06:53:41 EDT 2025
Wed Oct 01 03:48:53 EDT 2025
Thu Apr 24 23:11:53 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c477t-9515c28a2eb70164bfe5036f61d90f8182c0261231ecba017affb5512f15bba43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://clincancerres.aacrjournals.org/content/clincanres/19/6/1577.full.pdf
PMID 23357979
PQID 1346115349
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3619002
proquest_miscellaneous_1346115349
pubmed_primary_23357979
crossref_citationtrail_10_1158_1078_0432_CCR_12_2321
crossref_primary_10_1158_1078_0432_CCR_12_2321
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-03-15
PublicationDateYYYYMMDD 2013-03-15
PublicationDate_xml – month: 03
  year: 2013
  text: 2013-03-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Clinical cancer research
PublicationTitleAlternate Clin Cancer Res
PublicationYear 2013
References Strauss (2022061106515316700_bib6) 2008; 26
Schwarzer (2022061106515316700_bib34)
Herbst (2022061106515316700_bib39) 2008; 359
Winslow (2022061106515316700_bib44) 2011; 473
Ramaswamy (2022061106515316700_bib41) 2003; 33
Sargent (2022061106515316700_bib45) 2005; 23
Chen (2022061106515316700_bib9) 2007; 356
Douillard (2022061106515316700_bib2) 2006; 7
Tomida (2022061106515316700_bib14) 2004; 23
Beroukhim (2022061106515316700_bib24) 2010; 463
Weir (2022061106515316700_bib23) 2007; 450
Maitra (2022061106515316700_bib25) 2001; 1
Lu (2022061106515316700_bib11) 2006; 3
Zhu (2022061106515316700_bib17) 2010; 28
Wigle (2022061106515316700_bib15) 2002; 62
Kaplan (2022061106515316700_bib32) 1958
Chen (2022061106515316700_bib8) 2011; 103
Irizarry (2022061106515316700_bib31) 2003; 31
Breiman (2022061106515316700_bib38) 1984
Kato (2022061106515316700_bib3) 2004; 350
Raponi (2022061106515316700_bib28) 2006; 66
Lee (2022061106515316700_bib10) 2008; 14
Xie (2022061106515316700_bib16) 2011; 17
Jemal (2022061106515316700_bib1) 2008; 58
Shedden (2022061106515316700_bib13) 2008; 14
Jeong (2022061106515316700_bib18) 2010; 7
Xie (2022061106515316700_bib30) 2009; 25
The International Adjuvant Lung Cancer Trial Collaborative Group (2022061106515316700_bib4) 2004; 350
Olaussen (2022061106515316700_bib7) 2007; 13
Navab (2022061106515316700_bib12) 2011; 108
Kratz (2022061106515316700_bib19) 2012; 379
Peng (2022061106515316700_bib36) 2009; 104
Sweet-Cordero (2022061106515316700_bib43) 2005; 37
Bianchi (2022061106515316700_bib42) 2007; 117
Roepman (2022061106515316700_bib21) 2009; 15
Bair (2022061106515316700_bib37) 2004; 2
Whitehurst (2022061106515316700_bib22) 2007; 446
Boutros (2022061106515316700_bib20) 2009; 106
Pounds (2022061106515316700_bib35) 2003; 19
Matsuyama (2022061106515316700_bib27) 2011; 50
Winton (2022061106515316700_bib5) 2005; 352
Tomida (2022061106515316700_bib29) 2009; 27
Collett (2022061106515316700_bib33) 2003
Olaussen (2022061106515316700_bib40) 2006; 355
Bild (2022061106515316700_bib26) 2006; 439
References_xml – volume: 7
  start-page: e1000378
  year: 2010
  ident: 2022061106515316700_bib18
  article-title: Nuclear receptor expression defines a set of prognostic biomarkers for lung cancer
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.1000378
– volume: 62
  start-page: 3005
  year: 2002
  ident: 2022061106515316700_bib15
  article-title: Molecular profiling of non-small cell lung cancer and correlation with disease-free survival
  publication-title: Cancer Res
– volume: 19
  start-page: 1236
  year: 2003
  ident: 2022061106515316700_bib35
  publication-title: . Estimating the occurrence of false positives and false negatives in microarray studies by approximating and partitioning the empirical distribution of p-values. Bioinformatics
– volume: 17
  start-page: 5705
  year: 2011
  ident: 2022061106515316700_bib16
  article-title: Robust gene expression signature from formalin-fixed paraffin-embedded samples predicts prognosis of non-small-cell lung cancer patients
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-11-0196
– volume: 350
  start-page: 1713
  year: 2004
  ident: 2022061106515316700_bib3
  article-title: A randomized trial of adjuvant chemotherapy with uracil-tegafur for adenocarcinoma of the lung
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa032792
– volume: 66
  start-page: 7466
  year: 2006
  ident: 2022061106515316700_bib28
  article-title: Gene expression signatures for predicting prognosis of squamous cell and adenocarcinomas of the lung
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-06-1191
– year: 2003
  ident: 2022061106515316700_bib33
  article-title: Modelling survival data in medical research
– volume: 26
  start-page: 5043
  year: 2008
  ident: 2022061106515316700_bib6
  article-title: Adjuvant paclitaxel plus carboplatin compared with observation in stage Ib non-small-cell lung cancer: Calgb 9633 with the cancer and leukemia group b, radiation therapy oncology group, and north central cancer treatment group study groups
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2008.16.4855
– volume: 350
  start-page: 351
  year: 2004
  ident: 2022061106515316700_bib4
  article-title: Cisplatin-based adjuvant chemotherapy in patients with completely resected non-small-cell lung cancer
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa031644
– volume: 23
  start-page: 2020
  year: 2005
  ident: 2022061106515316700_bib45
  article-title: Clinical trial designs for predictive marker validation in cancer treatment trials
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2005.01.112
– volume: 15
  start-page: 284
  year: 2009
  ident: 2022061106515316700_bib21
  article-title: An immune response enriched 72-gene prognostic profile for early-stage non-small-cell lung cancer
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-08-1258
– volume: 108
  start-page: 7160
  year: 2011
  ident: 2022061106515316700_bib12
  article-title: Prognostic gene-expression signature of carcinoma-associated fibroblasts in non-small cell lung cancer
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1014506108
– volume: 14
  start-page: 7397
  year: 2008
  ident: 2022061106515316700_bib10
  article-title: Prediction of recurrence-free survival in postoperative non-small cell lung cancer patients by using an integrated model of clinical information and gene expression
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-07-4937
– volume: 450
  start-page: 893
  year: 2007
  ident: 2022061106515316700_bib23
  article-title: Characterizing the cancer genome in lung adenocarcinoma
  publication-title: Nature
  doi: 10.1038/nature06358
– volume: 473
  start-page: 101
  year: 2011
  ident: 2022061106515316700_bib44
  article-title: Suppression of lung adenocarcinoma progression by nkx2-1
  publication-title: Nature
  doi: 10.1038/nature09881
– volume: 2
  start-page: E108
  year: 2004
  ident: 2022061106515316700_bib37
  article-title: Semi-supervised methods to predict patient survival from gene expression data
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0020108
– year: 1984
  ident: 2022061106515316700_bib38
  article-title: Classification and regression trees
– volume: 359
  start-page: 1367
  year: 2008
  ident: 2022061106515316700_bib39
  article-title: Lung cancer
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra0802714
– ident: 2022061106515316700_bib34
  article-title: Meta: Meta-analysis with r.2012
– volume: 37
  start-page: 48
  year: 2005
  ident: 2022061106515316700_bib43
  article-title: An oncogenic kras2 expression signature identified by cross-species gene-expression analysis
  publication-title: Nat Genet
  doi: 10.1038/ng1490
– volume: 3
  start-page: e467
  year: 2006
  ident: 2022061106515316700_bib11
  article-title: A gene expression signature predicts survival of patients with stage I non-small cell lung cancer
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.0030467
– volume: 7
  start-page: 719
  year: 2006
  ident: 2022061106515316700_bib2
  article-title: Adjuvant vinorelbine plus cisplatin versus observation in patients with completely resected stage Ib-IIIa non-small-cell lung cancer (adjuvant navelbine international trialist association [anita]): a randomised controlled trial
  publication-title: Lancet Oncol
  doi: 10.1016/S1470-2045(06)70804-X
– volume: 352
  start-page: 2589
  year: 2005
  ident: 2022061106515316700_bib5
  article-title: Vinorelbine plus cisplatin vs. Observation in resected non-small-cell lung cancer
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa043623
– start-page: 457
  year: 1958
  ident: 2022061106515316700_bib32
  article-title: Nonparametric estimation from incomplete observations
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1958.10501452
– volume: 14
  start-page: 822
  year: 2008
  ident: 2022061106515316700_bib13
  article-title: Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study
  publication-title: Nat Med
  doi: 10.1038/nm.1790
– volume: 13
  start-page: 284
  year: 2007
  ident: 2022061106515316700_bib7
  article-title: Ercc1 as a risk stratifier in platinum-based chemotherapy for nonsmall-cell lung cancer
  publication-title: Curr Opin Pulm Med
  doi: 10.1097/MCP.0b013e32816b5c63
– volume: 356
  start-page: 11
  year: 2007
  ident: 2022061106515316700_bib9
  article-title: A five-gene signature and clinical outcome in non-small-cell lung cancer
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa060096
– volume: 439
  start-page: 353
  year: 2006
  ident: 2022061106515316700_bib26
  article-title: Oncogenic pathway signatures in human cancers as a guide to targeted therapies
  publication-title: Nature
  doi: 10.1038/nature04296
– volume: 463
  start-page: 899
  year: 2010
  ident: 2022061106515316700_bib24
  article-title: The landscape of somatic copy-number alteration across human cancers
  publication-title: Nature
  doi: 10.1038/nature08822
– volume: 103
  start-page: 1859
  year: 2011
  ident: 2022061106515316700_bib8
  article-title: Prognostic and predictive value of a malignancy-risk gene signature in early-stage non-small cell lung cancer
  publication-title: J Natl Cancer Inst
  doi: 10.1093/jnci/djr420
– volume: 106
  start-page: 2824
  year: 2009
  ident: 2022061106515316700_bib20
  article-title: Prognostic gene signatures for non-small-cell lung cancer
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0809444106
– volume: 28
  start-page: 4417
  year: 2010
  ident: 2022061106515316700_bib17
  article-title: Prognostic and predictive gene signature for adjuvant chemotherapy in resected non-small-cell lung cancer
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2009.26.4325
– volume: 33
  start-page: 49
  year: 2003
  ident: 2022061106515316700_bib41
  article-title: A molecular signature of metastasis in primary solid tumors
  publication-title: Nat Genet
  doi: 10.1038/ng1060
– volume: 23
  start-page: 5360
  year: 2004
  ident: 2022061106515316700_bib14
  article-title: Gene expression-based, individualized outcome prediction for surgically treated lung cancer patients
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1207697
– volume: 31
  start-page: e15
  year: 2003
  ident: 2022061106515316700_bib31
  article-title: Summaries of affymetrix genechip probe level data
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gng015
– volume: 58
  start-page: 71
  year: 2008
  ident: 2022061106515316700_bib1
  article-title: Cancer statistics, 2008
  publication-title: CA Cancer J Clin
  doi: 10.3322/CA.2007.0010
– volume: 104
  start-page: 735
  year: 2009
  ident: 2022061106515316700_bib36
  article-title: Partial correlation estimation by joint sparse regression models
  publication-title: J Am Stat Assoc
  doi: 10.1198/jasa.2009.0126
– volume: 27
  start-page: 2793
  year: 2009
  ident: 2022061106515316700_bib29
  article-title: Relapse-related molecular signature in lung adenocarcinomas identifies patients with dismal prognosis
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2008.19.7053
– volume: 379
  start-page: 823
  year: 2012
  ident: 2022061106515316700_bib19
  article-title: A practical molecular assay to predict survival in resected non-squamous, non-small-cell lung cancer: development and international validation studies
  publication-title: Lancet
  doi: 10.1016/S0140-6736(11)61941-7
– volume: 446
  start-page: 815
  year: 2007
  ident: 2022061106515316700_bib22
  article-title: Synthetic lethal screen identification of chemosensitizer loci in cancer cells
  publication-title: Nature
  doi: 10.1038/nature05697
– volume: 25
  start-page: 751
  year: 2009
  ident: 2022061106515316700_bib30
  article-title: Statistical methods of background correction for illumina bead array data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp040
– volume: 117
  start-page: 3436
  year: 2007
  ident: 2022061106515316700_bib42
  article-title: Survival prediction of stage I lung adenocarcinomas by expression of 10 genes
  publication-title: J Clin Invest
  doi: 10.1172/JCI32007
– volume: 1
  start-page: 153
  year: 2001
  ident: 2022061106515316700_bib25
  article-title: Microdissection and the study of cancer pathways
  publication-title: Curr Mol Med
  doi: 10.2174/1566524013364121
– volume: 50
  start-page: 301
  year: 2011
  ident: 2022061106515316700_bib27
  article-title: Proteasomal non-catalytic subunit psmd2 as a potential therapeutic target in association with various clinicopathologic features in lung adenocarcinomas
  publication-title: Mol Carcinog
  doi: 10.1002/mc.20632
– volume: 355
  start-page: 983
  year: 2006
  ident: 2022061106515316700_bib40
  article-title: DNA repair by ercc1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa060570
SSID ssj0014104
Score 2.54177
Snippet Purpose: Prospectively identifying who will benefit from adjuvant chemotherapy (ACT) would improve clinical decisions for non–small cell lung cancer (NSCLC)...
Prospectively identifying who will benefit from adjuvant chemotherapy (ACT) would improve clinical decisions for non-small cell lung cancer (NSCLC) patients....
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1577
SubjectTerms Adult
Aged
Carcinoma, Non-Small-Cell Lung - drug therapy
Carcinoma, Non-Small-Cell Lung - genetics
Carcinoma, Non-Small-Cell Lung - pathology
Chemotherapy, Adjuvant
Clinical Trials as Topic
Female
Gene Expression Regulation, Neoplastic
Genome, Human
Humans
Kaplan-Meier Estimate
Lung Neoplasms - drug therapy
Lung Neoplasms - genetics
Lung Neoplasms - mortality
Male
Middle Aged
Neoplasm Proteins - genetics
Neoplasm Staging
Prognosis
RNA Interference
Systems Biology
Treatment Outcome
Title A 12-Gene Set Predicts Survival Benefits from Adjuvant Chemotherapy in Non–Small Cell Lung Cancer Patients
URI https://www.ncbi.nlm.nih.gov/pubmed/23357979
https://www.proquest.com/docview/1346115349
https://pubmed.ncbi.nlm.nih.gov/PMC3619002
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1557-3265
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014104
  issn: 1078-0432
  databaseCode: KQ8
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1557-3265
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0014104
  issn: 1078-0432
  databaseCode: DIK
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1557-3265
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014104
  issn: 1078-0432
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZB2MvY_dlNzQYewnKYsmX-LGEdqG0HWwJ5E1IttymNE5X2y996G_fObbkOGtg3V5MkGzL-Pt8ciSd7xxCPmsdq1GQhIyDc8H8KEmZ4plhoZ-O4jQTmR-j3vnkNJzO_aNFsOj1brvqklIPk5udupL_QRXaAFdUyf4Dsu1NoQF-A75wBITheC-MYTLPGfSaQWFKlPunS4zNKCr4_mGcgYauDHcGahGJSi8q8JvLAeC0ssKrWvWXr3NWrHCPGpfxB5cV6nCRDdcu7WrR9WEnTkxpz7H5gtp15Zldgp6qtWtaLFW9JAuEzM_Oq80igMFov8JGnqw2srSfKDK3IsWjtWWwXZzAQhGCNfJMZ08DsGG8KQcxNDvanBGOO2TrWlQvaMq83DX1wbhedcAMwb7gw8nkB4aZgIfobf7b3H7-6Xd5OD8-lrODxezL1S-GVcdwd96WYHlAHvIoDLECxrdFGyKEIbB1VIJ7YKsAg5G_7hx327e5M2H5M-6248jMnpIndgZC9xs6PSM9kz8nj05sjMULcrFPLasosIo6VlHHKupYRZFV1LGKdllFlzltWUWRVRRZRRvGUMeql2R-eDCbTJmtyMESP4pKBu54kPCx4kZHmJtNZyYAFygLvTQeZeD78aTOSSc8k2gFxl5lmQafnGdeoLXyxSuyB6ObN4QKLdQ4TFAZrv0kVVoIL0OZttCe8rjuE9-9S5nYdPVYNeVS1tPWYCwRAokQSIBAelwiBH0ybC-7avK1_O2CTw4oCZYV34jKzboqpCf8EK4Tftwnrxvg2ltyIYIojqAn2oK0PQGztm_35MvzOnu7CMEHH_G39xj3HXm8-ajek73yujIfwAcu9ceaqL8BHjqyhQ
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+12-gene+set+predicts+survival+benefits+from+adjuvant+chemotherapy+in+non-small+cell+lung+cancer+patients&rft.jtitle=Clinical+cancer+research&rft.au=Tang%2C+Hao&rft.au=Xiao%2C+Guanghua&rft.au=Behrens%2C+Carmen&rft.au=Schiller%2C+Joan&rft.date=2013-03-15&rft.issn=1557-3265&rft.eissn=1557-3265&rft.volume=19&rft.issue=6&rft.spage=1577&rft_id=info:doi/10.1158%2F1078-0432.CCR-12-2321&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-0432&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-0432&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-0432&client=summon