Norwalk virus: How infectious is it

Noroviruses are major agents of viral gastroenteritis worldwide. The infectivity of Norwalk virus, the prototype norovirus, has been studied in susceptible human volunteers. A new variant of the hit theory model of microbial infection was developed to estimate the variation in Norwalk virus infectiv...

Full description

Saved in:
Bibliographic Details
Published inJournal of medical virology Vol. 80; no. 8; pp. 1468 - 1476
Main Authors Teunis, Peter F.M, Moe, Christine L, Liu, Pengbo, Miller, Sara E, Lindesmith, Lisa, Baric, Ralph S, Le Pendu, Jacques, Calderon, Rebecca L
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.08.2008
Wiley-Liss
Subjects
Online AccessGet full text
ISSN0146-6615
1096-9071
1096-9071
DOI10.1002/jmv.21237

Cover

Abstract Noroviruses are major agents of viral gastroenteritis worldwide. The infectivity of Norwalk virus, the prototype norovirus, has been studied in susceptible human volunteers. A new variant of the hit theory model of microbial infection was developed to estimate the variation in Norwalk virus infectivity, as well as the degree of virus aggregation, consistent with independent (electron microscopic) observations. Explicit modeling of viral aggregation allows us to express virus infectivity per single infectious unit (particle). Comparison of a primary and a secondary inoculum showed that passage through a human host does not change Norwalk virus infectivity. We estimate the average probability of infection for a single Norwalk virus particle to be close to 0.5, exceeding that reported for any other virus studied to date. Infected subjects had a dose-dependent probability of becoming ill, ranging from 0.1 (at a dose of 10³ NV genomes) to 0.7 (at 10⁸ virus genomes). A norovirus dose response model is important for understanding its transmission and essential for development of a quantitative risk model. Norwalk virus is a valuable model system to study virulence because genetic factors are known for both complete and partial protection; the latter can be quantitatively described as heterogeneity in dose response models. J. Med. Virol. 80:1468-1476, 2008.
AbstractList Noroviruses are major agents of viral gastroenteritis worldwide. The infectivity of Norwalk virus, the prototype norovirus, has been studied in susceptible human volunteers. A new variant of the hit theory model of microbial infection was developed to estimate the variation in Norwalk virus infectivity, as well as the degree of virus aggregation, consistent with independent (electron microscopic) observations. Explicit modeling of viral aggregation allows us to express virus infectivity per single infectious unit (particle). Comparison of a primary and a secondary inoculum showed that passage through a human host does not change Norwalk virus infectivity. We estimate the average probability of infection for a single Norwalk virus particle to be close to 0.5, exceeding that reported for any other virus studied to date. Infected subjects had a dose-dependent probability of becoming ill, ranging from 0.1 (at a dose of 10³ NV genomes) to 0.7 (at 10⁸ virus genomes). A norovirus dose response model is important for understanding its transmission and essential for development of a quantitative risk model. Norwalk virus is a valuable model system to study virulence because genetic factors are known for both complete and partial protection; the latter can be quantitatively described as heterogeneity in dose response models. J. Med. Virol. 80:1468-1476, 2008.
Noroviruses are major agents of viral gastroenteritis worldwide. The infectivity of Norwalk virus, the prototype norovirus, has been studied in susceptible human volunteers. A new variant of the hit theory model of microbial infection was developed to estimate the variation in Norwalk virus infectivity, as well as the degree of virus aggregation, consistent with independent (electron microscopic) observations. Explicit modeling of viral aggregation allows us to express virus infectivity per single infectious unit (particle). Comparison of a primary and a secondary inoculum showed that passage through a human host does not change Norwalk virus infectivity. We estimate the average probability of infection for a single Norwalk virus particle to be close to 0.5, exceeding that reported for any other virus studied to date. Infected subjects had a dose-dependent probability of becoming ill, ranging from 0.1 (at a dose of 10³ NV genomes) to 0.7 (at 10¸ virus genomes). A norovirus dose response model is important for understanding its transmission and essential for development of a quantitative risk model. Norwalk virus is a valuable model system to study virulence because genetic factors are known for both complete and partial protection; the latter can be quantitatively described as heterogeneity in dose response models. J. Med. Virol. 80:1468-1476, 2008.
