Bug Prioritization to Facilitate Bug Report Triage
The large number of new bug reports received in bug repositories of software systems makes their management a challenging task.Handling these reports manually is time consuming,and often results in delaying the resolution of important bugs.To address this issue,a recommender may be developed which a...
        Saved in:
      
    
          | Published in | Journal of computer science and technology Vol. 27; no. 2; pp. 397 - 412 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Boston
          Springer US
    
        01.03.2012
     Springer Nature B.V Department of Computer Science,Quaid-i-Azam University,Islamabad,Pakistan  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1000-9000 1860-4749  | 
| DOI | 10.1007/s11390-012-1230-3 | 
Cover
| Abstract | The large number of new bug reports received in bug repositories of software systems makes their management a challenging task.Handling these reports manually is time consuming,and often results in delaying the resolution of important bugs.To address this issue,a recommender may be developed which automatically prioritizes the new bug reports.In this paper,we propose and evaluate a classification based approach to build such a recommender.We use the Na¨ ve Bayes and Support Vector Machine (SVM) classifiers,and present a comparison to evaluate which classifier performs better in terms of accuracy.Since a bug report contains both categorical and text features,another evaluation we perform is to determine the combination of features that better determines the priority of a bug.To evaluate the bug priority recommender,we use precision and recall measures and also propose two new measures,Nearest False Negatives (NFN) and Nearest False Positives (NFP),which provide insight into the results produced by precision and recall.Our findings are that the results of SVM are better than the Na¨ ve Bayes algorithm for text features,whereas for categorical features,Na¨ ve Bayes performance is better than SVM.The highest accuracy is achieved with SVM when categorical and text features are combined for training. | 
    
|---|---|
| AbstractList | The large number of new bug reports received in bug repositories of software systems makes their management a challenging task. Handling these reports manually is time consuming, and often results in delaying the resolution of important bugs. To address this issue, a recommender may be developed which automatically prioritizes the new bug reports. In this paper, we propose and evaluate a classification based approach to build such a recommender. We use the Naive Bayes and Support Vector Machine (SVM) classifiers, and present a comparison to evaluate which classifier performs better in terms of accuracy. Since a bug report contains both categorical and text features, another evaluation we perform is to determine the combination of features that better determines the priority of a bug. To evaluate the bug priority recommender, we use precision and recall measures and also propose two new measures, Nearest False Negatives (NFN) and Nearest False Positives (NFP), which provide insight into the results produced by precision and recall. Our findings are that the results of SVM are better than the Naive Bayes algorithm for text features, whereas for categorical features, Naive Bayes performance is better than SVM. The highest accuracy is achieved with SVM when categorical and text features are combined for training. The large number of new bug reports received in bug repositories of software systems makes their management a challenging task.Handling these reports manually is time consuming,and often results in delaying the resolution of important bugs.To address this issue,a recommender may be developed which automatically prioritizes the new bug reports.In this paper,we propose and evaluate a classification based approach to build such a recommender.We use the Na¨ ve Bayes and Support Vector Machine (SVM) classifiers,and present a comparison to evaluate which classifier performs better in terms of accuracy.Since a bug report contains both categorical and text features,another evaluation we perform is to determine the combination of features that better determines the priority of a bug.To evaluate the bug priority recommender,we use precision and recall measures and also propose two new measures,Nearest False Negatives (NFN) and Nearest False Positives (NFP),which provide insight into the results produced by precision and recall.Our findings are that the results of SVM are better than the Na¨ ve Bayes algorithm for text features,whereas for categorical features,Na¨ ve Bayes performance is better than SVM.The highest accuracy is achieved with SVM when categorical and text features are combined for training. The large number of new bug reports received in bug repositories of software systems makes their management a challenging task. Handling these reports manually is time consuming, and often results in delaying the resolution of important bugs. To address this issue, a recommender may be developed which automatically prioritizes the new bug reports. In this paper, we propose and evaluate a classification based approach to build such a recommender. We use the Naïve Bayes and Support Vector Machine (SVM) classifiers, and present a comparison to evaluate which classifier performs better in terms of accuracy. Since a bug report contains both categorical and text features, another evaluation we perform is to determine the combination of features that better determines the priority of a bug. To evaluate the bug priority recommender, we use precision and recall measures and also propose two new measures, Nearest False Negatives (NFN) and Nearest False Positives (NFP), which provide insight into the results produced by precision and recall. Our findings are that the results of SVM are better than the Naïve Bayes algorithm for text features, whereas for categorical features, Naïve Bayes performance is better than SVM. The highest accuracy is achieved with SVM when categorical and text features are combined for training. TP3; The large number of new bug reports received in bug repositories of software systems makes their management a challenging task.Handling these reports manually is time consuming,and often results in delaying the resolution of important bugs. To address this issue,a recommender may be developed which automatically prioritizes the new bug reports.In this paper,we propose and evaluate a classification based approach to build such a recommender.We use the Na(ǐ)ve Bayes and Support Vector Machine (SVM) classifiers,and present a comparison to evaluate which classifier performs better in terms of accuracy.Since a bug report contains both categorical and text features,another evaluation we perform is to determine the combination of features that better determines the priority of a bug.To evaluate the bug priority recommender,we use precision and recall measures and also propose two new measures,Nearest False Negatives (NFN) and Nearest False Positives (NFP),which provide insight into the results produced by precision and recall.Our findings are that the results of SVM are better than the Na(ǐ)ve Bayes algorithm for text features,whereas for categorical features,Na(ǐ)ve Bayes performance is better than SVM.The highest accurácy is achieved with SVM when categorical and text features are combined for training. The large number of new bug reports received in bug repositories of software systems makes their management a challenging task. Handling these reports manually is time consuming, and often results in delaying the resolution of important bugs. To address this issue, a recommender may be developed which automatically prioritizes the new bug reports. In this paper, we propose and evaluate a classification based approach to build such a recommender. We use the Naïve Bayes and Support Vector Machine (SVM) classifiers, and present a comparison to evaluate which classifier performs better in terms of accuracy. Since a bug report contains both categorical and text features, another evaluation we perform is to determine the combination of features that better determines the priority of a bug. To evaluate the bug priority recommender, we use precision and recall measures and also propose two new measures, Nearest False Negatives (NFN) and Nearest False Positives (NFP), which provide insight into the results produced by precision and recall. Our findings are that the results of SVM are better than the Naïve Bayes algorithm for text features, whereas for categorical features, Naïve Bayes performance is better than SVM. The highest accuracy is achieved with SVM when categorical and text features are combined for training.[PUBLICATION ABSTRACT]  | 
    
| Author | Jaweria Kanwal Onaiza Maqbool | 
    
| AuthorAffiliation | Department of Computer Science,Quaid-i-Azam University | 
    
| AuthorAffiliation_xml | – name: Department of Computer Science,Quaid-i-Azam University,Islamabad,Pakistan | 
    
| Author_xml | – sequence: 1 givenname: Jaweria surname: Kanwal fullname: Kanwal, Jaweria email: kjaweria09@yahoo.com organization: Department of Computer Science, Quaid-i-Azam University – sequence: 2 givenname: Onaiza surname: Maqbool fullname: Maqbool, Onaiza organization: Department of Computer Science, Quaid-i-Azam University  | 
    
| BookMark | eNp9kEtP3DAUhS00SLz6A9ilXXVByvUj9njZImgrIYEQXVsexwlOgz1jewTtr6-joKk0CzbXXnznnHvPCVr44C1C5xi-YABxmTCmEmrApMaEQk0P0DFecqiZYHJR_gBQyzKO0ElKAwAVwNgxIt-2fXUfXYguu786u-CrHKobbdzoss62moAHuw4xV4_R6d6eocNOj8l-eHtP0a-b68erH_Xt3fefV19va8OEyDVdGS70StqWYSNoCWyZMbZjbUtM03BOO7NsTEcpcNuQTmKqKTSYt9xquVrSU3Qx-75o32nfqyFsoy-JakjD79chva6UJeVimEbBP8_4OobN1qasnl0ydhy1t2GbFAYsecMYkQX9tIfurCXhnBPGoEBihkwMKUXbKTMVUgrKUbux-KmpeTU3r8oKampe0aLEe8p1dM86_nlXQ2ZNKqzvbfy_0nuij29BT8H3m6LbJTEMEsRS0n9cUKBo | 
    
| CitedBy_id | crossref_primary_10_1155_2020_8509821 crossref_primary_10_1145_3178315_3178326 crossref_primary_10_1016_j_infsof_2022_106972 crossref_primary_10_1007_s11432_014_5241_2 crossref_primary_10_1109_ACCESS_2022_3167269 crossref_primary_10_1142_S021819402350002X crossref_primary_10_4018_IJOSSP_315280 crossref_primary_10_1109_ACCESS_2021_3093170 crossref_primary_10_1007_s10462_016_9478_6 crossref_primary_10_4018_jossp_2012040103 crossref_primary_10_1109_ACCESS_2020_3035063 crossref_primary_10_3390_app15020633 crossref_primary_10_1007_s10515_020_00279_2 crossref_primary_10_1109_TR_2019_2959624 crossref_primary_10_32604_iasc_2023_036356 crossref_primary_10_4018_IJSKD_310066 crossref_primary_10_3390_e21010091 crossref_primary_10_1016_j_jjimei_2022_100153 crossref_primary_10_1093_comjnl_bxv114 crossref_primary_10_1016_j_infsof_2019_03_014 crossref_primary_10_1142_S0218194019500050 crossref_primary_10_1016_j_jss_2016_01_038 crossref_primary_10_1007_s13198_014_0219_4 crossref_primary_10_1002_smr_2742 crossref_primary_10_1007_s13198_023_02199_2 crossref_primary_10_1111_exsy_13006 crossref_primary_10_1007_s10664_019_09684_y crossref_primary_10_1016_j_jss_2024_112179 crossref_primary_10_1016_j_jss_2024_112019 crossref_primary_10_1109_TSE_2020_3017514 crossref_primary_10_1109_ACCESS_2018_2850910 crossref_primary_10_1142_S0218194024500293 crossref_primary_10_1007_s10664_024_10510_3 crossref_primary_10_1109_ACCESS_2020_3032840 crossref_primary_10_1007_s10664_021_10085_3 crossref_primary_10_1016_j_jss_2022_111308 crossref_primary_10_1587_transinf_2019EDP7152 crossref_primary_10_1016_j_jss_2020_110518  | 
    
| Cites_doi | 10.1145/1323293.1294275 10.1145/1985793.1985934 10.1109/ICSE.2007.32 10.1145/1370750.1370786 10.1109/ICSEA.2009.92 10.1109/MSR.2007.26 10.1145/1368088.1368151 10.1145/2020390.2020398 10.1007/BFb0026683 10.1038/nbt1206-1565 10.1145/1287624.1287633 10.1145/2000791.2000794 10.1145/1595696.1595715 10.1145/1134285.1134457 10.1145/1137983.1138027 10.1145/2020390.2020401 10.1109/CSMR.2011.31 10.1007/3-540-44898-5_16 10.1109/MSR.2007.7 10.1145/1141277.1141693 10.1109/MSR.2010.5463340 10.1109/PROMISE.2007.10 10.1145/1985441.1985457 10.1007/978-3-642-17313-4_35 10.1109/MSR.2007.25 10.1109/MSR.2010.5463284 10.1109/METRICS.2005.28 10.1109/TSE.2005.112 10.1145/505282.505283 10.1145/1134285.1134336 10.1145/2020390.2020402 10.1007/3-540-44886-1_25  | 
    
| ClassificationCodes | TP3 | 
    
| ContentType | Journal Article | 
    
| Copyright | Springer Science+Business Media, LLC & Science Press, China 2012 Springer Science+Business Media, LLC & Science Press, China 2012. Copyright © Wanfang Data Co. Ltd. All Rights Reserved.  | 
    
| Copyright_xml | – notice: Springer Science+Business Media, LLC & Science Press, China 2012 – notice: Springer Science+Business Media, LLC & Science Press, China 2012. – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.  | 
    
| DBID | 2RA 92L CQIGP W92 ~WA AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 2B. 4A8 92I 93N PSX TCJ  | 
    
| DOI | 10.1007/s11390-012-1230-3 | 
    
| DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ)  | 
    
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing Engineering Database ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni)  | 
    
| DatabaseTitleList | Computer and Information Systems Abstracts ABI/INFORM Global (Corporate)  | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| DocumentTitleAlternate | Bug Prioritization to Facilitate Bug Report Triage | 
    
| EISSN | 1860-4749 | 
    
| EndPage | 412 | 
    
| ExternalDocumentID | jsjkxjsxb_e201202012 2604461161 10_1007_s11390_012_1230_3 41090789  | 
    
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 28- 29K 2B. 2C0 2J2 2JN 2JY 2KG 2KM 2LR 2RA 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VR 5VS 67Z 6NX 7WY 8FE 8FG 8FL 8TC 8UJ 92H 92I 92L 92R 93N 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AAOBN AARHV AARTL AATNV AATVU AAUYE AAWCG AAWWR AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDZT ABECU ABFGW ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBMV ACBRV ACBXY ACGFS ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ACZOJ ADGRI ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AEYWE AFEXP AFGCZ AFKRA AFLOW AFNRJ AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ CAG CCEZO CCPQU CHBEP COF CQIGP CS3 CSCUP CUBFJ CW9 D-I DDRTE DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS HCIFZ HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IAO IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAK LLZTM M0C M0N M4Y M7S MA- N2Q NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PQBIZ PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCL SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TCJ TGT TSG TSK TSV TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W92 WK8 YLTOR Z7R Z7U Z7X Z7Z Z81 Z83 Z88 Z8R Z8W Z92 ZMTXR ~A9 ~EX ~WA -SI -S~ 5XA 5XJ AACDK AAJBT AASML AAXDM AAYZH ABAKF ABQSL ACDTI ACPIV AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU BSONS CAJEI H13 PQBZA Q-- U1G U5S AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ICD IVC PHGZM PHGZT PQGLB PUEGO TGMPQ 7SC 7XB 8AL 8FD 8FK JQ2 L.- L6V L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U 4A8 PMFND PSX  | 
    
| ID | FETCH-LOGICAL-c477t-3bc67ab9ed41c73037d4ccef4dd2c55663fc85cf3306e52f913a30516d6ea9b83 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 1000-9000 | 
    
| IngestDate | Thu May 29 04:00:15 EDT 2025 Fri Sep 05 08:26:51 EDT 2025 Sat Aug 23 12:43:24 EDT 2025 Thu Apr 24 23:11:42 EDT 2025 Wed Oct 01 06:38:28 EDT 2025 Fri Feb 21 02:40:04 EST 2025 Wed Feb 14 10:47:23 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Keywords | bug triaging bug priority mining bug repositories classification evaluation measures  | 
    
| Language | English | 
    
| License | http://www.springer.com/tdm | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c477t-3bc67ab9ed41c73037d4ccef4dd2c55663fc85cf3306e52f913a30516d6ea9b83 | 
    
| Notes | The large number of new bug reports received in bug repositories of software systems makes their management a challenging task.Handling these reports manually is time consuming,and often results in delaying the resolution of important bugs.To address this issue,a recommender may be developed which automatically prioritizes the new bug reports.In this paper,we propose and evaluate a classification based approach to build such a recommender.We use the Na¨ ve Bayes and Support Vector Machine (SVM) classifiers,and present a comparison to evaluate which classifier performs better in terms of accuracy.Since a bug report contains both categorical and text features,another evaluation we perform is to determine the combination of features that better determines the priority of a bug.To evaluate the bug priority recommender,we use precision and recall measures and also propose two new measures,Nearest False Negatives (NFN) and Nearest False Positives (NFP),which provide insight into the results produced by precision and recall.Our findings are that the results of SVM are better than the Na¨ ve Bayes algorithm for text features,whereas for categorical features,Na¨ ve Bayes performance is better than SVM.The highest accuracy is achieved with SVM when categorical and text features are combined for training. 11-2296/TP bug triaging,bug priority,classification,mining bug repositories,evaluation measures ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23  | 
    
| PQID | 926662440 | 
    
| PQPubID | 326258 | 
    
| PageCount | 16 | 
    
| ParticipantIDs | wanfang_journals_jsjkxjsxb_e201202012 proquest_miscellaneous_1019654429 proquest_journals_926662440 crossref_citationtrail_10_1007_s11390_012_1230_3 crossref_primary_10_1007_s11390_012_1230_3 springer_journals_10_1007_s11390_012_1230_3 chongqing_primary_41090789  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2012-03-01 | 
    
| PublicationDateYYYYMMDD | 2012-03-01 | 
    
| PublicationDate_xml | – month: 03 year: 2012 text: 2012-03-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Boston | 
    
| PublicationPlace_xml | – name: Boston – name: Beijing  | 
    
| PublicationTitle | Journal of computer science and technology | 
    
| PublicationTitleAbbrev | J. Comput. Sci. Technol | 
    
| PublicationTitleAlternate | Journal of Computer Science and Technology | 
    
| PublicationTitle_FL | Journal of Computer Science and Technology | 
    
| PublicationYear | 2012 | 
    
| Publisher | Springer US Springer Nature B.V Department of Computer Science,Quaid-i-Azam University,Islamabad,Pakistan  | 
    
| Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: Department of Computer Science,Quaid-i-Azam University,Islamabad,Pakistan  | 
    
| References | Wang X, Zhang L, Xie T, Anvik J, Sun J. An approach to detecting duplicate bug reports using natural language and execution information. In Proc. the 30th International Conference on Software Engineering, Leipzig, Germany, May 2008, pp.461–470. Baeza-YatesRRibeiro-NetoBModern Information Retrieval1999Boston, USAAddison-Wesley Longman Eclipse. http://www.eclipse.org, 2010. GNATS. http://www.gnu.org/software/gnats, 2010. Joachims, T. Text categorization with support vector machines: Learning with many relevant features. In Proc. European Conference on Machine Learning, Chemnitz, Germany, April 1998, pp.137–142. Runeson P, Elexandersson M, Nyholm O. Detection of duplicate defect reports using natural language processing. In Proc. the 29th International Conference on Software Engineering, Minneapolis, USA, May 2007, pp.499–510. Yu L, Tsai W, Zhao W, Wu F. Predicting defect priority based on neural networks. In Proc. the 6th Int. Conf. Advanced Data Mining and Applications, Wuhan, China, November 2010, pp.356–367. Kim S, Ernst M D. Which warnings should I fix first? In Proc. the 6th ESEC-FSE, Dubrovnik, Croatia, September 2007, pp.45–54. Canfora G, Cerulo L. Supporting change request assignment in open source development. In Proc. ACM Symposium on Applied Computing, Dijon, France, April 2006, pp.1767–1772. NobleWSWhat is a support vector machine?Nature Biotechnology2006241565156710.1038/nbt1206-1565 SebastianiFMachine learning in automated text categorizationACM Computing Surveys200234114710.1145/505282.505283 Jeong G, Kim S, Zimmermann T. Improving bug triage with bug tossing graphs. In Proc. the 7th ESEC-FSE, Amsterdam, Netherlands, August 2009, pp.111–120. Tamrawi A, Nguyen T, Al-Kofahi J, Nguyen T N. Fuzzy set-based automatic bug triaging. In Proc. the 33 rd International Conference on Software Engineering (NIER Track), Miami, USA, May 2011, pp.884–887. Aljarah I, Banitaan S, Abufardeh S, Jin W, Salem S. Selecting discriminating terms for bug assignment: A formal analysis. In Proc. the 7th International Conference on Predictive Models in Software Engineering, Banff, Canada, September 2011, Article No.12. Anvik J, Murphy G C. Determining implementation expertise from bug reports. In Proc. the 4th MSR, Minneapolis, USA, May 2007, Article No.2. Lamkanfi A, Demeyer S, Soetens Q D, Verdonck T. Comparing mining algorithms for predicting the severity of a reported bug. In Proc. the 15th European Conference on Software Maintenance and Reengineering, Oldenburg, Germany, March 2011, pp.249–258. Anvik J. Assisting bug report triage through recommendation [PhD Thesis]. University of British Columbia, 2007. Prifti T, Banerjee S, Cukic B. Detecting bug duplicate reports through local references. In Proc. the 7th International Conference on Predictive Models in Software Engineering, Banff, Canada, September 2011, Article No.8. Panjer L D. Predicting Eclipse bug lifetimes. In Proc. the 4th International Workshop on Mining Software Repositories, Minneapolis, USA, May 2007, pp.1–8. Cubranic D, Murphy C. Automatic bug triage using text categorization. In Proc. Software Engineering and Knowledge Engineering, Banff, Canada, June, 2004, pp.92–97. Bugzilla. http://www.bugzilla.org, 2010. Wu L, Xie B, Kaiser G, Passonneau R. BugMiner: Software reliability analysis via data mining of bug reports. In Proc. the 25th International Conference on Software Engineering and Knowledge Engineering, Miami, USA, July 2011, pp.95–100. Zaman S, Adams B, Hassan A E. Security versus performance bugs: A case study on Firefox. In Proc. the 8th Working Conference on Mining Software Repositories, Hawaii, USA, May 2011, pp.93–102. Kremenek T, Engler D. Z-Ranking: Using statistical analysis to counter the impact of static analysis approximations. In Proc. the 10th International Conference on Static Analysis, June 2003, pp.295–315. Anvik J, Hiew L, Murphy G C. Who should fix this bug? In Proc. the 28th International Conference on Software Engineering, Shanghai, China, May 2006, pp.361–370. Zimmermann T, Premraj R, Zeller A. Predicting defects for Eclipse. In Proc. International Workshop on Predictor Models in Software Engineering, Minneapolis, USA, May 2007, Article No.9. Han J, Kamber M. Data Mining: Concepts and Techniques. 2nd edition, Morgan Kaufmann, 2006. Ling C, Huang J, Zhang H. Auc: A better measure than accuracy in comparing learning algorithms. In Lecture Notes in Computer Science 2671, Xiang Y, Chaib-Draa B (eds.), Springer-Verlag, 2003, pp.329–341. Witten H I, Frank E. Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. New York, USA: Morgan Kaufmann, 2000. Weib C, Premraj R, Zimmermann T, Zeller A. Predicting effort to fix software bugs. In Proc. Workshop on Software Reengineering, Bad Honnef, Germany, May 2007. Anvik J, Murphy G C. Reducing the effort of bug report triage: Recommenders for development-oriented decisions. ACM Transactions on Software Engineering and Methodology, 2011, 20(3): Article No.10. GyimothyTFerencRSiketIEmpirical validation of object-oriented metrics on open source software for fault predictionIEEE Transactions on Software Engineering2005311089791010.1109/TSE.2005.112 Marks L, Zou Y, Hassan A E. Studying the fix-time for bugs in large open source projects. In Proc. the 7th International Conference on Predictive Models in Software Engineering, Banff, Canada, September 2011, Article No.11. JIRA. http://www.atlassian.com/software/jira, 2010. Gegick M, Rotella P, Xie T. Identifying security bug reports via text mining: An industrial case study. In Proc. the 7th Working Conference on Mining Software Repositories, Cape Town, South Africa, May 2010, pp.11–20. Kim S, Whitehead J. How long did it take to fix bugs? In Proc. International Workshop on Mining Software Repositories, Shanghai, China, May 2006, pp.173–174. Herraiz I, German D M, Gonzalez-Barahona J M, Robles G. Towards a simplification of the bug report form in eclipse. In Proc. International Working Conference on Mining Software Repositories, Leipzig, Germany, May 2008, pp.145–148. TucekJLuSHuangCXanthosSZhouYTriage: Diagnosing production run failures at the user’s siteACM SIGOPS Operating Systems Review200741613114410.1145/1323293.1294275 Lamkanfi A, Demeyer S, Gigery E, Goethals B. Predicting the severity of a reported bug. In Proc. the 7th Working Conference on Mining Software Repositories, Cape Town, South Africa, May 2010, pp.1–10. Anvik J. Automating bug report assignment. In Proc. the 28th International Conference on Software Engineering, Shanghai, China, May 2006, pp.937–940. Kanwal J, Maqbool O. Managing open bug repositories through bug report prioritization using SVMs. In Proc. International Conference on Open-Source Systems and Technologies, Lahore, Pakistan, December 2010. Mozilla. http://www.mozilla.org, 2010. VapnikVNStatistical Learning Theory1998New York, USAWiley-Interscience0935.62007 Ahsan S N, Ferzund J, Wotawa F. Automatic software bug triage system (BTS) based on Latent Semantic Indexing and Support Vector Machine. In Proc. the 4th International Conference on Software Engineering Advances, Washington, USA, September 2009, pp.216–221. Kantardzic M. Data Mining: Concepts, Models, Methods, and Algorithms. New York, USA: Wiley-Interscience, 2003. Kim S, Ernst M D. Prioritizing warning categories by analyzing software history. In Proc. the 4th International Workshop on Mining Software Repositories, Minneapolis, USA, May 2007, Article No. 27. Canfora G, Cerulo L. Impact analysis by mining software and change request repositories. In Proc. the 11th International Software Metrics Symposium, Como, Italy, September 2005, Article No.29. 1230_CR8 1230_CR15 1230_CR37 R Baeza-Yates (1230_CR45) 1999 1230_CR9 1230_CR16 1230_CR38 1230_CR17 1230_CR39 1230_CR18 VN Vapnik (1230_CR41) 1998 1230_CR11 1230_CR12 1230_CR34 1230_CR13 1230_CR35 1230_CR14 1230_CR36 1230_CR1 1230_CR2 1230_CR3 1230_CR4 1230_CR19 1230_CR5 1230_CR7 J Tucek (1230_CR6) 2007; 41 1230_CR30 1230_CR31 1230_CR10 1230_CR32 WS Noble (1230_CR40) 2006; 24 T Gyimothy (1230_CR33) 2005; 31 F Sebastiani (1230_CR42) 2002; 34 1230_CR26 1230_CR27 1230_CR28 1230_CR29 1230_CR22 1230_CR44 1230_CR23 1230_CR24 1230_CR46 1230_CR25 1230_CR47 1230_CR20 1230_CR21 1230_CR43  | 
    
| References_xml | – reference: Wu L, Xie B, Kaiser G, Passonneau R. BugMiner: Software reliability analysis via data mining of bug reports. In Proc. the 25th International Conference on Software Engineering and Knowledge Engineering, Miami, USA, July 2011, pp.95–100. – reference: Runeson P, Elexandersson M, Nyholm O. Detection of duplicate defect reports using natural language processing. In Proc. the 29th International Conference on Software Engineering, Minneapolis, USA, May 2007, pp.499–510. – reference: GNATS. http://www.gnu.org/software/gnats, 2010. – reference: TucekJLuSHuangCXanthosSZhouYTriage: Diagnosing production run failures at the user’s siteACM SIGOPS Operating Systems Review200741613114410.1145/1323293.1294275 – reference: Anvik J, Murphy G C. Determining implementation expertise from bug reports. In Proc. the 4th MSR, Minneapolis, USA, May 2007, Article No.2. – reference: Ling C, Huang J, Zhang H. Auc: A better measure than accuracy in comparing learning algorithms. In Lecture Notes in Computer Science 2671, Xiang Y, Chaib-Draa B (eds.), Springer-Verlag, 2003, pp.329–341. – reference: Cubranic D, Murphy C. Automatic bug triage using text categorization. In Proc. Software Engineering and Knowledge Engineering, Banff, Canada, June, 2004, pp.92–97. – reference: Panjer L D. Predicting Eclipse bug lifetimes. In Proc. the 4th International Workshop on Mining Software Repositories, Minneapolis, USA, May 2007, pp.1–8. – reference: Kremenek T, Engler D. Z-Ranking: Using statistical analysis to counter the impact of static analysis approximations. In Proc. the 10th International Conference on Static Analysis, June 2003, pp.295–315. – reference: Prifti T, Banerjee S, Cukic B. Detecting bug duplicate reports through local references. In Proc. the 7th International Conference on Predictive Models in Software Engineering, Banff, Canada, September 2011, Article No.8. – reference: Baeza-YatesRRibeiro-NetoBModern Information Retrieval1999Boston, USAAddison-Wesley Longman – reference: Canfora G, Cerulo L. Impact analysis by mining software and change request repositories. In Proc. the 11th International Software Metrics Symposium, Como, Italy, September 2005, Article No.29. – reference: Anvik J, Hiew L, Murphy G C. Who should fix this bug? In Proc. the 28th International Conference on Software Engineering, Shanghai, China, May 2006, pp.361–370. – reference: Canfora G, Cerulo L. Supporting change request assignment in open source development. In Proc. ACM Symposium on Applied Computing, Dijon, France, April 2006, pp.1767–1772. – reference: Anvik J. Automating bug report assignment. In Proc. the 28th International Conference on Software Engineering, Shanghai, China, May 2006, pp.937–940. – reference: Bugzilla. http://www.bugzilla.org, 2010. – reference: NobleWSWhat is a support vector machine?Nature Biotechnology2006241565156710.1038/nbt1206-1565 – reference: Zaman S, Adams B, Hassan A E. Security versus performance bugs: A case study on Firefox. In Proc. the 8th Working Conference on Mining Software Repositories, Hawaii, USA, May 2011, pp.93–102. – reference: Kantardzic M. Data Mining: Concepts, Models, Methods, and Algorithms. New York, USA: Wiley-Interscience, 2003. – reference: Herraiz I, German D M, Gonzalez-Barahona J M, Robles G. Towards a simplification of the bug report form in eclipse. In Proc. International Working Conference on Mining Software Repositories, Leipzig, Germany, May 2008, pp.145–148. – reference: JIRA. http://www.atlassian.com/software/jira, 2010. – reference: Tamrawi A, Nguyen T, Al-Kofahi J, Nguyen T N. Fuzzy set-based automatic bug triaging. In Proc. the 33 rd International Conference on Software Engineering (NIER Track), Miami, USA, May 2011, pp.884–887. – reference: Yu L, Tsai W, Zhao W, Wu F. Predicting defect priority based on neural networks. In Proc. the 6th Int. Conf. Advanced Data Mining and Applications, Wuhan, China, November 2010, pp.356–367. – reference: Kim S, Ernst M D. Prioritizing warning categories by analyzing software history. In Proc. the 4th International Workshop on Mining Software Repositories, Minneapolis, USA, May 2007, Article No. 27. – reference: Eclipse. http://www.eclipse.org, 2010. – reference: Anvik J, Murphy G C. Reducing the effort of bug report triage: Recommenders for development-oriented decisions. ACM Transactions on Software Engineering and Methodology, 2011, 20(3): Article No.10. – reference: Ahsan S N, Ferzund J, Wotawa F. Automatic software bug triage system (BTS) based on Latent Semantic Indexing and Support Vector Machine. In Proc. the 4th International Conference on Software Engineering Advances, Washington, USA, September 2009, pp.216–221. – reference: Lamkanfi A, Demeyer S, Soetens Q D, Verdonck T. Comparing mining algorithms for predicting the severity of a reported bug. In Proc. the 15th European Conference on Software Maintenance and Reengineering, Oldenburg, Germany, March 2011, pp.249–258. – reference: Kanwal J, Maqbool O. Managing open bug repositories through bug report prioritization using SVMs. In Proc. International Conference on Open-Source Systems and Technologies, Lahore, Pakistan, December 2010. – reference: Anvik J. Assisting bug report triage through recommendation [PhD Thesis]. University of British Columbia, 2007. – reference: Kim S, Ernst M D. Which warnings should I fix first? In Proc. the 6th ESEC-FSE, Dubrovnik, Croatia, September 2007, pp.45–54. – reference: Zimmermann T, Premraj R, Zeller A. Predicting defects for Eclipse. In Proc. International Workshop on Predictor Models in Software Engineering, Minneapolis, USA, May 2007, Article No.9. – reference: Weib C, Premraj R, Zimmermann T, Zeller A. Predicting effort to fix software bugs. In Proc. Workshop on Software Reengineering, Bad Honnef, Germany, May 2007. – reference: VapnikVNStatistical Learning Theory1998New York, USAWiley-Interscience0935.62007 – reference: Joachims, T. Text categorization with support vector machines: Learning with many relevant features. In Proc. European Conference on Machine Learning, Chemnitz, Germany, April 1998, pp.137–142. – reference: Mozilla. http://www.mozilla.org, 2010. – reference: Wang X, Zhang L, Xie T, Anvik J, Sun J. An approach to detecting duplicate bug reports using natural language and execution information. In Proc. the 30th International Conference on Software Engineering, Leipzig, Germany, May 2008, pp.461–470. – reference: Lamkanfi A, Demeyer S, Gigery E, Goethals B. Predicting the severity of a reported bug. In Proc. the 7th Working Conference on Mining Software Repositories, Cape Town, South Africa, May 2010, pp.1–10. – reference: Jeong G, Kim S, Zimmermann T. Improving bug triage with bug tossing graphs. In Proc. the 7th ESEC-FSE, Amsterdam, Netherlands, August 2009, pp.111–120. – reference: SebastianiFMachine learning in automated text categorizationACM Computing Surveys200234114710.1145/505282.505283 – reference: Aljarah I, Banitaan S, Abufardeh S, Jin W, Salem S. Selecting discriminating terms for bug assignment: A formal analysis. In Proc. the 7th International Conference on Predictive Models in Software Engineering, Banff, Canada, September 2011, Article No.12. – reference: Witten H I, Frank E. Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. New York, USA: Morgan Kaufmann, 2000. – reference: GyimothyTFerencRSiketIEmpirical validation of object-oriented metrics on open source software for fault predictionIEEE Transactions on Software Engineering2005311089791010.1109/TSE.2005.112 – reference: Kim S, Whitehead J. How long did it take to fix bugs? In Proc. International Workshop on Mining Software Repositories, Shanghai, China, May 2006, pp.173–174. – reference: Han J, Kamber M. Data Mining: Concepts and Techniques. 2nd edition, Morgan Kaufmann, 2006. – reference: Gegick M, Rotella P, Xie T. Identifying security bug reports via text mining: An industrial case study. In Proc. the 7th Working Conference on Mining Software Repositories, Cape Town, South Africa, May 2010, pp.11–20. – reference: Marks L, Zou Y, Hassan A E. Studying the fix-time for bugs in large open source projects. In Proc. the 7th International Conference on Predictive Models in Software Engineering, Banff, Canada, September 2011, Article No.11. – ident: 1230_CR9 – volume: 41 start-page: 131 issue: 6 year: 2007 ident: 1230_CR6 publication-title: ACM SIGOPS Operating Systems Review doi: 10.1145/1323293.1294275 – ident: 1230_CR22 doi: 10.1145/1985793.1985934 – ident: 1230_CR3 – ident: 1230_CR27 doi: 10.1109/ICSE.2007.32 – ident: 1230_CR7 doi: 10.1145/1370750.1370786 – volume-title: Modern Information Retrieval year: 1999 ident: 1230_CR45 – ident: 1230_CR20 doi: 10.1109/ICSEA.2009.92 – ident: 1230_CR31 – ident: 1230_CR14 doi: 10.1109/MSR.2007.26 – ident: 1230_CR28 doi: 10.1145/1368088.1368151 – ident: 1230_CR30 doi: 10.1145/2020390.2020398 – ident: 1230_CR35 – ident: 1230_CR37 doi: 10.1007/BFb0026683 – volume: 24 start-page: 1565 year: 2006 ident: 1230_CR40 publication-title: Nature Biotechnology doi: 10.1038/nbt1206-1565 – ident: 1230_CR15 doi: 10.1145/1287624.1287633 – ident: 1230_CR18 doi: 10.1145/2000791.2000794 – ident: 1230_CR21 doi: 10.1145/1595696.1595715 – ident: 1230_CR47 – ident: 1230_CR8 doi: 10.1145/1134285.1134457 – ident: 1230_CR10 doi: 10.1145/1137983.1138027 – ident: 1230_CR32 doi: 10.1145/2020390.2020401 – ident: 1230_CR43 – ident: 1230_CR23 doi: 10.1109/CSMR.2011.31 – volume-title: Statistical Learning Theory year: 1998 ident: 1230_CR41 – ident: 1230_CR16 doi: 10.1007/3-540-44898-5_16 – ident: 1230_CR5 doi: 10.1109/MSR.2007.7 – ident: 1230_CR1 doi: 10.1145/1141277.1141693 – ident: 1230_CR2 – ident: 1230_CR4 – ident: 1230_CR25 doi: 10.1109/MSR.2010.5463340 – ident: 1230_CR34 doi: 10.1109/PROMISE.2007.10 – ident: 1230_CR13 – ident: 1230_CR26 doi: 10.1145/1985441.1985457 – ident: 1230_CR12 doi: 10.1007/978-3-642-17313-4_35 – ident: 1230_CR38 – ident: 1230_CR36 – ident: 1230_CR44 doi: 10.1109/MSR.2007.25 – ident: 1230_CR39 – ident: 1230_CR11 doi: 10.1109/MSR.2010.5463284 – ident: 1230_CR29 doi: 10.1109/METRICS.2005.28 – volume: 31 start-page: 897 issue: 10 year: 2005 ident: 1230_CR33 publication-title: IEEE Transactions on Software Engineering doi: 10.1109/TSE.2005.112 – volume: 34 start-page: 1 issue: 1 year: 2002 ident: 1230_CR42 publication-title: ACM Computing Surveys doi: 10.1145/505282.505283 – ident: 1230_CR46 – ident: 1230_CR17 doi: 10.1145/1134285.1134336 – ident: 1230_CR19 doi: 10.1145/2020390.2020402 – ident: 1230_CR24 doi: 10.1007/3-540-44886-1_25  | 
    
| SSID | ssj0037044 | 
    
| Score | 2.17749 | 
    
| Snippet | The large number of new bug reports received in bug repositories of software systems makes their management a challenging task.Handling these reports manually... The large number of new bug reports received in bug repositories of software systems makes their management a challenging task. Handling these reports manually... TP3; The large number of new bug reports received in bug repositories of software systems makes their management a challenging task.Handling these reports...  | 
    
| SourceID | wanfang proquest crossref springer chongqing  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 397 | 
    
| SubjectTerms | Accuracy Algorithms Analysis Artificial Intelligence Bayesian analysis Bayes算法 Classifiers Computer Science Construction Data mining Data Structures and Information Theory Debugging Information Systems Applications (incl.Internet) Open source software Priorities Recall Regular Paper Software Engineering Studies Support vector machines SVM Texts Theory of Computation 优先次序 使用精度 分流 支持向量机 文本特征 错误报告  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB7BcumFZ6uGl4JULq2iJrHz8AGhUrFClUCoAomb5fixdIsSYHclfj4zSZxtL3vJJY4TzXg8E8_M9wF8yWyZxYlDDSihIu5SgTaXuKjIY82U08y1cAzXN_nVPf_1kD2swbXvhaGySr8nthu1aTSdkX8X6Ely9EXx-fNLRKRRlFz1DBqqZ1YwZy3C2DpspASMNYKNi8ub299-a2ZF3LK70pl2RGyZPs3Z9tJhLEQ1WsT1wXBvIrCFx6aevKAL-d9pLSPRIXnatvzUTtWTf7zTeBs2-7Ay_NGtgx1Ys_UubHnKhrC34D1ILxaT8Pb1T0NYRl0HZjhvwrHSHVq3DWlAF5WHd7g4J_Yj3I8v735eRT1tQqR5UcwjVum8UJWwhicaDZgVhmttHTcm1RmGb8zpMtOO4d-CzVInEqbQ6pPc5FaJqmSfYFQ3tf0MoaniUiiMElQquKm4wuCnqBRnNqWEdR7A_iAj-dzBY0hOtZ5FKQKIvdCk7gHHiffiSS6hkknmEmUuSeaSBfB1eMRPt2LwgdeE7A1vJodlEsDJcBcthtIgqrbNYkZFbSLPODriAL55BS5nWPG-017Hy8HT2fTv23T2VkmbUhsyXfZXftcBfKBBXRnbIYzmrwt7hHHNvDruV-s7BKrw1A priority: 102 providerName: ProQuest  | 
    
| Title | Bug Prioritization to Facilitate Bug Report Triage | 
    
| URI | http://lib.cqvip.com/qk/85226X/201202/41090789.html https://link.springer.com/article/10.1007/s11390-012-1230-3 https://www.proquest.com/docview/926662440 https://www.proquest.com/docview/1019654429 https://d.wanfangdata.com.cn/periodical/jsjkxjsxb-e201202012  | 
    
| Volume | 27 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1860-4749 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0037044 issn: 1000-9000 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1860-4749 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0037044 issn: 1000-9000 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1860-4749 dateEnd: 20181130 omitProxy: true ssIdentifier: ssj0037044 issn: 1000-9000 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1860-4749 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0037044 issn: 1000-9000 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1860-4749 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0037044 issn: 1000-9000 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB_8eOlLrbalUXukYF9aAkl287GPZ7lTLIoUD-zTstnsnr1KouYO_POdSbKXFkTwJXnI7gRmdnZ_ycz8BuAoMXkSRhYtoIQKuI0F-lxkgywNNVNWM9vSMZxfpKczfnadXPd13I3LdnchyXanHordEKxQEhU142C4eWzCdkJsXriIZ_HYbb8sC9sOrvTfOqCOmC6U-ZwIIlS4qav5Pb7u_4NpQJvrAGlb1lNZVc3_OYGm7-BtDx39cWfrXdgw1R7suLYMfu-l7yE-Xs39y4c_NfEVdVWW_rL2p0p3jNzGpwEd8vavcAHOzQeYTSdXP06DvjVCoHmWLQNW6DRThTAljzQ6KctKrrWxvCxjnSBEY1bnibYMvwhMElsRMYWeHaVlapQocvYRtqq6Mp_AL4swFwqRgIoFLwuuEOBkheLMxBSUTj3YX-tI3nUUGJJTPmeWCw9CpzSpe1Jx6m1xKwc6ZNK5RJ1L0rlkHnxbT3HiXhh84Cwhe-dqpEBQkSIsCT34sn6KXkGhDlWZetVQ4ppIE46HrQffnQEHCS-872tv42Hwoln8fVw0j4U0MZUa02X_VVIP4A1N6lLXDmFr-bAynxHLLIsRbObTkxFsj09-_5zg_Xhycflr1K7oJ5nd6yw | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAX3oi0PIJEL6CIJHYePlSIQldb2q4qtJV6M45jLywoaZtdUX4c_42ZJM7CZW-95BLbiebhGXseH8DrxORJGFnkgBIq4DYWqHORDbI01ExZzWzbjuFkko7P-Ofz5HwD_rhaGEqrdHtiu1GXtaY78ncCLUmKtih8f3EZEGgUBVcdgobqkRXKvbbDWF_XcWR-_8ITXLN3-AnZvRvHo4Ppx3HQgwwEmmfZImCFTjNVCFPySKO4s6zkWhvLyzLWCTo7zOo80RbP_alJYisiplBHorRMjRJFznDdW7DFGRd49tvaP5icfnGmgGVhiyZLd-gBoXO6sGpbu4e-F-WEEbYIw72Qmjt8q6vZJZqs_43kyvMdgrVtiVFlVTX7xxqO7sPd3o31P3Ry9wA2TPUQ7jmICL_fMR5BvL-c-adX32vqndRVfPqL2h8p3XUHNz4N6E4B_hSVYWYew9mNUPAJbFZ1ZZ6CXxZhLhR6JSoWvCy4QmcrKxRnJqYAeerB9kAjedG145CcckuzXHgQOqJJ3Tc4J5yNn3LVmploLpHmkmgumQdvhiluuTWDdxwnZK_ojRzE0oNXw1vUUAq7qMrUy4aS6ESacDT8Hrx1DFytsOZ7uz2PV4PnzfzH9by5LqSJqeyZHttr_-sl3B5PT47l8eHkaAfu0IQuhe4ZbC6uluY5-lSL4kUvuT58vWll-QvlYC5v | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61VKp6AdqCCK-mUntpFZHEzsPHBbqiL8SBlbhZjmMvLCgBkpX25zOziTetVCH1kkvssTTjsb9kZr4B-JSYPAkjixZQQgXcxgJ9LrJBloaaKauZXdIx_D5Pzyb8x1Vy1fc5bVy2uwtJdjUNxNJUtUf3pT0aCt8QuFBCFTXmYHiQvIRXnHgScENP4pE7ilkWLru50j_sgLpjurDmv0QQucJ1XU0fcOm_L6kBea6CpcsSn8qqavrHbTTehPUeRvqjzu5v4YWp3sGGa9Hg9x77HuLj-dS_eLypibuoq7j029ofK92xcxufBnQo3L_EzTg1WzAZf7s8OQv6NgmB5lnWBqzQaaYKYUoeaXRYlpVca2N5WcY6QbjGrM4TbRl-HZgktiJiCr08SsvUKFHkbBvWqroyO-CXRZgLhahAxYKXBVcIdrJCcWZiClCnHuyudCTvOzoMySm3M8uFB6FTmtQ9wTj1ubiTAzUy6VyiziXpXDIPvqymOHHPDN5zlpC9ozVSIMBIEaKEHnxcvUUPobCHqkw9byiJTaQJx4vXg6_OgIOEZ9b73Nt4GDxrZreLWbMopImp7Jgeu_8l9QO8vjgdy1_fz3_uwRua32W07cNa-zg3Bwhx2uJwuY2fAEEW7kA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bug+Prioritization+to+Facilitate+Bug+Report+Triage&rft.jtitle=Journal+of+computer+science+and+technology&rft.au=Kanwal%2C+Jaweria&rft.au=Maqbool%2C+Onaiza&rft.date=2012-03-01&rft.pub=Springer+US&rft.issn=1000-9000&rft.eissn=1860-4749&rft.volume=27&rft.issue=2&rft.spage=397&rft.epage=412&rft_id=info:doi/10.1007%2Fs11390-012-1230-3&rft.externalDocID=10_1007_s11390_012_1230_3 | 
    
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85226X%2F85226X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjkxjsxb-e%2Fjsjkxjsxb-e.jpg  |