Supercapacitive Properties of Micropore‐ and Mesopore‐Rich Activated Carbon in Ionic‐Liquid Electrolytes with Various Constituent Ions

Ionic‐liquid (IL) electrolytes, characterized by large potential windows, intrinsic ionic conductivity, low environmental hazard, and high safety, are used for micropore‐ and mesopore‐rich activated‐carbon (ACmicro and ACmeso) supercapacitors. IL electrolytes consisting of various cations [1‐ethyl‐3...

Full description

Saved in:
Bibliographic Details
Published inChemSusChem Vol. 12; no. 2; pp. 449 - 456
Main Authors Nguyen, Quoc Dat, Patra, Jagabandhu, Hsieh, Chien‐Te, Li, Jianlin, Dong, Quan‐Feng, Chang, Jeng‐Kuei
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 24.01.2019
ChemPubSoc Europe
Subjects
Online AccessGet full text
ISSN1864-5631
1864-564X
1864-564X
DOI10.1002/cssc.201802489

Cover

Abstract Ionic‐liquid (IL) electrolytes, characterized by large potential windows, intrinsic ionic conductivity, low environmental hazard, and high safety, are used for micropore‐ and mesopore‐rich activated‐carbon (ACmicro and ACmeso) supercapacitors. IL electrolytes consisting of various cations [1‐ethyl‐3‐methylimidazolium (EMI+), N‐propyl‐N‐methylpyrrolidinium (PMP+), and N‐butyl‐N‐methylpyrrolidinium (BMP+)] and various anions [bis(trifluoromethylsulfonyl)imide (TFSI−), BF4−, and bis(fluorosulfonyl)imide (FSI−)] are investigated. The electrolyte conductivity, viscosity, and ion transport properties at the ACmicro and ACmeso electrodes are studied. In addition, the capacitance, rate capability, and cycling stability of the two types of AC electrodes are systematically examined and post‐mortem material analyses are conducted. The effects of IL composition on the charge–discharge capacitances of the ACmicro electrodes are more pronounced than those for the ACmeso electrodes. The FSI‐based IL electrolytes, for which electrochemical properties are cation dependent, are found to be promising. Incorporating EMI+ with FSI− results in a low electrolyte viscosity and a fast ion transport, giving rise to optimized electrode capacitance and rate capability. Replacing EMI+ with PMP+ increases the cell voltage (to 3.5 V) and maximum energy density (to 42 Wh kg−1) of the ACmicro cell at the cost of cycling stability. A puzzle of pores and ions: A suitable combination of activated carbon pore size and ionic‐liquid (IL) composition can achieve desirable electric double‐layer capacitor performance. A bis(fluorosulfonyl)imide (FSI)‐based IL is more promising than the bis(trifluoromethylsulfonyl)imide (TFSI)‐ and BF4‐based IL counterparts. Replacing 1‐ethyl‐3‐methylimidazolium with N‐propyl‐N‐methylpyrrolidinium increases the cell voltage to 3.5 V, improving the energy density of the supercapacitor.
AbstractList Ionic-liquid (IL) electrolytes, characterized by large potential windows, intrinsic ionic conductivity, low environmental hazard, and high safety, are used for micropore- and mesopore-rich activated-carbon (ACmicro and ACmeso ) supercapacitors. IL electrolytes consisting of various cations [1-ethyl-3-methylimidazolium (EMI+ ), N-propyl-N-methylpyrrolidinium (PMP+ ), and N-butyl-N-methylpyrrolidinium (BMP+ )] and various anions [bis(trifluoromethylsulfonyl)imide (TFSI- ), BF4 - , and bis(fluorosulfonyl)imide (FSI- )] are investigated. The electrolyte conductivity, viscosity, and ion transport properties at the ACmicro and ACmeso electrodes are studied. In addition, the capacitance, rate capability, and cycling stability of the two types of AC electrodes are systematically examined and post-mortem material analyses are conducted. The effects of IL composition on the charge-discharge capacitances of the ACmicro electrodes are more pronounced than those for the ACmeso electrodes. The FSI-based IL electrolytes, for which electrochemical properties are cation dependent, are found to be promising. Incorporating EMI+ with FSI- results in a low electrolyte viscosity and a fast ion transport, giving rise to optimized electrode capacitance and rate capability. Replacing EMI+ with PMP+ increases the cell voltage (to 3.5 V) and maximum energy density (to 42 Wh kg-1 ) of the ACmicro cell at the cost of cycling stability.Ionic-liquid (IL) electrolytes, characterized by large potential windows, intrinsic ionic conductivity, low environmental hazard, and high safety, are used for micropore- and mesopore-rich activated-carbon (ACmicro and ACmeso ) supercapacitors. IL electrolytes consisting of various cations [1-ethyl-3-methylimidazolium (EMI+ ), N-propyl-N-methylpyrrolidinium (PMP+ ), and N-butyl-N-methylpyrrolidinium (BMP+ )] and various anions [bis(trifluoromethylsulfonyl)imide (TFSI- ), BF4 - , and bis(fluorosulfonyl)imide (FSI- )] are investigated. The electrolyte conductivity, viscosity, and ion transport properties at the ACmicro and ACmeso electrodes are studied. In addition, the capacitance, rate capability, and cycling stability of the two types of AC electrodes are systematically examined and post-mortem material analyses are conducted. The effects of IL composition on the charge-discharge capacitances of the ACmicro electrodes are more pronounced than those for the ACmeso electrodes. The FSI-based IL electrolytes, for which electrochemical properties are cation dependent, are found to be promising. Incorporating EMI+ with FSI- results in a low electrolyte viscosity and a fast ion transport, giving rise to optimized electrode capacitance and rate capability. Replacing EMI+ with PMP+ increases the cell voltage (to 3.5 V) and maximum energy density (to 42 Wh kg-1 ) of the ACmicro cell at the cost of cycling stability.