Noroviruses are major agents of viral gastroenteritis worldwide. The infectivity of Norwalk virus, the prototype norovirus, has been studied in susceptible human volunteers. A new variant of the hit theory model of microbial infection was developed to estimate the variation in Norwalk virus infectivity, as well as the degree of virus aggregation, consistent with independent (electron microscopic) observations. Explicit modeling of viral aggregation allows us to express virus infectivity per single infectious unit (particle). Comparison of a primary and a secondary inoculum showed that passage through a human host does not change Norwalk virus infectivity. We estimate the average probability of infection for a single Norwalk virus particle to be close to 0.5, exceeding that reported for any other virus studied to date. Infected subjects had a dose-dependent probability of becoming ill, ranging from 0.1 (at a dose of 10(3) NV genomes) to 0.7 (at 10(8) virus genomes). A norovirus dose response model is important for understanding its transmission and essential for development of a quantitative risk model. Norwalk virus is a valuable model system to study virulence because genetic factors are known for both complete and partial protection; the latter can be quantitatively described as heterogeneity in dose response models.
Noroviruses are major agents of viral gastroenteritis worldwide. The infectivity of Norwalk virus, the prototype norovirus, has been studied in susceptible human volunteers. A new variant of the hit theory model of microbial infection was developed to estimate the variation in Norwalk virus infectivity, as well as the degree of virus aggregation, consistent with independent (electron microscopic) observations. Explicit modeling of viral aggregation allows us to express virus infectivity per single infectious unit (particle). Comparison of a primary and a secondary inoculum showed that passage through a human host does not change Norwalk virus infectivity. We estimate the average probability of infection for a single Norwalk virus particle to be close to 0.5, exceeding that reported for any other virus studied to date. Infected subjects had a dose‐dependent probability of becoming ill, ranging from 0.1 (at a dose of 10 3 NV genomes) to 0.7 (at 10 8 virus genomes). A norovirus dose response model is important for understanding its transmission and essential for development of a quantitative risk model. Norwalk virus is a valuable model system to study virulence because genetic factors are known for both complete and partial protection; the latter can be quantitatively described as heterogeneity in dose response models. J. Med. Virol. 80:1468–1476, 2008. © 2008 Wiley‐Liss, Inc.
Noroviruses are major agents of viral gastroenteritis worldwide. The infectivity of Norwalk virus, the prototype norovirus, has been studied in susceptible human volunteers. A new variant of the hit theory model of microbial infection was developed to estimate the variation in Norwalk virus infectivity, as well as the degree of virus aggregation, consistent with independent (electron microscopic) observations. Explicit modeling of viral aggregation allows us to express virus infectivity per single infectious unit (particle). Comparison of a primary and a secondary inoculum showed that passage through a human host does not change Norwalk virus infectivity. We estimate the average probability of infection for a single Norwalk virus particle to be close to 0.5, exceeding that reported for any other virus studied to date. Infected subjects had a dose‐dependent probability of becoming ill, ranging from 0.1 (at a dose of 103 NV genomes) to 0.7 (at 108 virus genomes). A norovirus dose response model is important for understanding its transmission and essential for development of a quantitative risk model. Norwalk virus is a valuable model system to study virulence because genetic factors are known for both complete and partial protection; the latter can be quantitatively described as heterogeneity in dose response models. J. Med. Virol. 80:1468–1476, 2008. © 2008 Wiley‐Liss, Inc.
Noroviruses are major agents of viral gastroenteritis worldwide. The infectivity of Norwalk virus, the prototype norovirus, has been studied in susceptible human volunteers. A new variant of the hit theory model of microbial infection was developed to estimate the variation in Norwalk virus infectivity, as well as the degree of virus aggregation, consistent with independent (electron microscopic) observations. Explicit modeling of viral aggregation allows us to express virus infectivity per single infectious unit (particle). Comparison of a primary and a secondary inoculum showed that passage through a human host does not change Norwalk virus infectivity. We estimate the average probability of infection for a single Norwalk virus particle to be close to 0.5, exceeding that reported for any other virus studied to date. Infected subjects had a dose-dependent probability of becoming ill, ranging from 0.1 (at a dose of 10(3) NV genomes) to 0.7 (at 10(8) virus genomes). A norovirus dose response model is important for understanding its transmission and essential for development of a quantitative risk model. Norwalk virus is a valuable model system to study virulence because genetic factors are known for both complete and partial protection; the latter can be quantitatively described as heterogeneity in dose response models.Noroviruses are major agents of viral gastroenteritis worldwide. The infectivity of Norwalk virus, the prototype norovirus, has been studied in susceptible human volunteers. A new variant of the hit theory model of microbial infection was developed to estimate the variation in Norwalk virus infectivity, as well as the degree of virus aggregation, consistent with independent (electron microscopic) observations. Explicit modeling of viral aggregation allows us to express virus infectivity per single infectious unit (particle). Comparison of a primary and a secondary inoculum showed that passage through a human host does not change Norwalk virus infectivity. We estimate the average probability of infection for a single Norwalk virus particle to be close to 0.5, exceeding that reported for any other virus studied to date. Infected subjects had a dose-dependent probability of becoming ill, ranging from 0.1 (at a dose of 10(3) NV genomes) to 0.7 (at 10(8) virus genomes). A norovirus dose response model is important for understanding its transmission and essential for development of a quantitative risk model. Norwalk virus is a valuable model system to study virulence because genetic factors are known for both complete and partial protection; the latter can be quantitatively described as heterogeneity in dose response models.
Noroviruses are major agents of viral gastroenteritis worldwide. The infectivity of Norwalk virus, the prototype norovirus, has been studied in susceptible human volunteers. A new variant of the hit theory model of microbial infection was developed to estimate the variation in Norwalk virus infectivity, as well as the degree of virus aggregation, consistent with independent (electron microscopic) observations. Explicit modeling of viral aggregation allows us to express virus infectivity per single infectious unit (particle). Comparison of a primary and a secondary inoculum showed that passage through a human host does not change Norwalk virus infectivity. We estimate the average probability of infection for a single Norwalk virus particle to be close to 0.5, exceeding that reported for any other virus studied to date. Infected subjects had a dose-dependent probability of becoming ill, ranging from 0.1 (at a dose of 103 NV genomes) to 0.7 (at 108 virus genomes). A norovirus dose response model is important for understanding its transmission and essential for development of a quantitative risk model. Norwalk virus is a valuable model system to study virulence because genetic factors are known for both complete and partial protection; the latter can be quantitatively described as heterogeneity in dose response models. J. Med. Virol. 80:1468-1476, 2008.
