Supercapacitive Properties of Micropore‐ and Mesopore‐Rich Activated Carbon in Ionic‐Liquid Electrolytes with Various Constituent Ions
Ionic‐liquid (IL) electrolytes, characterized by large potential windows, intrinsic ionic conductivity, low environmental hazard, and high safety, are used for micropore‐ and mesopore‐rich activated‐carbon (ACmicro and ACmeso) supercapacitors. IL electrolytes consisting of various cations [1‐ethyl‐3...
Saved in:
Published in | ChemSusChem Vol. 12; no. 2; pp. 449 - 456 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
24.01.2019
ChemPubSoc Europe |
Subjects | |
Online Access | Get full text |
ISSN | 1864-5631 1864-564X 1864-564X |
DOI | 10.1002/cssc.201802489 |
Cover
Abstract | Ionic‐liquid (IL) electrolytes, characterized by large potential windows, intrinsic ionic conductivity, low environmental hazard, and high safety, are used for micropore‐ and mesopore‐rich activated‐carbon (ACmicro and ACmeso) supercapacitors. IL electrolytes consisting of various cations [1‐ethyl‐3‐methylimidazolium (EMI+), N‐propyl‐N‐methylpyrrolidinium (PMP+), and N‐butyl‐N‐methylpyrrolidinium (BMP+)] and various anions [bis(trifluoromethylsulfonyl)imide (TFSI−), BF4−, and bis(fluorosulfonyl)imide (FSI−)] are investigated. The electrolyte conductivity, viscosity, and ion transport properties at the ACmicro and ACmeso electrodes are studied. In addition, the capacitance, rate capability, and cycling stability of the two types of AC electrodes are systematically examined and post‐mortem material analyses are conducted. The effects of IL composition on the charge–discharge capacitances of the ACmicro electrodes are more pronounced than those for the ACmeso electrodes. The FSI‐based IL electrolytes, for which electrochemical properties are cation dependent, are found to be promising. Incorporating EMI+ with FSI− results in a low electrolyte viscosity and a fast ion transport, giving rise to optimized electrode capacitance and rate capability. Replacing EMI+ with PMP+ increases the cell voltage (to 3.5 V) and maximum energy density (to 42 Wh kg−1) of the ACmicro cell at the cost of cycling stability.
A puzzle of pores and ions: A suitable combination of activated carbon pore size and ionic‐liquid (IL) composition can achieve desirable electric double‐layer capacitor performance. A bis(fluorosulfonyl)imide (FSI)‐based IL is more promising than the bis(trifluoromethylsulfonyl)imide (TFSI)‐ and BF4‐based IL counterparts. Replacing 1‐ethyl‐3‐methylimidazolium with N‐propyl‐N‐methylpyrrolidinium increases the cell voltage to 3.5 V, improving the energy density of the supercapacitor. |
---|---|
AbstractList | Ionic-liquid (IL) electrolytes, characterized by large potential windows, intrinsic ionic conductivity, low environmental hazard, and high safety, are used for micropore- and mesopore-rich activated-carbon (ACmicro and ACmeso ) supercapacitors. IL electrolytes consisting of various cations [1-ethyl-3-methylimidazolium (EMI+ ), N-propyl-N-methylpyrrolidinium (PMP+ ), and N-butyl-N-methylpyrrolidinium (BMP+ )] and various anions [bis(trifluoromethylsulfonyl)imide (TFSI- ), BF4 - , and bis(fluorosulfonyl)imide (FSI- )] are investigated. The electrolyte conductivity, viscosity, and ion transport properties at the ACmicro and ACmeso electrodes are studied. In addition, the capacitance, rate capability, and cycling stability of the two types of AC electrodes are systematically examined and post-mortem material analyses are conducted. The effects of IL composition on the charge-discharge capacitances of the ACmicro electrodes are more pronounced than those for the ACmeso electrodes. The FSI-based IL electrolytes, for which electrochemical properties are cation dependent, are found to be promising. Incorporating EMI+ with FSI- results in a low electrolyte viscosity and a fast ion transport, giving rise to optimized electrode capacitance and rate capability. Replacing EMI+ with PMP+ increases the cell voltage (to 3.5 V) and maximum energy density (to 42 Wh kg-1 ) of the ACmicro cell at the cost of cycling stability.Ionic-liquid (IL) electrolytes, characterized by large potential windows, intrinsic ionic conductivity, low environmental hazard, and high safety, are used for micropore- and mesopore-rich activated-carbon (ACmicro and ACmeso ) supercapacitors. IL electrolytes consisting of various cations [1-ethyl-3-methylimidazolium (EMI+ ), N-propyl-N-methylpyrrolidinium (PMP+ ), and N-butyl-N-methylpyrrolidinium (BMP+ )] and various anions [bis(trifluoromethylsulfonyl)imide (TFSI- ), BF4 - , and bis(fluorosulfonyl)imide (FSI- )] are investigated. The electrolyte conductivity, viscosity, and ion transport properties at the ACmicro and ACmeso electrodes are studied. In addition, the capacitance, rate capability, and cycling stability of the two types of AC electrodes are systematically examined and post-mortem material analyses are conducted. The effects of IL composition on the charge-discharge capacitances of the ACmicro electrodes are more pronounced than those for the ACmeso electrodes. The FSI-based IL electrolytes, for which electrochemical properties are cation dependent, are found to be promising. Incorporating EMI+ with FSI- results in a low electrolyte viscosity and a fast ion transport, giving rise to optimized electrode capacitance and rate capability. Replacing EMI+ with PMP+ increases the cell voltage (to 3.5 V) and maximum energy density (to 42 Wh kg-1 ) of the ACmicro cell at the cost of cycling stability. Ionic‐liquid (IL) electrolytes, characterized by large potential windows, intrinsic ionic conductivity, low environmental hazard, and high safety, are used for micropore‐ and mesopore‐rich activated‐carbon (AC micro and AC meso ) supercapacitors. IL electrolytes consisting of various cations [1‐ethyl‐3‐methylimidazolium (EMI + ), N ‐propyl‐ N ‐methylpyrrolidinium (PMP + ), and N ‐butyl‐ N ‐methylpyrrolidinium (BMP + )] and various anions [bis(trifluoromethylsulfonyl)imide (TFSI − ), BF 4 − , and bis(fluorosulfonyl)imide (FSI − )] are investigated. The electrolyte conductivity, viscosity, and ion transport properties at the AC micro and AC meso electrodes are studied. In addition, the capacitance, rate capability, and cycling stability of the two types of AC electrodes are systematically examined and post‐mortem material analyses are conducted. The effects of IL composition on the charge–discharge capacitances of the AC micro electrodes are more pronounced than those for the AC meso electrodes. The FSI‐based IL electrolytes, for which electrochemical properties are cation dependent, are found to be promising. Incorporating EMI + with FSI − results in a low electrolyte viscosity and a fast ion transport, giving rise to optimized electrode capacitance and rate capability. Replacing EMI + with PMP + increases the cell voltage (to 3.5 V) and maximum energy density (to 42 Wh kg −1 ) of the AC micro cell at the cost of cycling stability. Ionic-liquid (IL) electrolytes, characterized by large potential windows, intrinsic ionic conductivity, low environmental hazard, and high safety, are used for micropore- and mesopore-rich activated-carbon (ACmicro and ACmeso) supercapacitors. IL electrolytes consisting of various cations [1-ethyl-3-methylimidazolium (EMI+), N-propyl-N-methylpyrrolidinium (PMP+), and N-butyl-N-methylpyrrolidinium (BMP+)] and various anions [bis(trifluoromethylsulfonyl)imide (TFSI-), BF4-, and bis(fluorosulfonyl)imide (FSI-)] are investigated. The electrolyte conductivity, viscosity, and ion transport properties at the ACmicro and ACmeso electrodes are studied. In addition, the capacitance, rate capability, and cycling stability of the two types of AC electrodes are systematically examined and post-mortem material analyses are conducted. The effects of IL composition on the charge–discharge capacitances of the ACmicro electrodes are more pronounced than those for the ACmeso electrodes. The FSI-based IL electrolytes, for which electrochemical properties are cation dependent, are found to be promising. Incorporating EMI+ with FSI- results in a low electrolyte viscosity and a fast ion transport, giving rise to optimized electrode capacitance and rate capability. Replacing EMI+ with PMP+ increases the cell voltage (to 3.5 V) and maximum energy density (to 42-Wh kg-1) of the ACmicro cell at the cost of cycling stability. Ionic‐liquid (IL) electrolytes, characterized by large potential windows, intrinsic ionic conductivity, low environmental hazard, and high safety, are used for micropore‐ and mesopore‐rich activated‐carbon (ACmicro and ACmeso) supercapacitors. IL electrolytes consisting of various cations [1‐ethyl‐3‐methylimidazolium (EMI+), N‐propyl‐N‐methylpyrrolidinium (PMP+), and N‐butyl‐N‐methylpyrrolidinium (BMP+)] and various anions [bis(trifluoromethylsulfonyl)imide (TFSI−), BF4−, and bis(fluorosulfonyl)imide (FSI−)] are investigated. The electrolyte conductivity, viscosity, and ion transport properties at the ACmicro and ACmeso electrodes are studied. In addition, the capacitance, rate capability, and cycling stability of the two types of AC electrodes are systematically examined and post‐mortem material analyses are conducted. The effects of IL composition on the charge–discharge capacitances of the ACmicro electrodes are more pronounced than those for the ACmeso electrodes. The FSI‐based IL electrolytes, for which electrochemical properties are cation dependent, are found to be promising. Incorporating EMI+ with FSI− results in a low electrolyte viscosity and a fast ion transport, giving rise to optimized electrode capacitance and rate capability. Replacing EMI+ with PMP+ increases the cell voltage (to 3.5 V) and maximum energy density (to 42 Wh kg−1) of the ACmicro cell at the cost of cycling stability. Ionic‐liquid (IL) electrolytes, characterized by large potential windows, intrinsic ionic conductivity, low environmental hazard, and high safety, are used for micropore‐ and mesopore‐rich activated‐carbon (ACmicro and ACmeso) supercapacitors. IL electrolytes consisting of various cations [1‐ethyl‐3‐methylimidazolium (EMI+), N‐propyl‐N‐methylpyrrolidinium (PMP+), and N‐butyl‐N‐methylpyrrolidinium (BMP+)] and various anions [bis(trifluoromethylsulfonyl)imide (TFSI−), BF4−, and bis(fluorosulfonyl)imide (FSI−)] are investigated. The electrolyte conductivity, viscosity, and ion transport properties at the ACmicro and ACmeso electrodes are studied. In addition, the capacitance, rate capability, and cycling stability of the two types of AC electrodes are systematically examined and post‐mortem material analyses are conducted. The effects of IL composition on the charge–discharge capacitances of the ACmicro electrodes are more pronounced than those for the ACmeso electrodes. The FSI‐based IL electrolytes, for which electrochemical properties are cation dependent, are found to be promising. Incorporating EMI+ with FSI− results in a low electrolyte viscosity and a fast ion transport, giving rise to optimized electrode capacitance and rate capability. Replacing EMI+ with PMP+ increases the cell voltage (to 3.5 V) and maximum energy density (to 42 Wh kg−1) of the ACmicro cell at the cost of cycling stability. A puzzle of pores and ions: A suitable combination of activated carbon pore size and ionic‐liquid (IL) composition can achieve desirable electric double‐layer capacitor performance. A bis(fluorosulfonyl)imide (FSI)‐based IL is more promising than the bis(trifluoromethylsulfonyl)imide (TFSI)‐ and BF4‐based IL counterparts. Replacing 1‐ethyl‐3‐methylimidazolium with N‐propyl‐N‐methylpyrrolidinium increases the cell voltage to 3.5 V, improving the energy density of the supercapacitor. Ionic liquid (IL) electrolytes, characterized by large potential windows, intrinsic ionic conductivity, low environmental hazard, and high safety, are used for micropore- and mesopore-rich activated carbon (ACmicro and ACmeso) supercapacitors. IL electrolytes consisting of various cations (1-ethyl-3-methylimidazolium (EMI+), N-propyl-N-methylpyrrolidinium (PMP+), and N-butyl-N-methylpyrrolidinium (BMP+)) and various anions (bis(trifluoromethylsulfony) imide (TFSI-), tetrafluoroborate (BF4-), and bis(fluorosulfonyl)imide (FSI-)) are investigated. The electrolyte conductivity and viscosity and ion transport properties at the ACmicro and ACmeso electrodes are studied. In addition, the capacitance, rate capability, and cycling stability of the two types of AC electrode are systematically examined and post-mortem material analyses are conducted. The effects of IL composition on charge-discharge capacitances of the ACmicro electrodes are more pronounced than those for the ACmeso electrodes. The FSI-based IL electrolytes, whose electrochemical properties are cation-dependent, are found to be promising. Incorporating EMI+ with FSI- results in low electrolyte viscosity and high ion transport, optimizing the electrode capacitance and rate capability. Replacing EMI+ with PMP+ increases the cell voltage (to 3.5 V) and maximum energy density (to 42 Wh kg-1) of the ACmicro cell at the cost of cycling stability. |
Author | Chang, Jeng‐Kuei Nguyen, Quoc Dat Patra, Jagabandhu Li, Jianlin Dong, Quan‐Feng Hsieh, Chien‐Te |
Author_xml | – sequence: 1 givenname: Quoc Dat surname: Nguyen fullname: Nguyen, Quoc Dat organization: National Central University – sequence: 2 givenname: Jagabandhu orcidid: 0000-0002-9783-3097 surname: Patra fullname: Patra, Jagabandhu organization: National Cheng Kung University – sequence: 3 givenname: Chien‐Te orcidid: 0000-0002-1053-8635 surname: Hsieh fullname: Hsieh, Chien‐Te organization: University of Tennessee – sequence: 4 givenname: Jianlin orcidid: 0000-0002-8710-9847 surname: Li fullname: Li, Jianlin organization: Oak Ridge National Laboratory – sequence: 5 givenname: Quan‐Feng orcidid: 0000-0002-4886-3361 surname: Dong fullname: Dong, Quan‐Feng organization: Xiamen University – sequence: 6 givenname: Jeng‐Kuei orcidid: 0000-0002-8359-5817 surname: Chang fullname: Chang, Jeng‐Kuei email: jkchang@nctu.edu.tw organization: National Cheng Kung University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30548119$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1493121$$D View this record in Osti.gov |
BookMark | eNqFkctuEzEUhi3Uil5gyxJZsGGT4NuMx8tq1EKlVCACiJ3leM4oriZ2anuosusDsOAZeZI6ShukSoiVfY6-_9z-E3TggweEXlEypYSw9zYlO2WENoSJRj1Dx7SpxaSqxY-D_Z_TI3SS0jUhNVF1_RwdcVKJhlJ1jH7NxzVEa9bGuux-Av4cQ0lkBwmHHl85W-IQ4c_db2x8h68gPcZfnF3iM1tUJkOHWxMXwWPn8WXwzhZg5m5G1-HzAWyOYdjkUvPW5SX-bqILY8Jt8Cm7PILPW1F6gQ57MyR4-fCeom8X51_bj5PZpw-X7dlsYoWUalIxyVjPOiMIkJqVM_RUckUplx230vZUmaYXtKsqBYRLoSh0QsJiwSyXBPgperOrG0p7ncrmYJc2eF8G1VQoThkt0LsdtI7hZoSU9colC8NgPJThNaOVrCtJKl7Qt0_Q6zBGX1YolGQFos2Wev1AjYsVdHod3crEjX40owDTHVBunlKEfo9Qordu663beu92EYgngrKKyS74HI0b_i1TO9mtG2Dznya6nc_bv9p7P3nCSA |
CitedBy_id | crossref_primary_10_1016_j_est_2019_100958 crossref_primary_10_1021_acssuschemeng_2c00266 crossref_primary_10_1039_D2EE01969H crossref_primary_10_1016_j_cej_2019_122945 crossref_primary_10_1016_j_jtice_2023_104978 crossref_primary_10_1021_acsami_0c08440 crossref_primary_10_1021_acs_iecr_2c03667 crossref_primary_10_1007_s11581_024_05626_x crossref_primary_10_1016_j_molliq_2024_126734 crossref_primary_10_1021_acs_energyfuels_1c00321 crossref_primary_10_1007_s13399_022_02462_9 crossref_primary_10_3390_ma14112942 crossref_primary_10_1016_j_est_2023_110129 crossref_primary_10_1016_j_electacta_2025_145752 crossref_primary_10_1039_D0MA00384K crossref_primary_10_1016_j_electacta_2022_140713 crossref_primary_10_3390_ma15207400 crossref_primary_10_1002_EXP_20210101 crossref_primary_10_3390_inorganics12070186 crossref_primary_10_1016_j_jpowsour_2019_226882 crossref_primary_10_1021_acs_chemrev_2c00773 |
Cites_doi | 10.1016/j.jelechem.2016.04.004 10.1016/j.nanoen.2012.11.006 10.1039/C5CS00303B 10.1002/aenm.201870116 10.1016/j.electacta.2011.07.124 10.1016/j.electacta.2004.10.005 10.1149/1.3126423 10.1002/cssc.201500030 10.1039/c0ee00004c 10.1016/j.electacta.2014.09.039 10.1002/aenm.201300816 10.1016/j.nanoen.2017.02.007 10.1039/C1JM14468E 10.1021/acsnano.8b01914 10.1039/C7CS00205J 10.1016/j.jpowsour.2009.08.045 10.1016/j.jpowsour.2010.03.082 10.1007/978-1-4757-3058-6 10.1021/nn901825y 10.1246/cl.2005.1014 10.1039/c3ta01638b 10.1016/j.electacta.2015.11.053 10.1039/C3EE42099J 10.1016/j.colsurfa.2016.08.044 10.1016/j.electacta.2004.03.030 10.1021/jp506567p 10.1016/j.electacta.2006.03.016 10.1016/j.jpowsour.2008.08.086 10.1021/acssuschemeng.7b03492 10.1002/cssc.201701476 10.1016/j.jpowsour.2012.07.030 10.1038/nenergy.2016.216 10.1021/jp9099418 10.1039/b819839j 10.1021/acsami.5b11353 10.1038/nmat2297 10.1002/adma.201304137 10.1016/j.electacta.2015.02.115 10.1002/chem.200800639 10.1039/C2TA00126H 10.1002/anie.200704894 10.1016/j.microrel.2010.07.144 10.1002/advs.201600539 10.1039/b103275p 10.1016/j.electacta.2006.03.105 10.1039/C4EE03229B 10.1021/acs.chemrev.6b00504 10.1039/c39920000965 10.1038/nmat1368 10.1039/C1CS15060J 10.1021/jp911950q 10.1002/ange.200704894 10.1016/j.electacta.2016.11.087 |
ContentType | Journal Article |
Copyright | 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
CorporateAuthor | Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) |
CorporateAuthor_xml | – name: Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 OIOZB OTOTI |
DOI | 10.1002/cssc.201802489 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1864-564X |
EndPage | 456 |
ExternalDocumentID | 1493121 30548119 10_1002_cssc_201802489 CSSC201802489 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Ministry of Science and Technology, Taiwan |
GroupedDBID | --- 05W 0R~ 1OC 29B 33P 4.4 5GY 5VS 66C 77Q 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BRXPI CS3 DCZOG DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P G-S HGLYW HZ~ IX1 LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ O9- OIG P2W P4E PQQKQ ROL SUPJJ SV3 W99 WBKPD WOHZO WXSBR WYJ XV2 ZZTAW ~S- AAMMB AAYXX AEFGJ AEYWJ AGXDD AGYGG AIDQK AIDYY CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 ADDAD AEUQT OIOZB OTOTI PQEST |
ID | FETCH-LOGICAL-c4779-52722f2da40e062002f17391137d3c7cf19a8f41d559e037491ed47ebb2c370e3 |
IEDL.DBID | DR2 |
ISSN | 1864-5631 1864-564X |
IngestDate | Fri May 19 00:41:52 EDT 2023 Fri Jul 11 13:05:46 EDT 2025 Fri Jul 25 12:16:59 EDT 2025 Mon Jul 21 05:43:06 EDT 2025 Wed Oct 01 00:51:12 EDT 2025 Thu Apr 24 23:02:00 EDT 2025 Wed Jan 22 16:20:52 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | electric double-layer capacitance pore size effects Ionic liquid supercapacitor |
Language | English |
License | 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4779-52722f2da40e062002f17391137d3c7cf19a8f41d559e037491ed47ebb2c370e3 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE Office of Energy Efficiency and Renewable Energy (EERE) AC05-00OR22725 |
ORCID | 0000-0002-4886-3361 0000-0002-8359-5817 0000-0002-9783-3097 0000-0002-1053-8635 0000-0002-8710-9847 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1493121 |
PMID | 30548119 |
PQID | 2172570183 |
PQPubID | 986333 |
PageCount | 8 |
ParticipantIDs | osti_scitechconnect_1493121 proquest_miscellaneous_2157657053 proquest_journals_2172570183 pubmed_primary_30548119 crossref_primary_10_1002_cssc_201802489 crossref_citationtrail_10_1002_cssc_201802489 wiley_primary_10_1002_cssc_201802489_CSSC201802489 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 24, 2019 |
PublicationDateYYYYMMDD | 2019-01-24 |
PublicationDate_xml | – month: 01 year: 2019 text: January 24, 2019 day: 24 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: United States |
PublicationTitle | ChemSusChem |
PublicationTitleAlternate | ChemSusChem |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc ChemPubSoc Europe |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: ChemPubSoc Europe |
References | 2014; 118 2015; 161 2006; 52 2017; 2 2013; 1 2017; 4 2006; 51 2013; 2 2004; 49 2017; 46 2016; 508 2008; 14 2014; 26 2016; 222 2008; 7 2009; 156 2016; 187 2011; 56 1992 2008 2008; 47 120 2015; 8 2008; 185 2017; 117 1999 2018; 6 2018; 8 2014; 4 2016; 779 2010; 114 2017; 33 2017; 10 2015; 44 2005; 4 2001; 3 2010; 195 2005; 50 2010; 3 2018; 12 2009; 19 2014; 7 2012; 22 2010; 4 2016; 8 2005; 34 2012; 41 2010; 50 2012; 219 2014; 146 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_35_2 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 195 start-page: 5814 year: 2010 end-page: 5819 publication-title: J. Power Sources – volume: 49 start-page: 3603 year: 2004 end-page: 3611 publication-title: Electrochim. Acta – volume: 114 start-page: 1776 year: 2010 end-page: 1782 publication-title: J. Phys. Chem. A – volume: 33 start-page: 453 year: 2017 end-page: 461 publication-title: Nano Energy – volume: 26 start-page: 2219 year: 2014 end-page: 2251 publication-title: Adv. Energy Mater. – volume: 156 start-page: 563 year: 2009 end-page: 571 publication-title: J. Electrochem. Soc. – volume: 222 start-page: 1153 year: 2016 end-page: 1159 publication-title: Electrochim. Acta – volume: 22 start-page: 767 year: 2012 end-page: 784 publication-title: J. Mater. Chem. – volume: 46 start-page: 6816 year: 2017 end-page: 6854 publication-title: Chem. Soc. Rev. – volume: 2 start-page: 403 year: 2013 end-page: 411 publication-title: Nano Energy – volume: 51 start-page: 5567 year: 2006 end-page: 5580 publication-title: Electrochim. Acta – volume: 508 start-page: 173 year: 2016 end-page: 177 publication-title: Colloids Surf. A – volume: 161 start-page: 371 year: 2015 end-page: 377 publication-title: Electrochim. Acta – volume: 7 start-page: 845 year: 2008 end-page: 854 publication-title: Nat. Mater. – volume: 187 start-page: 312 year: 2016 end-page: 322 publication-title: Electrochim. Acta – volume: 50 start-page: 2227 year: 2005 end-page: 2231 publication-title: Electrochim. Acta – volume: 4 start-page: 1300816 year: 2014 publication-title: Adv. Energy Mater. – volume: 146 start-page: 429 year: 2014 end-page: 436 publication-title: Electrochim. Acta – volume: 47 120 start-page: 3392 3440 year: 2008 2008 end-page: 3395 3443 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 8 start-page: 3396 year: 2016 end-page: 3406 publication-title: ACS Appl. Mater. Interfaces – volume: 779 start-page: 161 year: 2016 end-page: 168 publication-title: J. Electroanal. Chem. – volume: 8 start-page: 1779 year: 2015 end-page: 1786 publication-title: ChemSusChem – volume: 8 start-page: 1870116 year: 2018 publication-title: Adv. Energy Mater. – volume: 195 start-page: 923 year: 2010 end-page: 928 publication-title: J. Power Sources – volume: 6 start-page: 1208 year: 2018 end-page: 1214 publication-title: ACS Sustainable Chem. Eng. – volume: 1 start-page: 2719 year: 2013 end-page: 2743 publication-title: J. Mater. Chem. A – volume: 114 start-page: 6786 year: 2010 end-page: 6798 publication-title: J. Phys. Chem. B – volume: 3 start-page: 1238 year: 2010 end-page: 1251 publication-title: Energy Environ. Sci. – volume: 1 start-page: 6037 year: 2013 end-page: 6042 publication-title: J. Mater. Chem. A – volume: 3 start-page: 156 year: 2001 end-page: 164 publication-title: Green Chem. – volume: 56 start-page: 8941 year: 2011 end-page: 8946 publication-title: Electrochim. Acta – volume: 12 start-page: 2081 year: 2018 end-page: 2083 publication-title: ACS Nano – volume: 118 start-page: 19661 year: 2014 end-page: 19671 publication-title: J. Phys. Chem. C – volume: 50 start-page: 1783 year: 2010 end-page: 1788 publication-title: Microelectron. Reliab. – volume: 52 start-page: 1763 year: 2006 end-page: 1770 publication-title: Electrochim. Acta – volume: 7 start-page: 232 year: 2014 end-page: 250 publication-title: Energy Environ. Sci. – volume: 117 start-page: 7190 year: 2017 end-page: 7239 publication-title: Chem. Rev. – volume: 14 start-page: 6614 year: 2008 end-page: 6626 publication-title: Chem. Eur. J. – volume: 2 start-page: 16216 year: 2017 publication-title: Nat. Energy – volume: 41 start-page: 797 year: 2012 end-page: 828 publication-title: Chem. Soc. Rev. – volume: 10 start-page: 3534 year: 2017 end-page: 3539 