Sub-millimeter precise photon interaction position determination in large monolithic scintillators via convolutional neural network algorithms
In this work, we present the development and application of a convolutional neural network (CNN)-based algorithm to precisely determine the interaction position of γ -quanta in large monolithic scintillators. Those are used as an absorber component of a Compton camera (CC) system under development f...
Saved in:
| Published in | Physics in medicine & biology Vol. 66; no. 13; pp. 135017 - 135026 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
IOP Publishing
02.07.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0031-9155 1361-6560 1361-6560 |
| DOI | 10.1088/1361-6560/ac06e2 |
Cover
| Abstract | In this work, we present the development and application of a convolutional neural network (CNN)-based algorithm to precisely determine the interaction position of
γ
-quanta in large monolithic scintillators. Those are used as an absorber component of a Compton camera (CC) system under development for ion beam range verification via prompt-gamma imaging. We examined two scintillation crystals: LaBr
3
:Ce and CeBr
3
. Each crystal had dimensions of 50.8 mm × 50.8 mm × 30 mm and was coupled to a 64-fold segmented multi-anode photomultiplier tube (PMT) with an 8 × 8 pixel arrangement. We determined the spatial resolution for three photon energies of 662, 1.17 and 1.33 MeV obtained from 2D detector scans with tightly collimated
137
Cs and
60
Co photon sources. With the new algorithm we achieved a spatial resolution for the CeBr3 crystal below 1.11(8) mm and below 0.98(7) mm for the LaBr3:Ce detector for all investigated energies between 662 keV and 1.33 MeV. We thereby improved the performance by more than a factor of 2.5 compared to the previously used categorical average pattern algorithm, which is a variation of the well-established k-nearest neighbor algorithm. The trained CNN has a low memory footprint and enables the reconstruction of up to 10
4
events per second with only one GPU. Those improvements are crucial on the way to future clinical
in vivo
applicability of the CC for ion beam range verification. |
|---|---|
| AbstractList | In this work, we present the development and application of a convolutional neural network (CNN)-based algorithm to precisely determine the interaction position of
-quanta in large monolithic scintillators. Those are used as an absorber component of a Compton camera (CC) system under development for ion beam range verification via prompt-gamma imaging. We examined two scintillation crystals: LaBr
:Ce and CeBr
. Each crystal had dimensions of 50.8 mm × 50.8 mm × 30 mm and was coupled to a 64-fold segmented multi-anode photomultiplier tube (PMT) with an 8 × 8 pixel arrangement. We determined the spatial resolution for three photon energies of 662, 1.17 and 1.33 MeV obtained from 2D detector scans with tightly collimated
Cs and
Co photon sources. With the new algorithm we achieved a spatial resolution for the CeBr3 crystal below 1.11(8) mm and below 0.98(7) mm for the LaBr3:Ce detector for all investigated energies between 662 keV and 1.33 MeV. We thereby improved the performance by more than a factor of 2.5 compared to the previously used categorical average pattern algorithm, which is a variation of the well-established k-nearest neighbor algorithm. The trained CNN has a low memory footprint and enables the reconstruction of up to 10
events per second with only one GPU. Those improvements are crucial on the way to future clinical
applicability of the CC for ion beam range verification. In this work, we present the development and application of a convolutional neural network (CNN)-based algorithm to precisely determine the interaction position of γ -quanta in large monolithic scintillators. Those are used as an absorber component of a Compton camera (CC) system under development for ion beam range verification via prompt-gamma imaging. We examined two scintillation crystals: LaBr 3 :Ce and CeBr 3 . Each crystal had dimensions of 50.8 mm × 50.8 mm × 30 mm and was coupled to a 64-fold segmented multi-anode photomultiplier tube (PMT) with an 8 × 8 pixel arrangement. We determined the spatial resolution for three photon energies of 662, 1.17 and 1.33 MeV obtained from 2D detector scans with tightly collimated 137 Cs and 60 Co photon sources. With the new algorithm we achieved a spatial resolution for the CeBr3 crystal below 1.11(8) mm and below 0.98(7) mm for the LaBr3:Ce detector for all investigated energies between 662 keV and 1.33 MeV. We thereby improved the performance by more than a factor of 2.5 compared to the previously used categorical average pattern algorithm, which is a variation of the well-established k-nearest neighbor algorithm. The trained CNN has a low memory footprint and enables the reconstruction of up to 10 4 events per second with only one GPU. Those improvements are crucial on the way to future clinical in vivo applicability of the CC for ion beam range verification. In this work, we present the development and application of a convolutional neural network (CNN)-based algorithm to precisely determine the interaction position ofγ-quanta in large monolithic scintillators. Those are used as an absorber component of a Compton camera (CC) system under development for ion beam range verification via prompt-gamma imaging. We examined two scintillation crystals: LaBr3:Ce and CeBr3. Each crystal had dimensions of 50.8 mm × 50.8 mm × 30 mm and was coupled to a 64-fold segmented multi-anode photomultiplier tube (PMT) with an 8 × 8 pixel arrangement. We determined the spatial resolution for three photon energies of 662, 1.17 and 1.33 MeV obtained from 2D detector scans with tightly collimated137Cs and60Co photon sources. With the new algorithm we achieved a spatial resolution for the CeBr3 crystal below 1.11(8) mm and below 0.98(7) mm for the LaBr3:Ce detector for all investigated energies between 662 keV and 1.33 MeV. We thereby improved the performance by more than a factor of 2.5 compared to the previously used categorical average pattern algorithm, which is a variation of the well-established k-nearest neighbor algorithm. The trained CNN has a low memory footprint and enables the reconstruction of up to 104events per second with only one GPU. Those improvements are crucial on the way to future clinicalin vivoapplicability of the CC for ion beam range verification.In this work, we present the development and application of a convolutional neural network (CNN)-based algorithm to precisely determine the interaction position ofγ-quanta in large monolithic scintillators. Those are used as an absorber component of a Compton camera (CC) system under development for ion beam range verification via prompt-gamma imaging. We examined two scintillation crystals: LaBr3:Ce and CeBr3. Each crystal had dimensions of 50.8 mm × 50.8 mm × 30 mm and was coupled to a 64-fold segmented multi-anode photomultiplier tube (PMT) with an 8 × 8 pixel arrangement. We determined the spatial resolution for three photon energies of 662, 1.17 and 1.33 MeV obtained from 2D detector scans with tightly collimated137Cs and60Co photon sources. With the new algorithm we achieved a spatial resolution for the CeBr3 crystal below 1.11(8) mm and below 0.98(7) mm for the LaBr3:Ce detector for all investigated energies between 662 keV and 1.33 MeV. We thereby improved the performance by more than a factor of 2.5 compared to the previously used categorical average pattern algorithm, which is a variation of the well-established k-nearest neighbor algorithm. The trained CNN has a low memory footprint and enables the reconstruction of up to 104events per second with only one GPU. Those improvements are crucial on the way to future clinicalin vivoapplicability of the CC for ion beam range verification. |
| Author | Liprandi, S Kawula, M Parodi, K Viegas, R Thirolf, P G Binder, T M |
| Author_xml | – sequence: 1 givenname: M orcidid: 0000-0002-5039-8278 surname: Kawula fullname: Kawula, M organization: Ludwig-Maximilians-Universität München Department of Medical Physics, Garching b. München, Germany – sequence: 2 givenname: T M surname: Binder fullname: Binder, T M organization: KETEK GmbH , Munich, Germany – sequence: 3 givenname: S surname: Liprandi fullname: Liprandi, S organization: Ludwig-Maximilians-Universität München Department of Medical Physics, Garching b. München, Germany – sequence: 4 givenname: R surname: Viegas fullname: Viegas, R organization: University of Coimbra , Portugal – sequence: 5 givenname: K orcidid: 0000-0001-7779-6690 surname: Parodi fullname: Parodi, K organization: Ludwig-Maximilians-Universität München Department of Medical Physics, Garching b. München, Germany – sequence: 6 givenname: P G surname: Thirolf fullname: Thirolf, P G organization: Ludwig-Maximilians-Universität München Department of Medical Physics, Garching b. München, Germany |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34062523$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkc1u1TAQhS1URG8Le1bISxYNtePYyV2iigJSJRa0a8txJq2L_7CdVn0Jnhnn3tIFAqmSpRmPvjP2nDlCBz54QOgtJR8oGYZTygRtBBfkVGkioH2BNk-lA7QhhNFmSzk_REc53xJC6dB2r9Ah64hoecs26Nf3ZWycsdY4KJBwTKBNBhxvQgkeG1-LShdT8xiy2SXTSjrj1e5mPLYqXQN2wQdryo3ROOsqrE1VCSnjO6OwDv4u2GVVKIs9LGkXyn1IP7Cy1yFVpcuv0ctZ2QxvHuMxujr_dHn2pbn49vnr2ceLRnd9X5qBjzAoYBN0uptGNvasFoae84kJpumsOR3qfKyjhGz7GWDmrdCCbsXUt8DYMaL7vouP6uFeWStjMk6lB0mJXL2Vq5FyNVLuva2a93tNTOHnArlIZ7KGOqWHsGTZciY6wfrtir57RJfRwfTU-4_vFSB7QKeQc4L5Oc-LvyTalN0KSlLGPuPfJkR5G5ZUN5BldKMUotL1cEJ7Gae5oif_QP_b-TdNrsX6 |
| CODEN | PHMBA7 |
| CitedBy_id | crossref_primary_10_1016_j_nima_2023_168600 crossref_primary_10_1016_j_radphyschem_2024_112166 crossref_primary_10_1109_TRPMS_2024_3492674 crossref_primary_10_1016_j_nima_2023_168357 crossref_primary_10_1093_rpd_ncac245 crossref_primary_10_1016_j_engappai_2024_107876 crossref_primary_10_1155_2022_7008940 crossref_primary_10_1088_1361_6560_aca740 crossref_primary_10_1109_TNS_2022_3193341 crossref_primary_10_1109_TRPMS_2024_3432194 crossref_primary_10_1007_s41365_023_01323_y |
| Cites_doi | 10.1016/j.nima.2014.11.040 10.1088/0031-9155/58/11/3755 10.7150/thno.5162 10.1016/j.radphyschem.2017.01.024 10.5296/ije.v4i2.1962 10.1088/0031-9155/60/18/7085 10.1016/j.nima.2014.11.042 10.3389/fonc.2016.00156 10.1088/1748-0221/9/01/P01008 10.1038/srep29305 10.1088/0031-9155/59/23/7089 10.3389/fonc.2015.00270 10.1088/1361-6560/ab8e89 10.1088/0031-9155/59/18/5399 10.1109/TNS.2011.2150762 10.3389/fonc.2016.00014 |
| ContentType | Journal Article |
| Copyright | 2021 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd Creative Commons Attribution license. |
| Copyright_xml | – notice: 2021 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd – notice: Creative Commons Attribution license. |
| DBID | O3W TSCCA AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ADTOC UNPAY |
| DOI | 10.1088/1361-6560/ac06e2 |
| DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Biology Physics |
| EISSN | 1361-6560 |
| ExternalDocumentID | 10.1088/1361-6560/ac06e2 34062523 10_1088_1361_6560_ac06e2 pmbac06e2 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: DFG Cluster of Excellence MAP (Munich-Centre for Advanced Photonics). |
| GroupedDBID | --- -DZ -~X 123 1JI 4.4 5B3 5RE 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI ABCXL ABHWH ABJNI ABLJU ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN F5P HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A O3W P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TN5 TSCCA UCJ W28 XPP AAYXX ADEQX AEINN CITATION CGR CUY CVF ECM EIF NPM 7X8 .GJ .HR 02O 1WK 29O 3O- 53G 5ZI 9BW AAGCF AALHV ABUFD ACARI ACWPO ADTOC AERVB AETNG AFFNX AGQPQ AHSEE ARNYC BBWZM FEDTE HVGLF H~9 J5H JCGBZ NT- NT. Q02 RKQ S3P T37 UNPAY X7L ZGI ZMT ZXP ZY4 |
| ID | FETCH-LOGICAL-c477t-85be8ae3de4c4db3b73be88755d363c1fc5185233410097feef526c6196d72e33 |
| IEDL.DBID | UNPAY |
| ISSN | 0031-9155 1361-6560 |
| IngestDate | Wed Oct 29 11:45:28 EDT 2025 Fri Sep 05 14:31:50 EDT 2025 Thu Jan 02 22:55:37 EST 2025 Wed Oct 01 00:30:40 EDT 2025 Thu Apr 24 23:06:01 EDT 2025 Wed Aug 21 03:34:57 EDT 2024 Wed Jun 07 11:19:00 EDT 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Keywords | radiation detection beam range monitoring Compton camera neural networks spatial resolution monolithic scintillator hadron therapy |
| Language | English |
| License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Creative Commons Attribution license. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c477t-85be8ae3de4c4db3b73be88755d363c1fc5185233410097feef526c6196d72e33 |
| Notes | PMB-111714.R1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-5039-8278 0000-0001-7779-6690 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/1361-6560/ac06e2/pdf |
| PMID | 34062523 |
| PQID | 2536463792 |
| PQPubID | 23479 |
| PageCount | 10 |
| ParticipantIDs | pubmed_primary_34062523 proquest_miscellaneous_2536463792 unpaywall_primary_10_1088_1361_6560_ac06e2 crossref_primary_10_1088_1361_6560_ac06e2 iop_journals_10_1088_1361_6560_ac06e2 crossref_citationtrail_10_1088_1361_6560_ac06e2 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-07-02 |
| PublicationDateYYYYMMDD | 2021-07-02 |
| PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Physics in medicine & biology |
| PublicationTitleAbbrev | PMB |
| PublicationTitleAlternate | Phys. Med. Biol |
| PublicationYear | 2021 |
| Publisher | IOP Publishing |
| Publisher_xml | – name: IOP Publishing |
| References | Ioffe (pmbac06e2bib10) 2015 (pmbac06e2bib20) 2016 Hoffman (pmbac06e2bib9) 2009 Aldawood (pmbac06e2bib1) 2015; 5 Liprandi (pmbac06e2bib14) 2018 Verburg (pmbac06e2bib24) 2014; 59 Gonzalez (pmbac06e2bib6) 2018 Kellnberger (pmbac06e2bib11) 2016; 6 Polf (pmbac06e2bib19) 2015; 60 Manzano (pmbac06e2bib16) 2015; 787 Smeets (pmbac06e2bib22) 2016; 6 Gwosch (pmbac06e2bib7) 2013; 58 Llosá (pmbac06e2bib15) 2016; 6 Zhu (pmbac06e2bib27) 2013; 3 Alkharusi (pmbac06e2bib3) 2012; 4 Aldawood (pmbac06e2bib2) 2017; 140 Lang (pmbac06e2bib13) 2014; 9 Yoshida (pmbac06e2bib26) 2020; 65 Krimmer (pmbac06e2bib12) 2015; 787 (pmbac06e2bib21) 2018 Binder (pmbac06e2bib4) 2017 Viegas (pmbac06e2bib25) 2018 Golnik (pmbac06e2bib5) 2014; 59 van Dam (pmbac06e2bib23) 2011; 58 Photonics, Hamamatsu (pmbac06e2bib8) 2015 |
| References_xml | – volume: 787 start-page: 89 year: 2015 ident: pmbac06e2bib16 article-title: Xemis: a liquid xenon detector for medical imaging publication-title: Nucl. Instrum. Methods Phys. Res. A doi: 10.1016/j.nima.2014.11.040 – volume: 58 start-page: 3755 year: 2013 ident: pmbac06e2bib7 article-title: Non-invasive monitoring of therapeutic carbon ion beams in a homogeneous phantom by tracking of secondary ions publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/58/11/3755 – year: 2018 ident: pmbac06e2bib14 article-title: Development and performance evaluation of detectors in a Compton camera arrangement for ion beam range monitoring in particle therapy – year: 2015 ident: pmbac06e2bib8 article-title: Flat panel type multianode PMT assembly – volume: 3 start-page: 731 year: 2013 ident: pmbac06e2bib27 article-title: Proton therapy verification with PET imaging publication-title: Theranostics doi: 10.7150/thno.5162 – year: 2018 ident: pmbac06e2bib21 – volume: 140 start-page: 190 year: 2017 ident: pmbac06e2bib2 article-title: Development of a Compton camera for prompt-gamma medical imaging publication-title: Radiat. Phys. Chem. doi: 10.1016/j.radphyschem.2017.01.024 – volume: 4 start-page: 202 year: 2012 ident: pmbac06e2bib3 article-title: Categorical variables in regression analysis: a comparison of dummy and effect coding publication-title: Int. J. Educ. doi: 10.5296/ije.v4i2.1962 – volume: 60 start-page: 7085 year: 2015 ident: pmbac06e2bib19 article-title: Imaging of prompt gamma rays emitted during delivery of clinical proton beams with a Compton camera: feasibility studies for range verification publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/60/18/7085 – year: 2018 ident: pmbac06e2bib25 article-title: Optimization study of the performance of a LaBr3 monolithic scintillator in a Compton camera system – year: 2009 ident: pmbac06e2bib9 article-title: TRIVA, VME trigger module – year: 2016 ident: pmbac06e2bib20 – volume: 787 start-page: 98 year: 2015 ident: pmbac06e2bib12 article-title: Development of a Compton camera for medical applications based on silicon strip and scintillation detectors publication-title: Nucl. Instrum. Methods Phys. Res. A doi: 10.1016/j.nima.2014.11.042 – volume: 6 start-page: 156 year: 2016 ident: pmbac06e2bib22 article-title: Experimental comparison of knife-edge and multi-parallel slit collimators for prompt gamma imaging of proton pencil beams publication-title: Front. Oncol. doi: 10.3389/fonc.2016.00156 – volume: 9 start-page: P01008 year: 2014 ident: pmbac06e2bib13 article-title: Sub-millimeter nuclear medical imaging with high sensitivity in positron emission tomography using β+ γ coincidences publication-title: J. Instrum. doi: 10.1088/1748-0221/9/01/P01008 – year: 2015 ident: pmbac06e2bib10 article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift – volume: 6 start-page: 29305 year: 2016 ident: pmbac06e2bib11 article-title: Ionoacoustic tomography of the proton Bragg peak in combination with ultrasound and optoacoustic imaging publication-title: Sci. Rep. doi: 10.1038/srep29305 – year: 2017 ident: pmbac06e2bib4 article-title: Evaluation of new components for the absorber detector of the Garching Compton camera prototype – volume: 59 start-page: 7089 year: 2014 ident: pmbac06e2bib24 article-title: Proton range verification through prompt gamma-ray spectroscopy publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/59/23/7089 – volume: 5 year: 2015 ident: pmbac06e2bib1 article-title: Comparative characterization study of a LaBr3 (Ce) scintillation crystal in two surface wrapping scenarios: absorptive and reflective publication-title: Front. Oncol. doi: 10.3389/fonc.2015.00270 – volume: 65 start-page: 125013 year: 2020 ident: pmbac06e2bib26 article-title: Whole gamma imaging: a new concept of PET combined with Compton imaging publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/ab8e89 – volume: 59 start-page: 5399 year: 2014 ident: pmbac06e2bib5 article-title: Range assessment in particle therapy based on prompt γ-ray timing measurements publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/59/18/5399 – volume: 58 start-page: 2139 year: 2011 ident: pmbac06e2bib23 article-title: Improved nearest neighbor methods for gamma photon interaction position determination in monolithic scintillator pet detectors publication-title: IEEE Transactions on Nuclear Science doi: 10.1109/TNS.2011.2150762 – year: 2018 ident: pmbac06e2bib6 – volume: 6 start-page: 14 year: 2016 ident: pmbac06e2bib15 article-title: First images of a three-layer Compton telescope prototype for treatment monitoring in hadron therapy publication-title: Front. Oncol. doi: 10.3389/fonc.2016.00014 |
| SSID | ssj0011824 |
| Score | 2.4317594 |
| Snippet | In this work, we present the development and application of a convolutional neural network (CNN)-based algorithm to precisely determine the interaction... |
| SourceID | unpaywall proquest pubmed crossref iop |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 135017 |
| SubjectTerms | Algorithms beam range monitoring Compton camera hadron therapy monolithic scintillator neural networks Neural Networks, Computer Photons radiation detection Radionuclide Imaging Scintillation Counting spatial resolution |
| SummonAdditionalLinks | – databaseName: IOP Electronic Journals dbid: IOP link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Za9tAEF7SlB556JFeTg-20D40IDvWHlrRp1IaQqHHQwN5KCx7qTGVJWHJLemPyG_OjC6aEtJSMMgWs9JotDM76_lmhpAXYHdTzoWI0iyLI_Bv9yLDrIp4Jgy451kqfYu2-CgPDvn7I3G0QV6PuTBl1Zv-KXztCgV3IuwBcWo2Z3IeYc2YmXF7MoD9vcoUOMaYvffp8xhCAMeZ93HJi0adW4euwL0ucjG3yI11UZmTnybPf1t29m-TrwPDHdrk-3Td2Kn79Uctx_98ojvkVu-O0jcd6V2yEYptcq1rUHmyTa5_6EPvcLLFirr6HjkFYxNht6LFErE0tMICGXWg1XEJjiTFAhSrLl2CDpAw6gfUTftrUdAcEegUdADxd8cLR4H7osEWSNj-h_5YGIqA-F4xgEUsvNkeWtg6Nfm3cgUjl_V9crj_7svbg6hv6xA5niRNpIQNygTmA3fcW2YTBidg3yQ8k8zNMycwo5vB-opZJlkImYilg52e9EkcGHtANouyCI8ItTwLSqRWuThwq1JjYu-c8la6BMvuTMhseMna9TXPsfVGrtvYu1IaRa9R9LoT_YS8GkdUXb2PS2hfwhvVvdLXl9A9P0dXLa2WEsjgI8Ai6spnQDPMPg0KjlEbU4RyXetYMMklS1K4zsNuWo6cMXDHYhDVhOyO8_SvbO_8I9uPyc0YATz4X3b8hGw2q3V4Ch5YY5-1mnYGk48rwA priority: 102 providerName: IOP Publishing |
| Title | Sub-millimeter precise photon interaction position determination in large monolithic scintillators via convolutional neural network algorithms |
| URI | https://iopscience.iop.org/article/10.1088/1361-6560/ac06e2 https://www.ncbi.nlm.nih.gov/pubmed/34062523 https://www.proquest.com/docview/2536463792 https://iopscience.iop.org/article/10.1088/1361-6560/ac06e2/pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 66 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: IOP Electronic Journals customDbUrl: eissn: 1361-6560 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011824 issn: 0031-9155 databaseCode: IOP dateStart: 19560101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZoJ24PXAaDcpmMBA9MSrvGlySPE2IaSGx7oGI8BdtxWLU0iZoUNH4Ev5lzYqdiaBpCSFGTRsepfWwfn9Tf-Q4hL8HuJpwLESR5Hgbg3-4Giuk44LlQ4J7nicw6tMWhPJjx9yfixOc57WJhqtqb_jFcOqJgp0IPiIsnUyanAXLGTJTZlTac1Fk-IBtSgDM-JBuzw-O9z46McRog-7mLvHJF_EblZY-5sDAN4Mcv8zlvk5urslbn31VR_LYO7d8lX_oWOPjJ2XjV6rH58Qe543808R65431UuufE75Nrttwk113WyvNNcuOD34-Hmx2A1DQPyE-wQAGmMJovEGBDa2TNaCytTyvwLimyUixdDAXtcWI066E43bd5SQuEpVOYGAjKO50bCi0oW8yLhDmB6Le5ooiS97MFqohsnN2pw7JTVXytllBy0Twks_23H98cBD7XQ2B4FLVBLLSNlWWZ5YZnmumIwQ14mRIZk8xMcyMwzJvBoouhJ7m1uQilgdc_mUWhZWyLDMuqtI8J1Ty3sUh0bELLdZwoFWbGxJmWJkIunhGZ9B2dGk-Ejvk4irTbkI_jFNWfovpTp_4Reb0uUTsSkCtkX0Gvpt4SNFfIvbggVy90KiWIwSHATKbQ5SDTj8AUZj1u5ajSVqsmDQWTXLIogec8ckNzXTMGPloIqhqRnfVY_Wu1n_yL8FNyK0RoD_7LHT4jw3a5ss_BN2v1Nhm8OzqGzyP2advPxV9rvjUE |
| linkProvider | Unpaywall |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9NAEF7RIgo8cJQrnIsEDyA5abyH148IiMpV-kClvi276zWNcGwrdkDlR_CbmbHXEUVVQUKK5MSadcaz19jzzTeEPIF1N-VciCjN8zgC_3YnMsyqiOfCgHuepzLr0BZ7cveAvz0Uh6HOaZcLU9Vh6R_D154ouDdhAMSpyZTJaYScMRPjdqSPJ3WWb5DzHU8JZvB93F-HEcB55iE2eVrLE3vRBvzfaW7mZXJxVdbm-Lspit-2ntlV8nlQukecfB2vWjt2P_7gc_yPu7pGrgS3lL7oxa-Tc77cJhf6QpXH22TrQwjBw8kOM-qaG-QnLDoRVi2aLxBTQ2skymg8rY8qcCgpElEs-7QJOkDDaDagb7pf85IWiESnMBcQh3c0dxTuoGyxFBKWAaLf5oYiMD5MEFARCTi7Qwdfp6b4Ui2h5aK5SQ5mrz-93I1CeYfI8SRpIyWsV8azzHPHM8tswuAEPD-JjEnmprkTmNnNYJ_FbJPc-1zE0sETn8yS2DN2i2yWVenvEGp57pVIrXKx51alxsSZcyqz0iVIvzMik6GjtQvc51iCo9BdDF4pjebXaH7dm39Enq1b1D3vxxmyT6FXdZj8zRlyj0_I1QurpQQx-AhYGTV0OcgMI1DDRMfojSl9tWp0LJjkkiUpXOd2PzTXmjFwy2Iw1Yg8X4_Vv6p99x_VfkS29l_N9Ps3e-_ukUsxYnrw9XZ8n2y2y5V_AE5Zax92E-8XN18xIQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdYJxg88DEYlC8ZCR6Y5HaNY8d5nBDThMTEA5XGU7Adh1WkSdSkoPFH8DdzFzsVQ9MQQorUNDq79tk-X-rf_Y6Ql2B30zgWgqVFETHwbw-Y5kaxuBAa3PMilXmPtjiRx_P43ak4DXlO-1iYugmmfwK3nijYqzAA4tR0xuWMIWfMVNsD6aJpkxdbZFsKcMZHZHt-8uHwkydjnDFkP_eRV75IOKi8rJoLG9MW_PhlPuctsrOuGn3-XZflb_vQ0R3yeeiBh598naw7M7E__iB3_I8u3iW3g49KD734PXLNVbvkus9aeb5LbrwP5_HwsAeQ2vY--QkWiGEKo8USATa0QdaM1tHmrAbvkiIrxcrHUNABJ0bzAYrTf1tUtERYOoWFgaC8s4Wl0IOqw7xImBOIfltoiij5sFqgicjG2X_0WHaqyy_1Ckou2wdkfvT245tjFnI9MBsnSceUME5px3MX2zg33CQcHsDLlMi55HZWWIFh3hw2XQw9KZwrRCQtvP7JPIkc53tkVNWVe0SoiQunRGqUjVxsVKp1lFurciNtglw8YzIdBjqzgQgd83GUWX8gr1SG6s9Q_ZlX_5i83pRoPAnIFbKvYFSzYAnaK-ReXJBrliaTEsTgEmAmMxhykBlmYAarHo9ydOXqdZtFgstY8iSFeh76qblpGQcfLQJVjcn-Zq7-tdmP_0X4CbkZIbQH_-WOnpJRt1q7Z-CbdeZ5WH-_AACTMwE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sub-millimeter+precise+photon+interaction+position+determination+in+large+monolithic+scintillators+via+convolutional+neural+network+algorithms&rft.jtitle=Physics+in+medicine+%26+biology&rft.au=Kawula%2C+M&rft.au=Binder%2C+T+M&rft.au=Liprandi%2C+S&rft.au=Viegas%2C+R&rft.date=2021-07-02&rft.eissn=1361-6560&rft.volume=66&rft.issue=13&rft_id=info:doi/10.1088%2F1361-6560%2Fac06e2&rft_id=info%3Apmid%2F34062523&rft.externalDocID=34062523 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9155&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9155&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9155&client=summon |