Author E. Miller, Sara
Le Pendu, Jacques
Teunis, Peter F.M.
Moe, Christine L.
Baric, Ralph S.
Liu, Pengbo
Calderon, Rebecca L.
Lindesmith, Lisa
Author_xml – sequence: 1
  fullname: Teunis, Peter F.M
– sequence: 2
  fullname: Moe, Christine L
– sequence: 3
  fullname: Liu, Pengbo
– sequence: 4
  fullname: Miller, Sara E
– sequence: 5
  fullname: Lindesmith, Lisa
– sequence: 6
  fullname: Baric, Ralph S
– sequence: 7
  fullname: Le Pendu, Jacques
– sequence: 8
  fullname: Calderon, Rebecca L
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20466302$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18551613$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9PGzEQxS1EBQF66BcokVAr9bAwY6__9YaiJrQK9NACR8v1epFhs0vtDSnfvk4TQEIqSJbm8nvPb97skM22az0h7xAOEYAeXc_uDilSJjfIAEGLQoPETTIALEUhBPJtspPSNQAoTekW2UbFOQpkA3Jw1sWFbW6GdyHO0-fhSbcYhrb2rg_dPA1Dfv0eeVPbJvm367lLzsdffo5Oiun3ydfR8bRwpZSyYLK2wmrEykt0oJyvWckoMGC14MiVZ4g5kdBK8fyD8qp0GisqodK-smyXfFz53sbu99yn3sxCcr5pbOtzGCNyeKGkfBUspZBayfJVkALlSqol-H4Nzn_NfGVuY5jZeG8eisrAhzVgk7NNHW3rQnrkKOS9GNDMfVpxLnYpRV8_WYFZHsvkY5l_x8rs0TPWhd7m4ts-2tC8pFiExt__39p8O714UBQrRUi9__OosPHGCMkkN5dnE3M5Hk31WE7Msoj9FV_bztirmHc8_0EBGYAGxbVmfwGi-7lw
CODEN JMVIDB
CitedBy_id crossref_primary_10_1128_AEM_01866_17
crossref_primary_10_1016_j_mran_2016_08_003
crossref_primary_10_1016_j_mran_2019_06_003
crossref_primary_10_1007_s11845_022_03004_y
crossref_primary_10_1021_acs_est_9b05747
crossref_primary_10_1016_j_jobe_2023_106706
crossref_primary_10_1128_AEM_00174_11
crossref_primary_10_1021_acsestwater_3c00331
crossref_primary_10_4315_0362_028X_JFP_11_449
crossref_primary_10_1111_1541_4337_12072
crossref_primary_10_2903_j_efsa_2012_2500
crossref_primary_10_3389_fmicb_2020_516445
crossref_primary_10_1016_j_fm_2014_04_002
crossref_primary_10_1021_es200984b
crossref_primary_10_1128_JVI_02207_12
crossref_primary_10_1590_1519_6984_232466
crossref_primary_10_1128_CVI_00427_12
crossref_primary_10_4315_0362_028X_73_12_2232
crossref_primary_10_1016_j_jiph_2018_12_007
crossref_primary_10_1016_j_foodcont_2017_11_043
crossref_primary_10_1016_j_ijfoodmicro_2013_11_027
crossref_primary_10_3390_ijerph14121571
crossref_primary_10_1371_journal_pone_0050273
crossref_primary_10_1007_s12560_013_9128_y
crossref_primary_10_1021_acs_est_9b02002
crossref_primary_10_1007_s12560_015_9187_3
crossref_primary_10_3390_vaccines12060590
crossref_primary_10_1016_j_jviromet_2011_02_011
crossref_primary_10_1017_S0950268820000965
crossref_primary_10_1016_j_envsoft_2017_01_016
crossref_primary_10_1016_j_jviromet_2018_07_001
crossref_primary_10_1007_s12560_012_9101_1
crossref_primary_10_1371_journal_ppat_1000884
crossref_primary_10_3390_foods8060187
crossref_primary_10_1007_s10096_016_2884_5
crossref_primary_10_1007_s10661_016_5442_9
crossref_primary_10_1016_j_lwt_2017_03_050
crossref_primary_10_4315_0362_028X_JFP_13_079
crossref_primary_10_1016_j_jcv_2012_08_020
crossref_primary_10_1016_j_jfp_2022_100024
crossref_primary_10_1111_jam_12345
crossref_primary_10_4167_jbv_2023_53_1_011
crossref_primary_10_1017_S0950268815000035
crossref_primary_10_1128_AEM_07081_11
crossref_primary_10_1017_S0950268818003217
crossref_primary_10_1016_j_scitotenv_2023_169738
crossref_primary_10_1007_s12560_019_09383_3
crossref_primary_10_4315_0362_028X_JFP_12_052
crossref_primary_10_1128_AEM_01729_09
crossref_primary_10_1038_s41598_018_36779_1
crossref_primary_10_1016_j_foodcont_2024_110943
crossref_primary_10_1016_j_marpolbul_2019_04_073
crossref_primary_10_2217_fmb_14_102
crossref_primary_10_3390_w14050782
crossref_primary_10_2222_jsv_61_193
crossref_primary_10_1111_lam_13702
crossref_primary_10_1128_JCM_00266_14
crossref_primary_10_2166_wh_2020_045
