Optimizing Coronary Computed Tomography Angiography Using a Novel Deep Learning-Based Algorithm
Coronary computed tomography angiography (CCTA) is an essential part of the diagnosis of chronic coronary syndrome (CCS) in patients with low-to-intermediate pre-test probability. The minimum technical requirement is 64-row multidetector CT (64-MDCT), which is still frequently used, although it is p...
        Saved in:
      
    
          | Published in | Journal of digital imaging Vol. 37; no. 4; pp. 1548 - 1556 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Cham
          Springer International Publishing
    
        01.08.2024
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2948-2933 0897-1889 2948-2925 2948-2933 1618-727X  | 
| DOI | 10.1007/s10278-024-01033-w | 
Cover
| Abstract | Coronary computed tomography angiography (CCTA) is an essential part of the diagnosis of chronic coronary syndrome (CCS) in patients with low-to-intermediate pre-test probability. The minimum technical requirement is 64-row multidetector CT (64-MDCT), which is still frequently used, although it is prone to motion artifacts because of its limited temporal resolution and z-coverage. In this study, we evaluate the potential of a deep-learning-based motion correction algorithm (MCA) to eliminate these motion artifacts. 124 64-MDCT-acquired CCTA examinations with at least minor motion artifacts were included. Images were reconstructed using a conventional reconstruction algorithm (CA) and a MCA. Image quality (IQ), according to a 5-point Likert score, was evaluated per-segment, per-artery, and per-patient and was correlated with potentially disturbing factors (heart rate (HR), intra-cycle HR changes, BMI, age, and sex). Comparison was done by Wilcoxon-Signed-Rank test, and correlation by Spearman’s Rho. Per-patient, insufficient IQ decreased by 5.26%, and sufficient IQ increased by 9.66% with MCA. Per-artery, insufficient IQ of the right coronary artery (RCA) decreased by 18.18%, and sufficient IQ increased by 27.27%. Per-segment, insufficient IQ in segments 1 and 2 decreased by 11.51% and 24.78%, respectively, and sufficient IQ increased by 10.62% and 18.58%, respectively. Total artifacts per-artery decreased in the RCA from 3.11 ± 1.65 to 2.26 ± 1.52. HR dependence of RCA IQ decreased to intermediate correlation in images with MCA reconstruction. The applied MCA improves the IQ of 64-MDCT-acquired images and reduces the influence of HR on IQ, increasing 64-MDCT validity in the diagnosis of CCS. | 
    
|---|---|
| AbstractList | Coronary computed tomography angiography (CCTA) is an essential part of the diagnosis of chronic coronary syndrome (CCS) in patients with low-to-intermediate pre-test probability. The minimum technical requirement is 64-row multidetector CT (64-MDCT), which is still frequently used, although it is prone to motion artifacts because of its limited temporal resolution and z-coverage. In this study, we evaluate the potential of a deep-learning-based motion correction algorithm (MCA) to eliminate these motion artifacts. 124 64-MDCT-acquired CCTA examinations with at least minor motion artifacts were included. Images were reconstructed using a conventional reconstruction algorithm (CA) and a MCA. Image quality (IQ), according to a 5-point Likert score, was evaluated per-segment, per-artery, and per-patient and was correlated with potentially disturbing factors (heart rate (HR), intra-cycle HR changes, BMI, age, and sex). Comparison was done by Wilcoxon-Signed-Rank test, and correlation by Spearman’s Rho. Per-patient, insufficient IQ decreased by 5.26%, and sufficient IQ increased by 9.66% with MCA. Per-artery, insufficient IQ of the right coronary artery (RCA) decreased by 18.18%, and sufficient IQ increased by 27.27%. Per-segment, insufficient IQ in segments 1 and 2 decreased by 11.51% and 24.78%, respectively, and sufficient IQ increased by 10.62% and 18.58%, respectively. Total artifacts per-artery decreased in the RCA from 3.11 ± 1.65 to 2.26 ± 1.52. HR dependence of RCA IQ decreased to intermediate correlation in images with MCA reconstruction. The applied MCA improves the IQ of 64-MDCT-acquired images and reduces the influence of HR on IQ, increasing 64-MDCT validity in the diagnosis of CCS. Coronary computed tomography angiography (CCTA) is an essential part of the diagnosis of chronic coronary syndrome (CCS) in patients with low-to-intermediate pre-test probability. The minimum technical requirement is 64-row multidetector CT (64-MDCT), which is still frequently used, although it is prone to motion artifacts because of its limited temporal resolution and z-coverage. In this study, we evaluate the potential of a deep-learning-based motion correction algorithm (MCA) to eliminate these motion artifacts. 124 64-MDCT-acquired CCTA examinations with at least minor motion artifacts were included. Images were reconstructed using a conventional reconstruction algorithm (CA) and a MCA. Image quality (IQ), according to a 5-point Likert score, was evaluated per-segment, per-artery, and per-patient and was correlated with potentially disturbing factors (heart rate (HR), intra-cycle HR changes, BMI, age, and sex). Comparison was done by Wilcoxon-Signed-Rank test, and correlation by Spearman’s Rho. Per-patient, insufficient IQ decreased by 5.26%, and sufficient IQ increased by 9.66% with MCA. Per-artery, insufficient IQ of the right coronary artery (RCA) decreased by 18.18%, and sufficient IQ increased by 27.27%. Per-segment, insufficient IQ in segments 1 and 2 decreased by 11.51% and 24.78%, respectively, and sufficient IQ increased by 10.62% and 18.58%, respectively. Total artifacts per-artery decreased in the RCA from 3.11 ± 1.65 to 2.26 ± 1.52. HR dependence of RCA IQ decreased to intermediate correlation in images with MCA reconstruction. The applied MCA improves the IQ of 64-MDCT-acquired images and reduces the influence of HR on IQ, increasing 64-MDCT validity in the diagnosis of CCS. Coronary computed tomography angiography (CCTA) is an essential part of the diagnosis of chronic coronary syndrome (CCS) in patients with low-to-intermediate pre-test probability. The minimum technical requirement is 64-row multidetector CT (64-MDCT), which is still frequently used, although it is prone to motion artifacts because of its limited temporal resolution and z-coverage. In this study, we evaluate the potential of a deep-learning-based motion correction algorithm (MCA) to eliminate these motion artifacts. 124 64-MDCT-acquired CCTA examinations with at least minor motion artifacts were included. Images were reconstructed using a conventional reconstruction algorithm (CA) and a MCA. Image quality (IQ), according to a 5-point Likert score, was evaluated per-segment, per-artery, and per-patient and was correlated with potentially disturbing factors (heart rate (HR), intra-cycle HR changes, BMI, age, and sex). Comparison was done by Wilcoxon-Signed-Rank test, and correlation by Spearman's Rho. Per-patient, insufficient IQ decreased by 5.26%, and sufficient IQ increased by 9.66% with MCA. Per-artery, insufficient IQ of the right coronary artery (RCA) decreased by 18.18%, and sufficient IQ increased by 27.27%. Per-segment, insufficient IQ in segments 1 and 2 decreased by 11.51% and 24.78%, respectively, and sufficient IQ increased by 10.62% and 18.58%, respectively. Total artifacts per-artery decreased in the RCA from 3.11 ± 1.65 to 2.26 ± 1.52. HR dependence of RCA IQ decreased to intermediate correlation in images with MCA reconstruction. The applied MCA improves the IQ of 64-MDCT-acquired images and reduces the influence of HR on IQ, increasing 64-MDCT validity in the diagnosis of CCS.Coronary computed tomography angiography (CCTA) is an essential part of the diagnosis of chronic coronary syndrome (CCS) in patients with low-to-intermediate pre-test probability. The minimum technical requirement is 64-row multidetector CT (64-MDCT), which is still frequently used, although it is prone to motion artifacts because of its limited temporal resolution and z-coverage. In this study, we evaluate the potential of a deep-learning-based motion correction algorithm (MCA) to eliminate these motion artifacts. 124 64-MDCT-acquired CCTA examinations with at least minor motion artifacts were included. Images were reconstructed using a conventional reconstruction algorithm (CA) and a MCA. Image quality (IQ), according to a 5-point Likert score, was evaluated per-segment, per-artery, and per-patient and was correlated with potentially disturbing factors (heart rate (HR), intra-cycle HR changes, BMI, age, and sex). Comparison was done by Wilcoxon-Signed-Rank test, and correlation by Spearman's Rho. Per-patient, insufficient IQ decreased by 5.26%, and sufficient IQ increased by 9.66% with MCA. Per-artery, insufficient IQ of the right coronary artery (RCA) decreased by 18.18%, and sufficient IQ increased by 27.27%. Per-segment, insufficient IQ in segments 1 and 2 decreased by 11.51% and 24.78%, respectively, and sufficient IQ increased by 10.62% and 18.58%, respectively. Total artifacts per-artery decreased in the RCA from 3.11 ± 1.65 to 2.26 ± 1.52. HR dependence of RCA IQ decreased to intermediate correlation in images with MCA reconstruction. The applied MCA improves the IQ of 64-MDCT-acquired images and reduces the influence of HR on IQ, increasing 64-MDCT validity in the diagnosis of CCS.  | 
    