Ionic‐liquid (IL) electrolytes, characterized by large potential windows, intrinsic ionic conductivity, low environmental hazard, and high safety, are used for micropore‐ and mesopore‐rich activated‐carbon (AC micro and AC meso ) supercapacitors. IL electrolytes consisting of various cations [1‐ethyl‐3‐methylimidazolium (EMI + ), N ‐propyl‐ N ‐methylpyrrolidinium (PMP + ), and N ‐butyl‐ N ‐methylpyrrolidinium (BMP + )] and various anions [bis(trifluoromethylsulfonyl)imide (TFSI − ), BF 4 − , and bis(fluorosulfonyl)imide (FSI − )] are investigated. The electrolyte conductivity, viscosity, and ion transport properties at the AC micro and AC meso electrodes are studied. In addition, the capacitance, rate capability, and cycling stability of the two types of AC electrodes are systematically examined and post‐mortem material analyses are conducted. The effects of IL composition on the charge–discharge capacitances of the AC micro electrodes are more pronounced than those for the AC meso electrodes. The FSI‐based IL electrolytes, for which electrochemical properties are cation dependent, are found to be promising. Incorporating EMI + with FSI − results in a low electrolyte viscosity and a fast ion transport, giving rise to optimized electrode capacitance and rate capability. Replacing EMI + with PMP + increases the cell voltage (to 3.5 V) and maximum energy density (to 42 Wh kg −1 ) of the AC micro cell at the cost of cycling stability.
Ionic-liquid (IL) electrolytes, characterized by large potential windows, intrinsic ionic conductivity, low environmental hazard, and high safety, are used for micropore- and mesopore-rich activated-carbon (ACmicro and ACmeso) supercapacitors. IL electrolytes consisting of various cations [1-ethyl-3-methylimidazolium (EMI+), N-propyl-N-methylpyrrolidinium (PMP+), and N-butyl-N-methylpyrrolidinium (BMP+)] and various anions [bis(trifluoromethylsulfonyl)imide (TFSI-), BF4-, and bis(fluorosulfonyl)imide (FSI-)] are investigated. The electrolyte conductivity, viscosity, and ion transport properties at the ACmicro and ACmeso electrodes are studied. In addition, the capacitance, rate capability, and cycling stability of the two types of AC electrodes are systematically examined and post-mortem material analyses are conducted. The effects of IL composition on the charge–discharge capacitances of the ACmicro electrodes are more pronounced than those for the ACmeso electrodes. The FSI-based IL electrolytes, for which electrochemical properties are cation dependent, are found to be promising. Incorporating EMI+ with FSI- results in a low electrolyte viscosity and a fast ion transport, giving rise to optimized electrode capacitance and rate capability. Replacing EMI+ with PMP+ increases the cell voltage (to 3.5 V) and maximum energy density (to 42-Wh kg-1) of the ACmicro cell at the cost of cycling stability.
Ionic‐liquid (IL) electrolytes, characterized by large potential windows, intrinsic ionic conductivity, low environmental hazard, and high safety, are used for micropore‐ and mesopore‐rich activated‐carbon (ACmicro and ACmeso) supercapacitors. IL electrolytes consisting of various cations [1‐ethyl‐3‐methylimidazolium (EMI+), N‐propyl‐N‐methylpyrrolidinium (PMP+), and N‐butyl‐N‐methylpyrrolidinium (BMP+)] and various anions [bis(trifluoromethylsulfonyl)imide (TFSI−), BF4−, and bis(fluorosulfonyl)imide (FSI−)] are investigated. The electrolyte conductivity, viscosity, and ion transport properties at the ACmicro and ACmeso electrodes are studied. In addition, the capacitance, rate capability, and cycling stability of the two types of AC electrodes are systematically examined and post‐mortem material analyses are conducted. The effects of IL composition on the charge–discharge capacitances of the ACmicro electrodes are more pronounced than those for the ACmeso electrodes. The FSI‐based IL electrolytes, for which electrochemical properties are cation dependent, are found to be promising. Incorporating EMI+ with FSI− results in a low electrolyte viscosity and a fast ion transport, giving rise to optimized electrode capacitance and rate capability. Replacing EMI+ with PMP+ increases the cell voltage (to 3.5 V) and maximum energy density (to 42 Wh kg−1) of the ACmicro cell at the cost of cycling stability.
Ionic‐liquid (IL) electrolytes, characterized by large potential windows, intrinsic ionic conductivity, low environmental hazard, and high safety, are used for micropore‐ and mesopore‐rich activated‐carbon (ACmicro and ACmeso) supercapacitors. IL electrolytes consisting of various cations [1‐ethyl‐3‐methylimidazolium (EMI+), N‐propyl‐N‐methylpyrrolidinium (PMP+), and N‐butyl‐N‐methylpyrrolidinium (BMP+)] and various anions [bis(trifluoromethylsulfonyl)imide (TFSI−), BF4−, and bis(fluorosulfonyl)imide (FSI−)] are investigated. The electrolyte conductivity, viscosity, and ion transport properties at the ACmicro and ACmeso electrodes are studied. In addition, the capacitance, rate capability, and cycling stability of the two types of AC electrodes are systematically examined and post‐mortem material analyses are conducted. The effects of IL composition on the charge–discharge capacitances of the ACmicro electrodes are more pronounced than those for the ACmeso electrodes. The FSI‐based IL electrolytes, for which electrochemical properties are cation dependent, are found to be promising. Incorporating EMI+ with FSI− results in a low electrolyte viscosity and a fast ion transport, giving rise to optimized electrode capacitance and rate capability. Replacing EMI+ with PMP+ increases the cell voltage (to 3.5 V) and maximum energy density (to 42 Wh kg−1) of the ACmicro cell at the cost of cycling stability. A puzzle of pores and ions: A suitable combination of activated carbon pore size and ionic‐liquid (IL) composition can achieve desirable electric double‐layer capacitor performance. A bis(fluorosulfonyl)imide (FSI)‐based IL is more promising than the bis(trifluoromethylsulfonyl)imide (TFSI)‐ and BF4‐based IL counterparts. Replacing 1‐ethyl‐3‐methylimidazolium with N‐propyl‐N‐methylpyrrolidinium increases the cell voltage to 3.5 V, improving the energy density of the supercapacitor.
Ionic liquid (IL) electrolytes, characterized by large potential windows, intrinsic ionic conductivity, low environmental hazard, and high safety, are used for micropore- and mesopore-rich activated carbon (ACmicro and ACmeso) supercapacitors. IL electrolytes consisting of various cations (1-ethyl-3-methylimidazolium (EMI+), N-propyl-N-methylpyrrolidinium (PMP+), and N-butyl-N-methylpyrrolidinium (BMP+)) and various anions (bis(trifluoromethylsulfony) imide (TFSI-), tetrafluoroborate (BF4-), and bis(fluorosulfonyl)imide (FSI-)) are investigated. The electrolyte conductivity and viscosity and ion transport properties at the ACmicro and ACmeso electrodes are studied. In addition, the capacitance, rate capability, and cycling stability of the two types of AC electrode are systematically examined and post-mortem material analyses are conducted. The effects of IL composition on charge-discharge capacitances of the ACmicro electrodes are more pronounced than those for the ACmeso electrodes. The FSI-based IL electrolytes, whose electrochemical properties are cation-dependent, are found to be promising. Incorporating EMI+ with FSI- results in low electrolyte viscosity and high ion transport, optimizing the electrode capacitance and rate capability. Replacing EMI+ with PMP+ increases the cell voltage (to 3.5 V) and maximum energy density (to 42 Wh kg-1) of the ACmicro cell at the cost of cycling stability.
Author Chang, Jeng‐Kuei
Nguyen, Quoc Dat
Patra, Jagabandhu
Li, Jianlin
Dong, Quan‐Feng
Hsieh, Chien‐Te
Author_xml – sequence: 1
  givenname: Quoc Dat
  surname: Nguyen
  fullname: Nguyen, Quoc Dat
  organization: National Central University
– sequence: 2
  givenname: Jagabandhu
  orcidid: 0000-0002-9783-3097
  surname: Patra
  fullname: Patra, Jagabandhu
  organization: National Cheng Kung University
– sequence: 3
  givenname: Chien‐Te
  orcidid: 0000-0002-1053-8635
  surname: Hsieh
  fullname: Hsieh, Chien‐Te
  organization: University of Tennessee
– sequence: 4
  givenname: Jianlin
  orcidid: 0000-0002-8710-9847
  surname: Li
  fullname: Li, Jianlin
  organization: Oak Ridge National Laboratory
– sequence: 5
  givenname: Quan‐Feng
  orcidid: 0000-0002-4886-3361
  surname: Dong
  fullname: Dong, Quan‐Feng
  organization: Xiamen University
– sequence: 6
  givenname: Jeng‐Kuei
  orcidid: 0000-0002-8359-5817
  surname: Chang
  fullname: Chang, Jeng‐Kuei
  email: jkchang@nctu.edu.tw
  organization: National Cheng Kung University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30548119$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1493121$$D View this record in Osti.gov
BookMark eNqFkctuEzEUhi3Uil5gyxJZsGGT4NuMx8tq1EKlVCACiJ3leM4oriZ2anuosusDsOAZeZI6ShukSoiVfY6-_9z-E3TggweEXlEypYSw9zYlO2WENoSJRj1Dx7SpxaSqxY-D_Z_TI3SS0jUhNVF1_RwdcVKJhlJ1jH7NxzVEa9bGuux-Av4cQ0lkBwmHHl85W-IQ4c_db2x8h68gPcZfnF3iM1tUJkOHWxMXwWPn8WXwzhZg5m5G1-HzAWyOYdjkUvPW5SX-bqILY8Jt8Cm7PILPW1F6gQ57MyR4-fCeom8X51_bj5PZpw-X7dlsYoWUalIxyVjPOiMIkJqVM_RUckUplx230vZUmaYXtKsqBYRLoSh0QsJiwSyXBPgperOrG0p7ncrmYJc2eF8G1VQoThkt0LsdtI7hZoSU9colC8NgPJThNaOVrCtJKl7Qt0_Q6zBGX1YolGQFos2Wev1AjYsVdHod3crEjX40owDTHVBunlKEfo9Qordu663beu92EYgngrKKyS74HI0b_i1TO9mtG2Dznya6nc_bv9p7P3nCSA
CitedBy_id crossref_primary_10_1016_j_est_2019_100958
crossref_primary_10_1021_acssuschemeng_2c00266
crossref_primary_10_1039_D2EE01969H
crossref_primary_10_1016_j_cej_2019_122945
crossref_primary_10_1016_j_jtice_2023_104978
crossref_primary_10_1021_acsami_0c08440
crossref_primary_10_1021_acs_iecr_2c03667
crossref_primary_10_1007_s11581_024_05626_x
crossref_primary_10_1016_j_molliq_2024_126734
crossref_primary_10_1021_acs_energyfuels_1c00321
crossref_primary_10_1007_s13399_022_02462_9
crossref_primary_10_3390_ma14112942
crossref_primary_10_1016_j_est_2023_110129
crossref_primary_10_1016_j_electacta_2025_145752
crossref_primary_10_1039_D0MA00384K
crossref_primary_10_1016_j_electacta_2022_140713
crossref_primary_10_3390_ma15207400
crossref_primary_10_1002_EXP_20210101
crossref_primary_10_3390_inorganics12070186
crossref_primary_10_1016_j_jpowsour_2019_226882
crossref_primary_10_1021_acs_chemrev_2c00773
Cites_doi 10.1016/j.jelechem.2016.04.004
10.1016/j.nanoen.2012.11.006
10.1039/C5CS00303B
10.1002/aenm.201870116
10.1016/j.electacta.2011.07.124
10.1016/j.electacta.2004.10.005
10.1149/1.3126423
10.1002/cssc.201500030
10.1039/c0ee00004c
10.1016/j.electacta.2014.09.039
10.1002/aenm.201300816
10.1016/j.nanoen.2017.02.007
10.1039/C1JM14468E
10.1021/acsnano.8b01914
10.1039/C7CS00205J
10.1016/j.jpowsour.2009.08.045
10.1016/j.jpowsour.2010.03.082
10.1007/978-1-4757-3058-6
10.1021/nn901825y
10.1246/cl.2005.1014
10.1039/c3ta01638b
10.1016/j.electacta.2015.11.053
10.1039/C3EE42099J
10.1016/j.colsurfa.2016.08.044
10.1016/j.electacta.2004.03.030
10.1021/jp506567p
10.1016/j.electacta.2006.03.016
10.1016/j.jpowsour.2008.08.086
10.1021/acssuschemeng.7b03492
10.1002/cssc.201701476
10.1016/j.jpowsour.2012.07.030
10.1038/nenergy.2016.216
10.1021/jp9099418
10.1039/b819839j
10.1021/acsami.5b11353
10.1038/nmat2297
10.1002/adma.201304137
10.1016/j.electacta.2015.02.115
10.1002/chem.200800639
10.1039/C2TA00126H
10.1002/anie.200704894
10.1016/j.microrel.2010.07.144
10.1002/advs.201600539
10.1039/b103275p
10.1016/j.electacta.2006.03.105
10.1039/C4EE03229B
10.1021/acs.chemrev.6b00504
10.1039/c39920000965
10.1038/nmat1368
10.1039/C1CS15060J
10.1021/jp911950q
10.1002/ange.200704894
10.1016/j.electacta.2016.11.087
ContentType Journal Article
Copyright 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
CorporateAuthor Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
CorporateAuthor_xml – name: Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
OIOZB
OTOTI
DOI 10.1002/cssc.201802489
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

Materials Research Database

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1864-564X
EndPage 456
ExternalDocumentID 1493121
30548119
10_1002_cssc_201802489
CSSC201802489
Genre article
Journal Article
GrantInformation_xml – fundername: Ministry of Science and Technology, Taiwan
GroupedDBID ---
05W
0R~
1OC
29B
33P
4.4
5GY
5VS
66C
77Q
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BRXPI
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
G-S
HGLYW
HZ~
IX1
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
O9-
OIG
P2W
P4E
PQQKQ
ROL
SUPJJ
SV3
W99
WBKPD
WOHZO
WXSBR
WYJ
XV2
ZZTAW
~S-
AAMMB
AAYXX
AEFGJ
AEYWJ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
ADDAD
AEUQT
OIOZB
OTOTI
PQEST
ID FETCH-LOGICAL-c4779-52722f2da40e062002f17391137d3c7cf19a8f41d559e037491ed47ebb2c370e3
IEDL.DBID DR2
ISSN 1864-5631
1864-564X
IngestDate Fri May 19 00:41:52 EDT 2023
Fri Jul 11 13:05:46 EDT 2025
Fri Jul 25 12:16:59 EDT 2025
Mon Jul 21 05:43:06 EDT 2025
Wed Oct 01 00:51:12 EDT 2025
Thu Apr 24 23:02:00 EDT 2025
Wed Jan 22 16:20:52 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords electric double-layer capacitance
pore size effects
Ionic liquid
supercapacitor
Language English
License 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4779-52722f2da40e062002f17391137d3c7cf19a8f41d559e037491ed47ebb2c370e3
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
AC05-00OR22725
ORCID 0000-0002-4886-3361
0000-0002-8359-5817
0000-0002-9783-3097
0000-0002-1053-8635
0000-0002-8710-9847
OpenAccessLink https://www.osti.gov/servlets/purl/1493121
PMID 30548119
PQID 2172570183
PQPubID 986333
PageCount 8
ParticipantIDs osti_scitechconnect_1493121
proquest_miscellaneous_2157657053
proquest_journals_2172570183
pubmed_primary_30548119
crossref_primary_10_1002_cssc_201802489
crossref_citationtrail_10_1002_cssc_201802489
wiley_primary_10_1002_cssc_201802489_CSSC201802489
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 24, 2019
PublicationDateYYYYMMDD 2019-01-24
PublicationDate_xml – month: 01
  year: 2019
  text: January 24, 2019
  day: 24
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: United States
PublicationTitle ChemSusChem
PublicationTitleAlternate ChemSusChem
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
ChemPubSoc Europe
Publisher_xml – name: Wiley Subscription Services, Inc
– name: ChemPubSoc Europe
References 2014; 118
2015; 161
2006; 52
2017; 2
2013; 1
2017; 4
2006; 51
2013; 2
2004; 49
2017; 46
2016; 508
2008; 14
2014; 26
2016; 222
2008; 7
2009; 156
2016; 187
2011; 56
1992
2008 2008; 47 120
2015; 8
2008; 185
2017; 117
1999
2018; 6
2018; 8
2014; 4
2016; 779
2010; 114
2017; 33
2017; 10
2015; 44
2005; 4
2001; 3
2010; 195
2005; 50
2010; 3
2018; 12
2009; 19
2014; 7
2012; 22
2010; 4
2016; 8
2005; 34
2012; 41
2010; 50
2012; 219
2014; 146
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_35_2
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 195
  start-page: 5814
  year: 2010
  end-page: 5819
  publication-title: J. Power Sources
– volume: 49
  start-page: 3603
  year: 2004
  end-page: 3611
  publication-title: Electrochim. Acta
– volume: 114
  start-page: 1776
  year: 2010
  end-page: 1782
  publication-title: J. Phys. Chem. A
– volume: 33
  start-page: 453
  year: 2017
  end-page: 461
  publication-title: Nano Energy
– volume: 26
  start-page: 2219
  year: 2014
  end-page: 2251
  publication-title: Adv. Energy Mater.
– volume: 156
  start-page: 563
  year: 2009
  end-page: 571
  publication-title: J. Electrochem. Soc.
– volume: 222
  start-page: 1153
  year: 2016
  end-page: 1159
  publication-title: Electrochim. Acta
– volume: 22
  start-page: 767
  year: 2012
  end-page: 784
  publication-title: J. Mater. Chem.
– volume: 46
  start-page: 6816
  year: 2017
  end-page: 6854
  publication-title: Chem. Soc. Rev.
– volume: 2
  start-page: 403
  year: 2013
  end-page: 411
  publication-title: Nano Energy
– volume: 51
  start-page: 5567
  year: 2006
  end-page: 5580
  publication-title: Electrochim. Acta
– volume: 508
  start-page: 173
  year: 2016
  end-page: 177
  publication-title: Colloids Surf. A
– volume: 161
  start-page: 371
  year: 2015
  end-page: 377
  publication-title: Electrochim. Acta
– volume: 7
  start-page: 845
  year: 2008
  end-page: 854
  publication-title: Nat. Mater.
– volume: 187
  start-page: 312
  year: 2016
  end-page: 322
  publication-title: Electrochim. Acta
– volume: 50
  start-page: 2227
  year: 2005
  end-page: 2231
  publication-title: Electrochim. Acta
– volume: 4
  start-page: 1300816
  year: 2014
  publication-title: Adv. Energy Mater.
– volume: 146
  start-page: 429
  year: 2014
  end-page: 436
  publication-title: Electrochim. Acta
– volume: 47 120
  start-page: 3392 3440
  year: 2008 2008
  end-page: 3395 3443
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 8
  start-page: 3396
  year: 2016
  end-page: 3406
  publication-title: ACS Appl. Mater. Interfaces
– volume: 779
  start-page: 161
  year: 2016
  end-page: 168
  publication-title: J. Electroanal. Chem.
– volume: 8
  start-page: 1779
  year: 2015
  end-page: 1786
  publication-title: ChemSusChem
– volume: 8
  start-page: 1870116
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 195
  start-page: 923
  year: 2010
  end-page: 928
  publication-title: J. Power Sources
– volume: 6
  start-page: 1208
  year: 2018
  end-page: 1214
  publication-title: ACS Sustainable Chem. Eng.
– volume: 1
  start-page: 2719
  year: 2013
  end-page: 2743
  publication-title: J. Mater. Chem. A
– volume: 114
  start-page: 6786
  year: 2010
  end-page: 6798
  publication-title: J. Phys. Chem. B
– volume: 3
  start-page: 1238
  year: 2010
  end-page: 1251
  publication-title: Energy Environ. Sci.
– volume: 1
  start-page: 6037
  year: 2013
  end-page: 6042
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 156
  year: 2001
  end-page: 164
  publication-title: Green Chem.
– volume: 56
  start-page: 8941
  year: 2011
  end-page: 8946
  publication-title: Electrochim. Acta
– volume: 12
  start-page: 2081
  year: 2018
  end-page: 2083
  publication-title: ACS Nano
– volume: 118
  start-page: 19661
  year: 2014
  end-page: 19671
  publication-title: J. Phys. Chem. C
– volume: 50
  start-page: 1783
  year: 2010
  end-page: 1788
  publication-title: Microelectron. Reliab.
– volume: 52
  start-page: 1763
  year: 2006
  end-page: 1770
  publication-title: Electrochim. Acta
– volume: 7
  start-page: 232
  year: 2014
  end-page: 250
  publication-title: Energy Environ. Sci.
– volume: 117
  start-page: 7190
  year: 2017
  end-page: 7239
  publication-title: Chem. Rev.
– volume: 14
  start-page: 6614
  year: 2008
  end-page: 6626
  publication-title: Chem. Eur. J.
– volume: 2
  start-page: 16216
  year: 2017
  publication-title: Nat. Energy
– volume: 41
  start-page: 797
  year: 2012
  end-page: 828
  publication-title: Chem. Soc. Rev.
– volume: 10
  start-page: 3534
  year: 2017
  end-page: 3539
  publication-title: ChemSusChem
– volume: 8
  start-page: 702
  year: 2015
  end-page: 730
  publication-title: Energy Environ. Sci.
– volume: 4
  start-page: 1337
  year: 2010
  end-page: 1344
  publication-title: ACS Nano
– volume: 219
  start-page: 140
  year: 2012
  end-page: 146
  publication-title: J. Power Sources
– volume: 44
  start-page: 7484
  year: 2015
  end-page: 7539
  publication-title: Chem. Soc. Rev.
– volume: 4
  start-page: 1600539
  year: 2017
  publication-title: Adv. Sci.
– volume: 19
  start-page: 3732
  year: 2009
  end-page: 3738
  publication-title: J. Mater. Chem.
– volume: 34
  start-page: 1014
  year: 2005
  end-page: 1015
  publication-title: Chem. Lett.
– volume: 185
  start-page: 1585
  year: 2008
  end-page: 1588
  publication-title: J. Power Sources
– start-page: 965
  year: 1992
  end-page: 967
  publication-title: J. Chem. Soc. Chem. Commun.
– volume: 4
  start-page: 366
  year: 2005
  end-page: 377
  publication-title: Nat. Mater.
– year: 1999
– ident: e_1_2_7_44_1
  doi: 10.1016/j.jelechem.2016.04.004
– ident: e_1_2_7_27_1
  doi: 10.1016/j.nanoen.2012.11.006
– ident: e_1_2_7_5_1
  doi: 10.1039/C5CS00303B
– ident: e_1_2_7_30_1
  doi: 10.1002/aenm.201870116
– ident: e_1_2_7_21_1
  doi: 10.1016/j.electacta.2011.07.124
– ident: e_1_2_7_42_1
  doi: 10.1016/j.electacta.2004.10.005
– ident: e_1_2_7_52_1
  doi: 10.1149/1.3126423
– ident: e_1_2_7_17_1
  doi: 10.1002/cssc.201500030
– ident: e_1_2_7_16_1
  doi: 10.1039/c0ee00004c
– ident: e_1_2_7_46_1
  doi: 10.1016/j.electacta.2014.09.039
– ident: e_1_2_7_3_1
  doi: 10.1002/aenm.201300816
– ident: e_1_2_7_39_1
  doi: 10.1016/j.nanoen.2017.02.007
– ident: e_1_2_7_9_1
  doi: 10.1039/C1JM14468E
– ident: e_1_2_7_29_1
  doi: 10.1021/acsnano.8b01914
– ident: e_1_2_7_8_1
  doi: 10.1039/C7CS00205J
– ident: e_1_2_7_41_1
  doi: 10.1016/j.jpowsour.2009.08.045
– ident: e_1_2_7_22_1
  doi: 10.1016/j.jpowsour.2010.03.082
– ident: e_1_2_7_11_1
  doi: 10.1007/978-1-4757-3058-6
– ident: e_1_2_7_38_1
  doi: 10.1021/nn901825y
– ident: e_1_2_7_51_1
  doi: 10.1246/cl.2005.1014
– ident: e_1_2_7_43_1
  doi: 10.1039/c3ta01638b
– ident: e_1_2_7_34_1
  doi: 10.1016/j.electacta.2015.11.053
– ident: e_1_2_7_13_1
  doi: 10.1039/C3EE42099J
– ident: e_1_2_7_23_1
  doi: 10.1016/j.colsurfa.2016.08.044
– ident: e_1_2_7_33_1
  doi: 10.1016/j.electacta.2004.03.030
– ident: e_1_2_7_25_1
  doi: 10.1021/jp506567p
– ident: e_1_2_7_19_1
  doi: 10.1016/j.electacta.2006.03.016
– ident: e_1_2_7_28_1
  doi: 10.1016/j.jpowsour.2008.08.086
– ident: e_1_2_7_31_1
  doi: 10.1021/acssuschemeng.7b03492
– ident: e_1_2_7_37_1
  doi: 10.1002/cssc.201701476
– ident: e_1_2_7_45_1
  doi: 10.1016/j.jpowsour.2012.07.030
– ident: e_1_2_7_49_1
  doi: 10.1038/nenergy.2016.216
– ident: e_1_2_7_26_1
  doi: 10.1021/jp9099418
– ident: e_1_2_7_14_1
  doi: 10.1039/b819839j
– ident: e_1_2_7_20_1
  doi: 10.1021/acsami.5b11353
– ident: e_1_2_7_1_1
  doi: 10.1038/nmat2297
– ident: e_1_2_7_6_1
  doi: 10.1002/adma.201304137
– ident: e_1_2_7_15_1
  doi: 10.1016/j.electacta.2015.02.115
– ident: e_1_2_7_36_1
  doi: 10.1002/chem.200800639
– ident: e_1_2_7_48_1
  doi: 10.1039/C2TA00126H
– ident: e_1_2_7_35_1
  doi: 10.1002/anie.200704894
– ident: e_1_2_7_40_1
  doi: 10.1016/j.microrel.2010.07.144
– ident: e_1_2_7_4_1
  doi: 10.1002/advs.201600539
– ident: e_1_2_7_47_1
  doi: 10.1039/b103275p
– ident: e_1_2_7_50_1
  doi: 10.1016/j.electacta.2006.03.105
– ident: e_1_2_7_7_1
  doi: 10.1039/C4EE03229B
– ident: e_1_2_7_12_1
  doi: 10.1021/acs.chemrev.6b00504
– ident: e_1_2_7_18_1
  doi: 10.1039/c39920000965
– ident: e_1_2_7_2_1
  doi: 10.1038/nmat1368
– ident: e_1_2_7_10_1
  doi: 10.1039/C1CS15060J
– ident: e_1_2_7_24_1
  doi: 10.1021/jp911950q
– ident: e_1_2_7_35_2
  doi: 10.1002/ange.200704894
– ident: e_1_2_7_32_1
  doi: 10.1016/j.electacta.2016.11.087
SSID ssj0060966
Score 2.3898106
Snippet Ionic‐liquid (IL) electrolytes, characterized by large potential windows, intrinsic ionic conductivity, low environmental hazard, and high safety, are used for...
Ionic liquid (IL) electrolytes, characterized by large potential windows, intrinsic ionic conductivity, low environmental hazard, and high safety, are used for...
Ionic-liquid (IL) electrolytes, characterized by large potential windows, intrinsic ionic conductivity, low environmental hazard, and high safety, are used for...
SourceID osti
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 449
SubjectTerms Activated carbon
Capacitance
carbon
Cations
Composition effects
electric double-layer
Electrochemical analysis
Electrodes
Electrolytes
Electromagnetic interference
Flux density
Ion currents
Ion transport
Ionic liquids
Ions
MATERIALS SCIENCE
pore size
Properties (attributes)
Stability
supercapacitors
Viscosity
Title Supercapacitive Properties of Micropore‐ and Mesopore‐Rich Activated Carbon in Ionic‐Liquid Electrolytes with Various Constituent Ions
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.201802489
https://www.ncbi.nlm.nih.gov/pubmed/30548119
https://www.proquest.com/docview/2172570183
https://www.proquest.com/docview/2157657053
https://www.osti.gov/servlets/purl/1493121
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1864-5631
  databaseCode: DR2
  dateStart: 20070101
  customDbUrl:
  isFulltext: true
  eissn: 1864-564X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0060966
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbQXsoFWp7bFmQkJE5p14_YybGKWhXEIsRS1FvkOBNpRZWUzeYAJ34AB34jv4QZZxNYBEKCWx7jxHFmPDP2zDeMPZVGQuKciawBF2kHKFKopSNXEBycT5wK6dHzV-b8Qr-4jC9_yuLv8SHGBTeSjDBfk4C7oj3-ARrq25YgCAnBTCeUwSdUHPZp34z4UQbt85BelBgdxUaJAbVxJo-3m29ppUmD0vU7i3PbgA0a6Ow2c0Pf-8CT90fdujjyn36Bdfyfj9tltzbmKT_p-WmP3YD6DtvJhqpwd9mXRXcNK48q1oeoI_6aVvNXBMvKm4rPKb4PTXr49vkrd3XJ59AO55TDz098qKcGJc_cqmhqvqz5c4LnRYKXyw_dsuSnfWWeq49oBXNaJ-bv0KFvupZTdVEKbUBFSY3ae-zi7PRtdh5tKjpEXlubotdrpaxk6fQMZobiQyphFc63ypbKW1-J1CWVFiX6OUDIOKmAUlsoCumVnYG6zyZ1U8NDxoVLlS5dZV3itDc6AWlBVzEyX4WXqymLhj-a-w3cOVXduMp7oGaZ0xjn4xhP2bOR_roH-vgj5QExSI4mCuHsegpI8mv0oVIlpJiyw4Fv8s100OZUBSy2-AA1ZU_G2_jnaHfG1YBDiDTo-iFRjDQPen4bO4KTsk6EwFfLwDV_6WGeLRbZeLb_L40O2E08plC6SOpDNlmvOniE5te6eBxE7Dul6iqs
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgOZQL78fSAkZC4pR2_YidHKvQagu7FWJbxM1yHFtaUSVlsznAiR_Agd_IL2Em2QQtAiHB0c44cewZz4w9_oaQ51xxn1irIq28jaT1IFKgpSObIxycS6xor0fPT9X0XL56H_fRhHgXpsOHGDbcUDLa9RoFHDekD36ihrq6RgxChDCTSXqVXMNDOpTNl28HBCkFFnp7wShRMoqVYD1u44QfbLff0kujCuTrdzbntgnb6qDjmyTve9-FnnzYb9b5vvv8C7Djf_3eLXJjY6HSw46lbpMrvrxDdrI-Mdxd8nXRXPqVAy3r2sAj-gY39FeIzEqrQOcY4gdWvf_-5Ru1ZUHnvu7LeI2fHro2pZovaGZXeVXSZUlPEKEXCGbLj82yoEddcp6LT2AIU9wqpu_Ap6-ammKCUYxuAF2Jjep75Pz46CybRpukDpGTWqfg-GrOAy-snPiJwhCRwLSAJVfoQjjtAkttEiQrwNXxCI6TMl9I7fOcO6EnXtwno7Iq_UNCmU2FLGzQNrHSKZl4rr0MMfBfgOowJlE_pcZtEM8x8caF6bCaucExNsMYj8mLgf6yw_r4I-UucogBKwWhdh3GJLk1uFGpYJyNyV7POGazItQGE4HFGl4gxuTZ8BhmDg9obOlhCIEGvD8gioHmQcdwQ0dgXZYJY_Bp3rLNX3possUiG0qP_qXRU7IzPZvPzOzk9PUuuQ71GFkXcblHRutV4x-DNbbOn7Ty9gM0HC7I
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZgkYALLb9d2oKRkDilXf_ETo5V6KqFblWxFPUWOY4traiS7WZzgBMPwIFn5Ek6k2wCi0BIcEwyThxnxvONM_6GkJdccRcZowKtnAmkcWBS4KUDkyEdnI2MaLZHT07V0bl8cxFe_LSLv-WH6Bfc0DKa-RoNfJ77_R-kobaqkIIQGcxkFN8kt6SCEAth0bueQEoBQG_2F0VKBqESrKNtHPH99fZrbmlQgnn9DnKuI9jGBY03iOk632aefNyrl9me_fwLr-P_vN0mubfCp_SgVaj75IYrHpA7SVcW7iH5Oq3nbmHBx9om7Yie4XL-AnlZaenpBBP8ANO771--UVPkdOKq7hg38dMD2xRUczlNzCIrCzor6DHy84LAyeyqnuX0sC3Nc_kJYDDFhWL6ASL6sq4olhfF3AbwlNioekTOx4fvk6NgVdIhsFLrGMJezbnnuZEjN1KYIOKZFjDhCp0Lq61nsYm8ZDkEOg6pcWLmcqldlnEr9MiJx2RQlIXbIpSZWMjceG0iI62SkePaSR-C9nk47Yck6L5oald851h24zJtmZp5imOc9mM8JK96-XnL9PFHyW1UkBQwChLtWsxIsksIomLBOBuSnU5v0tV8UKVYBizUcAMxJC_6y_Dl8PeMKRwMIchA7AdCIcg8afWt7wjMyjJiDB7NG635Sw_TZDpN-qOn_9LoObl99nqcnhyfvt0md-E0ptUFXO6QwXJRu12AYsvsWWNt14doLXc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Supercapacitive+properties+of+micropore-+and+mesopore-rich+activated+carbon+in+ionic+liquid+electrolytes+with+various+constituent+ions&rft.jtitle=ChemSusChem&rft.au=Nguyen%2C+Quoc+Dat&rft.au=Patra%2C+Jagabandhu&rft.au=Hsieh%2C+Chien-Te&rft.au=Li%2C+Jianlin&rft.date=2019-01-24&rft.eissn=1864-564X&rft_id=info:doi/10.1002%2Fcssc.201802489&rft_id=info%3Apmid%2F30548119&rft.externalDocID=30548119
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon