Telomere Maintenance Mechanisms Define Clinical Outcome in High-Risk Neuroblastoma

Neuroblastoma is a childhood cancer with heterogeneous clinical outcomes. To comprehensively assess the impact of telomere maintenance mechanism (TMM) on clinical outcomes in high-risk neuroblastoma, we integrated the C-circle assay [a marker for alternative lengthening of telomeres (ALT)], TERT mRN...

Full description

Saved in:
Bibliographic Details
Published inCancer research (Chicago, Ill.) Vol. 80; no. 12; pp. 2663 - 2675
Main Authors Koneru, Balakrishna, Lopez, Gonzalo, Farooqi, Ahsan, Conkrite, Karina L., Nguyen, Thinh H., Macha, Shawn J., Modi, Apexa, Rokita, Jo Lynne, Urias, Eduardo, Hindle, Ashly, Davidson, Heather, Mccoy, Kristyn, Nance, Jonas, Yazdani, Vanda, Irwin, Meredith S., Yang, Shengping, Wheeler, David A., Maris, John M., Diskin, Sharon J., Reynolds, C. Patrick
Format Journal Article
LanguageEnglish
Published United States 15.06.2020
Subjects
Online AccessGet full text
ISSN0008-5472
1538-7445
1538-7445
DOI10.1158/0008-5472.CAN-19-3068

Cover

Abstract Neuroblastoma is a childhood cancer with heterogeneous clinical outcomes. To comprehensively assess the impact of telomere maintenance mechanism (TMM) on clinical outcomes in high-risk neuroblastoma, we integrated the C-circle assay [a marker for alternative lengthening of telomeres (ALT)], TERT mRNA expression by RNA-sequencing, whole-genome/exome sequencing, and clinical covariates in 134 neuroblastoma patient samples at diagnosis. In addition, we assessed TMM in neuroblastoma cell lines ( = 104) and patient-derived xenografts ( = 28). ALT was identified in 23.4% of high-risk neuroblastoma tumors and genomic alterations in were detected in 60% of ALT tumors; 40% of ALT tumors lacked genomic alterations in known ALT-associated genes. Patients with high-risk neuroblastoma were classified into three subgroups (TERT-high, ALT , and TERT-low/non-ALT) based on presence of C-circles and TERT mRNA expression (above or below median TERT expression). Event-free survival was similar among TERT-high, ALT , or TERT-low/non-ALT patients. However, overall survival (OS) for TERT-low/non-ALT patients was significantly higher relative to TERT-high or ALT patients (log-rank test; < 0.01) independent of current clinical and molecular prognostic markers. Consistent with the observed higher OS in patients with TERT-low/non-ALT tumors, continuous shortening of telomeres and decreasing viability occurred in low TERT-expressing, non-ALT patient-derived high-risk neuroblastoma cell lines. These findings demonstrate that assaying TMM with TERT mRNA expression and C-circles provides precise stratification of high-risk neuroblastoma into three subgroups with substantially different OS: a previously undescribed TERT-low/non-ALT cohort with superior OS (even after relapse) and two cohorts of patients with poor survival that have distinct molecular therapeutic targets. SIGNIFICANCE: These findings assess telomere maintenance mechanisms with TERT mRNA and the ALT DNA biomarker C-circles to stratify neuroblastoma into three groups, with distinct overall survival independent of currently used clinical risk classifiers.
AbstractList Neuroblastoma is a childhood cancer with heterogeneous clinical outcomes. To comprehensively assess the impact of telomere maintenance mechanism (TMM) on clinical outcomes in high-risk neuroblastoma, we integrated the C-circle assay (a marker for alternative lengthening of telomeres (ALT)), TERT mRNA expression by RNA sequencing, whole genome/exome sequencing, and clinical co-variates in 134 neuroblastoma patient samples at diagnosis. In addition, we assessed TMM in neuroblastoma cell lines (n=104) and PDX (n=28). ALT was identified in 23.4% of high-risk neuroblastoma tumors and genomic alterations in ATRX were detected in 60% of ALT tumors; 40% of ALT tumors lacked genomic alterations in known ALT-associated genes. High-risk neuroblastoma patients were classified into 3 subgroups (TERT-high, ALT+, and TERT-low/non-ALT) based on presence of C-circles and TERT mRNA expression (above or below median TERT expression). Event-free survival was similar among TERT-high, ALT+, or TERT-low/non-ALT patients. However, overall survival (OS) for TERT-low/non-ALT patients was significantly higher relative to TERT-high or ALT patients (log-rank test; P < 0.01) independent of current clinical and molecular prognostic markers. Consistent with the observed higher OS in patients with TERT-low/non-ALT tumors, continuous shortening of telomeres and decreasing viability occurred in low TERT-expressing, non-ALT patient-derived high-risk neuroblastoma cell lines. These findings demonstrate that assaying TMM with TERT mRNA expression and C-circles provides precise stratification of high-risk neuroblastoma into three subgroups with substantially different OS: a previously undescribed TERT-low/non-ALT cohort with superior overall survival (even after relapse) and two cohorts of patients with poor survival that have distinct molecular therapeutic targets.