| Author | Stroszczynski, C. Dreesen, H. J. H. Lell, M. M.  | 
    
| Author_xml | – sequence: 1 givenname: H. J. H. orcidid: 0009-0000-5293-695X surname: Dreesen fullname: Dreesen, H. J. H. email: Hendrik.dreesen@web.de organization: Department of Radiology, University Regensburg, Department of Radiology, Neuroradiology and Nuclear Medicine, Klinikum Nürnberg, Paracelsus Medical University – sequence: 2 givenname: C. surname: Stroszczynski fullname: Stroszczynski, C. organization: Department of Radiology, University Regensburg – sequence: 3 givenname: M. M. surname: Lell fullname: Lell, M. M. organization: Department of Radiology, Neuroradiology and Nuclear Medicine, Klinikum Nürnberg, Paracelsus Medical University  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38438697$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNUU1P3DAUtCqqAlv-QA9VpF56SeuvjZ1TtSxQKq3gAmfLSV6yRomd2gmr7a_Hyy4s5YA4-clvZjQz7xgdWGcBoS8E_yAYi5-BYCpkiilPMcGMpasP6IjmXKY0Z-zgxXyITkK4wziCCGMZ_oQOmeRMZrk4Quq6H0xn_hnbJHPnndV-HYeuHweokhvXucbrfrlOZrYxT_Nt2MB1cuXuoU3OAPpkAdrb-Jue6hCJs7Zx3gzL7jP6WOs2wMnunaDbi_Ob-WW6uP79Zz5bpCUXYkhlUWs2LfKiimFAVlRUZQa4Bs04K6TgpdBVTYsCmJaa1kSKqZzijGLJ64JmbILYVne0vV6vdNuq3psuplEEq01jatuYio2px8bUKrJ-bVn9WHRQlWAHr_dMp436f2PNUjXuXhHCouRURoXvOwXv_o4QBtWZUELbagtuDCoeQAjMuOAR-u0V9M6N3sZWFMNS5pmUfBPk60tLz16eThYBcgsovQvBQ61KM-jBuI1D074dl76ivqujXbMhgm0Dfm_7DdYDRorNNw | 
    
| CitedBy_id | crossref_primary_10_31083_j_rcm2512442 | 
    
| Cites_doi | 10.1056/NEJMoa0806576 10.1259/bjr/15296170 10.1016/j.jcct.2012.04.004 10.3233/XST-210841 10.1016/j.amjcard.2009.10.058 10.1371/journal.pone.0142796 10.1097/RCT.0000000000001035 10.1016/j.clinimag.2016.11.002 10.1007/s11604-014-0382-1 10.1093/ehjci/jev033 10.1007/s10554-014-0499-4 10.1007/s00330-012-2551-x 10.1016/j.crad.2014.03.023 10.1016/j.compmedimag.2019.06.001 10.1109/TMI.2018.2817594 10.1093/eurheartj/ehz425 10.1186/s12880-022-00914-2 10.1016/j.jcct.2014.07.003 10.1148/radiol.2451061791 10.1007/s11886-009-0075-z 10.1002/mp.14927 10.1097/RCT.0000000000000641 10.1016/j.jcct.2020.11.001 10.1007/s00330-018-5929-6 10.1118/1.4789486 10.1080/17434440.2016.1184968 10.1002/mp.12514 10.1016/j.clinimag.2015.07.023 10.1016/j.acra.2013.10.014  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024  | 
    
| Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024  | 
    
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7RV 7SC 7TK 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K9. KB0 L7M LK8 L~C L~D M0S M1P M7P NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1007/s10278-024-01033-w | 
    
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Nursing & Allied Health Database Computer and Information Systems Abstracts Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Advanced Technologies & Aerospace Database ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection (ProQuest) Natural Science Collection (ProQuest) ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Health & Medical Collection (Alumni Edition) Medical Database Biological science database Nursing & Allied Health Premium Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Proquest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | CrossRef ProQuest Central Student MEDLINE MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine | 
    
| EISSN | 2948-2933 1618-727X  | 
    
| EndPage | 1556 | 
    
| ExternalDocumentID | 10.1007/s10278-024-01033-w PMC11300758 38438697 10_1007_s10278_024_01033_w  | 
    
| Genre | Research Support, Non-U.S. Gov't Journal Article  | 
    
| GrantInformation_xml | – fundername: Universität Regensburg (3161) | 
    
| GroupedDBID | 53G AAJBT AAYZH ABJNI ACPIV ALMA_UNASSIGNED_HOLDINGS BGNMA C6C DPUIP EBLON FIGPU JZLTJ M4Y NU0 PT4 ROL RPM RSV SJYHP SNE SOJ 0R~ 2JN AASML AATNV AAYXX ABAKF ABDBE ABFSG ABRTQ ACAOD ACSTC ACZOJ ADKFA AEFQL AEZWR AFDZB AFHIU AHWEU AIGIU AIXLP ATHPR CITATION CGR CUY CVF ECM EIF NPM --- .4S .86 .DC .VR 04C 06C 06D 0VY 1N0 203 29K 29~ 2J2 2JY 2KG 2KM 2LR 2~H 30V 36B 3V. 4.4 406 408 409 40D 40E 5GY 5RE 5VS 67Z 6NX 6PF 78A 7QO 7RV 7SC 7TK 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8FW 8TC 8UJ 95- 95. 95~ 96X AABHQ AAHNG AAJKR AAKDD AAKPC AANZL AAPKM AARTL AATVU AAUYE AAWCG AAWTL AAYIU AAYQN ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTKH ABTMW ABUWG ABWNU ABXPI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPRK ACSNA ADBBV ADHHG ADHIR ADJJI ADKNI ADKPE ADMLS ADOJX ADRFC ADTPH ADURQ ADYFF ADZKW AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHPBZ AHYZX AIAKS AIIXL AILAN AITGF AJRNO AJZVZ AKMHD ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG AOIJS ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYFIA AZFZN AZQEC B-. BA0 BAWUL BBNVY BENPR BGLVJ BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI CCPQU CS3 CSCUP D-I DDRTE DIK DL5 DNIVK DU5 DWQXO EBD EBS ECT EDO EIHBH EIOEI EMB EMOBN ESBYG EX3 F5P FEDTE FERAY FFXSO FNLPD FR3 FRRFC FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GX1 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HYE I-F I09 IJ- IKXTQ IMOTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JQ2 K9. KDC KOV KPH L7M LAS LK8 LLZTM L~C L~D M1P M7P MA- NAPCQ NB0 NPVJJ NQJWS O93 O9I O9J OAM OK1 P2P P62 P64 P9S PF0 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PROAC PSQYO Q2X QOK QOR QOS R89 R9I RNS RPX RRX S16 S27 S37 S3B SAP SDH SHX SISQX SMD SNPRN SNX SOHCF SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 TSG TSK TSV TT1 TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX VC2 W23 W48 WJK WK8 WOW YLTOR Z45 ZMTXR ZOVNA ~A9 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c477t-8bfa35b9bd010e8d27dc6e0fea343b874c7adf2bbe3a8a2f187585062084fb263 | 
    
| IEDL.DBID | C6C | 
    
| ISSN | 2948-2933 0897-1889 2948-2925  | 
    
| IngestDate | Sun Oct 26 04:14:48 EDT 2025 Tue Sep 30 17:08:05 EDT 2025 Sun Sep 28 09:40:06 EDT 2025 Mon Oct 06 17:16:36 EDT 2025 Tue Sep 30 01:30:53 EDT 2025 Thu Apr 24 23:04:11 EDT 2025 Wed Oct 01 01:45:01 EDT 2025 Fri Feb 21 02:38:51 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Keywords | Deep learning-based algorithm 64-Detector row computed tomography Coronary computed tomography angiography Motion correction algorithm Single-source computed tomography Motion artifact reduction  | 
    
| Language | English | 
    
| License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c477t-8bfa35b9bd010e8d27dc6e0fea343b874c7adf2bbe3a8a2f187585062084fb263 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0009-0000-5293-695X | 
    
| OpenAccessLink | https://doi.org/10.1007/s10278-024-01033-w | 
    
| PMID | 38438697 | 
    
| PQID | 3088968846 | 
    
| PQPubID | 34218 | 
    
| PageCount | 9 | 
    
| ParticipantIDs | unpaywall_primary_10_1007_s10278_024_01033_w pubmedcentral_primary_oai_pubmedcentral_nih_gov_11300758 proquest_miscellaneous_2937703474 proquest_journals_3088968846 pubmed_primary_38438697 crossref_citationtrail_10_1007_s10278_024_01033_w crossref_primary_10_1007_s10278_024_01033_w springer_journals_10_1007_s10278_024_01033_w  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-08-01 | 
    
| PublicationDateYYYYMMDD | 2024-08-01 | 
    
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Cham | 
    
| PublicationPlace_xml | – name: Cham – name: Switzerland – name: New York  | 
    
| PublicationTitle | Journal of digital imaging | 
    
| PublicationTitleAbbrev | J Digit Imaging. Inform. med | 
    
| PublicationTitleAlternate | J Imaging Inform Med | 
    
| PublicationYear | 2024 | 
    
| Publisher | Springer International Publishing Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V  | 
    
| References | Jiang, Wang, Lv, Cai (CR3) 2014; 69 Hsiao, Rybicki, Steigner (CR4) 2010; 12 Kim, Chang, Ra (CR25) 2018; 37 Leipsic, Abbara, Achenbach (CR18) 2014; 8 Li, Yin, Lu (CR23) 2015; 10 Deng, Tie, Zeng (CR14) 2021; 29 Liang, Sun, Ye (CR13) 2019; 29 Sun, Choo, Ng (CR9) 2012; 85 Machida, Lin, Fukui (CR21) 2015; 33 Miller, Rochitte, Dewey (CR5) 2008; 359 Fuchs, Stehli, Dougoud (CR22) 2014; 21 Maier, Lebedev, Erath (CR15) 2021; 48 Lee, Kim, Lee, Suh, Paik, Park (CR12) 2014; 30 de Graaf, Schuijf, van Velzen (CR10) 2010; 105 Carrascosa, Deviggiano, Leipsic (CR19) 2015; 39 Sheta, Egstrup, Husic, Heinsen, Nieman, Lambrechtsen (CR30) 2017; 42 den Dekker, de Smet, de Bock, Tio, Oudkerk, Vliegenthart (CR6) 2012; 22 Hahn, Bruder, Rohkohl (CR16) 2017; 44 Andreini, Pontone, Mushtaq (CR27) 2015; 16 Liang, Wang, Xu (CR29) 2018; 42 CR26 Knuuti, Wijns, Saraste (CR1) 2020; 41 Leipsic, Labounty, Hague (CR20) 2012; 6 Narula, Chandrashekhar, Ahmadi (CR2) 2021; 15 Aghayev, Murphy, Keraliya, Steigner (CR8) 2016; 13 Sun, Okerlund, Cao (CR28) 2020; 44 Rohkohl, Bruder, Stierstorfer, Flohr (CR24) 2013; 40 Lossau Née Elss, Nickisch, Wissel (CR11) 2019; 76 Ren, He, Zhu (CR17) 2022; 22 Husmann, Leschka, Desbiolles (CR7) 2007; 245 Z-N Li (1033_CR23) 2015; 10 J Knuuti (1033_CR1) 2020; 41 H Machida (1033_CR21) 2015; 33 Z Sun (1033_CR9) 2012; 85 JM Miller (1033_CR5) 2008; 359 FR de Graaf (1033_CR10) 2010; 105 D Andreini (1033_CR27) 2015; 16 F Deng (1033_CR14) 2021; 29 A Aghayev (1033_CR8) 2016; 13 T Lossau Née Elss (1033_CR11) 2019; 76 J Leipsic (1033_CR18) 2014; 8 J Sun (1033_CR28) 2020; 44 J Liang (1033_CR13) 2019; 29 B Jiang (1033_CR3) 2014; 69 P Carrascosa (1033_CR19) 2015; 39 L Husmann (1033_CR7) 2007; 245 1033_CR26 HM Sheta (1033_CR30) 2017; 42 P Ren (1033_CR17) 2022; 22 J Leipsic (1033_CR20) 2012; 6 TA Fuchs (1033_CR22) 2014; 21 MAM den Dekker (1033_CR6) 2012; 22 H Lee (1033_CR12) 2014; 30 S Kim (1033_CR25) 2018; 37 C Rohkohl (1033_CR24) 2013; 40 EM Hsiao (1033_CR4) 2010; 12 J Liang (1033_CR29) 2018; 42 J Hahn (1033_CR16) 2017; 44 J Narula (1033_CR2) 2021; 15 J Maier (1033_CR15) 2021; 48  | 
    
| References_xml | – volume: 359 start-page: 2324 issue: 22 year: 2008 end-page: 2336 ident: CR5 article-title: Diagnostic performance of coronary angiography by 64-row CT publication-title: N Engl J Med doi: 10.1056/NEJMoa0806576 – volume: 85 start-page: 495 issue: 1013 year: 2012 end-page: 510 ident: CR9 article-title: Coronary CT angiography: current status and continuing challenges publication-title: Br J Radiol doi: 10.1259/bjr/15296170 – volume: 6 start-page: 164 issue: 3 year: 2012 end-page: 171 ident: CR20 article-title: Effect of a novel vendor-specific motion-correction algorithm on image quality and diagnostic accuracy in persons undergoing coronary CT angiography without rate-control medications publication-title: J Cardiovasc Comput Tomogr doi: 10.1016/j.jcct.2012.04.004 – volume: 29 start-page: 577 issue: 4 year: 2021 end-page: 595 ident: CR14 article-title: Correcting motion artifacts in coronary computed tomography angiography images using a dual-zone cycle generative adversarial network publication-title: J Xray Sci Technol doi: 10.3233/XST-210841 – volume: 105 start-page: 767 issue: 6 year: 2010 end-page: 772 ident: CR10 article-title: Evaluation of contraindications and efficacy of oral Beta blockade before computed tomographic coronary angiography publication-title: Am J Cardiol doi: 10.1016/j.amjcard.2009.10.058 – volume: 10 issue: 11 year: 2015 ident: CR23 article-title: Improvement of image quality and diagnostic performance by an innovative motion-correction algorithm for prospectively ECG triggered coronary CT angiography publication-title: PLoS One doi: 10.1371/journal.pone.0142796 – volume: 44 start-page: 790 issue: 5 year: 2020 end-page: 795 ident: CR28 article-title: Further improving image quality of cardiovascular computed tomography angiography for children with high heart rates using second-generation motion correction algorithm publication-title: J Comput Assist Tomogr doi: 10.1097/RCT.0000000000001035 – volume: 42 start-page: 1 year: 2017 end-page: 6 ident: CR30 article-title: Impact of a motion correction algorithm on image quality in patients undergoing CT angiography: a randomized controlled trial publication-title: Clin Imaging doi: 10.1016/j.clinimag.2016.11.002 – volume: 33 start-page: 84 issue: 2 year: 2015 end-page: 93 ident: CR21 article-title: Influence of the motion correction algorithm on the quality and interpretability of images of single-source 64-detector coronary CT angiography among patients grouped by heart rate publication-title: Jpn J Radiol doi: 10.1007/s11604-014-0382-1 – volume: 16 start-page: 1093 issue: 10 year: 2015 end-page: 1100 ident: CR27 article-title: Low-dose CT coronary angiography with a novel IntraCycle motion-correction algorithm in patients with high heart rate or heart rate variability publication-title: Eur Heart J Cardiovasc Imaging doi: 10.1093/ehjci/jev033 – volume: 30 start-page: 1603 issue: 8 year: 2014 end-page: 1612 ident: CR12 article-title: Impact of a vendor-specific motion-correction algorithm on image quality, interpretability, and diagnostic performance of daily routine coronary CT angiography: influence of heart rate on the effect of motion-correction publication-title: Int J Cardiovasc Imaging doi: 10.1007/s10554-014-0499-4 – volume: 22 start-page: 2688 issue: 12 year: 2012 end-page: 2698 ident: CR6 article-title: Diagnostic performance of coronary CT angiography for stenosis detection according to calcium score: systematic review and meta-analysis publication-title: Eur Radiol doi: 10.1007/s00330-012-2551-x – volume: 69 start-page: 861 issue: 8 year: 2014 end-page: 869 ident: CR3 article-title: Dual-source CT versus single-source 64-section CT angiography for coronary artery disease: a meta-analysis publication-title: Clin Radiol doi: 10.1016/j.crad.2014.03.023 – volume: 76 start-page: 101640 year: 2019 ident: CR11 article-title: Motion estimation and correction in cardiac CT angiography images using convolutional neural networks publication-title: Comput Med Imaging Graph doi: 10.1016/j.compmedimag.2019.06.001 – volume: 37 start-page: 1587 issue: 7 year: 2018 end-page: 1596 ident: CR25 article-title: Cardiac motion correction for helical CT scan with an ordinary pitch publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2018.2817594 – volume: 41 start-page: 407 issue: 3 year: 2020 end-page: 477 ident: CR1 article-title: 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes publication-title: Eur Heart J doi: 10.1093/eurheartj/ehz425 – volume: 22 start-page: 184 issue: 1 year: 2022 ident: CR17 article-title: Motion artefact reduction in coronary CT angiography images with a deep learning method publication-title: BMC Med Imaging doi: 10.1186/s12880-022-00914-2 – volume: 8 start-page: 342 issue: 5 year: 2014 end-page: 358 ident: CR18 article-title: SCCT guidelines for the interpretation and reporting of coronary CT angiography: a report of the Society of Cardiovascular Computed Tomography Guidelines Committee publication-title: J Cardiovasc Comput Tomogr doi: 10.1016/j.jcct.2014.07.003 – volume: 245 start-page: 567 issue: 2 year: 2007 end-page: 576 ident: CR7 article-title: Coronary artery motion and cardiac phases: dependency on heart rate – implications for CT image reconstruction publication-title: Radiology doi: 10.1148/radiol.2451061791 – volume: 12 start-page: 68 issue: 1 year: 2010 end-page: 75 ident: CR4 article-title: CT coronary angiography: 256-slice and 320-detector row scanners publication-title: Curr Cardiol Rep doi: 10.1007/s11886-009-0075-z – volume: 48 start-page: 3559 issue: 7 year: 2021 end-page: 3571 ident: CR15 article-title: Deep learning-based coronary artery motion estimation and compensation for short-scan cardiac CT publication-title: Med Phys doi: 10.1002/mp.14927 – volume: 42 start-page: 54 issue: 1 year: 2018 end-page: 61 ident: CR29 article-title: Impact of SSF on diagnostic performance of coronary computed tomography angiography within 1 heart