Sub-millimeter precise photon interaction position determination in large monolithic scintillators via convolutional neural network algorithms

In this work, we present the development and application of a convolutional neural network (CNN)-based algorithm to precisely determine the interaction position of γ -quanta in large monolithic scintillators. Those are used as an absorber component of a Compton camera (CC) system under development f...

Full description

Saved in:
Bibliographic Details
Published inPhysics in medicine & biology Vol. 66; no. 13; pp. 135017 - 135026
Main Authors Kawula, M, Binder, T M, Liprandi, S, Viegas, R, Parodi, K, Thirolf, P G
Format Journal Article
LanguageEnglish
Published England IOP Publishing 02.07.2021
Subjects
Online AccessGet full text
ISSN0031-9155
1361-6560
1361-6560
DOI10.1088/1361-6560/ac06e2

Cover

Abstract In this work, we present the development and application of a convolutional neural network (CNN)-based algorithm to precisely determine the interaction position of γ -quanta in large monolithic scintillators. Those are used as an absorber component of a Compton camera (CC) system under development for ion beam range verification via prompt-gamma imaging. We examined two scintillation crystals: LaBr 3 :Ce and CeBr 3 . Each crystal had dimensions of 50.8 mm × 50.8 mm × 30 mm and was coupled to a 64-fold segmented multi-anode photomultiplier tube (PMT) with an 8 × 8 pixel arrangement. We determined the spatial resolution for three photon energies of 662, 1.17 and 1.33 MeV obtained from 2D detector scans with tightly collimated 137 Cs and 60 Co photon sources. With the new algorithm we achieved a spatial resolution for the CeBr3 crystal below 1.11(8) mm and below 0.98(7) mm for the LaBr3:Ce detector for all investigated energies between 662 keV and 1.33 MeV. We thereby improved the performance by more than a factor of 2.5 compared to the previously used categorical average pattern algorithm, which is a variation of the well-established k-nearest neighbor algorithm. The trained CNN has a low memory footprint and enables the reconstruction of up to 10 4 events per second with only one GPU. Those improvements are crucial on the way to future clinical in vivo applicability of the CC for ion beam range verification.
AbstractList In this work, we present the development and application of a convolutional neural network (CNN)-based algorithm to precisely determine the interaction position of -quanta in large monolithic scintillators. Those are used as an absorber component of a Compton camera (CC) system under development for ion beam range verification via prompt-gamma imaging. We examined two scintillation crystals: LaBr :Ce and CeBr . Each crystal had dimensions of 50.8 mm × 50.8 mm × 30 mm and was coupled to a 64-fold segmented multi-anode photomultiplier tube (PMT) with an 8 × 8 pixel arrangement. We determined the spatial resolution for three photon energies of 662, 1.17 and 1.33 MeV obtained from 2D detector scans with tightly collimated Cs and Co photon sources. With the new algorithm we achieved a spatial resolution for the CeBr3 crystal below 1.11(8) mm and below 0.98(7) mm for the LaBr3:Ce detector for all investigated energies between 662 keV and 1.33 MeV. We thereby improved the performance by more than a factor of 2.5 compared to the previously used categorical average pattern algorithm, which is a variation of the well-established k-nearest neighbor algorithm. The trained CNN has a low memory footprint and enables the reconstruction of up to 10 events per second with only one GPU. Those improvements are crucial on the way to future clinical applicability of the CC for ion beam range verification.
In this work, we present the development and application of a convolutional neural network (CNN)-based algorithm to precisely determine the interaction position of γ -quanta in large monolithic scintillators. Those are used as an absorber component of a Compton camera (CC) system under development for ion beam range verification via prompt-gamma imaging. We examined two scintillation crystals: LaBr 3 :Ce and CeBr 3 . Each crystal had dimensions of 50.8 mm × 50.8 mm × 30 mm and was coupled to a 64-fold segmented multi-anode photomultiplier tube (PMT) with an 8 × 8 pixel arrangement. We determined the spatial resolution for three photon energies of 662, 1.17 and 1.33 MeV obtained from 2D detector scans with tightly collimated 137 Cs and 60 Co photon sources. With the new algorithm we achieved a spatial resolution for the CeBr3 crystal below 1.11(8) mm and below 0.98(7) mm for the LaBr3:Ce detector for all investigated energies between 662 keV and 1.33 MeV. We thereby improved the performance by more than a factor of 2.5 compared to the previously used categorical average pattern algorithm, which is a variation of the well-established k-nearest neighbor algorithm. The trained CNN has a low memory footprint and enables the reconstruction of up to 10 4 events per second with only one GPU. Those improvements are crucial on the way to future clinical in vivo applicability of the CC for ion beam range verification.
In this work, we present the development and application of a convolutional neural network (CNN)-based algorithm to precisely determine the interaction position ofγ-quanta in large monolithic scintillators. Those are used as an absorber component of a Compton camera (CC) system under development for ion beam range verification via prompt-gamma imaging. We examined two scintillation crystals: LaBr3:Ce and CeBr3. Each crystal had dimensions of 50.8 mm × 50.8 mm × 30 mm and was coupled to a 64-fold segmented multi-anode photomultiplier tube (PMT) with an 8 × 8 pixel arrangement. We determined the spatial resolution for three photon energies of 662, 1.17 and 1.33 MeV obtained from 2D detector scans with tightly collimated137Cs and60Co photon sources. With the new algorithm we achieved a spatial resolution for the CeBr3 crystal below 1.11(8) mm and below 0.98(7) mm for the LaBr3:Ce detector for all investigated energies between 662 keV and 1.33 MeV. We thereby improved the performance by more than a factor of 2.5 compared to the previously used categorical average pattern algorithm, which is a variation of the well-established k-nearest neighbor algorithm. The trained CNN has a low memory footprint and enables the reconstruction of up to 104events per second with only one GPU. Those improvements are crucial on the way to future clinicalin vivoapplicability of the CC for ion beam range verification.In this work, we present the development and application of a convolutional neural network (CNN)-based algorithm to precisely determine the interaction position ofγ-quanta in large monolithic scintillators. Those are used as an absorber component of a Compton camera (CC) system under development for ion beam range verification via prompt-gamma imaging. We examined two scintillation crystals: LaBr3:Ce and CeBr3. Each crystal had dimensions of 50.8 mm × 50.8 mm × 30 mm and was coupled to a 64-fold segmented multi-anode photomultiplier tube (PMT) with an 8 × 8 pixel arrangement. We determined the spatial resolution for three photon energies of 662, 1.17 and 1.33 MeV obtained from 2D detector scans with tightly collimated137Cs and60Co photon sources. With the new algorithm we achieved a spatial resolution for the CeBr3 crystal below 1.11(8) mm and below 0.98(7) mm for the LaBr3:Ce detector for all investigated energies between 662 keV and 1.33 MeV. We thereby improved the performance by more than a factor of 2.5 compared to the previously used categorical average pattern algorithm, which is a variation of the well-established k-nearest neighbor algorithm. The trained CNN has a low memory footprint and enables the reconstruction of up to 104events per second with only one GPU. Those improvements are crucial on the way to future clinicalin vivoapplicability of the CC for ion beam range verification.
Author Liprandi, S
Kawula, M
Parodi, K
Viegas, R
Thirolf, P G
Binder, T M
Author_xml – sequence: 1
  givenname: M
  orcidid: 0000-0002-5039-8278
  surname: Kawula
  fullname: Kawula, M
  organization: Ludwig-Maximilians-Universität München Department of Medical Physics, Garching b. München, Germany
– sequence: 2
  givenname: T M
  surname: Binder
  fullname: Binder, T M
  organization: KETEK GmbH , Munich, Germany
– sequence: 3
  givenname: S
  surname: Liprandi
  fullname: Liprandi, S
  organization: Ludwig-Maximilians-Universität München Department of Medical Physics, Garching b. München, Germany
– sequence: 4
  givenname: R
  surname: Viegas
  fullname: Viegas, R
  organization: University of Coimbra , Portugal
– sequence: 5
  givenname: K
  orcidid: 0000-0001-7779-6690
  surname: Parodi
  fullname: Parodi, K
  organization: Ludwig-Maximilians-Universität München Department of Medical Physics, Garching b. München, Germany
– sequence: 6
  givenname: P G
  surname: Thirolf
  fullname: Thirolf, P G
  organization: Ludwig-Maximilians-Universität München Department of Medical Physics, Garching b. München, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34062523$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1u1TAQhS1URG8Le1bISxYNtePYyV2iigJSJRa0a8txJq2L_7CdVn0Jnhnn3tIFAqmSpRmPvjP2nDlCBz54QOgtJR8oGYZTygRtBBfkVGkioH2BNk-lA7QhhNFmSzk_REc53xJC6dB2r9Ah64hoecs26Nf3ZWycsdY4KJBwTKBNBhxvQgkeG1-LShdT8xiy2SXTSjrj1e5mPLYqXQN2wQdryo3ROOsqrE1VCSnjO6OwDv4u2GVVKIs9LGkXyn1IP7Cy1yFVpcuv0ctZ2QxvHuMxujr_dHn2pbn49vnr2ceLRnd9X5qBjzAoYBN0uptGNvasFoae84kJpumsOR3qfKyjhGz7GWDmrdCCbsXUt8DYMaL7vouP6uFeWStjMk6lB0mJXL2Vq5FyNVLuva2a93tNTOHnArlIZ7KGOqWHsGTZciY6wfrtir57RJfRwfTU-4_vFSB7QKeQc4L5Oc-LvyTalN0KSlLGPuPfJkR5G5ZUN5BldKMUotL1cEJ7Gae5oif_QP_b-TdNrsX6
CODEN PHMBA7
CitedBy_id crossref_primary_10_1016_j_nima_2023_168600
crossref_primary_10_1016_j_radphyschem_2024_112166
crossref_primary_10_1109_TRPMS_2024_3492674
crossref_primary_10_1016_j_nima_2023_168357
crossref_primary_10_1093_rpd_ncac245
crossref_primary_10_1016_j_engappai_2024_107876
crossref_primary_10_1155_2022_7008940
crossref_primary_10_1088_1361_6560_aca740
crossref_primary_10_1109_TNS_2022_3193341
crossref_primary_10_1109_TRPMS_2024_3432194
crossref_primary_10_1007_s41365_023_01323_y
Cites_doi 10.1016/j.nima.2014.11.040
10.1088/0031-9155/58/11/3755
10.7150/thno.5162
10.1016/j.radphyschem.2017.01.024
10.5296/ije.v4i2.1962
10.1088/0031-9155/60/18/7085
10.1016/j.nima.2014.11.042
10.3389/fonc.2016.00156
10.1088/1748-0221/9/01/P01008
10.1038/srep29305
10.1088/0031-9155/59/23/7089
10.3389/fonc.2015.00270
10.1088/1361-6560/ab8e89
10.1088/0031-9155/59/18/5399
10.1109/TNS.2011.2150762
10.3389/fonc.2016.00014
ContentType Journal Article
Copyright 2021 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd
Creative Commons Attribution license.
Copyright_xml – notice: 2021 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd
– notice: Creative Commons Attribution license.
DBID O3W
TSCCA
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
DOI 10.1088/1361-6560/ac06e2
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
Physics
EISSN 1361-6560
ExternalDocumentID 10.1088/1361-6560/ac06e2
34062523
10_1088_1361_6560_ac06e2
pmbac06e2
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: DFG Cluster of Excellence MAP (Munich-Centre for Advanced Photonics).
GroupedDBID ---
-DZ
-~X
123
1JI
4.4
5B3
5RE
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABCXL
ABHWH
ABJNI
ABLJU
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
O3W
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
TSCCA
UCJ
W28
XPP
AAYXX
ADEQX
AEINN
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
.GJ
.HR
02O
1WK
29O
3O-
53G
5ZI
9BW
AAGCF
AALHV
ABUFD
ACARI
ACWPO
ADTOC
AERVB
AETNG
AFFNX
AGQPQ
AHSEE
ARNYC
BBWZM
FEDTE
HVGLF
H~9
J5H
JCGBZ
NT-
NT.
Q02
RKQ
S3P
T37
UNPAY
X7L
ZGI
ZMT
ZXP
ZY4
ID FETCH-LOGICAL-c477t-85be8ae3de4c4db3b73be88755d363c1fc5185233410097feef526c6196d72e33
IEDL.DBID UNPAY
ISSN 0031-9155
1361-6560
IngestDate Wed Oct 29 11:45:28 EDT 2025
Fri Sep 05 14:31:50 EDT 2025
Thu Jan 02 22:55:37 EST 2025
Wed Oct 01 00:30:40 EDT 2025
Thu Apr 24 23:06:01 EDT 2025
Wed Aug 21 03:34:57 EDT 2024
Wed Jun 07 11:19:00 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords radiation detection
beam range monitoring
Compton camera
neural networks
spatial resolution
monolithic scintillator
hadron therapy
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Creative Commons Attribution license.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c477t-85be8ae3de4c4db3b73be88755d363c1fc5185233410097feef526c6196d72e33
Notes PMB-111714.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5039-8278
0000-0001-7779-6690
OpenAccessLink https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/1361-6560/ac06e2/pdf
PMID 34062523
PQID 2536463792
PQPubID 23479
PageCount 10
ParticipantIDs pubmed_primary_34062523
proquest_miscellaneous_2536463792
unpaywall_primary_10_1088_1361_6560_ac06e2
crossref_primary_10_1088_1361_6560_ac06e2
iop_journals_10_1088_1361_6560_ac06e2
crossref_citationtrail_10_1088_1361_6560_ac06e2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-02
PublicationDateYYYYMMDD 2021-07-02
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-02
  day: 02
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Physics in medicine & biology
PublicationTitleAbbrev PMB
PublicationTitleAlternate Phys. Med. Biol
PublicationYear 2021
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Ioffe (pmbac06e2bib10) 2015
(pmbac06e2bib20) 2016
Hoffman (pmbac06e2bib9) 2009
Aldawood (pmbac06e2bib1) 2015; 5
Liprandi (pmbac06e2bib14) 2018
Verburg (pmbac06e2bib24) 2014; 59
Gonzalez (pmbac06e2bib6) 2018
Kellnberger (pmbac06e2bib11) 2016; 6
Polf (pmbac06e2bib19) 2015; 60
Manzano (pmbac06e2bib16) 2015; 787
Smeets (pmbac06e2bib22) 2016; 6
Gwosch (pmbac06e2bib7) 2013; 58
Llosá (pmbac06e2bib15) 2016; 6
Zhu (pmbac06e2bib27) 2013; 3
Alkharusi (pmbac06e2bib3) 2012; 4
Aldawood (pmbac06e2bib2) 2017; 140
Lang (pmbac06e2bib13) 2014; 9
Yoshida (pmbac06e2bib26) 2020; 65
Krimmer (pmbac06e2bib12) 2015; 787
(pmbac06e2bib21) 2018
Binder (pmbac06e2bib4) 2017
Viegas (pmbac06e2bib25) 2018
Golnik (pmbac06e2bib5) 2014; 59
van Dam (pmbac06e2bib23) 2011; 58
Photonics, Hamamatsu (pmbac06e2bib8) 2015
References_xml – volume: 787
  start-page: 89
  year: 2015
  ident: pmbac06e2bib16
  article-title: Xemis: a liquid xenon detector for medical imaging
  publication-title: Nucl. Instrum. Methods Phys. Res. A
  doi: 10.1016/j.nima.2014.11.040
– volume: 58
  start-page: 3755
  year: 2013
  ident: pmbac06e2bib7
  article-title: Non-invasive monitoring of therapeutic carbon ion beams in a homogeneous phantom by tracking of secondary ions
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/58/11/3755
– year: 2018
  ident: pmbac06e2bib14
  article-title: Development and performance evaluation of detectors in a Compton camera arrangement for ion beam range monitoring in particle therapy
– year: 2015
  ident: pmbac06e2bib8
  article-title: Flat panel type multianode PMT assembly
– volume: 3
  start-page: 731
  year: 2013
  ident: pmbac06e2bib27
  article-title: Proton therapy verification with PET imaging
  publication-title: Theranostics
  doi: 10.7150/thno.5162
– year: 2018
  ident: pmbac06e2bib21
– volume: 140
  start-page: 190
  year: 2017
  ident: pmbac06e2bib2
  article-title: Development of a Compton camera for prompt-gamma medical imaging
  publication-title: Radiat. Phys. Chem.
  doi: 10.1016/j.radphyschem.2017.01.024
– volume: 4
  start-page: 202
  year: 2012
  ident: pmbac06e2bib3
  article-title: Categorical variables in regression analysis: a comparison of dummy and effect coding
  publication-title: Int. J. Educ.
  doi: 10.5296/ije.v4i2.1962
– volume: 60
  start-page: 7085
  year: 2015
  ident: pmbac06e2bib19
  article-title: Imaging of prompt gamma rays emitted during delivery of clinical proton beams with a Compton camera: feasibility studies for range verification
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/60/18/7085
– year: 2018
  ident: pmbac06e2bib25
  article-title: Optimization study of the performance of a LaBr3 monolithic scintillator in a Compton camera system
– year: 2009
  ident: pmbac06e2bib9
  article-title: TRIVA, VME trigger module
– year: 2016
  ident: pmbac06e2bib20
– volume: 787
  start-page: 98
  year: 2015
  ident: pmbac06e2bib12
  article-title: Development of a Compton camera for medical applications based on silicon strip and scintillation detectors
  publication-title: Nucl. Instrum. Methods Phys. Res. A
  doi: 10.1016/j.nima.2014.11.042
– volume: 6
  start-page: 156
  year: 2016
  ident: pmbac06e2bib22
  article-title: Experimental comparison of knife-edge and multi-parallel slit collimators for prompt gamma imaging of proton pencil beams
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2016.00156
– volume: 9
  start-page: P01008
  year: 2014
  ident: pmbac06e2bib13
  article-title: Sub-millimeter nuclear medical imaging with high sensitivity in positron emission tomography using β+ γ coincidences
  publication-title: J. Instrum.
  doi: 10.1088/1748-0221/9/01/P01008
– year: 2015
  ident: pmbac06e2bib10
  article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift
– volume: 6
  start-page: 29305
  year: 2016
  ident: pmbac06e2bib11
  article-title: Ionoacoustic tomography of the proton Bragg peak in combination with ultrasound and optoacoustic imaging
  publication-title: Sci. Rep.
  doi: 10.1038/srep29305
– year: 2017
  ident: pmbac06e2bib4
  article-title: Evaluation of new components for the absorber detector of the Garching Compton camera prototype
– volume: 59
  start-page: 7089
  year: 2014
  ident: pmbac06e2bib24
  article-title: Proton range verification through prompt gamma-ray spectroscopy
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/59/23/7089
– volume: 5
  year: 2015
  ident: pmbac06e2bib1
  article-title: Comparative characterization study of a LaBr3 (Ce) scintillation crystal in two surface wrapping scenarios: absorptive and reflective
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2015.00270
– volume: 65
  start-page: 125013
  year: 2020
  ident: pmbac06e2bib26
  article-title: Whole gamma imaging: a new concept of PET combined with Compton imaging
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/ab8e89
– volume: 59
  start-page: 5399
  year: 2014
  ident: pmbac06e2bib5
  article-title: Range assessment in particle therapy based on prompt γ-ray timing measurements
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/59/18/5399
– volume: 58
  start-page: 2139
  year: 2011
  ident: pmbac06e2bib23
  article-title: Improved nearest neighbor methods for gamma photon interaction position determination in monolithic scintillator pet detectors
  publication-title: IEEE Transactions on Nuclear Science
  doi: 10.1109/TNS.2011.2150762
– year: 2018
  ident: pmbac06e2bib6
– volume: 6
  start-page: 14
  year: 2016
  ident: pmbac06e2bib15
  article-title: First images of a three-layer Compton telescope prototype for treatment monitoring in hadron therapy
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2016.00014
SSID ssj0011824
Score 2.4317594
Snippet In this work, we present the development and application of a convolutional neural network (CNN)-based algorithm to precisely determine the interaction...
SourceID unpaywall
proquest
pubmed
crossref
iop
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 135017
SubjectTerms Algorithms
beam range monitoring
Compton camera
hadron therapy
monolithic scintillator
neural networks
Neural Networks, Computer
Photons
radiation detection
Radionuclide Imaging
Scintillation Counting
spatial resolution
SummonAdditionalLinks – databaseName: IOP Electronic Journals
  dbid: IOP
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Za9tAEF7SlB556JFeTg-20D40IDvWHlrRp1IaQqHHQwN5KCx7qTGVJWHJLemPyG_OjC6aEtJSMMgWs9JotDM76_lmhpAXYHdTzoWI0iyLI_Bv9yLDrIp4Jgy451kqfYu2-CgPDvn7I3G0QV6PuTBl1Zv-KXztCgV3IuwBcWo2Z3IeYc2YmXF7MoD9vcoUOMaYvffp8xhCAMeZ93HJi0adW4euwL0ucjG3yI11UZmTnybPf1t29m-TrwPDHdrk-3Td2Kn79Uctx_98ojvkVu-O0jcd6V2yEYptcq1rUHmyTa5_6EPvcLLFirr6HjkFYxNht6LFErE0tMICGXWg1XEJjiTFAhSrLl2CDpAw6gfUTftrUdAcEegUdADxd8cLR4H7osEWSNj-h_5YGIqA-F4xgEUsvNkeWtg6Nfm3cgUjl_V9crj_7svbg6hv6xA5niRNpIQNygTmA3fcW2YTBidg3yQ8k8zNMycwo5vB-opZJlkImYilg52e9EkcGHtANouyCI8ItTwLSqRWuThwq1JjYu-c8la6BMvuTMhseMna9TXPsfVGrtvYu1IaRa9R9LoT_YS8GkdUXb2PS2hfwhvVvdLXl9A9P0dXLa2WEsjgI8Ai6spnQDPMPg0KjlEbU4RyXetYMMklS1K4zsNuWo6cMXDHYhDVhOyO8_SvbO_8I9uPyc0YATz4X3b8hGw2q3V4Ch5YY5-1mnYGk48rwA
  priority: 102
  providerName: IOP Publishing
Title Sub-millimeter precise photon interaction position determination in large monolithic scintillators via convolutional neural network algorithms
URI https://iopscience.iop.org/article/10.1088/1361-6560/ac06e2
https://www.ncbi.nlm.nih.gov/pubmed/34062523
https://www.proquest.com/docview/2536463792
https://iopscience.iop.org/article/10.1088/1361-6560/ac06e2/pdf
UnpaywallVersion publishedVersion
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Electronic Journals
  customDbUrl:
  eissn: 1361-6560
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011824
  issn: 0031-9155
  databaseCode: IOP
  dateStart: 19560101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZoJ24PXAaDcpmMBA9MSrvGlySPE2IaSGx7oGI8BdtxWLU0iZoUNH4Ev5lzYqdiaBpCSFGTRsepfWwfn9Tf-Q4hL8HuJpwLESR5Hgbg3-4Giuk44LlQ4J7nicw6tMWhPJjx9yfixOc57WJhqtqb_jFcOqJgp0IPiIsnUyanAXLGTJTZlTac1Fk-IBtSgDM-JBuzw-O9z46McRog-7mLvHJF_EblZY-5sDAN4Mcv8zlvk5urslbn31VR_LYO7d8lX_oWOPjJ2XjV6rH58Qe543808R65431UuufE75Nrttwk113WyvNNcuOD34-Hmx2A1DQPyE-wQAGmMJovEGBDa2TNaCytTyvwLimyUixdDAXtcWI066E43bd5SQuEpVOYGAjKO50bCi0oW8yLhDmB6Le5ooiS97MFqohsnN2pw7JTVXytllBy0Twks_23H98cBD7XQ2B4FLVBLLSNlWWZ5YZnmumIwQ14mRIZk8xMcyMwzJvBoouhJ7m1uQilgdc_mUWhZWyLDMuqtI8J1Ty3sUh0bELLdZwoFWbGxJmWJkIunhGZ9B2dGk-Ejvk4irTbkI_jFNWfovpTp_4Reb0uUTsSkCtkX0Gvpt4SNFfIvbggVy90KiWIwSHATKbQ5SDTj8AUZj1u5ajSVqsmDQWTXLIogec8ckNzXTMGPloIqhqRnfVY_Wu1n_yL8FNyK0RoD_7LHT4jw3a5ss_BN2v1Nhm8OzqGzyP2advPxV9rvjUE
linkProvider Unpaywall
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9NAEF7RIgo8cJQrnIsEDyA5abyH148IiMpV-kClvi276zWNcGwrdkDlR_CbmbHXEUVVQUKK5MSadcaz19jzzTeEPIF1N-VciCjN8zgC_3YnMsyqiOfCgHuepzLr0BZ7cveAvz0Uh6HOaZcLU9Vh6R_D154ouDdhAMSpyZTJaYScMRPjdqSPJ3WWb5DzHU8JZvB93F-HEcB55iE2eVrLE3vRBvzfaW7mZXJxVdbm-Lspit-2ntlV8nlQukecfB2vWjt2P_7gc_yPu7pGrgS3lL7oxa-Tc77cJhf6QpXH22TrQwjBw8kOM-qaG-QnLDoRVi2aLxBTQ2skymg8rY8qcCgpElEs-7QJOkDDaDagb7pf85IWiESnMBcQh3c0dxTuoGyxFBKWAaLf5oYiMD5MEFARCTi7Qwdfp6b4Ui2h5aK5SQ5mrz-93I1CeYfI8SRpIyWsV8azzHPHM8tswuAEPD-JjEnmprkTmNnNYJ_FbJPc-1zE0sETn8yS2DN2i2yWVenvEGp57pVIrXKx51alxsSZcyqz0iVIvzMik6GjtQvc51iCo9BdDF4pjebXaH7dm39Enq1b1D3vxxmyT6FXdZj8zRlyj0_I1QurpQQx-AhYGTV0OcgMI1DDRMfojSl9tWp0LJjkkiUpXOd2PzTXmjFwy2Iw1Yg8X4_Vv6p99x_VfkS29l_N9Ps3e-_ukUsxYnrw9XZ8n2y2y5V_AE5Zax92E-8XN18xIQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdYJxg88DEYlC8ZCR6Y5HaNY8d5nBDThMTEA5XGU7Adh1WkSdSkoPFH8DdzFzsVQ9MQQorUNDq79tk-X-rf_Y6Ql2B30zgWgqVFETHwbw-Y5kaxuBAa3PMilXmPtjiRx_P43ak4DXlO-1iYugmmfwK3nijYqzAA4tR0xuWMIWfMVNsD6aJpkxdbZFsKcMZHZHt-8uHwkydjnDFkP_eRV75IOKi8rJoLG9MW_PhlPuctsrOuGn3-XZflb_vQ0R3yeeiBh598naw7M7E__iB3_I8u3iW3g49KD734PXLNVbvkus9aeb5LbrwP5_HwsAeQ2vY--QkWiGEKo8USATa0QdaM1tHmrAbvkiIrxcrHUNABJ0bzAYrTf1tUtERYOoWFgaC8s4Wl0IOqw7xImBOIfltoiij5sFqgicjG2X_0WHaqyy_1Ckou2wdkfvT245tjFnI9MBsnSceUME5px3MX2zg33CQcHsDLlMi55HZWWIFh3hw2XQw9KZwrRCQtvP7JPIkc53tkVNWVe0SoiQunRGqUjVxsVKp1lFurciNtglw8YzIdBjqzgQgd83GUWX8gr1SG6s9Q_ZlX_5i83pRoPAnIFbKvYFSzYAnaK-ReXJBrliaTEsTgEmAmMxhykBlmYAarHo9ydOXqdZtFgstY8iSFeh76qblpGQcfLQJVjcn-Zq7-tdmP_0X4CbkZIbQH_-WOnpJRt1q7Z-CbdeZ5WH-_AACTMwE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sub-millimeter+precise+photon+interaction+position+determination+in+large+monolithic+scintillators+via+convolutional+neural+network+algorithms&rft.jtitle=Physics+in+medicine+%26+biology&rft.au=Kawula%2C+M&rft.au=Binder%2C+T+M&rft.au=Liprandi%2C+S&rft.au=Viegas%2C+R&rft.date=2021-07-02&rft.eissn=1361-6560&rft.volume=66&rft.issue=13&rft_id=info:doi/10.1088%2F1361-6560%2Fac06e2&rft_id=info%3Apmid%2F34062523&rft.externalDocID=34062523
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9155&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9155&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9155&client=summon