Neuroblastoma is a childhood cancer with heterogeneous clinical outcomes. To comprehensively assess the impact of telomere maintenance mechanism (TMM) on clinical outcomes in high-risk neuroblastoma, we integrated the C-circle assay [a marker for alternative lengthening of telomeres (ALT)], TERT mRNA expression by RNA-sequencing, whole-genome/exome sequencing, and clinical covariates in 134 neuroblastoma patient samples at diagnosis. In addition, we assessed TMM in neuroblastoma cell lines ( = 104) and patient-derived xenografts ( = 28). ALT was identified in 23.4% of high-risk neuroblastoma tumors and genomic alterations in were detected in 60% of ALT tumors; 40% of ALT tumors lacked genomic alterations in known ALT-associated genes. Patients with high-risk neuroblastoma were classified into three subgroups (TERT-high, ALT , and TERT-low/non-ALT) based on presence of C-circles and TERT mRNA expression (above or below median TERT expression). Event-free survival was similar among TERT-high, ALT , or TERT-low/non-ALT patients. However, overall survival (OS) for TERT-low/non-ALT patients was significantly higher relative to TERT-high or ALT patients (log-rank test; < 0.01) independent of current clinical and molecular prognostic markers. Consistent with the observed higher OS in patients with TERT-low/non-ALT tumors, continuous shortening of telomeres and decreasing viability occurred in low TERT-expressing, non-ALT patient-derived high-risk neuroblastoma cell lines. These findings demonstrate that assaying TMM with TERT mRNA expression and C-circles provides precise stratification of high-risk neuroblastoma into three subgroups with substantially different OS: a previously undescribed TERT-low/non-ALT cohort with superior OS (even after relapse) and two cohorts of patients with poor survival that have distinct molecular therapeutic targets. SIGNIFICANCE: These findings assess telomere maintenance mechanisms with TERT mRNA and the ALT DNA biomarker C-circles to stratify neuroblastoma into three groups, with distinct overall survival independent of currently used clinical risk classifiers.
Neuroblastoma is a childhood cancer with heterogeneous clinical outcomes. To comprehensively assess the impact of telomere maintenance mechanism (TMM) on clinical outcomes in high-risk neuroblastoma, we integrated the C-circle assay [a marker for alternative lengthening of telomeres (ALT)], TERT mRNA expression by RNA-sequencing, whole-genome/exome sequencing, and clinical covariates in 134 neuroblastoma patient samples at diagnosis. In addition, we assessed TMM in neuroblastoma cell lines (n = 104) and patient-derived xenografts (n = 28). ALT was identified in 23.4% of high-risk neuroblastoma tumors and genomic alterations in ATRX were detected in 60% of ALT tumors; 40% of ALT tumors lacked genomic alterations in known ALT-associated genes. Patients with high-risk neuroblastoma were classified into three subgroups (TERT-high, ALT+, and TERT-low/non-ALT) based on presence of C-circles and TERT mRNA expression (above or below median TERT expression). Event-free survival was similar among TERT-high, ALT+, or TERT-low/non-ALT patients. However, overall survival (OS) for TERT-low/non-ALT patients was significantly higher relative to TERT-high or ALT patients (log-rank test; P < 0.01) independent of current clinical and molecular prognostic markers. Consistent with the observed higher OS in patients with TERT-low/non-ALT tumors, continuous shortening of telomeres and decreasing viability occurred in low TERT-expressing, non-ALT patient-derived high-risk neuroblastoma cell lines. These findings demonstrate that assaying TMM with TERT mRNA expression and C-circles provides precise stratification of high-risk neuroblastoma into three subgroups with substantially different OS: a previously undescribed TERT-low/non-ALT cohort with superior OS (even after relapse) and two cohorts of patients with poor survival that have distinct molecular therapeutic targets. SIGNIFICANCE: These findings assess telomere maintenance mechanisms with TERT mRNA and the ALT DNA biomarker C-circles to stratify neuroblastoma into three groups, with distinct overall survival independent of currently used clinical risk classifiers.Neuroblastoma is a childhood cancer with heterogeneous clinical outcomes. To comprehensively assess the impact of telomere maintenance mechanism (TMM) on clinical outcomes in high-risk neuroblastoma, we integrated the C-circle assay [a marker for alternative lengthening of telomeres (ALT)], TERT mRNA expression by RNA-sequencing, whole-genome/exome sequencing, and clinical covariates in 134 neuroblastoma patient samples at diagnosis. In addition, we assessed TMM in neuroblastoma cell lines (n = 104) and patient-derived xenografts (n = 28). ALT was identified in 23.4% of high-risk neuroblastoma tumors and genomic alterations in ATRX were detected in 60% of ALT tumors; 40% of ALT tumors lacked genomic alterations in known ALT-associated genes. Patients with high-risk neuroblastoma were classified into three subgroups (TERT-high, ALT+, and TERT-low/non-ALT) based on presence of C-circles and TERT mRNA expression (above or below median TERT expression). Event-free survival was similar among TERT-high, ALT+, or TERT-low/non-ALT patients. However, overall survival (OS) for TERT-low/non-ALT patients was significantly higher relative to TERT-high or ALT patients (log-rank test; P < 0.01) independent of current clinical and molecular prognostic markers. Consistent with the observed higher OS in patients with TERT-low/non-ALT tumors, continuous shortening of telomeres and decreasing viability occurred in low TERT-expressing, non-ALT patient-derived high-risk neuroblastoma cell lines. These findings demonstrate that assaying TMM with TERT mRNA expression and C-circles provides precise stratification of high-risk neuroblastoma into three subgroups with substantially different OS: a previously undescribed TERT-low/non-ALT cohort with superior OS (even after relapse) and two cohorts of patients with poor survival that have distinct molecular therapeutic targets. SIGNIFICANCE: These findings assess telomere maintenance mechanisms with TERT mRNA and the ALT DNA biomarker C-circles to stratify neuroblastoma into three groups, with distinct overall survival independent of currently used clinical risk classifiers.
Author Irwin, Meredith S.
Conkrite, Karina L.
Hindle, Ashly
Modi, Apexa
Diskin, Sharon J.
Yazdani, Vanda
Yang, Shengping
Davidson, Heather
Nance, Jonas
Nguyen, Thinh H.
Lopez, Gonzalo
Rokita, Jo Lynne
Maris, John M.
Wheeler, David A.
Koneru, Balakrishna
Urias, Eduardo
Mccoy, Kristyn
Farooqi, Ahsan
Reynolds, C. Patrick
Macha, Shawn J.
AuthorAffiliation 6 Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
2 Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
4 Department of Bioinformatics and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
1 Cancer Center and Department of Pediatrics, School of Medicine, Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX, USA
5 Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
3 Division of Oncology, Children’s Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104-4318, USA
7 Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
AuthorAffiliation_xml – name: 3 Division of Oncology, Children’s Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104-4318, USA
– name: 6 Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
– name: 1 Cancer Center and Department of Pediatrics, School of Medicine, Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX, USA
– name: 2 Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
– name: 5 Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
– name: 7 Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
– name: 4 Department of Bioinformatics and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
Author_xml – sequence: 1
  givenname: Balakrishna
  orcidid: 0000-0002-2163-7049
  surname: Koneru
  fullname: Koneru, Balakrishna
– sequence: 2
  givenname: Gonzalo
  orcidid: 0000-0002-5092-1284
  surname: Lopez
  fullname: Lopez, Gonzalo
– sequence: 3
  givenname: Ahsan
  surname: Farooqi
  fullname: Farooqi, Ahsan
– sequence: 4
  givenname: Karina L.
  orcidid: 0000-0002-2064-6947
  surname: Conkrite
  fullname: Conkrite, Karina L.
– sequence: 5
  givenname: Thinh H.
  surname: Nguyen
  fullname: Nguyen, Thinh H.
– sequence: 6
  givenname: Shawn J.
  surname: Macha
  fullname: Macha, Shawn J.
– sequence: 7
  givenname: Apexa
  orcidid: 0000-0001-8343-598X
  surname: Modi
  fullname: Modi, Apexa
– sequence: 8
  givenname: Jo Lynne
  orcidid: 0000-0003-2171-3627
  surname: Rokita
  fullname: Rokita, Jo Lynne
– sequence: 9
  givenname: Eduardo
  surname: Urias
  fullname: Urias, Eduardo
– sequence: 10
  givenname: Ashly
  surname: Hindle
  fullname: Hindle, Ashly
– sequence: 11
  givenname: Heather
  surname: Davidson
  fullname: Davidson, Heather
– sequence: 12
  givenname: Kristyn
  surname: Mccoy
  fullname: Mccoy, Kristyn
– sequence: 13
  givenname: Jonas
  surname: Nance
  fullname: Nance, Jonas
– sequence: 14
  givenname: Vanda
  surname: Yazdani
  fullname: Yazdani, Vanda
– sequence: 15
  givenname: Meredith S.
  surname: Irwin
  fullname: Irwin, Meredith S.
– sequence: 16
  givenname: Shengping
  surname: Yang
  fullname: Yang, Shengping
– sequence: 17
  givenname: David A.
  orcidid: 0000-0002-9056-6299
  surname: Wheeler
  fullname: Wheeler, David A.
– sequence: 18
  givenname: John M.
  orcidid: 0000-0002-8088-7929
  surname: Maris
  fullname: Maris, John M.
– sequence: 19
  givenname: Sharon J.
  surname: Diskin
  fullname: Diskin, Sharon J.
– sequence: 20
  givenname: C. Patrick
  orcidid: 0000-0002-2827-8536
  surname: Reynolds
  fullname: Reynolds, C. Patrick
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32291317$$D View this record in MEDLINE/PubMed
BookMark eNp9kV1LHDEUhkNR6rrtT6jMpTdjc5LJZEKhIFtbBT9A7HXIZM-4aTOJTmYK_vtm0BX1wquckPcjnGef7IQYkJAvQI8ARPOVUtqUopLsaHV8WYIqOa2bD2QBgjelrCqxQxbPmj2yn9KffBVAxUeyxxlTwEEuyPUN-tjjgMWFcWHEYILNM9qNCS71qfiBnQtYrLwLzhpfXE2jzYbCheLU3W7Ka5f-Fpc4DbH1Jo2xN5_Ibmd8ws9P55L8_nlyszotz69-na2Oz0tbSTmWqkIFALWhtaoasZZAecuxXnPDYM06BSz_t60rWXPBOyFMI5vWGlUpbJEhX5Lvj7l3U9vj2mIYB-P13eB6MzzoaJx-_RLcRt_Gf1py4JLVOeDwKWCI9xOmUfcuWfTeBIxT0owrCkKJRmTpwcuu55LtIrPg26PADjGlATtt3WhGF-dq5zVQPWPTMxI9I9EZmwalZ2zZLd64twXv-_4DPGObRg
CitedBy_id crossref_primary_10_1158_2767_9764_CRC_22_0287
crossref_primary_10_1002_1878_0261_12880
crossref_primary_10_3390_ijms242115514
crossref_primary_10_1200_JCO_24_02407
crossref_primary_10_3390_biom11081112
crossref_primary_10_3390_cancers14184444
crossref_primary_10_3390_cancers15245732
crossref_primary_10_1126_scitranslmed_abd5750
crossref_primary_10_1159_000518413
crossref_primary_10_2147_PGPM_S461072
crossref_primary_10_1155_2022_8354932
crossref_primary_10_1038_s41591_023_02297_5
crossref_primary_10_1186_s12887_022_03424_w
crossref_primary_10_3390_cancers17020252
crossref_primary_10_1021_acs_biochem_4c00023
crossref_primary_10_1038_s41467_021_21247_8
crossref_primary_10_1186_s43556_021_00055_y
crossref_primary_10_3390_cancers13102384
crossref_primary_10_1186_s13045_022_01337_w
crossref_primary_10_3390_biom12010079
crossref_primary_10_1016_j_ejcped_2024_100156
crossref_primary_10_1016_j_neo_2024_101106
crossref_primary_10_1111_cas_15363
crossref_primary_10_1097_CAD_0000000000001020
crossref_primary_10_1002_cncr_34267
crossref_primary_10_1016_j_dnarep_2022_103342
crossref_primary_10_1002_pbc_29800
crossref_primary_10_1186_s12943_024_02148_y
crossref_primary_10_1016_j_tranon_2021_101114
crossref_primary_10_1007_s10637_021_01064_y
crossref_primary_10_1200_JCO_21_01066
crossref_primary_10_1002_pbc_31146
crossref_primary_10_1016_j_path_2020_08_002
crossref_primary_10_1200_JCO_20_02540
crossref_primary_10_1200_JCO_22_01946
crossref_primary_10_1016_j_isci_2024_110918
crossref_primary_10_1038_s41571_022_00643_z
crossref_primary_10_1038_s42003_021_02821_8
crossref_primary_10_3389_fonc_2025_1555419
crossref_primary_10_3390_ijms25115690
crossref_primary_10_1002_pdi3_68
crossref_primary_10_1002_ijc_33839
crossref_primary_10_3390_cancers15194803
crossref_primary_10_1158_0008_5472_CAN_22_0125
crossref_primary_10_1186_s12863_022_01059_5
crossref_primary_10_3390_ijms24098141
crossref_primary_10_1002_ijc_34007
crossref_primary_10_1007_s10637_020_00980_9
crossref_primary_10_1038_s41467_022_30233_7
crossref_primary_10_1200_JCO_21_00086
crossref_primary_10_4103_ejcrp_eJCRP_D_24_00017
crossref_primary_10_1186_s13578_022_00896_2
crossref_primary_10_1200_EDBK_349783
crossref_primary_10_1200_JCO_21_00278
crossref_primary_10_3389_fonc_2024_1399442
crossref_primary_10_1002_pbc_30572
crossref_primary_10_1016_j_patol_2024_100790
crossref_primary_10_1002_gcc_23260
crossref_primary_10_1093_nar_gkad1242
crossref_primary_10_12677_ACM_2023_132232
crossref_primary_10_1016_j_pathol_2023_07_005
crossref_primary_10_1007_s12022_022_09704_6
Cites_doi 10.1016/j.celrep.2017.05.046
10.1200/JCO.2008.16.6785
10.1126/science.1260200
10.1016/j.ajpath.2011.06.018
10.1126/science.1229259
10.1126/science.aat6768
10.1371/journal.pgen.1002772
10.1158/2159-8290.CD-16-0861
10.1210/jc.2014-1158
10.1016/j.celrep.2019.09.071
10.1038/nbt.1587
10.1128/MMBR.66.3.407-425.2002
10.1038/s41467-018-04448-6
10.1038/emboj.2009.42
10.1016/S0140-6736(07)60983-0
10.1126/science.1207313
10.1126/science.1257216
10.1001/jama.2012.228
10.1016/j.ccr.2012.08.024
10.1016/j.celrep.2017.05.087
10.1093/jnci/djx061
10.1038/nature10910
10.1001/jama.2019.11642
10.1016/j.jpedsurg.2014.09.029
10.1073/pnas.1303607110
10.1002/cncr.30873
10.1002/cncr.28687
10.1016/j.cell.2011.02.013
10.1016/j.ccell.2014.09.019
10.1126/science.7605428
10.1038/ng.2529
10.1210/jc.2013-2383
10.1056/NEJMra0804577
10.21769/BioProtoc.1658
10.1016/j.cell.2015.12.028
10.1016/j.jpedsurg.2009.07.046
10.1080/15384101.2015.1125243
10.1038/ng.3438
10.1101/572248
10.1158/2159-8290.CD-14-0609
10.1002/gcc.20850
10.1016/j.febslet.2010.06.009
10.1007/s11060-014-1456-8
10.1038/nature07261
10.1038/nature14980
ContentType Journal Article
Copyright 2020 American Association for Cancer Research.
Copyright_xml – notice: 2020 American Association for Cancer Research.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1158/0008-5472.CAN-19-3068
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1538-7445
EndPage 2675
ExternalDocumentID PMC7313726
32291317
10_1158_0008_5472_CAN_19_3068
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA204974
– fundername: NCI NIH HHS
  grantid: U10 CA098413
– fundername: NCI NIH HHS
  grantid: R35 CA220500
– fundername: NCI NIH HHS
  grantid: R01 CA221957
– fundername: NIMHD NIH HHS
  grantid: RC1 MD004418
– fundername: NCI NIH HHS
  grantid: R01 CA217251
– fundername: NCI NIH HHS
  grantid: U10 CA098543
GroupedDBID ---
-ET
18M
29B
2WC
34G
39C
53G
5GY
5RE
5VS
6J9
AAFWJ
AAJMC
AAYXX
ABOCM
ACGFO
ACIWK
ACPRK
ACSVP
ADBBV
ADCOW
ADNWM
AENEX
AETEA
AFHIN
AFOSN
AFRAH
AFUMD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
EBS
EJD
F5P
FRP
GX1
H13
IH2
KQ8
L7B
LSO
OK1
P0W
P2P
PQQKQ
RCR
RHI
RNS
SJN
TR2
W2D
W8F
WH7
WOQ
YKV
YZZ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c477t-94e91116a069485d7103b3e6d3a21d2f912005b6476353f55a878bca949ebe2e3
ISSN 0008-5472
1538-7445
IngestDate Thu Aug 21 17:31:41 EDT 2025
Fri Sep 05 14:45:02 EDT 2025
Mon Jul 21 06:02:15 EDT 2025
Thu Apr 24 23:03:46 EDT 2025
Tue Jul 01 01:27:38 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License 2020 American Association for Cancer Research.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c477t-94e91116a069485d7103b3e6d3a21d2f912005b6476353f55a878bca949ebe2e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2171-3627
0000-0002-9056-6299
0000-0002-2163-7049
0000-0002-2064-6947
0000-0002-8088-7929
0000-0002-2827-8536
0000-0002-5092-1284
0000-0001-8343-598X
OpenAccessLink https://cancerres.aacrjournals.org/content/canres/80/12/2663.full.pdf
PMID 32291317
PQID 2390159585
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7313726
proquest_miscellaneous_2390159585
pubmed_primary_32291317
crossref_citationtrail_10_1158_0008_5472_CAN_19_3068
crossref_primary_10_1158_0008_5472_CAN_19_3068
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-15
PublicationDateYYYYMMDD 2020-06-15
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cancer research (Chicago, Ill.)
PublicationTitleAlternate Cancer Res
PublicationYear 2020
References Kim (2022061706352367400_bib2) 1994; 266
Bresler (2022061706352367400_bib38) 2014; 26
Maris (2022061706352367400_bib20) 2010; 362
Flynn (2022061706352367400_bib30) 2015; 347
Zheng (2022061706352367400_bib48) 2017; 109
Lovejoy (2022061706352367400_bib16) 2012; 8
Pickett (2022061706352367400_bib28) 2009; 28
Cong (2022061706352367400_bib3) 2002; 66
Wang (2022061706352367400_bib10) 2014; 99
Diplas (2022061706352367400_bib18) 2018; 9
Valentijn (2022061706352367400_bib11) 2015; 47
Borah (2022061706352367400_bib9) 2015; 347
Lundberg (2022061706352367400_bib37) 2011; 50
Henson (2022061706352367400_bib45) 2010; 584
Mender (2022061706352367400_bib49) 2015; 5
Yeager (2022061706352367400_bib34) 1999; 59
Sturm (2022061706352367400_bib17) 2012; 22
Lopez (2022061706352367400_bib29) 2019
Viceconte (2022061706352367400_bib31) 2017; 19
Roderwieser (2022061706352367400_bib42) 2019; 3
Heaphy (2022061706352367400_bib12) 2011; 179
Landa (2022061706352367400_bib7) 2013; 98
Heaphy (2022061706352367400_bib14) 2011; 333
Hertwig (2022061706352367400_bib25) 2016; 15
Kurihara (2022061706352367400_bib46) 2014; 49
Farooqi (2022061706352367400_bib35) 2014; 119
Cheung (2022061706352367400_bib15) 2012; 307
Park (2022061706352367400_bib21) 2017; 34
Mosse (2022061706352367400_bib23) 2008; 455
Ceccarelli (2022061706352367400_bib47) 2016; 164
Campbell (2022061706352367400_bib40) 2017; 123
Park (2022061706352367400_bib22) 2019; 322
Hanahan (2022061706352367400_bib1) 2011; 144
Maris (2022061706352367400_bib19) 2007; 369
Cohn (2022061706352367400_bib43) 2009; 27
Huang (2022061706352367400_bib6) 2013; 339
Onitake (2022061706352367400_bib41) 2009; 44
Mender (2022061706352367400_bib32) 2015; 5
Rajbhandari (2022061706352367400_bib39) 2018; 8
Takakura (2022061706352367400_bib4) 1999; 59
Henson (2022061706352367400_bib13) 2009; 27
Dagg (2022061706352367400_bib26) 2017; 19
Kushner (2022061706352367400_bib44) 2014; 120
Peifer (2022061706352367400_bib5) 2015; 526
Molenaar (2022061706352367400_bib33) 2012; 483
Ackermann (2022061706352367400_bib27) 2018; 362
Pugh (2022061706352367400_bib24) 2013; 45
Killela (2022061706352367400_bib8) 2013; 110
Rokita (2022061706352367400_bib36) 2019; 29
References_xml – volume: 19
  start-page: 2529
  year: 2017
  ident: 2022061706352367400_bib31
  article-title: Highly aggressive metastatic melanoma cells unable to maintain telomere length
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2017.05.046
– volume: 27
  start-page: 289
  year: 2009
  ident: 2022061706352367400_bib43
  article-title: The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2008.16.6785
– volume: 347
  start-page: 1006
  year: 2015
  ident: 2022061706352367400_bib9
  article-title: Cancer. TERT promoter mutations and telomerase reactivation in urothelial cancer
  publication-title: Science
  doi: 10.1126/science.1260200
– volume: 179
  start-page: 1608
  year: 2011
  ident: 2022061706352367400_bib12
  article-title: Prevalence of the alternative lengthening of telomeres telomere maintenance mechanism in human cancer subtypes
  publication-title: Am J Pathol
  doi: 10.1016/j.ajpath.2011.06.018
– volume: 339
  start-page: 957
  year: 2013
  ident: 2022061706352367400_bib6
  article-title: Highly recurrent TERT promoter mutations in human melanoma
  publication-title: Science
  doi: 10.1126/science.1229259
– volume: 362
  start-page: 1165
  year: 2018
  ident: 2022061706352367400_bib27
  article-title: A mechanistic classification of clinical phenotypes in neuroblastoma
  publication-title: Science
  doi: 10.1126/science.aat6768
– volume: 8
  start-page: e1002772
  year: 2012
  ident: 2022061706352367400_bib16
  article-title: Loss of ATRX, genome instability, and an altered DNA damage response are hallmarks of the alternative lengthening of telomeres pathway
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1002772
– volume: 8
  start-page: 582
  year: 2018
  ident: 2022061706352367400_bib39
  article-title: Cross-cohort analysis identifies a TEAD4-MYCN positive feedback loop as the core regulatory element of high-risk neuroblastoma
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-16-0861
– volume: 99
  start-page: E1571
  year: 2014
  ident: 2022061706352367400_bib10
  article-title: Telomerase-dependent and independent telomere maintenance and its clinical implications in medullary thyroid carcinoma
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2014-1158
– volume: 29
  start-page: 1675
  year: 2019
  ident: 2022061706352367400_bib36
  article-title: Genomic profiling of childhood tumor patient-derived xenograft models to enable rational clinical trial design
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2019.09.071
– volume: 27
  start-page: 1181
  year: 2009
  ident: 2022061706352367400_bib13
  article-title: DNA C-circles are specific and quantifiable markers of alternative-lengthening-of-telomeres activity
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1587
– volume: 66
  start-page: 407
  year: 2002
  ident: 2022061706352367400_bib3
  article-title: Human telomerase and its regulation
  publication-title: Microbiol Mol Biol Rev
  doi: 10.1128/MMBR.66.3.407-425.2002
– volume: 59
  start-page: 551
  year: 1999
  ident: 2022061706352367400_bib4
  article-title: Cloning of human telomerase catalytic subunit (hTERT) gene promoter and identification of proximal core promoter sequences essential for transcriptional activation in immortalized and cancer cells
  publication-title: Cancer Res
– volume: 9
  start-page: 2087
  year: 2018
  ident: 2022061706352367400_bib18
  article-title: The genomic landscape of TERT promoter wildtype-IDH wildtype glioblastoma
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-04448-6
– volume: 28
  start-page: 799
  year: 2009
  ident: 2022061706352367400_bib28
  article-title: Control of telomere length by a trimming mechanism that involves generation of t-circles
  publication-title: EMBO J
  doi: 10.1038/emboj.2009.42
– volume: 369
  start-page: 2106
  year: 2007
  ident: 2022061706352367400_bib19
  article-title: Neuroblastoma
  publication-title: Lancet
  doi: 10.1016/S0140-6736(07)60983-0
– volume: 333
  start-page: 425
  year: 2011
  ident: 2022061706352367400_bib14
  article-title: Altered telomeres in tumors with ATRX and DAXX mutations
  publication-title: Science
  doi: 10.1126/science.1207313
– volume: 347
  start-page: 273
  year: 2015
  ident: 2022061706352367400_bib30
  article-title: Alternative lengthening of telomeres renders cancer cells hypersensitive to ATR inhibitors
  publication-title: Science
  doi: 10.1126/science.1257216
– volume: 307
  start-page: 1062
  year: 2012
  ident: 2022061706352367400_bib15
  article-title: Association of age at diagnosis and genetic mutations in patients with neuroblastoma
  publication-title: JAMA
  doi: 10.1001/jama.2012.228
– volume: 22
  start-page: 425
  year: 2012
  ident: 2022061706352367400_bib17
  article-title: Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2012.08.024
– volume: 19
  start-page: 2544
  year: 2017
  ident: 2022061706352367400_bib26
  article-title: Extensive proliferation of human cancer cells with ever-shorter telomeres
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2017.05.087
– volume: 109
  year: 2017
  ident: 2022061706352367400_bib48
  article-title: A cisplatin derivative tetra-Pt(bpy) as an oncotherapeutic agent for targeting ALT cancer
  publication-title: J Natl Cancer Inst
  doi: 10.1093/jnci/djx061
– volume: 483
  start-page: 589
  year: 2012
  ident: 2022061706352367400_bib33
  article-title: Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes
  publication-title: Nature
  doi: 10.1038/nature10910
– volume: 322
  start-page: 746
  year: 2019
  ident: 2022061706352367400_bib22
  article-title: Effect of tandem autologous stem cell transplant vs single transplant on event-free survival in patients with high-risk neuroblastoma: a randomized clinical trial
  publication-title: JAMA
  doi: 10.1001/jama.2019.11642
– volume: 49
  start-page: 1835
  year: 2014
  ident: 2022061706352367400_bib46
  article-title: Clinical features of ATRX or DAXX mutated neuroblastoma
  publication-title: J Pediatr Surg
  doi: 10.1016/j.jpedsurg.2014.09.029
– volume: 110
  start-page: 6021
  year: 2013
  ident: 2022061706352367400_bib8
  article-title: TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1303607110
– volume: 123
  start-page: 4224
  year: 2017
  ident: 2022061706352367400_bib40
  article-title: Association of MYCN copy number with clinical features, tumor biology, and outcomes in neuroblastoma: a report from the Children's Oncology Group
  publication-title: Cancer
  doi: 10.1002/cncr.30873
– volume: 120
  start-page: 2050
  year: 2014
  ident: 2022061706352367400_bib44
  article-title: Striking dichotomy in outcome of MYCN-amplified neuroblastoma in the contemporary era
  publication-title: Cancer
  doi: 10.1002/cncr.28687
– volume: 144
  start-page: 646
  year: 2011
  ident: 2022061706352367400_bib1
  article-title: Hallmarks of cancer: the next generation
  publication-title: Cell
  doi: 10.1016/j.cell.2011.02.013
– volume: 34
  year: 2017
  ident: 2022061706352367400_bib21
  article-title: A phase III randomized clinical trial (RCT) of tandem myeloablative autologous stem cell transplant (ASCT) using peripheral blood stem cell (PBSC) as consolidation therapy for high-risk neuroblastoma (HR-NB): a Children's Oncology Group (COG) study
  publication-title: J Clin Oncol
– volume: 26
  start-page: 682
  year: 2014
  ident: 2022061706352367400_bib38
  article-title: ALK mutations confer differential oncogenic activation and sensitivity to ALK inhibition therapy in neuroblastoma
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2014.09.019
– volume: 266
  start-page: 2011
  year: 1994
  ident: 2022061706352367400_bib2
  article-title: Specific association of human telomerase activity with immortal cells and cancer
  publication-title: Science
  doi: 10.1126/science.7605428
– volume: 59
  start-page: 4175
  year: 1999
  ident: 2022061706352367400_bib34
  article-title: Telomerase-negative immortalized human cells contain a novel type of promyelocytic leukemia (PML) body
  publication-title: Cancer Res
– volume: 45
  start-page: 279
  year: 2013
  ident: 2022061706352367400_bib24
  article-title: The genetic landscape of high-risk neuroblastoma
  publication-title: Nat Genet
  doi: 10.1038/ng.2529
– volume: 3
  year: 2019
  ident: 2022061706352367400_bib42
  article-title: Telomerase is a prognostic marker of poor outcome and a therapeutic target in neuroblastoma
  publication-title: JCO Preci Oncol
– volume: 98
  start-page: E1562
  year: 2013
  ident: 2022061706352367400_bib7
  article-title: Frequent somatic TERT promoter mutations in thyroid cancer: higher prevalence in advanced forms of the disease
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2013-2383
– volume: 362
  start-page: 2202
  year: 2010
  ident: 2022061706352367400_bib20
  article-title: Recent advances in neuroblastoma
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra0804577
– volume: 5
  start-page: 1658
  year: 2015
  ident: 2022061706352367400_bib32
  article-title: Telomere restriction fragment (TRF) analysis
  publication-title: Bio Protoc
  doi: 10.21769/BioProtoc.1658
– volume: 164
  start-page: 550
  year: 2016
  ident: 2022061706352367400_bib47
  article-title: Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma
  publication-title: Cell
  doi: 10.1016/j.cell.2015.12.028
– volume: 44
  start-page: 2258
  year: 2009
  ident: 2022061706352367400_bib41
  article-title: Telomere biology in neuroblastoma: telomere binding proteins and alternative strengthening of telomeres
  publication-title: J Pediatr Surg
  doi: 10.1016/j.jpedsurg.2009.07.046
– volume: 15
  start-page: 311
  year: 2016
  ident: 2022061706352367400_bib25
  article-title: Telomere maintenance is pivotal for high-risk neuroblastoma
  publication-title: Cell Cycle
  doi: 10.1080/15384101.2015.1125243
– volume: 47
  start-page: 1411
  year: 2015
  ident: 2022061706352367400_bib11
  article-title: TERT rearrangements are frequent in neuroblastoma and identify aggressive tumors
  publication-title: Nat Genet
  doi: 10.1038/ng.3438
– start-page: 572248
  year: 2019
  ident: 2022061706352367400_bib29
  article-title: Structural variation targets neurodevelopmental genes and identifies SHANK2 as a tumor suppressor in neuroblastoma
  publication-title: bioRxiv
  doi: 10.1101/572248
– volume: 5
  start-page: 82
  year: 2015
  ident: 2022061706352367400_bib49
  article-title: Induction of telomere dysfunction mediated by the telomerase substrate precursor 6-thio-2′-deoxyguanosine
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-14-0609
– volume: 50
  start-page: 250
  year: 2011
  ident: 2022061706352367400_bib37
  article-title: Alternative lengthening of telomeres–an enhanced chromosomal instability in aggressive non-MYCN amplified and telomere elongated neuroblastomas
  publication-title: Genes Chromosomes Cancer
  doi: 10.1002/gcc.20850
– volume: 584
  start-page: 3800
  year: 2010
  ident: 2022061706352367400_bib45
  article-title: Assaying and investigating Alternative Lengthening of Telomeres activity in human cells and cancers
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2010.06.009
– volume: 119
  start-page: 17
  year: 2014
  ident: 2022061706352367400_bib35
  article-title: Alternative lengthening of telomeres in neuroblastoma cell lines is associated with a lack of MYCN genomic amplification and with p53 pathway aberrations
  publication-title: J Neurooncol
  doi: 10.1007/s11060-014-1456-8
– volume: 455
  start-page: 930
  year: 2008
  ident: 2022061706352367400_bib23
  article-title: Identification of ALK as a major familial neuroblastoma predisposition gene
  publication-title: Nature
  doi: 10.1038/nature07261
– volume: 526
  start-page: 700
  year: 2015
  ident: 2022061706352367400_bib5
  article-title: Telomerase activation by genomic rearrangements in high-risk neuroblastoma
  publication-title: Nature
  doi: 10.1038/nature14980
SSID ssj0005105
Score 2.5689151
Snippet Neuroblastoma is a childhood cancer with heterogeneous clinical outcomes. To comprehensively assess the impact of telomere maintenance mechanism (TMM) on...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2663
SubjectTerms Cell Line, Tumor
Child
Child, Preschool
Disease-Free Survival
Female
Follow-Up Studies
Gene Expression Regulation, Neoplastic
Humans
Infant
Male
Neoplasm Recurrence, Local
Neuroblastoma - genetics
Neuroblastoma - mortality
Neuroblastoma - pathology
RNA, Messenger - isolation & purification
RNA, Messenger - metabolism
RNA-Seq
Telomerase - genetics
Telomerase - isolation & purification
Telomerase - metabolism
Telomere - metabolism
Telomere Homeostasis
Whole Genome Sequencing
X-linked Nuclear Protein - genetics
Xenograft Model Antitumor Assays
Title Telomere Maintenance Mechanisms Define Clinical Outcome in High-Risk Neuroblastoma
URI https://www.ncbi.nlm.nih.gov/pubmed/32291317
https://www.proquest.com/docview/2390159585
https://pubmed.ncbi.nlm.nih.gov/PMC7313726
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb5swFLa6Tqr6Mu2-7CYm7a0yGxdj8xhF26q16baqlfqGbDBKNAJZQ176V_Znd45tCGkrbesLChDA8vk4HNvf-Q4h73mZxrqUAVVFzilExJoKpgXNi1TgjL5QpWH5niSH5_HXC3axs_N7wFpat8rPr27NK7mLVeEY2BWzZP_Dsv1N4QD8BvvCFiwM23-zsa6ahUZdfomyD7Wh_081JvPOV4sVOJMSg8hJl_34bd1CM4xMCPI76Cnyyo08h4Igum2cj94IF-T68sDJAc3Meq8lbhjHUlX-YBrhCAWP1nYFo5I_sW593Xv842ZpJ6q_NPWVrJoeNBLi9l-GTzCeDdhBk6aGO9jCfUcwmK_lwbE_nJ8IsYwNtRmavc8VlMW2QI-vN26Wx1ZIsvPDtqJTh7dw6FUT5wS127XFVm56fyYsXdI-0J-MT2iA1A5buWeAiOXCQAK8WRpENnn0muz29-mER0HEw-QeuR9yaAGu-P_YSNEzx4_tnubSw6ANH25twT7Z6x63HQPdGNhc5-cOAp6zh-SBG6l4Ywu7R2RH14_J3tRxMZ6Q0w593gB93gZ9nkWf16HPc-jz5rXXo8_bQt9Tcv7509nkkLoKHTSPOW8pvOf4sUwkpk8LVkC4GqlIJ0Ukw6AIyzTASUuVxCh7GJWMScGFymUap-A8Qh09I7s14PMF8aLio1IQ3ssEvhCc5WkRchUw2Ekhai3liMRdn2W5k6_HKipVZoaxTCCNQmTY6xn0ehakGfb6iPj9ZUur3_K3C951BsnA0-Lymax1s15loZkeTGF8PSLPrYH6W3aWHRG-Zbr-D6jivn2mns-MmrtD2cs7X_mK7G_eu9dkt71c6zcQKbfqrUHsH61KuDs
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Telomere+Maintenance+Mechanisms+Define+Clinical+Outcome+in+High-Risk+Neuroblastoma&rft.jtitle=Cancer+research+%28Chicago%2C+Ill.%29&rft.au=Koneru%2C+Balakrishna&rft.au=Lopez%2C+Gonzalo&rft.au=Farooqi%2C+Ahsan&rft.au=Conkrite%2C+Karina+L.&rft.date=2020-06-15&rft.issn=0008-5472&rft.eissn=1538-7445&rft.volume=80&rft.issue=12&rft.spage=2663&rft.epage=2675&rft_id=info:doi/10.1158%2F0008-5472.CAN-19-3068&rft_id=info%3Apmid%2F32291317&rft.externalDocID=PMC7313726
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-5472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-5472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-5472&client=summon