Trade-offs between bycatch and target catches in static versus dynamic fishery closures

While there have been recent improvements in reducing bycatch in many fisheries, bycatch remains a threat for numerous species around the globe. Static spatial and temporal closures are used in many places as a tool to reduce bycatch. However, their effectiveness in achieving this goal is uncertain,...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 119; no. 4; pp. 1 - 11
Main Authors Pons, Maite, Watson, Jordan T., Ovando, Daniel, Andraka, Sandra, Brodie, Stephanie, Domingo, Andrés, Fitchett, Mark, Forselledo, Rodrigo, Hall, Martin, Hazen, Elliott L., Jannot, Jason E., Herrera, Miguel, Jiménez, Sebastián, Kaplan, David M., Kerwath, Sven, Lopez, Jon, McVeigh, Jon, Pacheco, Lucas, Rendon, Liliana, Richerson, Kate, Sant’Ana, Rodrigo, Sharma, Rishi, Smith, James A., Somers, Kayleigh, Hilborn, Ray
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 25.01.2022
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.2114508119

Cover

Abstract While there have been recent improvements in reducing bycatch in many fisheries, bycatch remains a threat for numerous species around the globe. Static spatial and temporal closures are used in many places as a tool to reduce bycatch. However, their effectiveness in achieving this goal is uncertain, particularly for highly mobile species.We evaluated evidence for the effects of temporal, static, and dynamic area closures on the bycatch and target catch of 15 fisheries around the world. Assuming perfect knowledge of where the catch and bycatch occurs and a closure of 30% of the fishing area, we found that dynamic area closures could reduce bycatch by an average of 57% without sacrificing catch of target species, compared to 16% reductions in bycatch achievable by static closures. The degree of bycatch reduction achievable for a certain quantity of target catch was related to the correlation in space and time between target and bycatch species. If the correlation was high, it was harder to find an area to reduce bycatch without sacrificing catch of target species. If the goal of spatial closures is to reduce bycatch, our results suggest that dynamic management provides substantially better outcomes than classic static marine area closures. The use of dynamic ocean management might be difficult to implement and enforce in many regions. Nevertheless, dynamic approaches will be increasingly valuable as climate change drives species and fisheries into new habitats or extended ranges, altering species-fishery interactions and underscoring the need for more responsive and flexible regulatory mechanisms.
AbstractList While there have been recent improvements in reducing bycatch in many fisheries, bycatch remains a threat for numerous species around the globe. Static spatial and temporal closures are used in many places as a tool to reduce bycatch. However, their effectiveness in achieving this goal is uncertain, particularly for highly mobile species. We evaluated evidence for the effects of temporal, static, and dynamic area closures on the bycatch and target catch of 15 fisheries around the world. Assuming perfect knowledge of where the catch and bycatch occurs and a closure of 30% of the fishing area, we found that dynamic area closures could reduce bycatch by an average of 57% without sacrificing catch of target species, compared to 16% reductions in bycatch achievable by static closures. The degree of bycatch reduction achievable for a certain quantity of target catch was related to the correlation in space and time between target and bycatch species. If the correlation was high, it was harder to find an area to reduce bycatch without sacrificing catch of target species. If the goal of spatial closures is to reduce bycatch, our results suggest that dynamic management provides substantially better outcomes than classic static marine area closures. The use of dynamic ocean management might be difficult to implement and enforce in many regions. Nevertheless, dynamic approaches will be increasingly valuable as climate change drives species and fisheries into new habitats or extended ranges, altering species-fishery interactions and underscoring the need for more responsive and flexible regulatory mechanisms.
While there have been recent improvements in reducing bycatch in many fisheries, bycatch remains a threat for numerous species around the globe. Static spatial and temporal closures are used in many places as a tool to reduce bycatch. However, their effectiveness in achieving this goal is uncertain, particularly for highly mobile species. We evaluated evidence for the effects of temporal, static, and dynamic area closures on the bycatch and target catch of 15 fisheries around the world. Assuming perfect knowledge of where the catch and bycatch occurs and a closure of 30% of the fishing area, we found that dynamic area closures could reduce bycatch by an average of 57% without sacrificing catch of target species, compared to 16% reductions in bycatch achievable by static closures. The degree of bycatch reduction achievable for a certain quantity of target catch was related to the correlation in space and time between target and bycatch species. If the correlation was high, it was harder to find an area to reduce bycatch without sacrificing catch of target species. If the goal of spatial closures is to reduce bycatch, our results suggest that dynamic management provides substantially better outcomes than classic static marine area closures. The use of dynamic ocean management might be difficult to implement and enforce in many regions. Nevertheless, dynamic approaches will be increasingly valuable as climate change drives species and fisheries into new habitats or extended ranges, altering species-fishery interactions and underscoring the need for more responsive and flexible regulatory mechanisms.While there have been recent improvements in reducing bycatch in many fisheries, bycatch remains a threat for numerous species around the globe. Static spatial and temporal closures are used in many places as a tool to reduce bycatch. However, their effectiveness in achieving this goal is uncertain, particularly for highly mobile species. We evaluated evidence for the effects of temporal, static, and dynamic area closures on the bycatch and target catch of 15 fisheries around the world. Assuming perfect knowledge of where the catch and bycatch occurs and a closure of 30% of the fishing area, we found that dynamic area closures could reduce bycatch by an average of 57% without sacrificing catch of target species, compared to 16% reductions in bycatch achievable by static closures. The degree of bycatch reduction achievable for a certain quantity of target catch was related to the correlation in space and time between target and bycatch species. If the correlation was high, it was harder to find an area to reduce bycatch without sacrificing catch of target species. If the goal of spatial closures is to reduce bycatch, our results suggest that dynamic management provides substantially better outcomes than classic static marine area closures. The use of dynamic ocean management might be difficult to implement and enforce in many regions. Nevertheless, dynamic approaches will be increasingly valuable as climate change drives species and fisheries into new habitats or extended ranges, altering species-fishery interactions and underscoring the need for more responsive and flexible regulatory mechanisms.
The incidental catch of threatened species is still one of the main barriers to fisheries sustainability. What would happen if we closed 30% of the ocean to fishing with the goal of reducing bycatch? Analyzing 15 different fisheries around the globe, we found that under static area management, such as classic no-take marine area closures, observed bycatch could be reduced by 16%. However, under dynamic ocean management based on observed bycatch and closing the same total area but fragmented in smaller areas that can move year to year, that reduction can increase up to 57% at minimal or no loss of target catch. While there have been recent improvements in reducing bycatch in many fisheries, bycatch remains a threat for numerous species around the globe. Static spatial and temporal closures are used in many places as a tool to reduce bycatch. However, their effectiveness in achieving this goal is uncertain, particularly for highly mobile species. We evaluated evidence for the effects of temporal, static, and dynamic area closures on the bycatch and target catch of 15 fisheries around the world. Assuming perfect knowledge of where the catch and bycatch occurs and a closure of 30% of the fishing area, we found that dynamic area closures could reduce bycatch by an average of 57% without sacrificing catch of target species, compared to 16% reductions in bycatch achievable by static closures. The degree of bycatch reduction achievable for a certain quantity of target catch was related to the correlation in space and time between target and bycatch species. If the correlation was high, it was harder to find an area to reduce bycatch without sacrificing catch of target species. If the goal of spatial closures is to reduce bycatch, our results suggest that dynamic management provides substantially better outcomes than classic static marine area closures. The use of dynamic ocean management might be difficult to implement and enforce in many regions. Nevertheless, dynamic approaches will be increasingly valuable as climate change drives species and fisheries into new habitats or extended ranges, altering species-fishery interactions and underscoring the need for more responsive and flexible regulatory mechanisms.
Author Jannot, Jason E.
Jiménez, Sebastián
McVeigh, Jon
Hall, Martin
Domingo, Andrés
Sharma, Rishi
Rendon, Liliana
Smith, James A.
Ovando, Daniel
Kerwath, Sven
Forselledo, Rodrigo
Pacheco, Lucas
Hilborn, Ray
Richerson, Kate
Kaplan, David M.
Lopez, Jon
Fitchett, Mark
Somers, Kayleigh
Hazen, Elliott L.
Sant’Ana, Rodrigo
Watson, Jordan T.
Pons, Maite
Brodie, Stephanie
Herrera, Miguel
Andraka, Sandra
Author_xml – sequence: 1
  givenname: Maite
  surname: Pons
  fullname: Pons, Maite
– sequence: 2
  givenname: Jordan T.
  surname: Watson
  fullname: Watson, Jordan T.
– sequence: 3
  givenname: Daniel
  surname: Ovando
  fullname: Ovando, Daniel
– sequence: 4
  givenname: Sandra
  surname: Andraka
  fullname: Andraka, Sandra
– sequence: 5
  givenname: Stephanie
  surname: Brodie
  fullname: Brodie, Stephanie
– sequence: 6
  givenname: Andrés
  surname: Domingo
  fullname: Domingo, Andrés
– sequence: 7
  givenname: Mark
  surname: Fitchett
  fullname: Fitchett, Mark
– sequence: 8
  givenname: Rodrigo
  surname: Forselledo
  fullname: Forselledo, Rodrigo
– sequence: 9
  givenname: Martin
  surname: Hall
  fullname: Hall, Martin
– sequence: 10
  givenname: Elliott L.
  surname: Hazen
  fullname: Hazen, Elliott L.
– sequence: 11
  givenname: Jason E.
  surname: Jannot
  fullname: Jannot, Jason E.
– sequence: 12
  givenname: Miguel
  surname: Herrera
  fullname: Herrera, Miguel
– sequence: 13
  givenname: Sebastián
  surname: Jiménez
  fullname: Jiménez, Sebastián
– sequence: 14
  givenname: David M.
  surname: Kaplan
  fullname: Kaplan, David M.
– sequence: 15
  givenname: Sven
  surname: Kerwath
  fullname: Kerwath, Sven
– sequence: 16
  givenname: Jon
  surname: Lopez
  fullname: Lopez, Jon
– sequence: 17
  givenname: Jon
  surname: McVeigh
  fullname: McVeigh, Jon
– sequence: 18
  givenname: Lucas
  surname: Pacheco
  fullname: Pacheco, Lucas
– sequence: 19
  givenname: Liliana
  surname: Rendon
  fullname: Rendon, Liliana
– sequence: 20
  givenname: Kate
  surname: Richerson
  fullname: Richerson, Kate
– sequence: 21
  givenname: Rodrigo
  surname: Sant’Ana
  fullname: Sant’Ana, Rodrigo
– sequence: 22
  givenname: Rishi
  surname: Sharma
  fullname: Sharma, Rishi
– sequence: 23
  givenname: James A.
  surname: Smith
  fullname: Smith, James A.
– sequence: 24
  givenname: Kayleigh
  surname: Somers
  fullname: Somers, Kayleigh
– sequence: 25
  givenname: Ray
  surname: Hilborn
  fullname: Hilborn, Ray
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35058364$$D View this record in MEDLINE/PubMed
https://hal.umontpellier.fr/hal-03589744$$DView record in HAL
BookMark eNp1kktvEzEUhS1URNPCmhXIEhtYTOvX-LFBqiqgSJHYRGJpeTx3mokmdrA9Qfn3zJC2QCRWlq-_c-7D9wKdhRgAodeUXFGi-PUuuHzFKBU10ZSaZ2hBiaGVFIacoQUhTFVaMHGOLnLeEEJMrckLdM5rUmsuxQJ9XyXXQhW7LuMGyk-AgJuDd8WvsQstLi7dQ8G_A5BxH3AurvQe7yHlMeP2ENx2unZ9XkM6YD_EPCbIL9Hzzg0ZXj2cl2j1-dPq9q5afvvy9fZmWXmhVKnU1IWHtmk8Mc61TnFBO0ONEa0B1UnpaFODodxwJiS4rvWUOC0IZ540nF-ij0fb3dhsofUQSnKD3aV-69LBRtfbf19Cv7b3cW-1MnXNxWTw4WiwPpHd3SztHCO81kYJsacT-_4hWYo_RsjFbvvsYRhcgDhmyyRjTDMt5rrenaCbOKYwTWKmhNSSm9nw7d_VP-V__J4JqI-ATzHnBJ31_Tz-ODfTD5YSO6-BndfA_lmDSXd9onu0_r_izVGxySWmJ5wpSpU0mv8Cxr6-3Q
CitedBy_id crossref_primary_10_3389_fmars_2022_863602
crossref_primary_10_1016_j_jenvman_2023_119735
crossref_primary_10_1038_s44183_024_00062_w
crossref_primary_10_1111_faf_12806
crossref_primary_10_1098_rsos_220379
crossref_primary_10_1080_23308249_2025_2471085
crossref_primary_10_1093_icesjms_fsaf024
crossref_primary_10_1111_faf_12775
crossref_primary_10_1016_j_marpol_2024_106155
crossref_primary_10_1038_s41467_024_51954_x
crossref_primary_10_3354_esr01305
crossref_primary_10_1016_j_marpol_2024_106035
crossref_primary_10_1038_s41558_022_01484_5
crossref_primary_10_1590_2675_2824072_23015
crossref_primary_10_1016_j_fishres_2022_106360
crossref_primary_10_1093_icesjms_fsac219
crossref_primary_10_1093_icesjms_fsae043
crossref_primary_10_1111_faf_12780
crossref_primary_10_1126_science_adn1146
crossref_primary_10_1126_science_abo3608
crossref_primary_10_3389_fmars_2022_879503
crossref_primary_10_1016_j_fishres_2022_106456
crossref_primary_10_1016_j_marpol_2024_106146
crossref_primary_10_1016_j_jenvman_2023_117691
crossref_primary_10_1038_s41558_023_01608_5
crossref_primary_10_1111_faf_12873
crossref_primary_10_1016_j_biocon_2022_109880
crossref_primary_10_1002_aqc_70003
crossref_primary_10_1177_27539687231212672
crossref_primary_10_1257_pol_20210812
crossref_primary_10_1111_faf_12830
crossref_primary_10_1016_j_pocean_2023_102973
crossref_primary_10_7717_peerj_16215
crossref_primary_10_3389_fmars_2022_1062447
crossref_primary_10_1111_cobi_14324
crossref_primary_10_1016_j_marpol_2023_105589
crossref_primary_10_1016_j_pocean_2023_103021
crossref_primary_10_3389_fmars_2022_828412
crossref_primary_10_3354_esr01288
crossref_primary_10_3390_md22090411
crossref_primary_10_1016_j_biocon_2023_109912
crossref_primary_10_3389_fmars_2023_1197878
crossref_primary_10_1111_1365_2664_14595
crossref_primary_10_1093_icesjms_fsad053
crossref_primary_10_1016_j_fishres_2024_107151
crossref_primary_10_3390_fishes8010046
crossref_primary_10_1007_s11160_025_09926_x
crossref_primary_10_1016_j_fishres_2023_106928
crossref_primary_10_1111_faf_12804
Cites_doi 10.3389/fmars.2021.630607
10.1016/j.marpol.2005.06.003
10.1111/faf.12080
10.1007/s11160-019-09547-1
10.1016/j.ecoinf.2019.05.010
10.1111/conl.12010
10.1111/cobi.13417
10.1016/j.ocecoaman.2004.04.001
10.1038/s41893-020-0506-9
10.3354/esr00994
10.3354/esr00096
10.1073/pnas.1318960111
10.1126/science.aao5646
10.1126/science.aaz9327
10.1093/icesjms/fst063
10.1126/science.aao4248
10.1111/j.1523-1739.2008.01121.x
10.1111/cobi.12268
10.1111/conl.12331
10.1890/11-1319.1
10.1007/BF00122585
10.1126/science.1079777
10.1016/j.marpol.2015.03.014
10.1016/j.ocecoaman.2018.12.018
10.1098/rsos.190598
10.1126/sciadv.aar3001
10.1086/711853
10.1016/j.marpol.2019.103617
10.1016/j.biocon.2016.06.017
10.1111/1365-2664.13565
10.1093/biosci/biv018
https://doi.org/10.1787/23e0e2c3-en
10.1002/aqc.3270040305
10.3354/esr01008
10.1073/pnas.1513626113
10.1371/journal.pone.0088906
10.14210/bjast.v6n1.p65-83
10.1038/s41586-019-1444-4
10.1038/ncomms3347
ContentType Journal Article
Copyright Copyright © 2022 the Author(s). Published by PNAS.
Copyright National Academy of Sciences Jan 25, 2022
Attribution - NonCommercial - NoDerivatives
Copyright © 2022 the Author(s). Published by PNAS. 2022
Copyright_xml – notice: Copyright © 2022 the Author(s). Published by PNAS.
– notice: Copyright National Academy of Sciences Jan 25, 2022
– notice: Attribution - NonCommercial - NoDerivatives
– notice: Copyright © 2022 the Author(s). Published by PNAS. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
1XC
VOOES
5PM
DOI 10.1073/pnas.2114508119
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts
MEDLINE - Academic


MEDLINE
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Oceanography
Environmental Sciences
EISSN 1091-6490
EndPage 11
ExternalDocumentID PMC8795534
oai_HAL_hal_03589744v1
35058364
10_1073_pnas_2114508119
27117698
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RHF
VQA
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-c477t-7107cedbbc09aada7341f91994d9e7f66a1b5e91393246eafdc10a84032c0b33
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 14:29:07 EDT 2025
Fri Sep 12 12:48:27 EDT 2025
Fri Sep 05 03:52:06 EDT 2025
Mon Jun 30 10:03:22 EDT 2025
Wed Feb 19 02:26:25 EST 2025
Tue Jul 01 01:03:09 EDT 2025
Thu Apr 24 22:53:18 EDT 2025
Thu May 29 08:49:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords static and dynamic closures
bycatch mitigation
fisheries management
marine protected areas
Language English
License Copyright © 2022 the Author(s). Published by PNAS.
Attribution - NonCommercial - NoDerivatives: http://creativecommons.org/licenses/by-nc-nd
This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c477t-7107cedbbc09aada7341f91994d9e7f66a1b5e91393246eafdc10a84032c0b33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMCID: PMC8795534
Author contributions: M.P. and R.H. designed research; J.T.W., D.O., S.A., S.B., A.D., M.F., R.F., M.H., E.L.H., J.E.J., M.H., S.J., D.M.K., S.K., J.L., J.M., L.P., L.R., K.R., R. Sant’Ana, R. Sharma, J.A.S., and K.S. analyzed data; and M.P., J.T.W., D.O., S.A., S.B., A.D., M.F., R.F., M.H., E.L.H., J.E.J., M.H., S.J., D.M.K., S.K., J.L., J.M., L.P., L.R., K.R., R. Sant’Ana, R. Sharma, J.A.S., K.S., and R.H. wrote the paper.
Edited by Nils Chr. Stenseth, Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, Universitetet i Oslo, Oslo, Norway; received August 18, 2021; accepted November 22, 2021
ORCID 0000-0002-2097-2419
0000-0002-1035-5732
0000-0002-3818-9393
0000-0003-2326-2305
0000-0002-9231-1337
0000-0003-2252-6014
0000-0002-2220-304X
0000-0003-2751-5015
0000-0002-0496-3221
0000-0003-3945-4619
0000-0001-5963-9608
0000-0002-0412-7178
0000-0001-6087-359X
0000-0002-4172-4094
0000-0003-2120-7345
0000-0002-1793-7663
OpenAccessLink https://hal.umontpellier.fr/hal-03589744
PMID 35058364
PQID 2624686391
PQPubID 42026
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8795534
hal_primary_oai_HAL_hal_03589744v1
proquest_miscellaneous_2622282843
proquest_journals_2624686391
pubmed_primary_35058364
crossref_citationtrail_10_1073_pnas_2114508119
crossref_primary_10_1073_pnas_2114508119
jstor_primary_27117698
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-25
PublicationDateYYYYMMDD 2022-01-25
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-25
  day: 25
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2022
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_4_3_2
e_1_3_4_2_2
e_1_3_4_1_2
e_1_3_4_9_2
e_1_3_4_8_2
e_1_3_4_7_2
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_23_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_26_2
e_1_3_4_27_2
e_1_3_4_24_2
e_1_3_4_25_2
e_1_3_4_28_2
e_1_3_4_29_2
Mckuin B. (e_1_3_4_44_2) 2021; 9
FAO (e_1_3_4_12_2) 2011
e_1_3_4_30_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_33_2
e_1_3_4_32_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_18_2
e_1_3_4_39_2
References_xml – ident: e_1_3_4_18_2
  doi: 10.3389/fmars.2021.630607
– ident: e_1_3_4_38_2
  doi: 10.1016/j.marpol.2005.06.003
– ident: e_1_3_4_13_2
  doi: 10.1111/faf.12080
– ident: e_1_3_4_20_2
  doi: 10.1007/s11160-019-09547-1
– ident: e_1_3_4_37_2
  doi: 10.1016/j.ecoinf.2019.05.010
– ident: e_1_3_4_14_2
  doi: 10.1111/conl.12010
– ident: e_1_3_4_40_2
  doi: 10.1111/cobi.13417
– ident: e_1_3_4_42_2
  doi: 10.1016/j.ocecoaman.2004.04.001
– ident: e_1_3_4_15_2
– ident: e_1_3_4_4_2
  doi: 10.1038/s41893-020-0506-9
– ident: e_1_3_4_10_2
  doi: 10.3354/esr00994
– ident: e_1_3_4_32_2
  doi: 10.3354/esr00096
– ident: e_1_3_4_3_2
  doi: 10.1073/pnas.1318960111
– volume: 9
  start-page: 1
  year: 2021
  ident: e_1_3_4_44_2
  article-title: Rethinking sustainability in seafood: Synergies and trade-offs between fisheries and climate change
  publication-title: Elem. Sci. Anthr.
– ident: e_1_3_4_11_2
– ident: e_1_3_4_45_2
  doi: 10.1126/science.aao5646
– ident: e_1_3_4_27_2
  doi: 10.1126/science.aaz9327
– ident: e_1_3_4_17_2
  doi: 10.1093/icesjms/fst063
– ident: e_1_3_4_34_2
  doi: 10.1126/science.aao4248
– ident: e_1_3_4_36_2
  doi: 10.1111/j.1523-1739.2008.01121.x
– ident: e_1_3_4_35_2
  doi: 10.1111/cobi.12268
– ident: e_1_3_4_8_2
  doi: 10.1111/conl.12331
– ident: e_1_3_4_19_2
  doi: 10.1890/11-1319.1
– ident: e_1_3_4_25_2
– ident: e_1_3_4_5_2
  doi: 10.1007/BF00122585
– ident: e_1_3_4_21_2
  doi: 10.1126/science.1079777
– ident: e_1_3_4_28_2
  doi: 10.1016/j.marpol.2015.03.014
– ident: e_1_3_4_39_2
  doi: 10.1016/j.ocecoaman.2018.12.018
– ident: e_1_3_4_9_2
  doi: 10.1098/rsos.190598
– ident: e_1_3_4_31_2
  doi: 10.1126/sciadv.aar3001
– ident: e_1_3_4_43_2
  doi: 10.1086/711853
– ident: e_1_3_4_22_2
  doi: 10.1016/j.marpol.2019.103617
– ident: e_1_3_4_6_2
  doi: 10.1016/j.biocon.2016.06.017
– ident: e_1_3_4_30_2
  doi: 10.1111/1365-2664.13565
– ident: e_1_3_4_26_2
  doi: 10.1093/biosci/biv018
– ident: e_1_3_4_1_2
  doi: https://doi.org/10.1787/23e0e2c3-en
– ident: e_1_3_4_23_2
  doi: 10.1002/aqc.3270040305
– ident: e_1_3_4_7_2
  doi: 10.3354/esr01008
– ident: e_1_3_4_29_2
  doi: 10.1073/pnas.1513626113
– ident: e_1_3_4_41_2
  doi: 10.1371/journal.pone.0088906
– ident: e_1_3_4_16_2
  doi: 10.14210/bjast.v6n1.p65-83
– ident: e_1_3_4_33_2
  doi: 10.1038/s41586-019-1444-4
– volume-title: International Guidelines on Bycatch Management and Reduction of Discards
  year: 2011
  ident: e_1_3_4_12_2
– ident: e_1_3_4_24_2
  doi: 10.1038/ncomms3347
– ident: e_1_3_4_2_2
SSID ssj0009580
Score 2.5932271
Snippet While there have been recent improvements in reducing bycatch in many fisheries, bycatch remains a threat for numerous species around the globe. Static spatial...
The incidental catch of threatened species is still one of the main barriers to fisheries sustainability. What would happen if we closed 30% of the ocean to...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Biodiversity and Ecology
Biological Sciences
Bycatch
Climate change
Conservation of Natural Resources
Ecosystem
Environmental Sciences
Fisheries
Fishing
Global Changes
Marine environment
Oceanography
Regulatory mechanisms (biology)
Species
Title Trade-offs between bycatch and target catches in static versus dynamic fishery closures
URI https://www.jstor.org/stable/27117698
https://www.ncbi.nlm.nih.gov/pubmed/35058364
https://www.proquest.com/docview/2624686391
https://www.proquest.com/docview/2622282843
https://hal.umontpellier.fr/hal-03589744
https://pubmed.ncbi.nlm.nih.gov/PMC8795534
Volume 119
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Bj5QwFG5214sX46qr6Gqq8bCGMAItFI4To5lsdDKHMe6NtKVkJ7sBMzAm-hP81b7SUmbG3WT1QkgpDfB9PF4f33tF6C0jVZKnSRVEEdGhGxEG4NUreN0JUUKohFY6d_jLPJ19pecXycXBwe8t1dKmExP568a8kv9BFdoAV50l-w_IukGhAfYBX9gCwrC9G8ZrXqqgqarW6a2EDshIk65mVN5-39DrrnTgQBdo1VKMTeuXZjV6v-p18T99ed3oeGG77bAu3AeuHeQE8yF-OB2zUayJaP3AX8zHtY0XjY1m81U3_gTinU3zOoeZL9iX5cSFesGvL5sx9X0MUpRrfsVNCFvvbwcrYq36CExis0segI8iNWnTE2VsLrgsQUrNqqHOKFtDuhpDDn8Ze7BOeoXimrcTmMZScDWHs3bKau997pwIsf_9zkihByjGAQ7RvZiBHzZEflwB58ykM9kbGMpEMfJ-7wp2PJzDS62vNVLXmyYx-1rcLedm-RA9sLMSPDUUO0YHqn6EjgdQ8ZktTv7uMfo2cg5bzmHLOQzIYMM5bDmHVzU2nMOGc9hyDlvO4YFzT9Dy08flh1lgF-cIJGWs0xpeJlUphAxzzkvOwB2qcl1puswVq9KURyJRuugsuOyp4lUpo5BnNCSxDAUhJ-iobmr1DOEwV0RSKZSKFS0zwasorVRcVmEqVUq5hybD8yykLVyv10-5Lm5B0ENn7oTvpmbL7V3fAECul661Ppt-LnRbSJIMJtv0R-Shkx4_1y1mUcTSPPPQ6QBoYc0CDJ7C_Wbg-MN5r91hMNr6TxyvVbPp-8Q61kGJh54a_N3gBOYkGUmph9gOM3YucvdIvbrsC8NnLE8SQp_f_f5foPvja3qKjrr1Rr0EL7sTr3r6_wE4_NM8
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trade-offs+between+bycatch+and+target+catches+in+static+versus+dynamic+fishery+closures&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Pons%2C+Maite&rft.au=Watson%2C+Jordan+T.&rft.au=Ovando%2C+Daniel&rft.au=Andraka%2C+Sandra&rft.date=2022-01-25&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=119&rft.issue=4&rft_id=info:doi/10.1073%2Fpnas.2114508119&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_2114508119
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon