Telomere Maintenance Mechanisms Define Clinical Outcome in High-Risk Neuroblastoma
Neuroblastoma is a childhood cancer with heterogeneous clinical outcomes. To comprehensively assess the impact of telomere maintenance mechanism (TMM) on clinical outcomes in high-risk neuroblastoma, we integrated the C-circle assay [a marker for alternative lengthening of telomeres (ALT)], TERT mRN...
Saved in:
Published in | Cancer research (Chicago, Ill.) Vol. 80; no. 12; pp. 2663 - 2675 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
15.06.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0008-5472 1538-7445 1538-7445 |
DOI | 10.1158/0008-5472.CAN-19-3068 |
Cover
Abstract | Neuroblastoma is a childhood cancer with heterogeneous clinical outcomes. To comprehensively assess the impact of telomere maintenance mechanism (TMM) on clinical outcomes in high-risk neuroblastoma, we integrated the C-circle assay [a marker for alternative lengthening of telomeres (ALT)], TERT mRNA expression by RNA-sequencing, whole-genome/exome sequencing, and clinical covariates in 134 neuroblastoma patient samples at diagnosis. In addition, we assessed TMM in neuroblastoma cell lines (
= 104) and patient-derived xenografts (
= 28). ALT was identified in 23.4% of high-risk neuroblastoma tumors and genomic alterations in
were detected in 60% of ALT tumors; 40% of ALT tumors lacked genomic alterations in known ALT-associated genes. Patients with high-risk neuroblastoma were classified into three subgroups (TERT-high, ALT
, and TERT-low/non-ALT) based on presence of C-circles and TERT mRNA expression (above or below median TERT expression). Event-free survival was similar among TERT-high, ALT
, or TERT-low/non-ALT patients. However, overall survival (OS) for TERT-low/non-ALT patients was significantly higher relative to TERT-high or ALT patients (log-rank test;
< 0.01) independent of current clinical and molecular prognostic markers. Consistent with the observed higher OS in patients with TERT-low/non-ALT tumors, continuous shortening of telomeres and decreasing viability occurred in low TERT-expressing, non-ALT patient-derived high-risk neuroblastoma cell lines. These findings demonstrate that assaying TMM with TERT mRNA expression and C-circles provides precise stratification of high-risk neuroblastoma into three subgroups with substantially different OS: a previously undescribed TERT-low/non-ALT cohort with superior OS (even after relapse) and two cohorts of patients with poor survival that have distinct molecular therapeutic targets. SIGNIFICANCE: These findings assess telomere maintenance mechanisms with TERT mRNA and the ALT DNA biomarker C-circles to stratify neuroblastoma into three groups, with distinct overall survival independent of currently used clinical risk classifiers. |
---|---|
AbstractList | Neuroblastoma is a childhood cancer with heterogeneous clinical outcomes. To comprehensively assess the impact of telomere maintenance mechanism (TMM) on clinical outcomes in high-risk neuroblastoma, we integrated the C-circle assay (a marker for alternative lengthening of telomeres (ALT)), TERT mRNA expression by RNA sequencing, whole genome/exome sequencing, and clinical co-variates in 134 neuroblastoma patient samples at diagnosis. In addition, we assessed TMM in neuroblastoma cell lines (n=104) and PDX (n=28). ALT was identified in 23.4% of high-risk neuroblastoma tumors and genomic alterations in ATRX were detected in 60% of ALT tumors; 40% of ALT tumors lacked genomic alterations in known ALT-associated genes. High-risk neuroblastoma patients were classified into 3 subgroups (TERT-high, ALT+, and TERT-low/non-ALT) based on presence of C-circles and TERT mRNA expression (above or below median TERT expression). Event-free survival was similar among TERT-high, ALT+, or TERT-low/non-ALT patients. However, overall survival (OS) for TERT-low/non-ALT patients was significantly higher relative to TERT-high or ALT patients (log-rank test; P < 0.01) independent of current clinical and molecular prognostic markers. Consistent with the observed higher OS in patients with TERT-low/non-ALT tumors, continuous shortening of telomeres and decreasing viability occurred in low TERT-expressing, non-ALT patient-derived high-risk neuroblastoma cell lines. These findings demonstrate that assaying TMM with TERT mRNA expression and C-circles provides precise stratification of high-risk neuroblastoma into three subgroups with substantially different OS: a previously undescribed TERT-low/non-ALT cohort with superior overall survival (even after relapse) and two cohorts of patients with poor survival that have distinct molecular therapeutic targets. Neuroblastoma is a childhood cancer with heterogeneous clinical outcomes. To comprehensively assess the impact of telomere maintenance mechanism (TMM) on clinical outcomes in high-risk neuroblastoma, we integrated the C-circle assay [a marker for alternative lengthening of telomeres (ALT)], TERT mRNA expression by RNA-sequencing, whole-genome/exome sequencing, and clinical covariates in 134 neuroblastoma patient samples at diagnosis. In addition, we assessed TMM in neuroblastoma cell lines ( = 104) and patient-derived xenografts ( = 28). ALT was identified in 23.4% of high-risk neuroblastoma tumors and genomic alterations in were detected in 60% of ALT tumors; 40% of ALT tumors lacked genomic alterations in known ALT-associated genes. Patients with high-risk neuroblastoma were classified into three subgroups (TERT-high, ALT , and TERT-low/non-ALT) based on presence of C-circles and TERT mRNA expression (above or below median TERT expression). Event-free survival was similar among TERT-high, ALT , or TERT-low/non-ALT patients. However, overall survival (OS) for TERT-low/non-ALT patients was significantly higher relative to TERT-high or ALT patients (log-rank test; < 0.01) independent of current clinical and molecular prognostic markers. Consistent with the observed higher OS in patients with TERT-low/non-ALT tumors, continuous shortening of telomeres and decreasing viability occurred in low TERT-expressing, non-ALT patient-derived high-risk neuroblastoma cell lines. These findings demonstrate that assaying TMM with TERT mRNA expression and C-circles provides precise stratification of high-risk neuroblastoma into three subgroups with substantially different OS: a previously undescribed TERT-low/non-ALT cohort with superior OS (even after relapse) and two cohorts of patients with poor survival that have distinct molecular therapeutic targets. SIGNIFICANCE: These findings assess telomere maintenance mechanisms with TERT mRNA and the ALT DNA biomarker C-circles to stratify neuroblastoma into three groups, with distinct overall survival independent of currently used clinical risk classifiers. Neuroblastoma is a childhood cancer with heterogeneous clinical outcomes. To comprehensively assess the impact of telomere maintenance mechanism (TMM) on clinical outcomes in high-risk neuroblastoma, we integrated the C-circle assay [a marker for alternative lengthening of telomeres (ALT)], TERT mRNA expression by RNA-sequencing, whole-genome/exome sequencing, and clinical covariates in 134 neuroblastoma patient samples at diagnosis. In addition, we assessed TMM in neuroblastoma cell lines (n = 104) and patient-derived xenografts (n = 28). ALT was identified in 23.4% of high-risk neuroblastoma tumors and genomic alterations in ATRX were detected in 60% of ALT tumors; 40% of ALT tumors lacked genomic alterations in known ALT-associated genes. Patients with high-risk neuroblastoma were classified into three subgroups (TERT-high, ALT+, and TERT-low/non-ALT) based on presence of C-circles and TERT mRNA expression (above or below median TERT expression). Event-free survival was similar among TERT-high, ALT+, or TERT-low/non-ALT patients. However, overall survival (OS) for TERT-low/non-ALT patients was significantly higher relative to TERT-high or ALT patients (log-rank test; P < 0.01) independent of current clinical and molecular prognostic markers. Consistent with the observed higher OS in patients with TERT-low/non-ALT tumors, continuous shortening of telomeres and decreasing viability occurred in low TERT-expressing, non-ALT patient-derived high-risk neuroblastoma cell lines. These findings demonstrate that assaying TMM with TERT mRNA expression and C-circles provides precise stratification of high-risk neuroblastoma into three subgroups with substantially different OS: a previously undescribed TERT-low/non-ALT cohort with superior OS (even after relapse) and two cohorts of patients with poor survival that have distinct molecular therapeutic targets. SIGNIFICANCE: These findings assess telomere maintenance mechanisms with TERT mRNA and the ALT DNA biomarker C-circles to stratify neuroblastoma into three groups, with distinct overall survival independent of currently used clinical risk classifiers.Neuroblastoma is a childhood cancer with heterogeneous clinical outcomes. To comprehensively assess the impact of telomere maintenance mechanism (TMM) on clinical outcomes in high-risk neuroblastoma, we integrated the C-circle assay [a marker for alternative lengthening of telomeres (ALT)], TERT mRNA expression by RNA-sequencing, whole-genome/exome sequencing, and clinical covariates in 134 neuroblastoma patient samples at diagnosis. In addition, we assessed TMM in neuroblastoma cell lines (n = 104) and patient-derived xenografts (n = 28). ALT was identified in 23.4% of high-risk neuroblastoma tumors and genomic alterations in ATRX were detected in 60% of ALT tumors; 40% of ALT tumors lacked genomic alterations in known ALT-associated genes. Patients with high-risk neuroblastoma were classified into three subgroups (TERT-high, ALT+, and TERT-low/non-ALT) based on presence of C-circles and TERT mRNA expression (above or below median TERT expression). Event-free survival was similar among TERT-high, ALT+, or TERT-low/non-ALT patients. However, overall survival (OS) for TERT-low/non-ALT patients was significantly higher relative to TERT-high or ALT patients (log-rank test; P < 0.01) independent of current clinical and molecular prognostic markers. Consistent with the observed higher OS in patients with TERT-low/non-ALT tumors, continuous shortening of telomeres and decreasing viability occurred in low TERT-expressing, non-ALT patient-derived high-risk neuroblastoma cell lines. These findings demonstrate that assaying TMM with TERT mRNA expression and C-circles provides precise stratification of high-risk neuroblastoma into three subgroups with substantially different OS: a previously undescribed TERT-low/non-ALT cohort with superior OS (even after relapse) and two cohorts of patients with poor survival that have distinct molecular therapeutic targets. SIGNIFICANCE: These findings assess telomere maintenance mechanisms with TERT mRNA and the ALT DNA biomarker C-circles to stratify neuroblastoma into three groups, with distinct overall survival independent of currently used clinical risk classifiers. |
Author | Irwin, Meredith S. Conkrite, Karina L. Hindle, Ashly Modi, Apexa Diskin, Sharon J. Yazdani, Vanda Yang, Shengping Davidson, Heather Nance, Jonas Nguyen, Thinh H. Lopez, Gonzalo Rokita, Jo Lynne Maris, John M. Wheeler, David A. Koneru, Balakrishna Urias, Eduardo Mccoy, Kristyn Farooqi, Ahsan Reynolds, C. Patrick Macha, Shawn J. |
AuthorAffiliation | 6 Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA 2 Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA 4 Department of Bioinformatics and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA 1 Cancer Center and Department of Pediatrics, School of Medicine, Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX, USA 5 Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA 3 Division of Oncology, Children’s Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104-4318, USA 7 Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada |
AuthorAffiliation_xml | – name: 3 Division of Oncology, Children’s Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104-4318, USA – name: 6 Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA – name: 1 Cancer Center and Department of Pediatrics, School of Medicine, Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX, USA – name: 2 Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA – name: 5 Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA – name: 7 Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada – name: 4 Department of Bioinformatics and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA |
Author_xml | – sequence: 1 givenname: Balakrishna orcidid: 0000-0002-2163-7049 surname: Koneru fullname: Koneru, Balakrishna – sequence: 2 givenname: Gonzalo orcidid: 0000-0002-5092-1284 surname: Lopez fullname: Lopez, Gonzalo – sequence: 3 givenname: Ahsan surname: Farooqi fullname: Farooqi, Ahsan – sequence: 4 givenname: Karina L. orcidid: 0000-0002-2064-6947 surname: Conkrite fullname: Conkrite, Karina L. – sequence: 5 givenname: Thinh H. surname: Nguyen fullname: Nguyen, Thinh H. – sequence: 6 givenname: Shawn J. surname: Macha fullname: Macha, Shawn J. – sequence: 7 givenname: Apexa orcidid: 0000-0001-8343-598X surname: Modi fullname: Modi, Apexa – sequence: 8 givenname: Jo Lynne orcidid: 0000-0003-2171-3627 surname: Rokita fullname: Rokita, Jo Lynne – sequence: 9 givenname: Eduardo surname: Urias fullname: Urias, Eduardo – sequence: 10 givenname: Ashly surname: Hindle fullname: Hindle, Ashly – sequence: 11 givenname: Heather surname: Davidson fullname: Davidson, Heather – sequence: 12 givenname: Kristyn surname: Mccoy fullname: Mccoy, Kristyn – sequence: 13 givenname: Jonas surname: Nance fullname: Nance, Jonas – sequence: 14 givenname: Vanda surname: Yazdani fullname: Yazdani, Vanda – sequence: 15 givenname: Meredith S. surname: Irwin fullname: Irwin, Meredith S. – sequence: 16 givenname: Shengping surname: Yang fullname: Yang, Shengping – sequence: 17 givenname: David A. orcidid: 0000-0002-9056-6299 surname: Wheeler fullname: Wheeler, David A. – sequence: 18 givenname: John M. orcidid: 0000-0002-8088-7929 surname: Maris fullname: Maris, John M. – sequence: 19 givenname: Sharon J. surname: Diskin fullname: Diskin, Sharon J. – sequence: 20 givenname: C. Patrick orcidid: 0000-0002-2827-8536 surname: Reynolds fullname: Reynolds, C. Patrick |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32291317$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kV1LHDEUhkNR6rrtT6jMpTdjc5LJZEKhIFtbBT9A7HXIZM-4aTOJTmYK_vtm0BX1wquckPcjnGef7IQYkJAvQI8ARPOVUtqUopLsaHV8WYIqOa2bD2QBgjelrCqxQxbPmj2yn9KffBVAxUeyxxlTwEEuyPUN-tjjgMWFcWHEYILNM9qNCS71qfiBnQtYrLwLzhpfXE2jzYbCheLU3W7Ka5f-Fpc4DbH1Jo2xN5_Ibmd8ws9P55L8_nlyszotz69-na2Oz0tbSTmWqkIFALWhtaoasZZAecuxXnPDYM06BSz_t60rWXPBOyFMI5vWGlUpbJEhX5Lvj7l3U9vj2mIYB-P13eB6MzzoaJx-_RLcRt_Gf1py4JLVOeDwKWCI9xOmUfcuWfTeBIxT0owrCkKJRmTpwcuu55LtIrPg26PADjGlATtt3WhGF-dq5zVQPWPTMxI9I9EZmwalZ2zZLd64twXv-_4DPGObRg |
CitedBy_id | crossref_primary_10_1158_2767_9764_CRC_22_0287 crossref_primary_10_1002_1878_0261_12880 crossref_primary_10_3390_ijms242115514 crossref_primary_10_1200_JCO_24_02407 crossref_primary_10_3390_biom11081112 crossref_primary_10_3390_cancers14184444 crossref_primary_10_3390_cancers15245732 crossref_primary_10_1126_scitranslmed_abd5750 crossref_primary_10_1159_000518413 crossref_primary_10_2147_PGPM_S461072 crossref_primary_10_1155_2022_8354932 crossref_primary_10_1038_s41591_023_02297_5 crossref_primary_10_1186_s12887_022_03424_w crossref_primary_10_3390_cancers17020252 crossref_primary_10_1021_acs_biochem_4c00023 crossref_primary_10_1038_s41467_021_21247_8 crossref_primary_10_1186_s43556_021_00055_y crossref_primary_10_3390_cancers13102384 crossref_primary_10_1186_s13045_022_01337_w crossref_primary_10_3390_biom12010079 crossref_primary_10_1016_j_ejcped_2024_100156 crossref_primary_10_1016_j_neo_2024_101106 crossref_primary_10_1111_cas_15363 crossref_primary_10_1097_CAD_0000000000001020 crossref_primary_10_1002_cncr_34267 crossref_primary_10_1016_j_dnarep_2022_103342 crossref_primary_10_1002_pbc_29800 crossref_primary_10_1186_s12943_024_02148_y crossref_primary_10_1016_j_tranon_2021_101114 crossref_primary_10_1007_s10637_021_01064_y crossref_primary_10_1200_JCO_21_01066 crossref_primary_10_1002_pbc_31146 crossref_primary_10_1016_j_path_2020_08_002 crossref_primary_10_1200_JCO_20_02540 crossref_primary_10_1200_JCO_22_01946 crossref_primary_10_1016_j_isci_2024_110918 crossref_primary_10_1038_s41571_022_00643_z crossref_primary_10_1038_s42003_021_02821_8 crossref_primary_10_3389_fonc_2025_1555419 crossref_primary_10_3390_ijms25115690 crossref_primary_10_1002_pdi3_68 crossref_primary_10_1002_ijc_33839 crossref_primary_10_3390_cancers15194803 crossref_primary_10_1158_0008_5472_CAN_22_0125 crossref_primary_10_1186_s12863_022_01059_5 crossref_primary_10_3390_ijms24098141 crossref_primary_10_1002_ijc_34007 crossref_primary_10_1007_s10637_020_00980_9 crossref_primary_10_1038_s41467_022_30233_7 crossref_primary_10_1200_JCO_21_00086 crossref_primary_10_4103_ejcrp_eJCRP_D_24_00017 crossref_primary_10_1186_s13578_022_00896_2 crossref_primary_10_1200_EDBK_349783 crossref_primary_10_1200_JCO_21_00278 crossref_primary_10_3389_fonc_2024_1399442 crossref_primary_10_1002_pbc_30572 crossref_primary_10_1016_j_patol_2024_100790 crossref_primary_10_1002_gcc_23260 crossref_primary_10_1093_nar_gkad1242 crossref_primary_10_12677_ACM_2023_132232 crossref_primary_10_1016_j_pathol_2023_07_005 crossref_primary_10_1007_s12022_022_09704_6 |
Cites_doi | 10.1016/j.celrep.2017.05.046 10.1200/JCO.2008.16.6785 10.1126/science.1260200 10.1016/j.ajpath.2011.06.018 10.1126/science.1229259 10.1126/science.aat6768 10.1371/journal.pgen.1002772 10.1158/2159-8290.CD-16-0861 10.1210/jc.2014-1158 10.1016/j.celrep.2019.09.071 10.1038/nbt.1587 10.1128/MMBR.66.3.407-425.2002 10.1038/s41467-018-04448-6 10.1038/emboj.2009.42 10.1016/S0140-6736(07)60983-0 10.1126/science.1207313 10.1126/science.1257216 10.1001/jama.2012.228 10.1016/j.ccr.2012.08.024 10.1016/j.celrep.2017.05.087 10.1093/jnci/djx061 10.1038/nature10910 10.1001/jama.2019.11642 10.1016/j.jpedsurg.2014.09.029 10.1073/pnas.1303607110 10.1002/cncr.30873 10.1002/cncr.28687 10.1016/j.cell.2011.02.013 10.1016/j.ccell.2014.09.019 10.1126/science.7605428 10.1038/ng.2529 10.1210/jc.2013-2383 10.1056/NEJMra0804577 10.21769/BioProtoc.1658 10.1016/j.cell.2015.12.028 10.1016/j.jpedsurg.2009.07.046 10.1080/15384101.2015.1125243 10.1038/ng.3438 10.1101/572248 10.1158/2159-8290.CD-14-0609 10.1002/gcc.20850 10.1016/j.febslet.2010.06.009 10.1007/s11060-014-1456-8 10.1038/nature07261 10.1038/nature14980 |
ContentType | Journal Article |
Copyright | 2020 American Association for Cancer Research. |
Copyright_xml | – notice: 2020 American Association for Cancer Research. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1158/0008-5472.CAN-19-3068 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1538-7445 |
EndPage | 2675 |
ExternalDocumentID | PMC7313726 32291317 10_1158_0008_5472_CAN_19_3068 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA204974 – fundername: NCI NIH HHS grantid: U10 CA098413 – fundername: NCI NIH HHS grantid: R35 CA220500 – fundername: NCI NIH HHS grantid: R01 CA221957 – fundername: NIMHD NIH HHS grantid: RC1 MD004418 – fundername: NCI NIH HHS grantid: R01 CA217251 – fundername: NCI NIH HHS grantid: U10 CA098543 |
GroupedDBID | --- -ET 18M 29B 2WC 34G 39C 53G 5GY 5RE 5VS 6J9 AAFWJ AAJMC AAYXX ABOCM ACGFO ACIWK ACPRK ACSVP ADBBV ADCOW ADNWM AENEX AETEA AFHIN AFOSN AFRAH AFUMD ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW CITATION CS3 DIK DU5 EBS EJD F5P FRP GX1 H13 IH2 KQ8 L7B LSO OK1 P0W P2P PQQKQ RCR RHI RNS SJN TR2 W2D W8F WH7 WOQ YKV YZZ CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c477t-94e91116a069485d7103b3e6d3a21d2f912005b6476353f55a878bca949ebe2e3 |
ISSN | 0008-5472 1538-7445 |
IngestDate | Thu Aug 21 17:31:41 EDT 2025 Fri Sep 05 14:45:02 EDT 2025 Mon Jul 21 06:02:15 EDT 2025 Thu Apr 24 23:03:46 EDT 2025 Tue Jul 01 01:27:38 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | 2020 American Association for Cancer Research. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c477t-94e91116a069485d7103b3e6d3a21d2f912005b6476353f55a878bca949ebe2e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2171-3627 0000-0002-9056-6299 0000-0002-2163-7049 0000-0002-2064-6947 0000-0002-8088-7929 0000-0002-2827-8536 0000-0002-5092-1284 0000-0001-8343-598X |
OpenAccessLink | https://cancerres.aacrjournals.org/content/canres/80/12/2663.full.pdf |
PMID | 32291317 |
PQID | 2390159585 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7313726 proquest_miscellaneous_2390159585 pubmed_primary_32291317 crossref_citationtrail_10_1158_0008_5472_CAN_19_3068 crossref_primary_10_1158_0008_5472_CAN_19_3068 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-15 |
PublicationDateYYYYMMDD | 2020-06-15 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cancer research (Chicago, Ill.) |
PublicationTitleAlternate | Cancer Res |
PublicationYear | 2020 |
References | Kim (2022061706352367400_bib2) 1994; 266 Bresler (2022061706352367400_bib38) 2014; 26 Maris (2022061706352367400_bib20) 2010; 362 Flynn (2022061706352367400_bib30) 2015; 347 Zheng (2022061706352367400_bib48) 2017; 109 Lovejoy (2022061706352367400_bib16) 2012; 8 Pickett (2022061706352367400_bib28) 2009; 28 Cong (2022061706352367400_bib3) 2002; 66 Wang (2022061706352367400_bib10) 2014; 99 Diplas (2022061706352367400_bib18) 2018; 9 Valentijn (2022061706352367400_bib11) 2015; 47 Borah (2022061706352367400_bib9) 2015; 347 Lundberg (2022061706352367400_bib37) 2011; 50 Henson (2022061706352367400_bib45) 2010; 584 Mender (2022061706352367400_bib49) 2015; 5 Yeager (2022061706352367400_bib34) 1999; 59 Sturm (2022061706352367400_bib17) 2012; 22 Lopez (2022061706352367400_bib29) 2019 Viceconte (2022061706352367400_bib31) 2017; 19 Roderwieser (2022061706352367400_bib42) 2019; 3 Heaphy (2022061706352367400_bib12) 2011; 179 Landa (2022061706352367400_bib7) 2013; 98 Heaphy (2022061706352367400_bib14) 2011; 333 Hertwig (2022061706352367400_bib25) 2016; 15 Kurihara (2022061706352367400_bib46) 2014; 49 Farooqi (2022061706352367400_bib35) 2014; 119 Cheung (2022061706352367400_bib15) 2012; 307 Park (2022061706352367400_bib21) 2017; 34 Mosse (2022061706352367400_bib23) 2008; 455 Ceccarelli (2022061706352367400_bib47) 2016; 164 Campbell (2022061706352367400_bib40) 2017; 123 Park (2022061706352367400_bib22) 2019; 322 Hanahan (2022061706352367400_bib1) 2011; 144 Maris (2022061706352367400_bib19) 2007; 369 Cohn (2022061706352367400_bib43) 2009; 27 Huang (2022061706352367400_bib6) 2013; 339 Onitake (2022061706352367400_bib41) 2009; 44 Mender (2022061706352367400_bib32) 2015; 5 Rajbhandari (2022061706352367400_bib39) 2018; 8 Takakura (2022061706352367400_bib4) 1999; 59 Henson (2022061706352367400_bib13) 2009; 27 Dagg (2022061706352367400_bib26) 2017; 19 Kushner (2022061706352367400_bib44) 2014; 120 Peifer (2022061706352367400_bib5) 2015; 526 Molenaar (2022061706352367400_bib33) 2012; 483 Ackermann (2022061706352367400_bib27) 2018; 362 Pugh (2022061706352367400_bib24) 2013; 45 Killela (2022061706352367400_bib8) 2013; 110 Rokita (2022061706352367400_bib36) 2019; 29 |
References_xml | – volume: 19 start-page: 2529 year: 2017 ident: 2022061706352367400_bib31 article-title: Highly aggressive metastatic melanoma cells unable to maintain telomere length publication-title: Cell Rep doi: 10.1016/j.celrep.2017.05.046 – volume: 27 start-page: 289 year: 2009 ident: 2022061706352367400_bib43 article-title: The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report publication-title: J Clin Oncol doi: 10.1200/JCO.2008.16.6785 – volume: 347 start-page: 1006 year: 2015 ident: 2022061706352367400_bib9 article-title: Cancer. TERT promoter mutations and telomerase reactivation in urothelial cancer publication-title: Science doi: 10.1126/science.1260200 – volume: 179 start-page: 1608 year: 2011 ident: 2022061706352367400_bib12 article-title: Prevalence of the alternative lengthening of telomeres telomere maintenance mechanism in human cancer subtypes publication-title: Am J Pathol doi: 10.1016/j.ajpath.2011.06.018 – volume: 339 start-page: 957 year: 2013 ident: 2022061706352367400_bib6 article-title: Highly recurrent TERT promoter mutations in human melanoma publication-title: Science doi: 10.1126/science.1229259 – volume: 362 start-page: 1165 year: 2018 ident: 2022061706352367400_bib27 article-title: A mechanistic classification of clinical phenotypes in neuroblastoma publication-title: Science doi: 10.1126/science.aat6768 – volume: 8 start-page: e1002772 year: 2012 ident: 2022061706352367400_bib16 article-title: Loss of ATRX, genome instability, and an altered DNA damage response are hallmarks of the alternative lengthening of telomeres pathway publication-title: PLoS Genet doi: 10.1371/journal.pgen.1002772 – volume: 8 start-page: 582 year: 2018 ident: 2022061706352367400_bib39 article-title: Cross-cohort analysis identifies a TEAD4-MYCN positive feedback loop as the core regulatory element of high-risk neuroblastoma publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-16-0861 – volume: 99 start-page: E1571 year: 2014 ident: 2022061706352367400_bib10 article-title: Telomerase-dependent and independent telomere maintenance and its clinical implications in medullary thyroid carcinoma publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2014-1158 – volume: 29 start-page: 1675 year: 2019 ident: 2022061706352367400_bib36 article-title: Genomic profiling of childhood tumor patient-derived xenograft models to enable rational clinical trial design publication-title: Cell Rep doi: 10.1016/j.celrep.2019.09.071 – volume: 27 start-page: 1181 year: 2009 ident: 2022061706352367400_bib13 article-title: DNA C-circles are specific and quantifiable markers of alternative-lengthening-of-telomeres activity publication-title: Nat Biotechnol doi: 10.1038/nbt.1587 – volume: 66 start-page: 407 year: 2002 ident: 2022061706352367400_bib3 article-title: Human telomerase and its regulation publication-title: Microbiol Mol Biol Rev doi: 10.1128/MMBR.66.3.407-425.2002 – volume: 59 start-page: 551 year: 1999 ident: 2022061706352367400_bib4 article-title: Cloning of human telomerase catalytic subunit (hTERT) gene promoter and identification of proximal core promoter sequences essential for transcriptional activation in immortalized and cancer cells publication-title: Cancer Res – volume: 9 start-page: 2087 year: 2018 ident: 2022061706352367400_bib18 article-title: The genomic landscape of TERT promoter wildtype-IDH wildtype glioblastoma publication-title: Nat Commun doi: 10.1038/s41467-018-04448-6 – volume: 28 start-page: 799 year: 2009 ident: 2022061706352367400_bib28 article-title: Control of telomere length by a trimming mechanism that involves generation of t-circles publication-title: EMBO J doi: 10.1038/emboj.2009.42 – volume: 369 start-page: 2106 year: 2007 ident: 2022061706352367400_bib19 article-title: Neuroblastoma publication-title: Lancet doi: 10.1016/S0140-6736(07)60983-0 – volume: 333 start-page: 425 year: 2011 ident: 2022061706352367400_bib14 article-title: Altered telomeres in tumors with ATRX and DAXX mutations publication-title: Science doi: 10.1126/science.1207313 – volume: 347 start-page: 273 year: 2015 ident: 2022061706352367400_bib30 article-title: Alternative lengthening of telomeres renders cancer cells hypersensitive to ATR inhibitors publication-title: Science doi: 10.1126/science.1257216 – volume: 307 start-page: 1062 year: 2012 ident: 2022061706352367400_bib15 article-title: Association of age at diagnosis and genetic mutations in patients with neuroblastoma publication-title: JAMA doi: 10.1001/jama.2012.228 – volume: 22 start-page: 425 year: 2012 ident: 2022061706352367400_bib17 article-title: Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma publication-title: Cancer Cell doi: 10.1016/j.ccr.2012.08.024 – volume: 19 start-page: 2544 year: 2017 ident: 2022061706352367400_bib26 article-title: Extensive proliferation of human cancer cells with ever-shorter telomeres publication-title: Cell Rep doi: 10.1016/j.celrep.2017.05.087 – volume: 109 year: 2017 ident: 2022061706352367400_bib48 article-title: A cisplatin derivative tetra-Pt(bpy) as an oncotherapeutic agent for targeting ALT cancer publication-title: J Natl Cancer Inst doi: 10.1093/jnci/djx061 – volume: 483 start-page: 589 year: 2012 ident: 2022061706352367400_bib33 article-title: Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes publication-title: Nature doi: 10.1038/nature10910 – volume: 322 start-page: 746 year: 2019 ident: 2022061706352367400_bib22 article-title: Effect of tandem autologous stem cell transplant vs single transplant on event-free survival in patients with high-risk neuroblastoma: a randomized clinical trial publication-title: JAMA doi: 10.1001/jama.2019.11642 – volume: 49 start-page: 1835 year: 2014 ident: 2022061706352367400_bib46 article-title: Clinical features of ATRX or DAXX mutated neuroblastoma publication-title: J Pediatr Surg doi: 10.1016/j.jpedsurg.2014.09.029 – volume: 110 start-page: 6021 year: 2013 ident: 2022061706352367400_bib8 article-title: TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1303607110 – volume: 123 start-page: 4224 year: 2017 ident: 2022061706352367400_bib40 article-title: Association of MYCN copy number with clinical features, tumor biology, and outcomes in neuroblastoma: a report from the Children's Oncology Group publication-title: Cancer doi: 10.1002/cncr.30873 – volume: 120 start-page: 2050 year: 2014 ident: 2022061706352367400_bib44 article-title: Striking dichotomy in outcome of MYCN-amplified neuroblastoma in the contemporary era publication-title: Cancer doi: 10.1002/cncr.28687 – volume: 144 start-page: 646 year: 2011 ident: 2022061706352367400_bib1 article-title: Hallmarks of cancer: the next generation publication-title: Cell doi: 10.1016/j.cell.2011.02.013 – volume: 34 year: 2017 ident: 2022061706352367400_bib21 article-title: A phase III randomized clinical trial (RCT) of tandem myeloablative autologous stem cell transplant (ASCT) using peripheral blood stem cell (PBSC) as consolidation therapy for high-risk neuroblastoma (HR-NB): a Children's Oncology Group (COG) study publication-title: J Clin Oncol – volume: 26 start-page: 682 year: 2014 ident: 2022061706352367400_bib38 article-title: ALK mutations confer differential oncogenic activation and sensitivity to ALK inhibition therapy in neuroblastoma publication-title: Cancer Cell doi: 10.1016/j.ccell.2014.09.019 – volume: 266 start-page: 2011 year: 1994 ident: 2022061706352367400_bib2 article-title: Specific association of human telomerase activity with immortal cells and cancer publication-title: Science doi: 10.1126/science.7605428 – volume: 59 start-page: 4175 year: 1999 ident: 2022061706352367400_bib34 article-title: Telomerase-negative immortalized human cells contain a novel type of promyelocytic leukemia (PML) body publication-title: Cancer Res – volume: 45 start-page: 279 year: 2013 ident: 2022061706352367400_bib24 article-title: The genetic landscape of high-risk neuroblastoma publication-title: Nat Genet doi: 10.1038/ng.2529 – volume: 3 year: 2019 ident: 2022061706352367400_bib42 article-title: Telomerase is a prognostic marker of poor outcome and a therapeutic target in neuroblastoma publication-title: JCO Preci Oncol – volume: 98 start-page: E1562 year: 2013 ident: 2022061706352367400_bib7 article-title: Frequent somatic TERT promoter mutations in thyroid cancer: higher prevalence in advanced forms of the disease publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2013-2383 – volume: 362 start-page: 2202 year: 2010 ident: 2022061706352367400_bib20 article-title: Recent advances in neuroblastoma publication-title: N Engl J Med doi: 10.1056/NEJMra0804577 – volume: 5 start-page: 1658 year: 2015 ident: 2022061706352367400_bib32 article-title: Telomere restriction fragment (TRF) analysis publication-title: Bio Protoc doi: 10.21769/BioProtoc.1658 – volume: 164 start-page: 550 year: 2016 ident: 2022061706352367400_bib47 article-title: Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma publication-title: Cell doi: 10.1016/j.cell.2015.12.028 – volume: 44 start-page: 2258 year: 2009 ident: 2022061706352367400_bib41 article-title: Telomere biology in neuroblastoma: telomere binding proteins and alternative strengthening of telomeres publication-title: J Pediatr Surg doi: 10.1016/j.jpedsurg.2009.07.046 – volume: 15 start-page: 311 year: 2016 ident: 2022061706352367400_bib25 article-title: Telomere maintenance is pivotal for high-risk neuroblastoma publication-title: Cell Cycle doi: 10.1080/15384101.2015.1125243 – volume: 47 start-page: 1411 year: 2015 ident: 2022061706352367400_bib11 article-title: TERT rearrangements are frequent in neuroblastoma and identify aggressive tumors publication-title: Nat Genet doi: 10.1038/ng.3438 – start-page: 572248 year: 2019 ident: 2022061706352367400_bib29 article-title: Structural variation targets neurodevelopmental genes and identifies SHANK2 as a tumor suppressor in neuroblastoma publication-title: bioRxiv doi: 10.1101/572248 – volume: 5 start-page: 82 year: 2015 ident: 2022061706352367400_bib49 article-title: Induction of telomere dysfunction mediated by the telomerase substrate precursor 6-thio-2′-deoxyguanosine publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-14-0609 – volume: 50 start-page: 250 year: 2011 ident: 2022061706352367400_bib37 article-title: Alternative lengthening of telomeres–an enhanced chromosomal instability in aggressive non-MYCN amplified and telomere elongated neuroblastomas publication-title: Genes Chromosomes Cancer doi: 10.1002/gcc.20850 – volume: 584 start-page: 3800 year: 2010 ident: 2022061706352367400_bib45 article-title: Assaying and investigating Alternative Lengthening of Telomeres activity in human cells and cancers publication-title: FEBS Lett doi: 10.1016/j.febslet.2010.06.009 – volume: 119 start-page: 17 year: 2014 ident: 2022061706352367400_bib35 article-title: Alternative lengthening of telomeres in neuroblastoma cell lines is associated with a lack of MYCN genomic amplification and with p53 pathway aberrations publication-title: J Neurooncol doi: 10.1007/s11060-014-1456-8 – volume: 455 start-page: 930 year: 2008 ident: 2022061706352367400_bib23 article-title: Identification of ALK as a major familial neuroblastoma predisposition gene publication-title: Nature doi: 10.1038/nature07261 – volume: 526 start-page: 700 year: 2015 ident: 2022061706352367400_bib5 article-title: Telomerase activation by genomic rearrangements in high-risk neuroblastoma publication-title: Nature doi: 10.1038/nature14980 |
SSID | ssj0005105 |
Score | 2.5689151 |
Snippet | Neuroblastoma is a childhood cancer with heterogeneous clinical outcomes. To comprehensively assess the impact of telomere maintenance mechanism (TMM) on... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2663 |
SubjectTerms | Cell Line, Tumor Child Child, Preschool Disease-Free Survival Female Follow-Up Studies Gene Expression Regulation, Neoplastic Humans Infant Male Neoplasm Recurrence, Local Neuroblastoma - genetics Neuroblastoma - mortality Neuroblastoma - pathology RNA, Messenger - isolation & purification RNA, Messenger - metabolism RNA-Seq Telomerase - genetics Telomerase - isolation & purification Telomerase - metabolism Telomere - metabolism Telomere Homeostasis Whole Genome Sequencing X-linked Nuclear Protein - genetics Xenograft Model Antitumor Assays |
Title | Telomere Maintenance Mechanisms Define Clinical Outcome in High-Risk Neuroblastoma |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32291317 https://www.proquest.com/docview/2390159585 https://pubmed.ncbi.nlm.nih.gov/PMC7313726 |
Volume | 80 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb5swFLa6Tqr6Mu2-7CYm7a0yGxdj8xhF26q16baqlfqGbDBKNAJZQ176V_Znd45tCGkrbesLChDA8vk4HNvf-Q4h73mZxrqUAVVFzilExJoKpgXNi1TgjL5QpWH5niSH5_HXC3axs_N7wFpat8rPr27NK7mLVeEY2BWzZP_Dsv1N4QD8BvvCFiwM23-zsa6ahUZdfomyD7Wh_081JvPOV4sVOJMSg8hJl_34bd1CM4xMCPI76Cnyyo08h4Igum2cj94IF-T68sDJAc3Meq8lbhjHUlX-YBrhCAWP1nYFo5I_sW593Xv842ZpJ6q_NPWVrJoeNBLi9l-GTzCeDdhBk6aGO9jCfUcwmK_lwbE_nJ8IsYwNtRmavc8VlMW2QI-vN26Wx1ZIsvPDtqJTh7dw6FUT5wS127XFVm56fyYsXdI-0J-MT2iA1A5buWeAiOXCQAK8WRpENnn0muz29-mER0HEw-QeuR9yaAGu-P_YSNEzx4_tnubSw6ANH25twT7Z6x63HQPdGNhc5-cOAp6zh-SBG6l4Ywu7R2RH14_J3tRxMZ6Q0w593gB93gZ9nkWf16HPc-jz5rXXo8_bQt9Tcv7509nkkLoKHTSPOW8pvOf4sUwkpk8LVkC4GqlIJ0Ukw6AIyzTASUuVxCh7GJWMScGFymUap-A8Qh09I7s14PMF8aLio1IQ3ssEvhCc5WkRchUw2Ekhai3liMRdn2W5k6_HKipVZoaxTCCNQmTY6xn0ehakGfb6iPj9ZUur3_K3C951BsnA0-Lymax1s15loZkeTGF8PSLPrYH6W3aWHRG-Zbr-D6jivn2mns-MmrtD2cs7X_mK7G_eu9dkt71c6zcQKbfqrUHsH61KuDs |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Telomere+Maintenance+Mechanisms+Define+Clinical+Outcome+in+High-Risk+Neuroblastoma&rft.jtitle=Cancer+research+%28Chicago%2C+Ill.%29&rft.au=Koneru%2C+Balakrishna&rft.au=Lopez%2C+Gonzalo&rft.au=Farooqi%2C+Ahsan&rft.au=Conkrite%2C+Karina+L.&rft.date=2020-06-15&rft.issn=0008-5472&rft.eissn=1538-7445&rft.volume=80&rft.issue=12&rft.spage=2663&rft.epage=2675&rft_id=info:doi/10.1158%2F0008-5472.CAN-19-3068&rft_id=info%3Apmid%2F32291317&rft.externalDocID=PMC7313726 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-5472&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-5472&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-5472&client=summon |