publication-title: ChemSusChem – volume: 8 start-page: 702 year: 2015 end-page: 730 publication-title: Energy Environ. Sci. – volume: 4 start-page: 1337 year: 2010 end-page: 1344 publication-title: ACS Nano – volume: 219 start-page: 140 year: 2012 end-page: 146 publication-title: J. Power Sources – volume: 44 start-page: 7484 year: 2015 end-page: 7539 publication-title: Chem. Soc. Rev. – volume: 4 start-page: 1600539 year: 2017 publication-title: Adv. Sci. – volume: 19 start-page: 3732 year: 2009 end-page: 3738 publication-title: J. Mater. Chem. – volume: 34 start-page: 1014 year: 2005 end-page: 1015 publication-title: Chem. Lett. – volume: 185 start-page: 1585 year: 2008 end-page: 1588 publication-title: J. Power Sources – start-page: 965 year: 1992 end-page: 967 publication-title: J. Chem. Soc. Chem. Commun. – volume: 4 start-page: 366 year: 2005 end-page: 377 publication-title: Nat. Mater. – year: 1999 – ident: e_1_2_7_44_1 doi: 10.1016/j.jelechem.2016.04.004 – ident: e_1_2_7_27_1 doi: 10.1016/j.nanoen.2012.11.006 – ident: e_1_2_7_5_1 doi: 10.1039/C5CS00303B – ident: e_1_2_7_30_1 doi: 10.1002/aenm.201870116 – ident: e_1_2_7_21_1 doi: 10.1016/j.electacta.2011.07.124 – ident: e_1_2_7_42_1 doi: 10.1016/j.electacta.2004.10.005 – ident: e_1_2_7_52_1 doi: 10.1149/1.3126423 – ident: e_1_2_7_17_1 doi: 10.1002/cssc.201500030 – ident: e_1_2_7_16_1 doi: 10.1039/c0ee00004c – ident: e_1_2_7_46_1 doi: 10.1016/j.electacta.2014.09.039 – ident: e_1_2_7_3_1 doi: 10.1002/aenm.201300816 – ident: e_1_2_7_39_1 doi: 10.1016/j.nanoen.2017.02.007 – ident: e_1_2_7_9_1 doi: 10.1039/C1JM14468E – ident: e_1_2_7_29_1 doi: 10.1021/acsnano.8b01914 – ident: e_1_2_7_8_1 doi: 10.1039/C7CS00205J – ident: e_1_2_7_41_1 doi: 10.1016/j.jpowsour.2009.08.045 – ident: e_1_2_7_22_1 doi: 10.1016/j.jpowsour.2010.03.082 – ident: e_1_2_7_11_1 doi: 10.1007/978-1-4757-3058-6 – ident: e_1_2_7_38_1 doi: 10.1021/nn901825y – ident: e_1_2_7_51_1 doi: 10.1246/cl.2005.1014 – ident: e_1_2_7_43_1 doi: 10.1039/c3ta01638b – ident: e_1_2_7_34_1 doi: 10.1016/j.electacta.2015.11.053 – ident: e_1_2_7_13_1 doi: 10.1039/C3EE42099J – ident: e_1_2_7_23_1 doi: 10.1016/j.colsurfa.2016.08.044 – ident: e_1_2_7_33_1 doi: 10.1016/j.electacta.2004.03.030 – ident: e_1_2_7_25_1 doi: 10.1021/jp506567p – ident: e_1_2_7_19_1 doi: 10.1016/j.electacta.2006.03.016 – ident: e_1_2_7_28_1 doi: 10.1016/j.jpowsour.2008.08.086 – ident: e_1_2_7_31_1 doi: 10.1021/acssuschemeng.7b03492 – ident: e_1_2_7_37_1 doi: 10.1002/cssc.201701476 – ident: e_1_2_7_45_1 doi: 10.1016/j.jpowsour.2012.07.030 – ident: e_1_2_7_49_1 doi: 10.1038/nenergy.2016.216 – ident: e_1_2_7_26_1 doi: 10.1021/jp9099418 – ident: e_1_2_7_14_1 doi: 10.1039/b819839j – ident: e_1_2_7_20_1 doi: 10.1021/acsami.5b11353 – ident: e_1_2_7_1_1 doi: 10.1038/nmat2297 – ident: e_1_2_7_6_1 doi: 10.1002/adma.201304137 – ident: e_1_2_7_15_1 doi: 10.1016/j.electacta.2015.02.115 – ident: e_1_2_7_36_1 doi: 10.1002/chem.200800639 – ident: e_1_2_7_48_1 doi: 10.1039/C2TA00126H – ident: e_1_2_7_35_1 doi: 10.1002/anie.200704894 – ident: e_1_2_7_40_1 doi: 10.1016/j.microrel.2010.07.144 – ident: e_1_2_7_4_1 doi: 10.1002/advs.201600539 – ident: e_1_2_7_47_1 doi: 10.1039/b103275p – ident: e_1_2_7_50_1 doi: 10.1016/j.electacta.2006.03.105 – ident: e_1_2_7_7_1 doi: 10.1039/C4EE03229B – ident: e_1_2_7_12_1 doi: 10.1021/acs.chemrev.6b00504 – ident: e_1_2_7_18_1 doi: 10.1039/c39920000965 – ident: e_1_2_7_2_1 doi: 10.1038/nmat1368 – ident: e_1_2_7_10_1 doi: 10.1039/C1CS15060J – ident: e_1_2_7_24_1 doi: 10.1021/jp911950q – ident: e_1_2_7_35_2 doi: 10.1002/ange.200704894 – ident: e_1_2_7_32_1 doi: 10.1016/j.electacta.2016.11.087 |
SSID | ssj0060966 |
Score | 2.3898106 |
Snippet | Ionic‐liquid (IL) electrolytes, characterized by large potential windows, intrinsic ionic conductivity, low environmental hazard, and high safety, are used for... Ionic liquid (IL) electrolytes, characterized by large potential windows, intrinsic ionic conductivity, low environmental hazard, and high safety, are used for... Ionic-liquid (IL) electrolytes, characterized by large potential windows, intrinsic ionic conductivity, low environmental hazard, and high safety, are used for... |
SourceID | osti proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 449 |
SubjectTerms | Activated carbon Capacitance carbon Cations Composition effects electric double-layer Electrochemical analysis Electrodes Electrolytes Electromagnetic interference Flux density Ion currents Ion transport Ionic liquids Ions MATERIALS SCIENCE pore size Properties (attributes) Stability supercapacitors Viscosity |
Title | Supercapacitive Properties of Micropore‐ and Mesopore‐Rich Activated Carbon in Ionic‐Liquid Electrolytes with Various Constituent Ions |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.201802489 https://www.ncbi.nlm.nih.gov/pubmed/30548119 https://www.proquest.com/docview/2172570183 https://www.proquest.com/docview/2157657053 https://www.osti.gov/servlets/purl/1493121 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1864-5631 databaseCode: DR2 dateStart: 20070101 customDbUrl: isFulltext: true eissn: 1864-564X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0060966 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbQXsoFWp7bFmQkJE5p14_YybGKWhXEIsRS1FvkOBNpRZWUzeYAJ34AB34jv4QZZxNYBEKCWx7jxHFmPDP2zDeMPZVGQuKciawBF2kHKFKopSNXEBycT5wK6dHzV-b8Qr-4jC9_yuLv8SHGBTeSjDBfk4C7oj3-ARrq25YgCAnBTCeUwSdUHPZp34z4UQbt85BelBgdxUaJAbVxJo-3m29ppUmD0vU7i3PbgA0a6Ow2c0Pf-8CT90fdujjyn36Bdfyfj9tltzbmKT_p-WmP3YD6DtvJhqpwd9mXRXcNK48q1oeoI_6aVvNXBMvKm4rPKb4PTXr49vkrd3XJ59AO55TDz098qKcGJc_cqmhqvqz5c4LnRYKXyw_dsuSnfWWeq49oBXNaJ-bv0KFvupZTdVEKbUBFSY3ae-zi7PRtdh5tKjpEXlubotdrpaxk6fQMZobiQyphFc63ypbKW1-J1CWVFiX6OUDIOKmAUlsoCumVnYG6zyZ1U8NDxoVLlS5dZV3itDc6AWlBVzEyX4WXqymLhj-a-w3cOVXduMp7oGaZ0xjn4xhP2bOR_roH-vgj5QExSI4mCuHsegpI8mv0oVIlpJiyw4Fv8s100OZUBSy2-AA1ZU_G2_jnaHfG1YBDiDTo-iFRjDQPen4bO4KTsk6EwFfLwDV_6WGeLRbZeLb_L40O2E08plC6SOpDNlmvOniE5te6eBxE7Dul6iqs |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgOZQL78fSAkZC4pR2_YidHKvQagu7FWJbxM1yHFtaUSVlsznAiR_Agd_IL2Em2QQtAiHB0c44cewZz4w9_oaQ51xxn1irIq28jaT1IFKgpSObIxycS6xor0fPT9X0XL56H_fRhHgXpsOHGDbcUDLa9RoFHDekD36ihrq6RgxChDCTSXqVXMNDOpTNl28HBCkFFnp7wShRMoqVYD1u44QfbLff0kujCuTrdzbntgnb6qDjmyTve9-FnnzYb9b5vvv8C7Djf_3eLXJjY6HSw46lbpMrvrxDdrI-Mdxd8nXRXPqVAy3r2sAj-gY39FeIzEqrQOcY4gdWvf_-5Ru1ZUHnvu7LeI2fHro2pZovaGZXeVXSZUlPEKEXCGbLj82yoEddcp6LT2AIU9wqpu_Ap6-ammKCUYxuAF2Jjep75Pz46CybRpukDpGTWqfg-GrOAy-snPiJwhCRwLSAJVfoQjjtAkttEiQrwNXxCI6TMl9I7fOcO6EnXtwno7Iq_UNCmU2FLGzQNrHSKZl4rr0MMfBfgOowJlE_pcZtEM8x8caF6bCaucExNsMYj8mLgf6yw_r4I-UucogBKwWhdh3GJLk1uFGpYJyNyV7POGazItQGE4HFGl4gxuTZ8BhmDg9obOlhCIEGvD8gioHmQcdwQ0dgXZYJY_Bp3rLNX3possUiG0qP_qXRU7IzPZvPzOzk9PUuuQ71GFkXcblHRutV4x-DNbbOn7Ty9gM0HC7I |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZgkYALLb9d2oKRkDilXf_ETo5V6KqFblWxFPUWOY4traiS7WZzgBMPwIFn5Ek6k2wCi0BIcEwyThxnxvONM_6GkJdccRcZowKtnAmkcWBS4KUDkyEdnI2MaLZHT07V0bl8cxFe_LSLv-WH6Bfc0DKa-RoNfJ77_R-kobaqkIIQGcxkFN8kt6SCEAth0bueQEoBQG_2F0VKBqESrKNtHPH99fZrbmlQgnn9DnKuI9jGBY03iOk632aefNyrl9me_fwLr-P_vN0mubfCp_SgVaj75IYrHpA7SVcW7iH5Oq3nbmHBx9om7Yie4XL-AnlZaenpBBP8ANO771--UVPkdOKq7hg38dMD2xRUczlNzCIrCzor6DHy84LAyeyqnuX0sC3Nc_kJYDDFhWL6ASL6sq4olhfF3AbwlNioekTOx4fvk6NgVdIhsFLrGMJezbnnuZEjN1KYIOKZFjDhCp0Lq61nsYm8ZDkEOg6pcWLmcqldlnEr9MiJx2RQlIXbIpSZWMjceG0iI62SkePaSR-C9nk47Yck6L5oald851h24zJtmZp5imOc9mM8JK96-XnL9PFHyW1UkBQwChLtWsxIsksIomLBOBuSnU5v0tV8UKVYBizUcAMxJC_6y_Dl8PeMKRwMIchA7AdCIcg8afWt7wjMyjJiDB7NG635Sw_TZDpN-qOn_9LoObl99nqcnhyfvt0md-E0ptUFXO6QwXJRu12AYsvsWWNt14doLXc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Supercapacitive+properties+of+micropore-+and+mesopore-rich+activated+carbon+in+ionic+liquid+electrolytes+with+various+constituent+ions&rft.jtitle=ChemSusChem&rft.au=Nguyen%2C+Quoc+Dat&rft.au=Patra%2C+Jagabandhu&rft.au=Hsieh%2C+Chien-Te&rft.au=Li%2C+Jianlin&rft.date=2019-01-24&rft.eissn=1864-564X&rft_id=info:doi/10.1002%2Fcssc.201802489&rft_id=info%3Apmid%2F30548119&rft.externalDocID=30548119 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon |