Bug Prioritization to Facilitate Bug Report Triage

The large number of new bug reports received in bug repositories of software systems makes their management a challenging task.Handling these reports manually is time consuming,and often results in delaying the resolution of important bugs.To address this issue,a recommender may be developed which a...

Full description

Saved in:
Bibliographic Details
Published inJournal of computer science and technology Vol. 27; no. 2; pp. 397 - 412
Main Authors Kanwal, Jaweria, Maqbool, Onaiza
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.03.2012
Springer Nature B.V
Department of Computer Science,Quaid-i-Azam University,Islamabad,Pakistan
Subjects
Online AccessGet full text
ISSN1000-9000
1860-4749
DOI10.1007/s11390-012-1230-3

Cover

Abstract The large number of new bug reports received in bug repositories of software systems makes their management a challenging task.Handling these reports manually is time consuming,and often results in delaying the resolution of important bugs.To address this issue,a recommender may be developed which automatically prioritizes the new bug reports.In this paper,we propose and evaluate a classification based approach to build such a recommender.We use the Na¨ ve Bayes and Support Vector Machine (SVM) classifiers,and present a comparison to evaluate which classifier performs better in terms of accuracy.Since a bug report contains both categorical and text features,another evaluation we perform is to determine the combination of features that better determines the priority of a bug.To evaluate the bug priority recommender,we use precision and recall measures and also propose two new measures,Nearest False Negatives (NFN) and Nearest False Positives (NFP),which provide insight into the results produced by precision and recall.Our findings are that the results of SVM are better than the Na¨ ve Bayes algorithm for text features,whereas for categorical features,Na¨ ve Bayes performance is better than SVM.The highest accuracy is achieved with SVM when categorical and text features are combined for training.
AbstractList The large number of new bug reports received in bug repositories of software systems makes their management a challenging task. Handling these reports manually is time consuming, and often results in delaying the resolution of important bugs. To address this issue, a recommender may be developed which automatically prioritizes the new bug reports. In this paper, we propose and evaluate a classification based approach to build such a recommender. We use the Naive Bayes and Support Vector Machine (SVM) classifiers, and present a comparison to evaluate which classifier performs better in terms of accuracy. Since a bug report contains both categorical and text features, another evaluation we perform is to determine the combination of features that better determines the priority of a bug. To evaluate the bug priority recommender, we use precision and recall measures and also propose two new measures, Nearest False Negatives (NFN) and Nearest False Positives (NFP), which provide insight into the results produced by precision and recall. Our findings are that the results of SVM are better than the Naive Bayes algorithm for text features, whereas for categorical features, Naive Bayes performance is better than SVM. The highest accuracy is achieved with SVM when categorical and text features are combined for training.
The large number of new bug reports received in bug repositories of software systems makes their management a challenging task.Handling these reports manually is time consuming,and often results in delaying the resolution of important bugs.To address this issue,a recommender may be developed which automatically prioritizes the new bug reports.In this paper,we propose and evaluate a classification based approach to build such a recommender.We use the Na¨ ve Bayes and Support Vector Machine (SVM) classifiers,and present a comparison to evaluate which classifier performs better in terms of accuracy.Since a bug report contains both categorical and text features,another evaluation we perform is to determine the combination of features that better determines the priority of a bug.To evaluate the bug priority recommender,we use precision and recall measures and also propose two new measures,Nearest False Negatives (NFN) and Nearest False Positives (NFP),which provide insight into the results produced by precision and recall.Our findings are that the results of SVM are better than the Na¨ ve Bayes algorithm for text features,whereas for categorical features,Na¨ ve Bayes performance is better than SVM.The highest accuracy is achieved with SVM when categorical and text features are combined for training.
The large number of new bug reports received in bug repositories of software systems makes their management a challenging task. Handling these reports manually is time consuming, and often results in delaying the resolution of important bugs. To address this issue, a recommender may be developed which automatically prioritizes the new bug reports. In this paper, we propose and evaluate a classification based approach to build such a recommender. We use the Naïve Bayes and Support Vector Machine (SVM) classifiers, and present a comparison to evaluate which classifier performs better in terms of accuracy. Since a bug report contains both categorical and text features, another evaluation we perform is to determine the combination of features that better determines the priority of a bug. To evaluate the bug priority recommender, we use precision and recall measures and also propose two new measures, Nearest False Negatives (NFN) and Nearest False Positives (NFP), which provide insight into the results produced by precision and recall. Our findings are that the results of SVM are better than the Naïve Bayes algorithm for text features, whereas for categorical features, Naïve Bayes performance is better than SVM. The highest accuracy is achieved with SVM when categorical and text features are combined for training.
TP3; The large number of new bug reports received in bug repositories of software systems makes their management a challenging task.Handling these reports manually is time consuming,and often results in delaying the resolution of important bugs. To address this issue,a recommender may be developed which automatically prioritizes the new bug reports.In this paper,we propose and evaluate a classification based approach to build such a recommender.We use the Na(ǐ)ve Bayes and Support Vector Machine (SVM) classifiers,and present a comparison to evaluate which classifier performs better in terms of accuracy.Since a bug report contains both categorical and text features,another evaluation we perform is to determine the combination of features that better determines the priority of a bug.To evaluate the bug priority recommender,we use precision and recall measures and also propose two new measures,Nearest False Negatives (NFN) and Nearest False Positives (NFP),which provide insight into the results produced by precision and recall.Our findings are that the results of SVM are better than the Na(ǐ)ve Bayes algorithm for text features,whereas for categorical features,Na(ǐ)ve Bayes performance is better than SVM.The highest accurácy is achieved with SVM when categorical and text features are combined for training.
The large number of new bug reports received in bug repositories of software systems makes their management a challenging task. Handling these reports manually is time consuming, and often results in delaying the resolution of important bugs. To address this issue, a recommender may be developed which automatically prioritizes the new bug reports. In this paper, we propose and evaluate a classification based approach to build such a recommender. We use the Naïve Bayes and Support Vector Machine (SVM) classifiers, and present a comparison to evaluate which classifier performs better in terms of accuracy. Since a bug report contains both categorical and text features, another evaluation we perform is to determine the combination of features that better determines the priority of a bug. To evaluate the bug priority recommender, we use precision and recall measures and also propose two new measures, Nearest False Negatives (NFN) and Nearest False Positives (NFP), which provide insight into the results produced by precision and recall. Our findings are that the results of SVM are better than the Naïve Bayes algorithm for text features, whereas for categorical features, Naïve Bayes performance is better than SVM. The highest accuracy is achieved with SVM when categorical and text features are combined for training.[PUBLICATION ABSTRACT]
Author Jaweria Kanwal Onaiza Maqbool
AuthorAffiliation Department of Computer Science,Quaid-i-Azam University
AuthorAffiliation_xml – name: Department of Computer Science,Quaid-i-Azam University,Islamabad,Pakistan
Author_xml – sequence: 1
  givenname: Jaweria
  surname: Kanwal
  fullname: Kanwal, Jaweria
  email: kjaweria09@yahoo.com
  organization: Department of Computer Science, Quaid-i-Azam University
– sequence: 2
  givenname: Onaiza
  surname: Maqbool
  fullname: Maqbool, Onaiza
  organization: Department of Computer Science, Quaid-i-Azam University
BookMark eNp9kEtP3DAUhS00SLz6A9ilXXVByvUj9njZImgrIYEQXVsexwlOgz1jewTtr6-joKk0CzbXXnznnHvPCVr44C1C5xi-YABxmTCmEmrApMaEQk0P0DFecqiZYHJR_gBQyzKO0ElKAwAVwNgxIt-2fXUfXYguu786u-CrHKobbdzoss62moAHuw4xV4_R6d6eocNOj8l-eHtP0a-b68erH_Xt3fefV19va8OEyDVdGS70StqWYSNoCWyZMbZjbUtM03BOO7NsTEcpcNuQTmKqKTSYt9xquVrSU3Qx-75o32nfqyFsoy-JakjD79chva6UJeVimEbBP8_4OobN1qasnl0ydhy1t2GbFAYsecMYkQX9tIfurCXhnBPGoEBihkwMKUXbKTMVUgrKUbux-KmpeTU3r8oKampe0aLEe8p1dM86_nlXQ2ZNKqzvbfy_0nuij29BT8H3m6LbJTEMEsRS0n9cUKBo
CitedBy_id crossref_primary_10_1155_2020_8509821
crossref_primary_10_1145_3178315_3178326
crossref_primary_10_1016_j_infsof_2022_106972
crossref_primary_10_1007_s11432_014_5241_2
crossref_primary_10_1109_ACCESS_2022_3167269
crossref_primary_10_1142_S021819402350002X
crossref_primary_10_4018_IJOSSP_315280
crossref_primary_10_1109_ACCESS_2021_3093170
crossref_primary_10_1007_s10462_016_9478_6
crossref_primary_10_4018_jossp_2012040103
crossref_primary_10_1109_ACCESS_2020_3035063
crossref_primary_10_3390_app15020633
crossref_primary_10_1007_s10515_020_00279_2
crossref_primary_10_1109_TR_2019_2959624
crossref_primary_10_32604_iasc_2023_036356
crossref_primary_10_4018_IJSKD_310066
crossref_primary_10_3390_e21010091
crossref_primary_10_1016_j_jjimei_2022_100153
crossref_primary_10_1093_comjnl_bxv114
crossref_primary_10_1016_j_infsof_2019_03_014
crossref_primary_10_1142_S0218194019500050
crossref_primary_10_1016_j_jss_2016_01_038
crossref_primary_10_1007_s13198_014_0219_4
crossref_primary_10_1002_smr_2742
crossref_primary_10_1007_s13198_023_02199_2
crossref_primary_10_1111_exsy_13006
crossref_primary_10_1007_s10664_019_09684_y
crossref_primary_10_1016_j_jss_2024_112179
crossref_primary_10_1016_j_jss_2024_112019
crossref_primary_10_1109_TSE_2020_3017514
crossref_primary_10_1109_ACCESS_2018_2850910
crossref_primary_10_1142_S0218194024500293
crossref_primary_10_1007_s10664_024_10510_3
crossref_primary_10_1109_ACCESS_2020_3032840
crossref_primary_10_1007_s10664_021_10085_3
crossref_primary_10_1016_j_jss_2022_111308
crossref_primary_10_1587_transinf_2019EDP7152
crossref_primary_10_1016_j_jss_2020_110518
Cites_doi 10.1145/1323293.1294275
10.1145/1985793.1985934
10.1109/ICSE.2007.32
10.1145/1370750.1370786
10.1109/ICSEA.2009.92
10.1109/MSR.2007.26
10.1145/1368088.1368151
10.1145/2020390.2020398
10.1007/BFb0026683
10.1038/nbt1206-1565
10.1145/1287624.1287633
10.1145/2000791.2000794
10.1145/1595696.1595715
10.1145/1134285.1134457
10.1145/1137983.1138027
10.1145/2020390.2020401
10.1109/CSMR.2011.31
10.1007/3-540-44898-5_16
10.1109/MSR.2007.7
10.1145/1141277.1141693
10.1109/MSR.2010.5463340
10.1109/PROMISE.2007.10
10.1145/1985441.1985457
10.1007/978-3-642-17313-4_35
10.1109/MSR.2007.25
10.1109/MSR.2010.5463284
10.1109/METRICS.2005.28
10.1109/TSE.2005.112
10.1145/505282.505283
10.1145/1134285.1134336
10.1145/2020390.2020402
10.1007/3-540-44886-1_25
ClassificationCodes TP3
ContentType Journal Article
Copyright Springer Science+Business Media, LLC & Science Press, China 2012
Springer Science+Business Media, LLC & Science Press, China 2012.
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC & Science Press, China 2012
– notice: Springer Science+Business Media, LLC & Science Press, China 2012.
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1007/s11390-012-1230-3
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
Engineering Database
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList Computer and Information Systems Abstracts



ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitleAlternate Bug Prioritization to Facilitate Bug Report Triage
EISSN 1860-4749
EndPage 412
ExternalDocumentID jsjkxjsxb_e201202012
2604461161
10_1007_s11390_012_1230_3
41090789
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
28-
29K
2B.
2C0
2J2
2JN
2JY
2KG
2KM
2LR
2RA
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VR
5VS
67Z
6NX
7WY
8FE
8FG
8FL
8TC
8UJ
92H
92I
92L
92R
93N
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAOBN
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAWWR
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBMV
ACBRV
ACBXY
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ACZOJ
ADGRI
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AEYWE
AFEXP
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
CAG
CCEZO
CCPQU
CHBEP
COF
CQIGP
CS3
CSCUP
CUBFJ
CW9
D-I
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
HCIFZ
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IAO
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PQBIZ
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCL
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TCJ
TGT
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W92
WK8
YLTOR
Z7R
Z7U
Z7X
Z7Z
Z81
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
~A9
~EX
~WA
-SI
-S~
5XA
5XJ
AACDK
AAJBT
AASML
AAXDM
AAYZH
ABAKF
ABQSL
ACDTI
ACPIV
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
BSONS
CAJEI
H13
PQBZA
Q--
U1G
U5S
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ICD
IVC
PHGZM
PHGZT
PQGLB
PUEGO
TGMPQ
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L6V
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
4A8
PMFND
PSX
ID FETCH-LOGICAL-c477t-3bc67ab9ed41c73037d4ccef4dd2c55663fc85cf3306e52f913a30516d6ea9b83
IEDL.DBID U2A
ISSN 1000-9000
IngestDate Thu May 29 04:00:15 EDT 2025
Fri Sep 05 08:26:51 EDT 2025
Sat Aug 23 12:43:24 EDT 2025
Thu Apr 24 23:11:42 EDT 2025
Wed Oct 01 06:38:28 EDT 2025
Fri Feb 21 02:40:04 EST 2025
Wed Feb 14 10:47:23 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords bug triaging
bug priority
mining bug repositories
classification
evaluation measures
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c477t-3bc67ab9ed41c73037d4ccef4dd2c55663fc85cf3306e52f913a30516d6ea9b83
Notes The large number of new bug reports received in bug repositories of software systems makes their management a challenging task.Handling these reports manually is time consuming,and often results in delaying the resolution of important bugs.To address this issue,a recommender may be developed which automatically prioritizes the new bug reports.In this paper,we propose and evaluate a classification based approach to build such a recommender.We use the Na¨ ve Bayes and Support Vector Machine (SVM) classifiers,and present a comparison to evaluate which classifier performs better in terms of accuracy.Since a bug report contains both categorical and text features,another evaluation we perform is to determine the combination of features that better determines the priority of a bug.To evaluate the bug priority recommender,we use precision and recall measures and also propose two new measures,Nearest False Negatives (NFN) and Nearest False Positives (NFP),which provide insight into the results produced by precision and recall.Our findings are that the results of SVM are better than the Na¨ ve Bayes algorithm for text features,whereas for categorical features,Na¨ ve Bayes performance is better than SVM.The highest accuracy is achieved with SVM when categorical and text features are combined for training.
11-2296/TP
bug triaging,bug priority,classification,mining bug repositories,evaluation measures
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 926662440
PQPubID 326258
PageCount 16
ParticipantIDs wanfang_journals_jsjkxjsxb_e201202012
proquest_miscellaneous_1019654429
proquest_journals_926662440
crossref_citationtrail_10_1007_s11390_012_1230_3
crossref_primary_10_1007_s11390_012_1230_3
springer_journals_10_1007_s11390_012_1230_3
chongqing_primary_41090789
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-03-01
PublicationDateYYYYMMDD 2012-03-01
PublicationDate_xml – month: 03
  year: 2012
  text: 2012-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
– name: Beijing
PublicationTitle Journal of computer science and technology
PublicationTitleAbbrev J. Comput. Sci. Technol
PublicationTitleAlternate Journal of Computer Science and Technology
PublicationTitle_FL Journal of Computer Science and Technology
PublicationYear 2012
Publisher Springer US
Springer Nature B.V
Department of Computer Science,Quaid-i-Azam University,Islamabad,Pakistan
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Department of Computer Science,Quaid-i-Azam University,Islamabad,Pakistan
References Wang X, Zhang L, Xie T, Anvik J, Sun J. An approach to detecting duplicate bug reports using natural language and execution information. In Proc. the 30th International Conference on Software Engineering, Leipzig, Germany, May 2008, pp.461–470.
Baeza-YatesRRibeiro-NetoBModern Information Retrieval1999Boston, USAAddison-Wesley Longman
Eclipse. http://www.eclipse.org, 2010.
GNATS. http://www.gnu.org/software/gnats, 2010.
Joachims, T. Text categorization with support vector machines: Learning with many relevant features. In Proc. European Conference on Machine Learning, Chemnitz, Germany, April 1998, pp.137–142.
Runeson P, Elexandersson M, Nyholm O. Detection of duplicate defect reports using natural language processing. In Proc. the 29th International Conference on Software Engineering, Minneapolis, USA, May 2007, pp.499–510.
Yu L, Tsai W, Zhao W, Wu F. Predicting defect priority based on neural networks. In Proc. the 6th Int. Conf. Advanced Data Mining and Applications, Wuhan, China, November 2010, pp.356–367.
Kim S, Ernst M D. Which warnings should I fix first? In Proc. the 6th ESEC-FSE, Dubrovnik, Croatia, September 2007, pp.45–54.
Canfora G, Cerulo L. Supporting change request assignment in open source development. In Proc. ACM Symposium on Applied Computing, Dijon, France, April 2006, pp.1767–1772.
NobleWSWhat is a support vector machine?Nature Biotechnology2006241565156710.1038/nbt1206-1565
SebastianiFMachine learning in automated text categorizationACM Computing Surveys200234114710.1145/505282.505283
Jeong G, Kim S, Zimmermann T. Improving bug triage with bug tossing graphs. In Proc. the 7th ESEC-FSE, Amsterdam, Netherlands, August 2009, pp.111–120.
Tamrawi A, Nguyen T, Al-Kofahi J, Nguyen T N. Fuzzy set-based automatic bug triaging. In Proc. the 33 rd International Conference on Software Engineering (NIER Track), Miami, USA, May 2011, pp.884–887.
Aljarah I, Banitaan S, Abufardeh S, Jin W, Salem S. Selecting discriminating terms for bug assignment: A formal analysis. In Proc. the 7th International Conference on Predictive Models in Software Engineering, Banff, Canada, September 2011, Article No.12.
Anvik J, Murphy G C. Determining implementation expertise from bug reports. In Proc. the 4th MSR, Minneapolis, USA, May 2007, Article No.2.
Lamkanfi A, Demeyer S, Soetens Q D, Verdonck T. Comparing mining algorithms for predicting the severity of a reported bug. In Proc. the 15th European Conference on Software Maintenance and Reengineering, Oldenburg, Germany, March 2011, pp.249–258.
Anvik J. Assisting bug report triage through recommendation [PhD Thesis]. University of British Columbia, 2007.
Prifti T, Banerjee S, Cukic B. Detecting bug duplicate reports through local references. In Proc. the 7th International Conference on Predictive Models in Software Engineering, Banff, Canada, September 2011, Article No.8.
Panjer L D. Predicting Eclipse bug lifetimes. In Proc. the 4th International Workshop on Mining Software Repositories, Minneapolis, USA, May 2007, pp.1–8.
Cubranic D, Murphy C. Automatic bug triage using text categorization. In Proc. Software Engineering and Knowledge Engineering, Banff, Canada, June, 2004, pp.92–97.
Bugzilla. http://www.bugzilla.org, 2010.
Wu L, Xie B, Kaiser G, Passonneau R. BugMiner: Software reliability analysis via data mining of bug reports. In Proc. the 25th International Conference on Software Engineering and Knowledge Engineering, Miami, USA, July 2011, pp.95–100.
Zaman S, Adams B, Hassan A E. Security versus performance bugs: A case study on Firefox. In Proc. the 8th Working Conference on Mining Software Repositories, Hawaii, USA, May 2011, pp.93–102.
Kremenek T, Engler D. Z-Ranking: Using statistical analysis to counter the impact of static analysis approximations. In Proc. the 10th International Conference on Static Analysis, June 2003, pp.295–315.
Anvik J, Hiew L, Murphy G C. Who should fix this bug? In Proc. the 28th International Conference on Software Engineering, Shanghai, China, May 2006, pp.361–370.
Zimmermann T, Premraj R, Zeller A. Predicting defects for Eclipse. In Proc. International Workshop on Predictor Models in Software Engineering, Minneapolis, USA, May 2007, Article No.9.
Han J, Kamber M. Data Mining: Concepts and Techniques. 2nd edition, Morgan Kaufmann, 2006.
Ling C, Huang J, Zhang H. Auc: A better measure than accuracy in comparing learning algorithms. In Lecture Notes in Computer Science 2671, Xiang Y, Chaib-Draa B (eds.), Springer-Verlag, 2003, pp.329–341.
Witten H I, Frank E. Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. New York, USA: Morgan Kaufmann, 2000.
Weib C, Premraj R, Zimmermann T, Zeller A. Predicting effort to fix software bugs. In Proc. Workshop on Software Reengineering, Bad Honnef, Germany, May 2007.
Anvik J, Murphy G C. Reducing the effort of bug report triage: Recommenders for development-oriented decisions. ACM Transactions on Software Engineering and Methodology, 2011, 20(3): Article No.10.
GyimothyTFerencRSiketIEmpirical validation of object-oriented metrics on open source software for fault predictionIEEE Transactions on Software Engineering2005311089791010.1109/TSE.2005.112
Marks L, Zou Y, Hassan A E. Studying the fix-time for bugs in large open source projects. In Proc. the 7th International Conference on Predictive Models in Software Engineering, Banff, Canada, September 2011, Article No.11.
JIRA. http://www.atlassian.com/software/jira, 2010.
Gegick M, Rotella P, Xie T. Identifying security bug reports via text mining: An industrial case study. In Proc. the 7th Working Conference on Mining Software Repositories, Cape Town, South Africa, May 2010, pp.11–20.
Kim S, Whitehead J. How long did it take to fix bugs? In Proc. International Workshop on Mining Software Repositories, Shanghai, China, May 2006, pp.173–174.
Herraiz I, German D M, Gonzalez-Barahona J M, Robles G. Towards a simplification of the bug report form in eclipse. In Proc. International Working Conference on Mining Software Repositories, Leipzig, Germany, May 2008, pp.145–148.
TucekJLuSHuangCXanthosSZhouYTriage: Diagnosing production run failures at the user’s siteACM SIGOPS Operating Systems Review200741613114410.1145/1323293.1294275
Lamkanfi A, Demeyer S, Gigery E, Goethals B. Predicting the severity of a reported bug. In Proc. the 7th Working Conference on Mining Software Repositories, Cape Town, South Africa, May 2010, pp.1–10.
Anvik J. Automating bug report assignment. In Proc. the 28th International Conference on Software Engineering, Shanghai, China, May 2006, pp.937–940.
Kanwal J, Maqbool O. Managing open bug repositories through bug report prioritization using SVMs. In Proc. International Conference on Open-Source Systems and Technologies, Lahore, Pakistan, December 2010.
Mozilla. http://www.mozilla.org, 2010.
VapnikVNStatistical Learning Theory1998New York, USAWiley-Interscience0935.62007
Ahsan S N, Ferzund J, Wotawa F. Automatic software bug triage system (BTS) based on Latent Semantic Indexing and Support Vector Machine. In Proc. the 4th International Conference on Software Engineering Advances, Washington, USA, September 2009, pp.216–221.
Kantardzic M. Data Mining: Concepts, Models, Methods, and Algorithms. New York, USA: Wiley-Interscience, 2003.
Kim S, Ernst M D. Prioritizing warning categories by analyzing software history. In Proc. the 4th International Workshop on Mining Software Repositories, Minneapolis, USA, May 2007, Article No. 27.
Canfora G, Cerulo L. Impact analysis by mining software and change request repositories. In Proc. the 11th International Software Metrics Symposium, Como, Italy, September 2005, Article No.29.
1230_CR8
1230_CR15
1230_CR37
R Baeza-Yates (1230_CR45) 1999
1230_CR9
1230_CR16
1230_CR38
1230_CR17
1230_CR39
1230_CR18
VN Vapnik (1230_CR41) 1998
1230_CR11
1230_CR12
1230_CR34
1230_CR13
1230_CR35
1230_CR14
1230_CR36
1230_CR1
1230_CR2
1230_CR3
1230_CR4
1230_CR19
1230_CR5
1230_CR7
J Tucek (1230_CR6) 2007; 41
1230_CR30
1230_CR31
1230_CR10
1230_CR32
WS Noble (1230_CR40) 2006; 24
T Gyimothy (1230_CR33) 2005; 31
F Sebastiani (1230_CR42) 2002; 34
1230_CR26
1230_CR27
1230_CR28
1230_CR29
1230_CR22
1230_CR44
1230_CR23
1230_CR24
1230_CR46
1230_CR25
1230_CR47
1230_CR20
1230_CR21
1230_CR43
References_xml – reference: Wu L, Xie B, Kaiser G, Passonneau R. BugMiner: Software reliability analysis via data mining of bug reports. In Proc. the 25th International Conference on Software Engineering and Knowledge Engineering, Miami, USA, July 2011, pp.95–100.
– reference: Runeson P, Elexandersson M, Nyholm O. Detection of duplicate defect reports using natural language processing. In Proc. the 29th International Conference on Software Engineering, Minneapolis, USA, May 2007, pp.499–510.
– reference: GNATS. http://www.gnu.org/software/gnats, 2010.
– reference: TucekJLuSHuangCXanthosSZhouYTriage: Diagnosing production run failures at the user’s siteACM SIGOPS Operating Systems Review200741613114410.1145/1323293.1294275
– reference: Anvik J, Murphy G C. Determining implementation expertise from bug reports. In Proc. the 4th MSR, Minneapolis, USA, May 2007, Article No.2.
– reference: Ling C, Huang J, Zhang H. Auc: A better measure than accuracy in comparing learning algorithms. In Lecture Notes in Computer Science 2671, Xiang Y, Chaib-Draa B (eds.), Springer-Verlag, 2003, pp.329–341.
– reference: Cubranic D, Murphy C. Automatic bug triage using text categorization. In Proc. Software Engineering and Knowledge Engineering, Banff, Canada, June, 2004, pp.92–97.
– reference: Panjer L D. Predicting Eclipse bug lifetimes. In Proc. the 4th International Workshop on Mining Software Repositories, Minneapolis, USA, May 2007, pp.1–8.
– reference: Kremenek T, Engler D. Z-Ranking: Using statistical analysis to counter the impact of static analysis approximations. In Proc. the 10th International Conference on Static Analysis, June 2003, pp.295–315.
– reference: Prifti T, Banerjee S, Cukic B. Detecting bug duplicate reports through local references. In Proc. the 7th International Conference on Predictive Models in Software Engineering, Banff, Canada, September 2011, Article No.8.
– reference: Baeza-YatesRRibeiro-NetoBModern Information Retrieval1999Boston, USAAddison-Wesley Longman
– reference: Canfora G, Cerulo L. Impact analysis by mining software and change request repositories. In Proc. the 11th International Software Metrics Symposium, Como, Italy, September 2005, Article No.29.
– reference: Anvik J, Hiew L, Murphy G C. Who should fix this bug? In Proc. the 28th International Conference on Software Engineering, Shanghai, China, May 2006, pp.361–370.
– reference: Canfora G, Cerulo L. Supporting change request assignment in open source development. In Proc. ACM Symposium on Applied Computing, Dijon, France, April 2006, pp.1767–1772.
– reference: Anvik J. Automating bug report assignment. In Proc. the 28th International Conference on Software Engineering, Shanghai, China, May 2006, pp.937–940.
– reference: Bugzilla. http://www.bugzilla.org, 2010.
– reference: NobleWSWhat is a support vector machine?Nature Biotechnology2006241565156710.1038/nbt1206-1565
– reference: Zaman S, Adams B, Hassan A E. Security versus performance bugs: A case study on Firefox. In Proc. the 8th Working Conference on Mining Software Repositories, Hawaii, USA, May 2011, pp.93–102.
– reference: Kantardzic M. Data Mining: Concepts, Models, Methods, and Algorithms. New York, USA: Wiley-Interscience, 2003.
– reference: Herraiz I, German D M, Gonzalez-Barahona J M, Robles G. Towards a simplification of the bug report form in eclipse. In Proc. International Working Conference on Mining Software Repositories, Leipzig, Germany, May 2008, pp.145–148.
– reference: JIRA. http://www.atlassian.com/software/jira, 2010.
– reference: Tamrawi A, Nguyen T, Al-Kofahi J, Nguyen T N. Fuzzy set-based automatic bug triaging. In Proc. the 33 rd International Conference on Software Engineering (NIER Track), Miami, USA, May 2011, pp.884–887.
– reference: Yu L, Tsai W, Zhao W, Wu F. Predicting defect priority based on neural networks. In Proc. the 6th Int. Conf. Advanced Data Mining and Applications, Wuhan, China, November 2010, pp.356–367.
– reference: Kim S, Ernst M D. Prioritizing warning categories by analyzing software history. In Proc. the 4th International Workshop on Mining Software Repositories, Minneapolis, USA, May 2007, Article No. 27.
– reference: Eclipse. http://www.eclipse.org, 2010.
– reference: Anvik J, Murphy G C. Reducing the effort of bug report triage: Recommenders for development-oriented decisions. ACM Transactions on Software Engineering and Methodology, 2011, 20(3): Article No.10.
– reference: Ahsan S N, Ferzund J, Wotawa F. Automatic software bug triage system (BTS) based on Latent Semantic Indexing and Support Vector Machine. In Proc. the 4th International Conference on Software Engineering Advances, Washington, USA, September 2009, pp.216–221.
– reference: Lamkanfi A, Demeyer S, Soetens Q D, Verdonck T. Comparing mining algorithms for predicting the severity of a reported bug. In Proc. the 15th European Conference on Software Maintenance and Reengineering, Oldenburg, Germany, March 2011, pp.249–258.
– reference: Kanwal J, Maqbool O. Managing open bug repositories through bug report prioritization using SVMs. In Proc. International Conference on Open-Source Systems and Technologies, Lahore, Pakistan, December 2010.
– reference: Anvik J. Assisting bug report triage through recommendation [PhD Thesis]. University of British Columbia, 2007.
– reference: Kim S, Ernst M D. Which warnings should I fix first? In Proc. the 6th ESEC-FSE, Dubrovnik, Croatia, September 2007, pp.45–54.
– reference: Zimmermann T, Premraj R, Zeller A. Predicting defects for Eclipse. In Proc. International Workshop on Predictor Models in Software Engineering, Minneapolis, USA, May 2007, Article No.9.
– reference: Weib C, Premraj R, Zimmermann T, Zeller A. Predicting effort to fix software bugs. In Proc. Workshop on Software Reengineering, Bad Honnef, Germany, May 2007.
– reference: VapnikVNStatistical Learning Theory1998New York, USAWiley-Interscience0935.62007
– reference: Joachims, T. Text categorization with support vector machines: Learning with many relevant features. In Proc. European Conference on Machine Learning, Chemnitz, Germany, April 1998, pp.137–142.
– reference: Mozilla. http://www.mozilla.org, 2010.
– reference: Wang X, Zhang L, Xie T, Anvik J, Sun J. An approach to detecting duplicate bug reports using natural language and execution information. In Proc. the 30th International Conference on Software Engineering, Leipzig, Germany, May 2008, pp.461–470.
– reference: Lamkanfi A, Demeyer S, Gigery E, Goethals B. Predicting the severity of a reported bug. In Proc. the 7th Working Conference on Mining Software Repositories, Cape Town, South Africa, May 2010, pp.1–10.
– reference: Jeong G, Kim S, Zimmermann T. Improving bug triage with bug tossing graphs. In Proc. the 7th ESEC-FSE, Amsterdam, Netherlands, August 2009, pp.111–120.
– reference: SebastianiFMachine learning in automated text categorizationACM Computing Surveys200234114710.1145/505282.505283
– reference: Aljarah I, Banitaan S, Abufardeh S, Jin W, Salem S. Selecting discriminating terms for bug assignment: A formal analysis. In Proc. the 7th International Conference on Predictive Models in Software Engineering, Banff, Canada, September 2011, Article No.12.
– reference: Witten H I, Frank E. Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. New York, USA: Morgan Kaufmann, 2000.
– reference: GyimothyTFerencRSiketIEmpirical validation of object-oriented metrics on open source software for fault predictionIEEE Transactions on Software Engineering2005311089791010.1109/TSE.2005.112
– reference: Kim S, Whitehead J. How long did it take to fix bugs? In Proc. International Workshop on Mining Software Repositories, Shanghai, China, May 2006, pp.173–174.
– reference: Han J, Kamber M. Data Mining: Concepts and Techniques. 2nd edition, Morgan Kaufmann, 2006.
– reference: Gegick M, Rotella P, Xie T. Identifying security bug reports via text mining: An industrial case study. In Proc. the 7th Working Conference on Mining Software Repositories, Cape Town, South Africa, May 2010, pp.11–20.
– reference: Marks L, Zou Y, Hassan A E. Studying the fix-time for bugs in large open source projects. In Proc. the 7th International Conference on Predictive Models in Software Engineering, Banff, Canada, September 2011, Article No.11.
– ident: 1230_CR9
– volume: 41
  start-page: 131
  issue: 6
  year: 2007
  ident: 1230_CR6
  publication-title: ACM SIGOPS Operating Systems Review
  doi: 10.1145/1323293.1294275
– ident: 1230_CR22
  doi: 10.1145/1985793.1985934
– ident: 1230_CR3
– ident: 1230_CR27
  doi: 10.1109/ICSE.2007.32
– ident: 1230_CR7
  doi: 10.1145/1370750.1370786
– volume-title: Modern Information Retrieval
  year: 1999
  ident: 1230_CR45
– ident: 1230_CR20
  doi: 10.1109/ICSEA.2009.92
– ident: 1230_CR31
– ident: 1230_CR14
  doi: 10.1109/MSR.2007.26
– ident: 1230_CR28
  doi: 10.1145/1368088.1368151
– ident: 1230_CR30
  doi: 10.1145/2020390.2020398
– ident: 1230_CR35
– ident: 1230_CR37
  doi: 10.1007/BFb0026683
– volume: 24
  start-page: 1565
  year: 2006
  ident: 1230_CR40
  publication-title: Nature Biotechnology
  doi: 10.1038/nbt1206-1565
– ident: 1230_CR15
  doi: 10.1145/1287624.1287633
– ident: 1230_CR18
  doi: 10.1145/2000791.2000794
– ident: 1230_CR21
  doi: 10.1145/1595696.1595715
– ident: 1230_CR47
– ident: 1230_CR8
  doi: 10.1145/1134285.1134457
– ident: 1230_CR10
  doi: 10.1145/1137983.1138027
– ident: 1230_CR32
  doi: 10.1145/2020390.2020401
– ident: 1230_CR43
– ident: 1230_CR23
  doi: 10.1109/CSMR.2011.31
– volume-title: Statistical Learning Theory
  year: 1998
  ident: 1230_CR41
– ident: 1230_CR16
  doi: 10.1007/3-540-44898-5_16
– ident: 1230_CR5
  doi: 10.1109/MSR.2007.7
– ident: 1230_CR1
  doi: 10.1145/1141277.1141693
– ident: 1230_CR2
– ident: 1230_CR4
– ident: 1230_CR25
  doi: 10.1109/MSR.2010.5463340
– ident: 1230_CR34
  doi: 10.1109/PROMISE.2007.10
– ident: 1230_CR13
– ident: 1230_CR26
  doi: 10.1145/1985441.1985457
– ident: 1230_CR12
  doi: 10.1007/978-3-642-17313-4_35
– ident: 1230_CR38
– ident: 1230_CR36
– ident: 1230_CR44
  doi: 10.1109/MSR.2007.25
– ident: 1230_CR39
– ident: 1230_CR11
  doi: 10.1109/MSR.2010.5463284
– ident: 1230_CR29
  doi: 10.1109/METRICS.2005.28
– volume: 31
  start-page: 897
  issue: 10
  year: 2005
  ident: 1230_CR33
  publication-title: IEEE Transactions on Software Engineering
  doi: 10.1109/TSE.2005.112
– volume: 34
  start-page: 1
  issue: 1
  year: 2002
  ident: 1230_CR42
  publication-title: ACM Computing Surveys
  doi: 10.1145/505282.505283
– ident: 1230_CR46
– ident: 1230_CR17
  doi: 10.1145/1134285.1134336
– ident: 1230_CR19
  doi: 10.1145/2020390.2020402
– ident: 1230_CR24
  doi: 10.1007/3-540-44886-1_25
SSID ssj0037044
Score 2.17749
Snippet The large number of new bug reports received in bug repositories of software systems makes their management a challenging task.Handling these reports manually...
The large number of new bug reports received in bug repositories of software systems makes their management a challenging task. Handling these reports manually...
TP3; The large number of new bug reports received in bug repositories of software systems makes their management a challenging task.Handling these reports...
SourceID wanfang
proquest
crossref
springer
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 397
SubjectTerms Accuracy
Algorithms
Analysis
Artificial Intelligence
Bayesian analysis
Bayes算法
Classifiers
Computer Science
Construction
Data mining
Data Structures and Information Theory
Debugging
Information Systems Applications (incl.Internet)
Open source software
Priorities
Recall
Regular Paper
Software Engineering
Studies
Support vector machines
SVM
Texts
Theory of Computation
优先次序
使用精度
分流
支持向量机
文本特征
错误报告
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB7BcumFZ6uGl4JULq2iJrHz8AGhUrFClUCoAomb5fixdIsSYHclfj4zSZxtL3vJJY4TzXg8E8_M9wF8yWyZxYlDDSihIu5SgTaXuKjIY82U08y1cAzXN_nVPf_1kD2swbXvhaGySr8nthu1aTSdkX8X6Ely9EXx-fNLRKRRlFz1DBqqZ1YwZy3C2DpspASMNYKNi8ub299-a2ZF3LK70pl2RGyZPs3Z9tJhLEQ1WsT1wXBvIrCFx6aevKAL-d9pLSPRIXnatvzUTtWTf7zTeBs2-7Ay_NGtgx1Ys_UubHnKhrC34D1ILxaT8Pb1T0NYRl0HZjhvwrHSHVq3DWlAF5WHd7g4J_Yj3I8v735eRT1tQqR5UcwjVum8UJWwhicaDZgVhmttHTcm1RmGb8zpMtOO4d-CzVInEqbQ6pPc5FaJqmSfYFQ3tf0MoaniUiiMElQquKm4wuCnqBRnNqWEdR7A_iAj-dzBY0hOtZ5FKQKIvdCk7gHHiffiSS6hkknmEmUuSeaSBfB1eMRPt2LwgdeE7A1vJodlEsDJcBcthtIgqrbNYkZFbSLPODriAL55BS5nWPG-017Hy8HT2fTv23T2VkmbUhsyXfZXftcBfKBBXRnbIYzmrwt7hHHNvDruV-s7BKrw1A
  priority: 102
  providerName: ProQuest
Title Bug Prioritization to Facilitate Bug Report Triage
URI http://lib.cqvip.com/qk/85226X/201202/41090789.html
https://link.springer.com/article/10.1007/s11390-012-1230-3
https://www.proquest.com/docview/926662440
https://www.proquest.com/docview/1019654429
https://d.wanfangdata.com.cn/periodical/jsjkxjsxb-e201202012
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1860-4749
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037044
  issn: 1000-9000
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1860-4749
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0037044
  issn: 1000-9000
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1860-4749
  dateEnd: 20181130
  omitProxy: true
  ssIdentifier: ssj0037044
  issn: 1000-9000
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1860-4749
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037044
  issn: 1000-9000
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1860-4749
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0037044
  issn: 1000-9000
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB_8eOlLrbalUXukYF9aAkl287GPZ7lTLIoUD-zTstnsnr1KouYO_POdSbKXFkTwJXnI7gRmdnZ_ycz8BuAoMXkSRhYtoIQKuI0F-lxkgywNNVNWM9vSMZxfpKczfnadXPd13I3LdnchyXanHordEKxQEhU142C4eWzCdkJsXriIZ_HYbb8sC9sOrvTfOqCOmC6U-ZwIIlS4qav5Pb7u_4NpQJvrAGlb1lNZVc3_OYGm7-BtDx39cWfrXdgw1R7suLYMfu-l7yE-Xs39y4c_NfEVdVWW_rL2p0p3jNzGpwEd8vavcAHOzQeYTSdXP06DvjVCoHmWLQNW6DRThTAljzQ6KctKrrWxvCxjnSBEY1bnibYMvwhMElsRMYWeHaVlapQocvYRtqq6Mp_AL4swFwqRgIoFLwuuEOBkheLMxBSUTj3YX-tI3nUUGJJTPmeWCw9CpzSpe1Jx6m1xKwc6ZNK5RJ1L0rlkHnxbT3HiXhh84Cwhe-dqpEBQkSIsCT34sn6KXkGhDlWZetVQ4ppIE46HrQffnQEHCS-872tv42Hwoln8fVw0j4U0MZUa02X_VVIP4A1N6lLXDmFr-bAynxHLLIsRbObTkxFsj09-_5zg_Xhycflr1K7oJ5nd6yw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAX3oi0PIJEL6CIJHYePlSIQldb2q4qtJV6M45jLywoaZtdUX4c_42ZJM7CZW-95BLbiebhGXseH8DrxORJGFnkgBIq4DYWqHORDbI01ExZzWzbjuFkko7P-Ofz5HwD_rhaGEqrdHtiu1GXtaY78ncCLUmKtih8f3EZEGgUBVcdgobqkRXKvbbDWF_XcWR-_8ITXLN3-AnZvRvHo4Ppx3HQgwwEmmfZImCFTjNVCFPySKO4s6zkWhvLyzLWCTo7zOo80RbP_alJYisiplBHorRMjRJFznDdW7DFGRd49tvaP5icfnGmgGVhiyZLd-gBoXO6sGpbu4e-F-WEEbYIw72Qmjt8q6vZJZqs_43kyvMdgrVtiVFlVTX7xxqO7sPd3o31P3Ry9wA2TPUQ7jmICL_fMR5BvL-c-adX32vqndRVfPqL2h8p3XUHNz4N6E4B_hSVYWYew9mNUPAJbFZ1ZZ6CXxZhLhR6JSoWvCy4QmcrKxRnJqYAeerB9kAjedG145CcckuzXHgQOqJJ3Tc4J5yNn3LVmploLpHmkmgumQdvhiluuTWDdxwnZK_ojRzE0oNXw1vUUAq7qMrUy4aS6ESacDT8Hrx1DFytsOZ7uz2PV4PnzfzH9by5LqSJqeyZHttr_-sl3B5PT47l8eHkaAfu0IQuhe4ZbC6uluY5-lSL4kUvuT58vWll-QvlYC5v
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61VKp6AdqCCK-mUntpFZHEzsPHBbqiL8SBlbhZjmMvLCgBkpX25zOziTetVCH1kkvssTTjsb9kZr4B-JSYPAkjixZQQgXcxgJ9LrJBloaaKauZXdIx_D5Pzyb8x1Vy1fc5bVy2uwtJdjUNxNJUtUf3pT0aCt8QuFBCFTXmYHiQvIRXnHgScENP4pE7ilkWLru50j_sgLpjurDmv0QQucJ1XU0fcOm_L6kBea6CpcsSn8qqavrHbTTehPUeRvqjzu5v4YWp3sGGa9Hg9x77HuLj-dS_eLypibuoq7j029ofK92xcxufBnQo3L_EzTg1WzAZf7s8OQv6NgmB5lnWBqzQaaYKYUoeaXRYlpVca2N5WcY6QbjGrM4TbRl-HZgktiJiCr08SsvUKFHkbBvWqroyO-CXRZgLhahAxYKXBVcIdrJCcWZiClCnHuyudCTvOzoMySm3M8uFB6FTmtQ9wTj1ubiTAzUy6VyiziXpXDIPvqymOHHPDN5zlpC9ozVSIMBIEaKEHnxcvUUPobCHqkw9byiJTaQJx4vXg6_OgIOEZ9b73Nt4GDxrZreLWbMopImp7Jgeu_8l9QO8vjgdy1_fz3_uwRua32W07cNa-zg3Bwhx2uJwuY2fAEEW7kA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bug+Prioritization+to+Facilitate+Bug+Report+Triage&rft.jtitle=Journal+of+computer+science+and+technology&rft.au=Kanwal%2C+Jaweria&rft.au=Maqbool%2C+Onaiza&rft.date=2012-03-01&rft.pub=Springer+US&rft.issn=1000-9000&rft.eissn=1860-4749&rft.volume=27&rft.issue=2&rft.spage=397&rft.epage=412&rft_id=info:doi/10.1007%2Fs11390-012-1230-3&rft.externalDocID=10_1007_s11390_012_1230_3
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85226X%2F85226X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjkxjsxb-e%2Fjsjkxjsxb-e.jpg