Optimizing Coronary Computed Tomography Angiography Using a Novel Deep Learning-Based Algorithm

Coronary computed tomography angiography (CCTA) is an essential part of the diagnosis of chronic coronary syndrome (CCS) in patients with low-to-intermediate pre-test probability. The minimum technical requirement is 64-row multidetector CT (64-MDCT), which is still frequently used, although it is p...

Full description

Saved in:
Bibliographic Details
Published inJournal of digital imaging Vol. 37; no. 4; pp. 1548 - 1556
Main Authors Dreesen, H. J. H., Stroszczynski, C., Lell, M. M.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.08.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2948-2933
0897-1889
2948-2925
2948-2933
1618-727X
DOI10.1007/s10278-024-01033-w

Cover

Abstract Coronary computed tomography angiography (CCTA) is an essential part of the diagnosis of chronic coronary syndrome (CCS) in patients with low-to-intermediate pre-test probability. The minimum technical requirement is 64-row multidetector CT (64-MDCT), which is still frequently used, although it is prone to motion artifacts because of its limited temporal resolution and z-coverage. In this study, we evaluate the potential of a deep-learning-based motion correction algorithm (MCA) to eliminate these motion artifacts. 124 64-MDCT-acquired CCTA examinations with at least minor motion artifacts were included. Images were reconstructed using a conventional reconstruction algorithm (CA) and a MCA. Image quality (IQ), according to a 5-point Likert score, was evaluated per-segment, per-artery, and per-patient and was correlated with potentially disturbing factors (heart rate (HR), intra-cycle HR changes, BMI, age, and sex). Comparison was done by Wilcoxon-Signed-Rank test, and correlation by Spearman’s Rho. Per-patient, insufficient IQ decreased by 5.26%, and sufficient IQ increased by 9.66% with MCA. Per-artery, insufficient IQ of the right coronary artery (RCA) decreased by 18.18%, and sufficient IQ increased by 27.27%. Per-segment, insufficient IQ in segments 1 and 2 decreased by 11.51% and 24.78%, respectively, and sufficient IQ increased by 10.62% and 18.58%, respectively. Total artifacts per-artery decreased in the RCA from 3.11 ± 1.65 to 2.26 ± 1.52. HR dependence of RCA IQ decreased to intermediate correlation in images with MCA reconstruction. The applied MCA improves the IQ of 64-MDCT-acquired images and reduces the influence of HR on IQ, increasing 64-MDCT validity in the diagnosis of CCS.
AbstractList Coronary computed tomography angiography (CCTA) is an essential part of the diagnosis of chronic coronary syndrome (CCS) in patients with low-to-intermediate pre-test probability. The minimum technical requirement is 64-row multidetector CT (64-MDCT), which is still frequently used, although it is prone to motion artifacts because of its limited temporal resolution and z-coverage. In this study, we evaluate the potential of a deep-learning-based motion correction algorithm (MCA) to eliminate these motion artifacts. 124 64-MDCT-acquired CCTA examinations with at least minor motion artifacts were included. Images were reconstructed using a conventional reconstruction algorithm (CA) and a MCA. Image quality (IQ), according to a 5-point Likert score, was evaluated per-segment, per-artery, and per-patient and was correlated with potentially disturbing factors (heart rate (HR), intra-cycle HR changes, BMI, age, and sex). Comparison was done by Wilcoxon-Signed-Rank test, and correlation by Spearman’s Rho. Per-patient, insufficient IQ decreased by 5.26%, and sufficient IQ increased by 9.66% with MCA. Per-artery, insufficient IQ of the right coronary artery (RCA) decreased by 18.18%, and sufficient IQ increased by 27.27%. Per-segment, insufficient IQ in segments 1 and 2 decreased by 11.51% and 24.78%, respectively, and sufficient IQ increased by 10.62% and 18.58%, respectively. Total artifacts per-artery decreased in the RCA from 3.11 ± 1.65 to 2.26 ± 1.52. HR dependence of RCA IQ decreased to intermediate correlation in images with MCA reconstruction. The applied MCA improves the IQ of 64-MDCT-acquired images and reduces the influence of HR on IQ, increasing 64-MDCT validity in the diagnosis of CCS.
Coronary computed tomography angiography (CCTA) is an essential part of the diagnosis of chronic coronary syndrome (CCS) in patients with low-to-intermediate pre-test probability. The minimum technical requirement is 64-row multidetector CT (64-MDCT), which is still frequently used, although it is prone to motion artifacts because of its limited temporal resolution and z-coverage. In this study, we evaluate the potential of a deep-learning-based motion correction algorithm (MCA) to eliminate these motion artifacts. 124 64-MDCT-acquired CCTA examinations with at least minor motion artifacts were included. Images were reconstructed using a conventional reconstruction algorithm (CA) and a MCA. Image quality (IQ), according to a 5-point Likert score, was evaluated per-segment, per-artery, and per-patient and was correlated with potentially disturbing factors (heart rate (HR), intra-cycle HR changes, BMI, age, and sex). Comparison was done by Wilcoxon-Signed-Rank test, and correlation by Spearman’s Rho. Per-patient, insufficient IQ decreased by 5.26%, and sufficient IQ increased by 9.66% with MCA. Per-artery, insufficient IQ of the right coronary artery (RCA) decreased by 18.18%, and sufficient IQ increased by 27.27%. Per-segment, insufficient IQ in segments 1 and 2 decreased by 11.51% and 24.78%, respectively, and sufficient IQ increased by 10.62% and 18.58%, respectively. Total artifacts per-artery decreased in the RCA from 3.11 ± 1.65 to 2.26 ± 1.52. HR dependence of RCA IQ decreased to intermediate correlation in images with MCA reconstruction. The applied MCA improves the IQ of 64-MDCT-acquired images and reduces the influence of HR on IQ, increasing 64-MDCT validity in the diagnosis of CCS.
Coronary computed tomography angiography (CCTA) is an essential part of the diagnosis of chronic coronary syndrome (CCS) in patients with low-to-intermediate pre-test probability. The minimum technical requirement is 64-row multidetector CT (64-MDCT), which is still frequently used, although it is prone to motion artifacts because of its limited temporal resolution and z-coverage. In this study, we evaluate the potential of a deep-learning-based motion correction algorithm (MCA) to eliminate these motion artifacts. 124 64-MDCT-acquired CCTA examinations with at least minor motion artifacts were included. Images were reconstructed using a conventional reconstruction algorithm (CA) and a MCA. Image quality (IQ), according to a 5-point Likert score, was evaluated per-segment, per-artery, and per-patient and was correlated with potentially disturbing factors (heart rate (HR), intra-cycle HR changes, BMI, age, and sex). Comparison was done by Wilcoxon-Signed-Rank test, and correlation by Spearman's Rho. Per-patient, insufficient IQ decreased by 5.26%, and sufficient IQ increased by 9.66% with MCA. Per-artery, insufficient IQ of the right coronary artery (RCA) decreased by 18.18%, and sufficient IQ increased by 27.27%. Per-segment, insufficient IQ in segments 1 and 2 decreased by 11.51% and 24.78%, respectively, and sufficient IQ increased by 10.62% and 18.58%, respectively. Total artifacts per-artery decreased in the RCA from 3.11 ± 1.65 to 2.26 ± 1.52. HR dependence of RCA IQ decreased to intermediate correlation in images with MCA reconstruction. The applied MCA improves the IQ of 64-MDCT-acquired images and reduces the influence of HR on IQ, increasing 64-MDCT validity in the diagnosis of CCS.Coronary computed tomography angiography (CCTA) is an essential part of the diagnosis of chronic coronary syndrome (CCS) in patients with low-to-intermediate pre-test probability. The minimum technical requirement is 64-row multidetector CT (64-MDCT), which is still frequently used, although it is prone to motion artifacts because of its limited temporal resolution and z-coverage. In this study, we evaluate the potential of a deep-learning-based motion correction algorithm (MCA) to eliminate these motion artifacts. 124 64-MDCT-acquired CCTA examinations with at least minor motion artifacts were included. Images were reconstructed using a conventional reconstruction algorithm (CA) and a MCA. Image quality (IQ), according to a 5-point Likert score, was evaluated per-segment, per-artery, and per-patient and was correlated with potentially disturbing factors (heart rate (HR), intra-cycle HR changes, BMI, age, and sex). Comparison was done by Wilcoxon-Signed-Rank test, and correlation by Spearman's Rho. Per-patient, insufficient IQ decreased by 5.26%, and sufficient IQ increased by 9.66% with MCA. Per-artery, insufficient IQ of the right coronary artery (RCA) decreased by 18.18%, and sufficient IQ increased by 27.27%. Per-segment, insufficient IQ in segments 1 and 2 decreased by 11.51% and 24.78%, respectively, and sufficient IQ increased by 10.62% and 18.58%, respectively. Total artifacts per-artery decreased in the RCA from 3.11 ± 1.65 to 2.26 ± 1.52. HR dependence of RCA IQ decreased to intermediate correlation in images with MCA reconstruction. The applied MCA improves the IQ of 64-MDCT-acquired images and reduces the influence of HR on IQ, increasing 64-MDCT validity in the diagnosis of CCS.
Author Stroszczynski, C.
Dreesen, H. J. H.
Lell, M. M.
Author_xml – sequence: 1
  givenname: H. J. H.
  orcidid: 0009-0000-5293-695X
  surname: Dreesen
  fullname: Dreesen, H. J. H.
  email: Hendrik.dreesen@web.de
  organization: Department of Radiology, University Regensburg, Department of Radiology, Neuroradiology and Nuclear Medicine, Klinikum Nürnberg, Paracelsus Medical University
– sequence: 2
  givenname: C.
  surname: Stroszczynski
  fullname: Stroszczynski, C.
  organization: Department of Radiology, University Regensburg
– sequence: 3
  givenname: M. M.
  surname: Lell
  fullname: Lell, M. M.
  organization: Department of Radiology, Neuroradiology and Nuclear Medicine, Klinikum Nürnberg, Paracelsus Medical University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38438697$$D View this record in MEDLINE/PubMed
BookMark eNqNUU1P3DAUtCqqAlv-QA9VpF56SeuvjZ1TtSxQKq3gAmfLSV6yRomd2gmr7a_Hyy4s5YA4-clvZjQz7xgdWGcBoS8E_yAYi5-BYCpkiilPMcGMpasP6IjmXKY0Z-zgxXyITkK4wziCCGMZ_oQOmeRMZrk4Quq6H0xn_hnbJHPnndV-HYeuHweokhvXucbrfrlOZrYxT_Nt2MB1cuXuoU3OAPpkAdrb-Jue6hCJs7Zx3gzL7jP6WOs2wMnunaDbi_Ob-WW6uP79Zz5bpCUXYkhlUWs2LfKiimFAVlRUZQa4Bs04K6TgpdBVTYsCmJaa1kSKqZzijGLJ64JmbILYVne0vV6vdNuq3psuplEEq01jatuYio2px8bUKrJ-bVn9WHRQlWAHr_dMp436f2PNUjXuXhHCouRURoXvOwXv_o4QBtWZUELbagtuDCoeQAjMuOAR-u0V9M6N3sZWFMNS5pmUfBPk60tLz16eThYBcgsovQvBQ61KM-jBuI1D074dl76ivqujXbMhgm0Dfm_7DdYDRorNNw
CitedBy_id crossref_primary_10_31083_j_rcm2512442
Cites_doi 10.1056/NEJMoa0806576
10.1259/bjr/15296170
10.1016/j.jcct.2012.04.004
10.3233/XST-210841
10.1016/j.amjcard.2009.10.058
10.1371/journal.pone.0142796
10.1097/RCT.0000000000001035
10.1016/j.clinimag.2016.11.002
10.1007/s11604-014-0382-1
10.1093/ehjci/jev033
10.1007/s10554-014-0499-4
10.1007/s00330-012-2551-x
10.1016/j.crad.2014.03.023
10.1016/j.compmedimag.2019.06.001
10.1109/TMI.2018.2817594
10.1093/eurheartj/ehz425
10.1186/s12880-022-00914-2
10.1016/j.jcct.2014.07.003
10.1148/radiol.2451061791
10.1007/s11886-009-0075-z
10.1002/mp.14927
10.1097/RCT.0000000000000641
10.1016/j.jcct.2020.11.001
10.1007/s00330-018-5929-6
10.1118/1.4789486
10.1080/17434440.2016.1184968
10.1002/mp.12514
10.1016/j.clinimag.2015.07.023
10.1016/j.acra.2013.10.014
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7RV
7SC
7TK
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K9.
KB0
L7M
LK8
L~C
L~D
M0S
M1P
M7P
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOI 10.1007/s10278-024-01033-w
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Computer and Information Systems Abstracts
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Advanced Technologies & Aerospace Database
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection (ProQuest)
Natural Science Collection (ProQuest)
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Health & Medical Collection (Alumni Edition)
Medical Database
Biological science database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef

ProQuest Central Student
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2948-2933
1618-727X
EndPage 1556
ExternalDocumentID 10.1007/s10278-024-01033-w
PMC11300758
38438697
10_1007_s10278_024_01033_w
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Universität Regensburg (3161)
GroupedDBID 53G
AAJBT
AAYZH
ABJNI
ACPIV
ALMA_UNASSIGNED_HOLDINGS
BGNMA
C6C
DPUIP
EBLON
FIGPU
JZLTJ
M4Y
NU0
PT4
ROL
RPM
RSV
SJYHP
SNE
SOJ
0R~
2JN
AASML
AATNV
AAYXX
ABAKF
ABDBE
ABFSG
ABRTQ
ACAOD
ACSTC
ACZOJ
ADKFA
AEFQL
AEZWR
AFDZB
AFHIU
AHWEU
AIGIU
AIXLP
ATHPR
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
---
.4S
.86
.DC
.VR
04C
06C
06D
0VY
1N0
203
29K
29~
2J2
2JY
2KG
2KM
2LR
2~H
30V
36B
3V.
4.4
406
408
409
40D
40E
5GY
5RE
5VS
67Z
6NX
6PF
78A
7QO
7RV
7SC
7TK
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8FW
8TC
8UJ
95-
95.
95~
96X
AABHQ
AAHNG
AAJKR
AAKDD
AAKPC
AANZL
AAPKM
AARTL
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPRK
ACSNA
ADBBV
ADHHG
ADHIR
ADJJI
ADKNI
ADKPE
ADMLS
ADOJX
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHPBZ
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
AKMHD
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
AOIJS
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AZFZN
AZQEC
B-.
BA0
BAWUL
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CCPQU
CS3
CSCUP
D-I
DDRTE
DIK
DL5
DNIVK
DU5
DWQXO
EBD
EBS
ECT
EDO
EIHBH
EIOEI
EMB
EMOBN
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FNLPD
FR3
FRRFC
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GX1
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HYE
I-F
I09
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JQ2
K9.
KDC
KOV
KPH
L7M
LAS
LK8
LLZTM
L~C
L~D
M1P
M7P
MA-
NAPCQ
NB0
NPVJJ
NQJWS
O93
O9I
O9J
OAM
OK1
P2P
P62
P64
P9S
PF0
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
PSQYO
Q2X
QOK
QOR
QOS
R89
R9I
RNS
RPX
RRX
S16
S27
S37
S3B
SAP
SDH
SHX
SISQX
SMD
SNPRN
SNX
SOHCF
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
TSG
TSK
TSV
TT1
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
VC2
W23
W48
WJK
WK8
WOW
YLTOR
Z45
ZMTXR
ZOVNA
~A9
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c477t-8bfa35b9bd010e8d27dc6e0fea343b874c7adf2bbe3a8a2f187585062084fb263
IEDL.DBID C6C
ISSN 2948-2933
0897-1889
2948-2925
IngestDate Sun Oct 26 04:14:48 EDT 2025
Tue Sep 30 17:08:05 EDT 2025
Sun Sep 28 09:40:06 EDT 2025
Mon Oct 06 17:16:36 EDT 2025
Tue Sep 30 01:30:53 EDT 2025
Thu Apr 24 23:04:11 EDT 2025
Wed Oct 01 01:45:01 EDT 2025
Fri Feb 21 02:38:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Deep learning-based algorithm
64-Detector row computed tomography
Coronary computed tomography angiography
Motion correction algorithm
Single-source computed tomography
Motion artifact reduction
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c477t-8bfa35b9bd010e8d27dc6e0fea343b874c7adf2bbe3a8a2f187585062084fb263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0000-5293-695X
OpenAccessLink https://doi.org/10.1007/s10278-024-01033-w
PMID 38438697
PQID 3088968846
PQPubID 34218
PageCount 9
ParticipantIDs unpaywall_primary_10_1007_s10278_024_01033_w
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11300758
proquest_miscellaneous_2937703474
proquest_journals_3088968846
pubmed_primary_38438697
crossref_citationtrail_10_1007_s10278_024_01033_w
crossref_primary_10_1007_s10278_024_01033_w
springer_journals_10_1007_s10278_024_01033_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Switzerland
– name: New York
PublicationTitle Journal of digital imaging
PublicationTitleAbbrev J Digit Imaging. Inform. med
PublicationTitleAlternate J Imaging Inform Med
PublicationYear 2024
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Jiang, Wang, Lv, Cai (CR3) 2014; 69
Hsiao, Rybicki, Steigner (CR4) 2010; 12
Kim, Chang, Ra (CR25) 2018; 37
Leipsic, Abbara, Achenbach (CR18) 2014; 8
Li, Yin, Lu (CR23) 2015; 10
Deng, Tie, Zeng (CR14) 2021; 29
Liang, Sun, Ye (CR13) 2019; 29
Sun, Choo, Ng (CR9) 2012; 85
Machida, Lin, Fukui (CR21) 2015; 33
Miller, Rochitte, Dewey (CR5) 2008; 359
Fuchs, Stehli, Dougoud (CR22) 2014; 21
Maier, Lebedev, Erath (CR15) 2021; 48
Lee, Kim, Lee, Suh, Paik, Park (CR12) 2014; 30
de Graaf, Schuijf, van Velzen (CR10) 2010; 105
Carrascosa, Deviggiano, Leipsic (CR19) 2015; 39
Sheta, Egstrup, Husic, Heinsen, Nieman, Lambrechtsen (CR30) 2017; 42
den Dekker, de Smet, de Bock, Tio, Oudkerk, Vliegenthart (CR6) 2012; 22
Hahn, Bruder, Rohkohl (CR16) 2017; 44
Andreini, Pontone, Mushtaq (CR27) 2015; 16
Liang, Wang, Xu (CR29) 2018; 42
CR26
Knuuti, Wijns, Saraste (CR1) 2020; 41
Leipsic, Labounty, Hague (CR20) 2012; 6
Narula, Chandrashekhar, Ahmadi (CR2) 2021; 15
Aghayev, Murphy, Keraliya, Steigner (CR8) 2016; 13
Sun, Okerlund, Cao (CR28) 2020; 44
Rohkohl, Bruder, Stierstorfer, Flohr (CR24) 2013; 40
Lossau Née Elss, Nickisch, Wissel (CR11) 2019; 76
Ren, He, Zhu (CR17) 2022; 22
Husmann, Leschka, Desbiolles (CR7) 2007; 245
Z-N Li (1033_CR23) 2015; 10
J Knuuti (1033_CR1) 2020; 41
H Machida (1033_CR21) 2015; 33
Z Sun (1033_CR9) 2012; 85
JM Miller (1033_CR5) 2008; 359
FR de Graaf (1033_CR10) 2010; 105
D Andreini (1033_CR27) 2015; 16
F Deng (1033_CR14) 2021; 29
A Aghayev (1033_CR8) 2016; 13
T Lossau Née Elss (1033_CR11) 2019; 76
J Leipsic (1033_CR18) 2014; 8
J Sun (1033_CR28) 2020; 44
J Liang (1033_CR13) 2019; 29
B Jiang (1033_CR3) 2014; 69
P Carrascosa (1033_CR19) 2015; 39
L Husmann (1033_CR7) 2007; 245
1033_CR26
HM Sheta (1033_CR30) 2017; 42
P Ren (1033_CR17) 2022; 22
J Leipsic (1033_CR20) 2012; 6
TA Fuchs (1033_CR22) 2014; 21
MAM den Dekker (1033_CR6) 2012; 22
H Lee (1033_CR12) 2014; 30
S Kim (1033_CR25) 2018; 37
C Rohkohl (1033_CR24) 2013; 40
EM Hsiao (1033_CR4) 2010; 12
J Liang (1033_CR29) 2018; 42
J Hahn (1033_CR16) 2017; 44
J Narula (1033_CR2) 2021; 15
J Maier (1033_CR15) 2021; 48
References_xml – volume: 359
  start-page: 2324
  issue: 22
  year: 2008
  end-page: 2336
  ident: CR5
  article-title: Diagnostic performance of coronary angiography by 64-row CT
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa0806576
– volume: 85
  start-page: 495
  issue: 1013
  year: 2012
  end-page: 510
  ident: CR9
  article-title: Coronary CT angiography: current status and continuing challenges
  publication-title: Br J Radiol
  doi: 10.1259/bjr/15296170
– volume: 6
  start-page: 164
  issue: 3
  year: 2012
  end-page: 171
  ident: CR20
  article-title: Effect of a novel vendor-specific motion-correction algorithm on image quality and diagnostic accuracy in persons undergoing coronary CT angiography without rate-control medications
  publication-title: J Cardiovasc Comput Tomogr
  doi: 10.1016/j.jcct.2012.04.004
– volume: 29
  start-page: 577
  issue: 4
  year: 2021
  end-page: 595
  ident: CR14
  article-title: Correcting motion artifacts in coronary computed tomography angiography images using a dual-zone cycle generative adversarial network
  publication-title: J Xray Sci Technol
  doi: 10.3233/XST-210841
– volume: 105
  start-page: 767
  issue: 6
  year: 2010
  end-page: 772
  ident: CR10
  article-title: Evaluation of contraindications and efficacy of oral Beta blockade before computed tomographic coronary angiography
  publication-title: Am J Cardiol
  doi: 10.1016/j.amjcard.2009.10.058
– volume: 10
  issue: 11
  year: 2015
  ident: CR23
  article-title: Improvement of image quality and diagnostic performance by an innovative motion-correction algorithm for prospectively ECG triggered coronary CT angiography
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0142796
– volume: 44
  start-page: 790
  issue: 5
  year: 2020
  end-page: 795
  ident: CR28
  article-title: Further improving image quality of cardiovascular computed tomography angiography for children with high heart rates using second-generation motion correction algorithm
  publication-title: J Comput Assist Tomogr
  doi: 10.1097/RCT.0000000000001035
– volume: 42
  start-page: 1
  year: 2017
  end-page: 6
  ident: CR30
  article-title: Impact of a motion correction algorithm on image quality in patients undergoing CT angiography: a randomized controlled trial
  publication-title: Clin Imaging
  doi: 10.1016/j.clinimag.2016.11.002
– volume: 33
  start-page: 84
  issue: 2
  year: 2015
  end-page: 93
  ident: CR21
  article-title: Influence of the motion correction algorithm on the quality and interpretability of images of single-source 64-detector coronary CT angiography among patients grouped by heart rate
  publication-title: Jpn J Radiol
  doi: 10.1007/s11604-014-0382-1
– volume: 16
  start-page: 1093
  issue: 10
  year: 2015
  end-page: 1100
  ident: CR27
  article-title: Low-dose CT coronary angiography with a novel IntraCycle motion-correction algorithm in patients with high heart rate or heart rate variability
  publication-title: Eur Heart J Cardiovasc Imaging
  doi: 10.1093/ehjci/jev033
– volume: 30
  start-page: 1603
  issue: 8
  year: 2014
  end-page: 1612
  ident: CR12
  article-title: Impact of a vendor-specific motion-correction algorithm on image quality, interpretability, and diagnostic performance of daily routine coronary CT angiography: influence of heart rate on the effect of motion-correction
  publication-title: Int J Cardiovasc Imaging
  doi: 10.1007/s10554-014-0499-4
– volume: 22
  start-page: 2688
  issue: 12
  year: 2012
  end-page: 2698
  ident: CR6
  article-title: Diagnostic performance of coronary CT angiography for stenosis detection according to calcium score: systematic review and meta-analysis
  publication-title: Eur Radiol
  doi: 10.1007/s00330-012-2551-x
– volume: 69
  start-page: 861
  issue: 8
  year: 2014
  end-page: 869
  ident: CR3
  article-title: Dual-source CT versus single-source 64-section CT angiography for coronary artery disease: a meta-analysis
  publication-title: Clin Radiol
  doi: 10.1016/j.crad.2014.03.023
– volume: 76
  start-page: 101640
  year: 2019
  ident: CR11
  article-title: Motion estimation and correction in cardiac CT angiography images using convolutional neural networks
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2019.06.001
– volume: 37
  start-page: 1587
  issue: 7
  year: 2018
  end-page: 1596
  ident: CR25
  article-title: Cardiac motion correction for helical CT scan with an ordinary pitch
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2018.2817594
– volume: 41
  start-page: 407
  issue: 3
  year: 2020
  end-page: 477
  ident: CR1
  article-title: 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehz425
– volume: 22
  start-page: 184
  issue: 1
  year: 2022
  ident: CR17
  article-title: Motion artefact reduction in coronary CT angiography images with a deep learning method
  publication-title: BMC Med Imaging
  doi: 10.1186/s12880-022-00914-2
– volume: 8
  start-page: 342
  issue: 5
  year: 2014
  end-page: 358
  ident: CR18
  article-title: SCCT guidelines for the interpretation and reporting of coronary CT angiography: a report of the Society of Cardiovascular Computed Tomography Guidelines Committee
  publication-title: J Cardiovasc Comput Tomogr
  doi: 10.1016/j.jcct.2014.07.003
– volume: 245
  start-page: 567
  issue: 2
  year: 2007
  end-page: 576
  ident: CR7
  article-title: Coronary artery motion and cardiac phases: dependency on heart rate – implications for CT image reconstruction
  publication-title: Radiology
  doi: 10.1148/radiol.2451061791
– volume: 12
  start-page: 68
  issue: 1
  year: 2010
  end-page: 75
  ident: CR4
  article-title: CT coronary angiography: 256-slice and 320-detector row scanners
  publication-title: Curr Cardiol Rep
  doi: 10.1007/s11886-009-0075-z
– volume: 48
  start-page: 3559
  issue: 7
  year: 2021
  end-page: 3571
  ident: CR15
  article-title: Deep learning-based coronary artery motion estimation and compensation for short-scan cardiac CT
  publication-title: Med Phys
  doi: 10.1002/mp.14927
– volume: 42
  start-page: 54
  issue: 1
  year: 2018
  end-page: 61
  ident: CR29
  article-title: Impact of SSF on diagnostic performance of coronary computed tomography angiography within 1 heart beat in patients with high heart rate using a 256-row detector computed tomography
  publication-title: J Comput Assist Tomogr
  doi: 10.1097/RCT.0000000000000641
– volume: 15
  start-page: 192
  issue: 3
  year: 2021
  end-page: 217
  ident: CR2
  article-title: SCCT 2021 Expert consensus document on coronary computed tomographic angiography: a report of the society of cardiovascular computed tomography
  publication-title: J Cardiovasc Comput Tomogr
  doi: 10.1016/j.jcct.2020.11.001
– volume: 29
  start-page: 4215
  issue: 8
  year: 2019
  end-page: 4227
  ident: CR13
  article-title: Second-generation motion correction algorithm improves diagnostic accuracy of single-beat coronary CT angiography in patients with increased heart rate
  publication-title: Eur Radiol
  doi: 10.1007/s00330-018-5929-6
– volume: 40
  start-page: 31901
  issue: 3
  year: 2013
  ident: CR24
  article-title: Improving best-phase image quality in cardiac CT by motion correction with MAM optimization
  publication-title: Med Phys
  doi: 10.1118/1.4789486
– volume: 13
  start-page: 545
  issue: 6
  year: 2016
  end-page: 553
  ident: CR8
  article-title: Recent developments in the use of computed tomography scanners in coronary artery imaging
  publication-title: Expert Rev Med Devices
  doi: 10.1080/17434440.2016.1184968
– ident: CR26
– volume: 44
  start-page: 5795
  issue: 11
  year: 2017
  end-page: 5813
  ident: CR16
  article-title: Motion compensation in the region of the coronary arteries based on partial angle reconstructions from short-scan CT data
  publication-title: Med Phys
  doi: 10.1002/mp.12514
– volume: 39
  start-page: 1000
  issue: 6
  year: 2015
  end-page: 1005
  ident: CR19
  article-title: Dual energy imaging and intracycle motion correction for CT coronary angiography in patients with intermediate to high likelihood of coronary artery disease
  publication-title: Clin Imaging
  doi: 10.1016/j.clinimag.2015.07.023
– volume: 21
  start-page: 312
  issue: 3
  year: 2014
  end-page: 317
  ident: CR22
  article-title: Impact of a new motion-correction algorithm on image quality of low-dose coronary CT angiography in patients with insufficient heart rate control
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2013.10.014
– volume: 105
  start-page: 767
  issue: 6
  year: 2010
  ident: 1033_CR10
  publication-title: Am J Cardiol
  doi: 10.1016/j.amjcard.2009.10.058
– volume: 48
  start-page: 3559
  issue: 7
  year: 2021
  ident: 1033_CR15
  publication-title: Med Phys
  doi: 10.1002/mp.14927
– volume: 44
  start-page: 5795
  issue: 11
  year: 2017
  ident: 1033_CR16
  publication-title: Med Phys
  doi: 10.1002/mp.12514
– volume: 245
  start-page: 567
  issue: 2
  year: 2007
  ident: 1033_CR7
  publication-title: Radiology
  doi: 10.1148/radiol.2451061791
– volume: 42
  start-page: 1
  year: 2017
  ident: 1033_CR30
  publication-title: Clin Imaging
  doi: 10.1016/j.clinimag.2016.11.002
– volume: 30
  start-page: 1603
  issue: 8
  year: 2014
  ident: 1033_CR12
  publication-title: Int J Cardiovasc Imaging
  doi: 10.1007/s10554-014-0499-4
– volume: 33
  start-page: 84
  issue: 2
  year: 2015
  ident: 1033_CR21
  publication-title: Jpn J Radiol
  doi: 10.1007/s11604-014-0382-1
– volume: 37
  start-page: 1587
  issue: 7
  year: 2018
  ident: 1033_CR25
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2018.2817594
– volume: 12
  start-page: 68
  issue: 1
  year: 2010
  ident: 1033_CR4
  publication-title: Curr Cardiol Rep
  doi: 10.1007/s11886-009-0075-z
– volume: 22
  start-page: 2688
  issue: 12
  year: 2012
  ident: 1033_CR6
  publication-title: Eur Radiol
  doi: 10.1007/s00330-012-2551-x
– volume: 41
  start-page: 407
  issue: 3
  year: 2020
  ident: 1033_CR1
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehz425
– volume: 16
  start-page: 1093
  issue: 10
  year: 2015
  ident: 1033_CR27
  publication-title: Eur Heart J Cardiovasc Imaging
  doi: 10.1093/ehjci/jev033
– volume: 44
  start-page: 790
  issue: 5
  year: 2020
  ident: 1033_CR28
  publication-title: J Comput Assist Tomogr
  doi: 10.1097/RCT.0000000000001035
– volume: 42
  start-page: 54
  issue: 1
  year: 2018
  ident: 1033_CR29
  publication-title: J Comput Assist Tomogr
  doi: 10.1097/RCT.0000000000000641
– volume: 13
  start-page: 545
  issue: 6
  year: 2016
  ident: 1033_CR8
  publication-title: Expert Rev Med Devices
  doi: 10.1080/17434440.2016.1184968
– volume: 22
  start-page: 184
  issue: 1
  year: 2022
  ident: 1033_CR17
  publication-title: BMC Med Imaging
  doi: 10.1186/s12880-022-00914-2
– volume: 39
  start-page: 1000
  issue: 6
  year: 2015
  ident: 1033_CR19
  publication-title: Clin Imaging
  doi: 10.1016/j.clinimag.2015.07.023
– volume: 8
  start-page: 342
  issue: 5
  year: 2014
  ident: 1033_CR18
  publication-title: J Cardiovasc Comput Tomogr
  doi: 10.1016/j.jcct.2014.07.003
– ident: 1033_CR26
– volume: 359
  start-page: 2324
  issue: 22
  year: 2008
  ident: 1033_CR5
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa0806576
– volume: 69
  start-page: 861
  issue: 8
  year: 2014
  ident: 1033_CR3
  publication-title: Clin Radiol
  doi: 10.1016/j.crad.2014.03.023
– volume: 29
  start-page: 4215
  issue: 8
  year: 2019
  ident: 1033_CR13
  publication-title: Eur Radiol
  doi: 10.1007/s00330-018-5929-6
– volume: 21
  start-page: 312
  issue: 3
  year: 2014
  ident: 1033_CR22
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2013.10.014
– volume: 76
  start-page: 101640
  year: 2019
  ident: 1033_CR11
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2019.06.001
– volume: 29
  start-page: 577
  issue: 4
  year: 2021
  ident: 1033_CR14
  publication-title: J Xray Sci Technol
  doi: 10.3233/XST-210841
– volume: 6
  start-page: 164
  issue: 3
  year: 2012
  ident: 1033_CR20
  publication-title: J Cardiovasc Comput Tomogr
  doi: 10.1016/j.jcct.2012.04.004
– volume: 40
  start-page: 31901
  issue: 3
  year: 2013
  ident: 1033_CR24
  publication-title: Med Phys
  doi: 10.1118/1.4789486
– volume: 15
  start-page: 192
  issue: 3
  year: 2021
  ident: 1033_CR2
  publication-title: J Cardiovasc Comput Tomogr
  doi: 10.1016/j.jcct.2020.11.001
– volume: 85
  start-page: 495
  issue: 1013
  year: 2012
  ident: 1033_CR9
  publication-title: Br J Radiol
  doi: 10.1259/bjr/15296170
– volume: 10
  issue: 11
  year: 2015
  ident: 1033_CR23
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0142796
SSID ssj0003313360
ssj0017574
Score 2.3648636
Snippet Coronary computed tomography angiography (CCTA) is an essential part of the diagnosis of chronic coronary syndrome (CCS) in patients with low-to-intermediate...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1548
SubjectTerms Aged
Algorithms
Angiography
Computed tomography
Computed Tomography Angiography - methods
Coronary Angiography - methods
Coronary artery
Coronary Vessels - diagnostic imaging
Correlation
Deep Learning
Diagnosis
Female
Heart rate
Humans
Image acquisition
Image processing
Image Processing, Computer-Assisted - methods
Image quality
Image reconstruction
Imaging
Machine learning
Male
Medical imaging
Medicine
Medicine & Public Health
Middle Aged
Multidetector Computed Tomography - methods
Radiology
Rank tests
Segments
Temporal resolution
Tomography
Veins & arteries
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED-6FPbxMPbVzVs3NNjbahZLiiU_jJF2LWXQbIwW-ib0mQYcO2uThe6vn-TIzkIh7M0gWdbpTqc73-l3AB-M07JQxcC7JblLg0WQSqe9q1KojGrsHNbBUTwb5acX9Nvl4HIHRu1dmJBW2erERlGbWod_5J9IyMfJuT8uv8x-paFqVIiutiU0ZCytYD43EGP3YBcHZKwe7B4ej3787OIKbLDCZeYFSzM_YLxGEy_T4YA2i0NWRqhwttw8qu7Yn3fTKLtY6iN4sKhm8nYpy_Kf4-rkCTyOdiYargTjKezY6hncP4uR9OcgvntdMZ388QOho4BiIK9vUSzxYNB5PY1Q1mhYjSftc5NfgCQa1b9tib5aO0MRn3WcHvrj0KBhOfaLNr-avoCLk-Pzo9M0FltINWVsnnLlJBmoQhlPveUGM6Nz23dWEkoUZ1QzaRxWyhLJJXYZD55GP8d9Tp3COdmDXlVX9hUg02fY63Puh8woo84_WkJ0bjJuKZU0gaxdV6EjEnkoiFGKNYZy4IXwvBANL8QygY_dO7MVDsfW3vstu0TckzdiLUEJvO-a_W4KIRJZ2XpxI7zxw7wO9LNO4OWKu93nCKeE5wVLgG_wvesQkLo3W6rJVYPYnYWgoV-vBA5aEVnPaxsZB50Y_QfVr7dT_QYe4ka6Q_biPvTm1wv71ltUc_UubpO_xBMdsg
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NTuLjge-PwEBG4o2la2w3cR7LxjQhrfCwSuMp8mdXkSZVl1Jtfz124mQrQxOIN0t2HN_lnLvT3f0O4IMykqciHVq3JDahswhCbqR1VVIRUYmNwdI5isfj-GhCv5wOT7fgoK2FqbPd25BkU9PgUJqKam-hzN61wjfskGGxy6Bw3cjWfTt9B7bjobXIe7A9GX8bfXd95VLqigzq3qt-TIivnfnzRpv66YbReTN3sgugPoB7q2LBL9Y8z6_pqMNHoFvqmtSUH_1VJfry8jfgx_8l_zE89EYsGjVS9wS2dPEU7h77MP0zyL7aH9F8dmn3R_sOIoEvL5DvH6HQSTn3ONloVExn7bhOXkAcjcufOkcHWi-QB3-dhp-srlVolE_L5aw6mz-HyeHnk_2j0HdyCCVNkipkwnAyFKlQ9ryaKZwoGeuB0ZxQIlhCZcKVwUJowhnHJmLOjRnEeMCoETgmL6BXlIV-BUgNEmyVBbNbRjShxg41ITJWEdOUchpA1H6_THqYc9dtI8-uAJod9zLLvazmXrYO4GP3zKIB-bh19U4rFpm_8OcZceliMbPWXADvu2l7VV38hRe6XJ1nVvYS-4O1pw7gZSNF3esIo4TFaRIA25CvboGDAd-cKWZnNRx45CKSll8B7LaSc3Wu28jY7cT1L6h-_W_L38B9XMunS5XcgV61XOm31nyrxDt_O38Bz289Bg
  priority: 102
  providerName: Unpaywall
Title Optimizing Coronary Computed Tomography Angiography Using a Novel Deep Learning-Based Algorithm
URI https://link.springer.com/article/10.1007/s10278-024-01033-w
https://www.ncbi.nlm.nih.gov/pubmed/38438697
https://www.proquest.com/docview/3088968846
https://www.proquest.com/docview/2937703474
https://pubmed.ncbi.nlm.nih.gov/PMC11300758
https://link.springer.com/content/pdf/10.1007/s10278-024-01033-w.pdf
UnpaywallVersion publishedVersion
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2948-2933
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017574
  issn: 2948-2933
  databaseCode: ADMLS
  dateStart: 20030301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2948-2933
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0017574
  issn: 2948-2933
  databaseCode: DIK
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2948-2933
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017574
  issn: 2948-2933
  databaseCode: GX1
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2948-2933
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003313360
  issn: 2948-2933
  databaseCode: RPM
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2948-2933
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0017574
  issn: 2948-2933
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 2948-2933
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0017574
  issn: 2948-2933
  databaseCode: 7X7
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2948-2933
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0017574
  issn: 2948-2933
  databaseCode: 8FG
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 2948-2933
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017574
  issn: 2948-2933
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 2948-2933
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017574
  issn: 2948-2933
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_WFvbxMPbV1VsXNNjbaoglRZIf06xpGTQro4HsyUi2lAYcO6RJQ_fX7-Q47rKOsr0YgT4s6XTSne70O4BPmUt1bOIOqiXChV4iCLVLUVWJTcRT6hxNvaJ4PhBnQ_511BnVMDn-Lcwf9nv_xI16DFjqfSV83LHVDuzhISUqw6zoNfcpjKG2Jdr1u5i_V90-e-4JlPf9Ihvj6DN4sixm-nal8_y386f_Ap7XgiPprin9Eh7Z4hU8Pq9N468h-YbMP538xIZIz8MS6PktqWM2ZOSynNbY1KRbjCebdOUwQDQZlDc2J1-snZEacHUcHuP5lpFuPi7nk8XV9A0M-yeXvbOwjp4QplzKRaiM06xjYpPh6K3KqMxSYdvOasaZUZKnUmeOGmOZVpq6SHnVoS1oW3FncIL3YbcoC3sAJGtLihu0wiYjLrnDpGUsFVmkLOeaBxBt5jVJa2hxH-EiT-5AkT0tEqRFUtEiWQXwuakzWwNrPFj6cEOupGay64R5Fy2hUIIK4GOTjezhbR66sOXyOkFpRuKmhr0O4O2aus3vmOJMiVgGoLbo3hTw0NvbOcXkqoLgjrwVEOcrgKPNErnr10PDOGqW0T-M-t3_tf4entJqtXv3xEPYXcyX9gOKTAvTgh05kvhV_dMW7B2fDC6-tyr-we_pKGpVt1yYMxxcdH_8AhhqFfg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTWLjAfG9wAAjwROLaGw3dh4m1H2pY2tBqJP2FpzE7iq1aVlbqvLH8bdxTp2UalLFy94i2XFs3_k-cuffAbzPTKqiJKqjWxIa31oEvjIpuipREvCUGkNT6yi22mHzkn-5ql9twJ_yLoxNqyxlYiGos2Fq_5F_YjYfJ5SoLj-Pfvq2apSNrpYlNJQrrZAdFBBj7mLHuZ7P0IUbH5wdI70_UHp60jlq-q7KgJ9yISa-TIxi9SRKMnRNtMyoyNJQ14xWjLNECp4KlRmaJJopqagJpDWxayGtSW4SGjIc9x5sccYjdP62Dk_a375XcQxRX-BAy0j4AS7AXdtxl_eoRbelNgvEVlSbrarGW_bu7bTNKnb7ALan-UjNZ6rf_0c9nj6Ch86uJY0FIz6GDZ0_gfstF7l_CvFXlE2D3m8ciBxZ1AR1MyeupERGOsOBg84mjbzbK5-LfAaiSHv4S_fJsdYj4vBgu_4hqt-MNPpdJNLkevAMLu9k25_DZj7M9S6QrCYo6g-JQwZccIOPmrE0zAKpOVfcg6Dc1zh1yOe2AEc_XmI2W1rESIu4oEU88-Bj9c5ogfuxtvdeSa7YyYBxvORYD95VzXh6bUhG5Xo4HcdobAmUuThrD14sqFt9jknOZBgJD-QK3asOFhl8tSXvXRcI4YENUuJ-ebBfsshyXuuWsV-x0X-s-uX6Vb-F7WandRFfnLXPX8EOLTjdZk7uwebkZqpfozU3Sd64I0Pgx12f0r9qW1uM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NIQ32gPhPYICR4IlFa2w3dh4QKivVxljhYZP6ljmJ3VVqk25tqcpH49NxTp2UalLFy94i2XFs353vLnf-HcD7zKQqSqImuiWh8a1F4CuToqsSJQFPqTE0tY7iaTc8Ouffes3eFvyp7sLYtMrqTCwP6qxI7T_yA2bzcUKJ6vLAuLSIn-3O5_GVbytI2UhrVU5jySInejFH923y6biNtP5Aaefr2eGR7yoM-CkXYurLxCjWTKIkQ7dEy4yKLA11w2jFOEuk4KlQmaFJopmSippAWvO6EdKG5CahIcNx78BdwVhk0wlFr3b2UCsvEaBlJPwAp-4u7Lhre9Ti2lKb_2Frqc3XleINS_dmwmYdtd2Fe7N8rBZzNRz-oxg7D-GBs2hJa8mCj2BL549h59TF7J9A_ANPpdHgNw5EDi1egrpeEFdMIiNnxciBZpNW3h9Uz2UmA1GkW_zSQ9LWekwcEmzf_4KKNyOtYR9JMr0cPYXzW9n0Z7CdF7l-ASRrCIqaQ-KQARfc4KNmLA2zQGrOFfcgqPY1Th3muS29MYxXaM2WFjHSIi5pEc89-Fi_M14ifmzsvVeRK3bSP4lXvOrBu7oZ5dYGY1Sui9kkRjNL4GmLs_bg-ZK69eeY5EyGkfBArtG97mAxwddb8sFliQ0e2PAk7pcH-xWLrOa1aRn7NRv9x6pfbl71W9hB2Yy_H3dPXsF9WjK6TZncg-3p9Uy_RjNumrwp5YXAxW0L6F_fr1km
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NTuLjge-PwEBG4o2la2w3cR7LxjQhrfCwSuMp8mdXkSZVl1Jtfz124mQrQxOIN0t2HN_lnLvT3f0O4IMykqciHVq3JDahswhCbqR1VVIRUYmNwdI5isfj-GhCv5wOT7fgoK2FqbPd25BkU9PgUJqKam-hzN61wjfskGGxy6Bw3cjWfTt9B7bjobXIe7A9GX8bfXd95VLqigzq3qt-TIivnfnzRpv66YbReTN3sgugPoB7q2LBL9Y8z6_pqMNHoFvqmtSUH_1VJfry8jfgx_8l_zE89EYsGjVS9wS2dPEU7h77MP0zyL7aH9F8dmn3R_sOIoEvL5DvH6HQSTn3ONloVExn7bhOXkAcjcufOkcHWi-QB3-dhp-srlVolE_L5aw6mz-HyeHnk_2j0HdyCCVNkipkwnAyFKlQ9ryaKZwoGeuB0ZxQIlhCZcKVwUJowhnHJmLOjRnEeMCoETgmL6BXlIV-BUgNEmyVBbNbRjShxg41ITJWEdOUchpA1H6_THqYc9dtI8-uAJod9zLLvazmXrYO4GP3zKIB-bh19U4rFpm_8OcZceliMbPWXADvu2l7VV38hRe6XJ1nVvYS-4O1pw7gZSNF3esIo4TFaRIA25CvboGDAd-cKWZnNRx45CKSll8B7LaSc3Wu28jY7cT1L6h-_W_L38B9XMunS5XcgV61XOm31nyrxDt_O38Bz289Bg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+Coronary+Computed+Tomography+Angiography+Using+a+Novel+Deep+Learning-Based+Algorithm&rft.jtitle=Journal+of+imaging+informatics+in+medicine&rft.au=Dreesen%2C+H.+J.+H.&rft.au=Stroszczynski%2C+C.&rft.au=Lell%2C+M.+M.&rft.date=2024-08-01&rft.pub=Springer+International+Publishing&rft.eissn=2948-2933&rft.volume=37&rft.issue=4&rft.spage=1548&rft.epage=1556&rft_id=info:doi/10.1007%2Fs10278-024-01033-w&rft.externalDocID=10_1007_s10278_024_01033_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2948-2933&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2948-2933&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2948-2933&client=summon