beat in patients with high heart rate using a 256-row detector computed tomography publication-title: J Comput Assist Tomogr doi: 10.1097/RCT.0000000000000641 – volume: 15 start-page: 192 issue: 3 year: 2021 end-page: 217 ident: CR2 article-title: SCCT 2021 Expert consensus document on coronary computed tomographic angiography: a report of the society of cardiovascular computed tomography publication-title: J Cardiovasc Comput Tomogr doi: 10.1016/j.jcct.2020.11.001 – volume: 29 start-page: 4215 issue: 8 year: 2019 end-page: 4227 ident: CR13 article-title: Second-generation motion correction algorithm improves diagnostic accuracy of single-beat coronary CT angiography in patients with increased heart rate publication-title: Eur Radiol doi: 10.1007/s00330-018-5929-6 – volume: 40 start-page: 31901 issue: 3 year: 2013 ident: CR24 article-title: Improving best-phase image quality in cardiac CT by motion correction with MAM optimization publication-title: Med Phys doi: 10.1118/1.4789486 – volume: 13 start-page: 545 issue: 6 year: 2016 end-page: 553 ident: CR8 article-title: Recent developments in the use of computed tomography scanners in coronary artery imaging publication-title: Expert Rev Med Devices doi: 10.1080/17434440.2016.1184968 – ident: CR26 – volume: 44 start-page: 5795 issue: 11 year: 2017 end-page: 5813 ident: CR16 article-title: Motion compensation in the region of the coronary arteries based on partial angle reconstructions from short-scan CT data publication-title: Med Phys doi: 10.1002/mp.12514 – volume: 39 start-page: 1000 issue: 6 year: 2015 end-page: 1005 ident: CR19 article-title: Dual energy imaging and intracycle motion correction for CT coronary angiography in patients with intermediate to high likelihood of coronary artery disease publication-title: Clin Imaging doi: 10.1016/j.clinimag.2015.07.023 – volume: 21 start-page: 312 issue: 3 year: 2014 end-page: 317 ident: CR22 article-title: Impact of a new motion-correction algorithm on image quality of low-dose coronary CT angiography in patients with insufficient heart rate control publication-title: Acad Radiol doi: 10.1016/j.acra.2013.10.014 – volume: 105 start-page: 767 issue: 6 year: 2010 ident: 1033_CR10 publication-title: Am J Cardiol doi: 10.1016/j.amjcard.2009.10.058 – volume: 48 start-page: 3559 issue: 7 year: 2021 ident: 1033_CR15 publication-title: Med Phys doi: 10.1002/mp.14927 – volume: 44 start-page: 5795 issue: 11 year: 2017 ident: 1033_CR16 publication-title: Med Phys doi: 10.1002/mp.12514 – volume: 245 start-page: 567 issue: 2 year: 2007 ident: 1033_CR7 publication-title: Radiology doi: 10.1148/radiol.2451061791 – volume: 42 start-page: 1 year: 2017 ident: 1033_CR30 publication-title: Clin Imaging doi: 10.1016/j.clinimag.2016.11.002 – volume: 30 start-page: 1603 issue: 8 year: 2014 ident: 1033_CR12 publication-title: Int J Cardiovasc Imaging doi: 10.1007/s10554-014-0499-4 – volume: 33 start-page: 84 issue: 2 year: 2015 ident: 1033_CR21 publication-title: Jpn J Radiol doi: 10.1007/s11604-014-0382-1 – volume: 37 start-page: 1587 issue: 7 year: 2018 ident: 1033_CR25 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2018.2817594 – volume: 12 start-page: 68 issue: 1 year: 2010 ident: 1033_CR4 publication-title: Curr Cardiol Rep doi: 10.1007/s11886-009-0075-z – volume: 22 start-page: 2688 issue: 12 year: 2012 ident: 1033_CR6 publication-title: Eur Radiol doi: 10.1007/s00330-012-2551-x – volume: 41 start-page: 407 issue: 3 year: 2020 ident: 1033_CR1 publication-title: Eur Heart J doi: 10.1093/eurheartj/ehz425 – volume: 16 start-page: 1093 issue: 10 year: 2015 ident: 1033_CR27 publication-title: Eur Heart J Cardiovasc Imaging doi: 10.1093/ehjci/jev033 – volume: 44 start-page: 790 issue: 5 year: 2020 ident: 1033_CR28 publication-title: J Comput Assist Tomogr doi: 10.1097/RCT.0000000000001035 – volume: 42 start-page: 54 issue: 1 year: 2018 ident: 1033_CR29 publication-title: J Comput Assist Tomogr doi: 10.1097/RCT.0000000000000641 – volume: 13 start-page: 545 issue: 6 year: 2016 ident: 1033_CR8 publication-title: Expert Rev Med Devices doi: 10.1080/17434440.2016.1184968 – volume: 22 start-page: 184 issue: 1 year: 2022 ident: 1033_CR17 publication-title: BMC Med Imaging doi: 10.1186/s12880-022-00914-2 – volume: 39 start-page: 1000 issue: 6 year: 2015 ident: 1033_CR19 publication-title: Clin Imaging doi: 10.1016/j.clinimag.2015.07.023 – volume: 8 start-page: 342 issue: 5 year: 2014 ident: 1033_CR18 publication-title: J Cardiovasc Comput Tomogr doi: 10.1016/j.jcct.2014.07.003 – ident: 1033_CR26 – volume: 359 start-page: 2324 issue: 22 year: 2008 ident: 1033_CR5 publication-title: N Engl J Med doi: 10.1056/NEJMoa0806576 – volume: 69 start-page: 861 issue: 8 year: 2014 ident: 1033_CR3 publication-title: Clin Radiol doi: 10.1016/j.crad.2014.03.023 – volume: 29 start-page: 4215 issue: 8 year: 2019 ident: 1033_CR13 publication-title: Eur Radiol doi: 10.1007/s00330-018-5929-6 – volume: 21 start-page: 312 issue: 3 year: 2014 ident: 1033_CR22 publication-title: Acad Radiol doi: 10.1016/j.acra.2013.10.014 – volume: 76 start-page: 101640 year: 2019 ident: 1033_CR11 publication-title: Comput Med Imaging Graph doi: 10.1016/j.compmedimag.2019.06.001 – volume: 29 start-page: 577 issue: 4 year: 2021 ident: 1033_CR14 publication-title: J Xray Sci Technol doi: 10.3233/XST-210841 – volume: 6 start-page: 164 issue: 3 year: 2012 ident: 1033_CR20 publication-title: J Cardiovasc Comput Tomogr doi: 10.1016/j.jcct.2012.04.004 – volume: 40 start-page: 31901 issue: 3 year: 2013 ident: 1033_CR24 publication-title: Med Phys doi: 10.1118/1.4789486 – volume: 15 start-page: 192 issue: 3 year: 2021 ident: 1033_CR2 publication-title: J Cardiovasc Comput Tomogr doi: 10.1016/j.jcct.2020.11.001 – volume: 85 start-page: 495 issue: 1013 year: 2012 ident: 1033_CR9 publication-title: Br J Radiol doi: 10.1259/bjr/15296170 – volume: 10 issue: 11 year: 2015 ident: 1033_CR23 publication-title: PLoS One doi: 10.1371/journal.pone.0142796  | 
    
| SSID | ssj0003313360 ssj0017574  | 
    
| Score | 2.3648636 | 
    
| Snippet | Coronary computed tomography angiography (CCTA) is an essential part of the diagnosis of chronic coronary syndrome (CCS) in patients with low-to-intermediate... | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref springer  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 1548 | 
    
| SubjectTerms | Aged Algorithms Angiography Computed tomography Computed Tomography Angiography - methods Coronary Angiography - methods Coronary artery Coronary Vessels - diagnostic imaging Correlation Deep Learning Diagnosis Female Heart rate Humans Image acquisition Image processing Image Processing, Computer-Assisted - methods Image quality Image reconstruction Imaging Machine learning Male Medical imaging Medicine Medicine & Public Health Middle Aged Multidetector Computed Tomography - methods Radiology Rank tests Segments Temporal resolution Tomography Veins & arteries  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED-6FPbxMPbVzVs3NNjbahZLiiU_jJF2LWXQbIwW-ib0mQYcO2uThe6vn-TIzkIh7M0gWdbpTqc73-l3AB-M07JQxcC7JblLg0WQSqe9q1KojGrsHNbBUTwb5acX9Nvl4HIHRu1dmJBW2erERlGbWod_5J9IyMfJuT8uv8x-paFqVIiutiU0ZCytYD43EGP3YBcHZKwe7B4ej3787OIKbLDCZeYFSzM_YLxGEy_T4YA2i0NWRqhwttw8qu7Yn3fTKLtY6iN4sKhm8nYpy_Kf4-rkCTyOdiYargTjKezY6hncP4uR9OcgvntdMZ388QOho4BiIK9vUSzxYNB5PY1Q1mhYjSftc5NfgCQa1b9tib5aO0MRn3WcHvrj0KBhOfaLNr-avoCLk-Pzo9M0FltINWVsnnLlJBmoQhlPveUGM6Nz23dWEkoUZ1QzaRxWyhLJJXYZD55GP8d9Tp3COdmDXlVX9hUg02fY63Puh8woo84_WkJ0bjJuKZU0gaxdV6EjEnkoiFGKNYZy4IXwvBANL8QygY_dO7MVDsfW3vstu0TckzdiLUEJvO-a_W4KIRJZ2XpxI7zxw7wO9LNO4OWKu93nCKeE5wVLgG_wvesQkLo3W6rJVYPYnYWgoV-vBA5aEVnPaxsZB50Y_QfVr7dT_QYe4ka6Q_biPvTm1wv71ltUc_UubpO_xBMdsg priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NTuLjge-PwEBG4o2la2w3cR7LxjQhrfCwSuMp8mdXkSZVl1Jtfz124mQrQxOIN0t2HN_lnLvT3f0O4IMykqciHVq3JDahswhCbqR1VVIRUYmNwdI5isfj-GhCv5wOT7fgoK2FqbPd25BkU9PgUJqKam-hzN61wjfskGGxy6Bw3cjWfTt9B7bjobXIe7A9GX8bfXd95VLqigzq3qt-TIivnfnzRpv66YbReTN3sgugPoB7q2LBL9Y8z6_pqMNHoFvqmtSUH_1VJfry8jfgx_8l_zE89EYsGjVS9wS2dPEU7h77MP0zyL7aH9F8dmn3R_sOIoEvL5DvH6HQSTn3ONloVExn7bhOXkAcjcufOkcHWi-QB3-dhp-srlVolE_L5aw6mz-HyeHnk_2j0HdyCCVNkipkwnAyFKlQ9ryaKZwoGeuB0ZxQIlhCZcKVwUJowhnHJmLOjRnEeMCoETgmL6BXlIV-BUgNEmyVBbNbRjShxg41ITJWEdOUchpA1H6_THqYc9dtI8-uAJod9zLLvazmXrYO4GP3zKIB-bh19U4rFpm_8OcZceliMbPWXADvu2l7VV38hRe6XJ1nVvYS-4O1pw7gZSNF3esIo4TFaRIA25CvboGDAd-cKWZnNRx45CKSll8B7LaSc3Wu28jY7cT1L6h-_W_L38B9XMunS5XcgV61XOm31nyrxDt_O38Bz289Bg priority: 102 providerName: Unpaywall  | 
    
| Title | Optimizing Coronary Computed Tomography Angiography Using a Novel Deep Learning-Based Algorithm | 
    
| URI | https://link.springer.com/article/10.1007/s10278-024-01033-w https://www.ncbi.nlm.nih.gov/pubmed/38438697 https://www.proquest.com/docview/3088968846 https://www.proquest.com/docview/2937703474 https://pubmed.ncbi.nlm.nih.gov/PMC11300758 https://link.springer.com/content/pdf/10.1007/s10278-024-01033-w.pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 37 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2948-2933 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017574 issn: 2948-2933 databaseCode: ADMLS dateStart: 20030301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2948-2933 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0017574 issn: 2948-2933 databaseCode: DIK dateStart: 20030101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2948-2933 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017574 issn: 2948-2933 databaseCode: GX1 dateStart: 20030101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2948-2933 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003313360 issn: 2948-2933 databaseCode: RPM dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2948-2933 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0017574 issn: 2948-2933 databaseCode: BENPR dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 2948-2933 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0017574 issn: 2948-2933 databaseCode: 7X7 dateStart: 19970201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2948-2933 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0017574 issn: 2948-2933 databaseCode: 8FG dateStart: 19970201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 2948-2933 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017574 issn: 2948-2933 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 2948-2933 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017574 issn: 2948-2933 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_WFvbxMPbV1VsXNNjbaoglRZIf06xpGTQro4HsyUi2lAYcO6RJQ_fX7-Q47rKOsr0YgT4s6XTSne70O4BPmUt1bOIOqiXChV4iCLVLUVWJTcRT6hxNvaJ4PhBnQ_511BnVMDn-Lcwf9nv_xI16DFjqfSV83LHVDuzhISUqw6zoNfcpjKG2Jdr1u5i_V90-e-4JlPf9Ihvj6DN4sixm-nal8_y386f_Ap7XgiPprin9Eh7Z4hU8Pq9N468h-YbMP538xIZIz8MS6PktqWM2ZOSynNbY1KRbjCebdOUwQDQZlDc2J1-snZEacHUcHuP5lpFuPi7nk8XV9A0M-yeXvbOwjp4QplzKRaiM06xjYpPh6K3KqMxSYdvOasaZUZKnUmeOGmOZVpq6SHnVoS1oW3FncIL3YbcoC3sAJGtLihu0wiYjLrnDpGUsFVmkLOeaBxBt5jVJa2hxH-EiT-5AkT0tEqRFUtEiWQXwuakzWwNrPFj6cEOupGay64R5Fy2hUIIK4GOTjezhbR66sOXyOkFpRuKmhr0O4O2aus3vmOJMiVgGoLbo3hTw0NvbOcXkqoLgjrwVEOcrgKPNErnr10PDOGqW0T-M-t3_tf4entJqtXv3xEPYXcyX9gOKTAvTgh05kvhV_dMW7B2fDC6-tyr-we_pKGpVt1yYMxxcdH_8AhhqFfg | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTWLjAfG9wAAjwROLaGw3dh4m1H2pY2tBqJP2FpzE7iq1aVlbqvLH8bdxTp2UalLFy94i2XFs3_k-cuffAbzPTKqiJKqjWxIa31oEvjIpuipREvCUGkNT6yi22mHzkn-5ql9twJ_yLoxNqyxlYiGos2Fq_5F_YjYfJ5SoLj-Pfvq2apSNrpYlNJQrrZAdFBBj7mLHuZ7P0IUbH5wdI70_UHp60jlq-q7KgJ9yISa-TIxi9SRKMnRNtMyoyNJQ14xWjLNECp4KlRmaJJopqagJpDWxayGtSW4SGjIc9x5sccYjdP62Dk_a375XcQxRX-BAy0j4AS7AXdtxl_eoRbelNgvEVlSbrarGW_bu7bTNKnb7ALan-UjNZ6rf_0c9nj6Ch86uJY0FIz6GDZ0_gfstF7l_CvFXlE2D3m8ciBxZ1AR1MyeupERGOsOBg84mjbzbK5-LfAaiSHv4S_fJsdYj4vBgu_4hqt-MNPpdJNLkevAMLu9k25_DZj7M9S6QrCYo6g-JQwZccIOPmrE0zAKpOVfcg6Dc1zh1yOe2AEc_XmI2W1rESIu4oEU88-Bj9c5ogfuxtvdeSa7YyYBxvORYD95VzXh6bUhG5Xo4HcdobAmUuThrD14sqFt9jknOZBgJD-QK3asOFhl8tSXvXRcI4YENUuJ-ebBfsshyXuuWsV-x0X-s-uX6Vb-F7WandRFfnLXPX8EOLTjdZk7uwebkZqpfozU3Sd64I0Pgx12f0r9qW1uM | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NIQ32gPhPYICR4IlFa2w3dh4QKivVxljhYZP6ljmJ3VVqk25tqcpH49NxTp2UalLFy94i2XFs353vLnf-HcD7zKQqSqImuiWh8a1F4CuToqsSJQFPqTE0tY7iaTc8Ouffes3eFvyp7sLYtMrqTCwP6qxI7T_yA2bzcUKJ6vLAuLSIn-3O5_GVbytI2UhrVU5jySInejFH923y6biNtP5Aaefr2eGR7yoM-CkXYurLxCjWTKIkQ7dEy4yKLA11w2jFOEuk4KlQmaFJopmSippAWvO6EdKG5CahIcNx78BdwVhk0wlFr3b2UCsvEaBlJPwAp-4u7Lhre9Ti2lKb_2Frqc3XleINS_dmwmYdtd2Fe7N8rBZzNRz-oxg7D-GBs2hJa8mCj2BL549h59TF7J9A_ANPpdHgNw5EDi1egrpeEFdMIiNnxciBZpNW3h9Uz2UmA1GkW_zSQ9LWekwcEmzf_4KKNyOtYR9JMr0cPYXzW9n0Z7CdF7l-ASRrCIqaQ-KQARfc4KNmLA2zQGrOFfcgqPY1Th3muS29MYxXaM2WFjHSIi5pEc89-Fi_M14ifmzsvVeRK3bSP4lXvOrBu7oZ5dYGY1Sui9kkRjNL4GmLs_bg-ZK69eeY5EyGkfBArtG97mAxwddb8sFliQ0e2PAk7pcH-xWLrOa1aRn7NRv9x6pfbl71W9hB2Yy_H3dPXsF9WjK6TZncg-3p9Uy_RjNumrwp5YXAxW0L6F_fr1km | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NTuLjge-PwEBG4o2la2w3cR7LxjQhrfCwSuMp8mdXkSZVl1Jtfz124mQrQxOIN0t2HN_lnLvT3f0O4IMykqciHVq3JDahswhCbqR1VVIRUYmNwdI5isfj-GhCv5wOT7fgoK2FqbPd25BkU9PgUJqKam-hzN61wjfskGGxy6Bw3cjWfTt9B7bjobXIe7A9GX8bfXd95VLqigzq3qt-TIivnfnzRpv66YbReTN3sgugPoB7q2LBL9Y8z6_pqMNHoFvqmtSUH_1VJfry8jfgx_8l_zE89EYsGjVS9wS2dPEU7h77MP0zyL7aH9F8dmn3R_sOIoEvL5DvH6HQSTn3ONloVExn7bhOXkAcjcufOkcHWi-QB3-dhp-srlVolE_L5aw6mz-HyeHnk_2j0HdyCCVNkipkwnAyFKlQ9ryaKZwoGeuB0ZxQIlhCZcKVwUJowhnHJmLOjRnEeMCoETgmL6BXlIV-BUgNEmyVBbNbRjShxg41ITJWEdOUchpA1H6_THqYc9dtI8-uAJod9zLLvazmXrYO4GP3zKIB-bh19U4rFpm_8OcZceliMbPWXADvu2l7VV38hRe6XJ1nVvYS-4O1pw7gZSNF3esIo4TFaRIA25CvboGDAd-cKWZnNRx45CKSll8B7LaSc3Wu28jY7cT1L6h-_W_L38B9XMunS5XcgV61XOm31nyrxDt_O38Bz289Bg | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+Coronary+Computed+Tomography+Angiography+Using+a+Novel+Deep+Learning-Based+Algorithm&rft.jtitle=Journal+of+imaging+informatics+in+medicine&rft.au=Dreesen%2C+H.+J.+H.&rft.au=Stroszczynski%2C+C.&rft.au=Lell%2C+M.+M.&rft.date=2024-08-01&rft.pub=Springer+International+Publishing&rft.eissn=2948-2933&rft.volume=37&rft.issue=4&rft.spage=1548&rft.epage=1556&rft_id=info:doi/10.1007%2Fs10278-024-01033-w&rft.externalDocID=10_1007_s10278_024_01033_w | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2948-2933&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2948-2933&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2948-2933&client=summon |