crossref_primary_10_1016_j_clinmicnews_2009_10_001
crossref_primary_10_1056_NEJMc1301022
crossref_primary_10_1073_pnas_1903562116
crossref_primary_10_1128_spectrum_04857_22
crossref_primary_10_1007_s12560_016_9253_5
crossref_primary_10_1098_rstb_2019_0016
crossref_primary_10_1017_S0950268810002839
crossref_primary_10_1073_pnas_1014577107
crossref_primary_10_1016_S1773_035X_14_72363_9
crossref_primary_10_1111_1541_4337_12271
crossref_primary_10_1021_acs_est_9b01188
crossref_primary_10_3389_fmicb_2021_731379
crossref_primary_10_1017_S0950268812000799
crossref_primary_10_1128_JVI_00785_14
crossref_primary_10_15585_mmwr_mm6828a2
crossref_primary_10_1016_j_jmoldx_2021_03_005
crossref_primary_10_3201_eid1611_100877
crossref_primary_10_1093_infdis_jit620
crossref_primary_10_1097_INF_0b013e3182059102
crossref_primary_10_1002_jmv_23784
crossref_primary_10_1016_j_jenvman_2015_05_019
crossref_primary_10_1016_j_bcp_2014_05_021
crossref_primary_10_1016_j_watres_2022_119079
crossref_primary_10_13103_JFHS_2018_33_1_71
crossref_primary_10_1128_jvi_00383_23
crossref_primary_10_1016_j_meegid_2020_104245
crossref_primary_10_1111_j_1365_2672_2011_05196_x
crossref_primary_10_1016_j_scitotenv_2020_141574
crossref_primary_10_1016_j_watres_2020_116202
crossref_primary_10_1017_S0950268810000439
crossref_primary_10_1186_1743_422X_8_57
crossref_primary_10_1002_mnfr_201400549
crossref_primary_10_1007_s12560_011_9068_3
crossref_primary_10_1016_j_mran_2017_01_002
crossref_primary_10_1016_j_watres_2016_10_054
crossref_primary_10_1007_s12560_010_9041_6
crossref_primary_10_1021_acs_est_5b05398
crossref_primary_10_1021_acs_estlett_9b00468
crossref_primary_10_1016_j_ijfoodmicro_2021_109151
crossref_primary_10_3389_fmicb_2021_653719
crossref_primary_10_1016_j_fm_2016_09_001
crossref_primary_10_1371_journal_pgph_0002748
crossref_primary_10_1111_jam_13638
crossref_primary_10_1039_C7EM00316A
crossref_primary_10_1007_s11356_018_1881_x
crossref_primary_10_1016_j_mran_2017_12_001
crossref_primary_10_1016_j_fm_2014_12_004
crossref_primary_10_1021_es100346a
crossref_primary_10_1128_JCM_02778_14
crossref_primary_10_1016_j_ijfoodmicro_2021_109365
crossref_primary_10_3389_fmicb_2021_670488
crossref_primary_10_1371_journal_pcbi_1012561
crossref_primary_10_56786_PHWR_2025_18_1_2
crossref_primary_10_1016_j_ijfoodmicro_2018_06_001
crossref_primary_10_1016_j_ijfoodmicro_2022_109884
crossref_primary_10_1128_JVI_03433_12
crossref_primary_10_1016_j_fm_2017_04_018
crossref_primary_10_1029_2021GH000490
crossref_primary_10_1186_s13099_022_00504_1
crossref_primary_10_1021_acs_est_3c01152
crossref_primary_10_1016_j_antiviral_2014_02_012
crossref_primary_10_3390_v13102033
crossref_primary_10_1093_cid_ciy1020
crossref_primary_10_1007_s11262_025_02144_4
crossref_primary_10_1016_j_jphotobiol_2014_08_009
crossref_primary_10_1016_j_watres_2023_119742
crossref_primary_10_1016_j_ijhm_2018_02_001
crossref_primary_10_3390_v2030748
crossref_primary_10_1016_j_jhin_2021_08_006
crossref_primary_10_1371_journal_pone_0143759
crossref_primary_10_1016_j_foodcont_2014_06_026
crossref_primary_10_1128_AEM_01657_15
crossref_primary_10_1016_j_jhazmat_2024_135589
crossref_primary_10_1111_risa_12528
crossref_primary_10_1016_j_ajic_2012_04_330
crossref_primary_10_1128_AEM_02576_13
crossref_primary_10_1007_s12560_024_09590_7
crossref_primary_10_3390_app132312625
crossref_primary_10_1016_j_ajic_2015_04_182
crossref_primary_10_1016_j_ijfoodmicro_2024_111020
crossref_primary_10_1128_aem_01033_22
crossref_primary_10_1016_j_idc_2017_07_012
crossref_primary_10_1016_j_scitotenv_2022_160842
crossref_primary_10_1139_cjce_2018_0216
crossref_primary_10_1016_j_scitotenv_2014_07_078
crossref_primary_10_1007_s12560_010_9043_4
crossref_primary_10_1128_AEM_02112_13
crossref_primary_10_3389_fmicb_2018_02826
crossref_primary_10_3389_fmicb_2017_00554
crossref_primary_10_3390_foods3020336
crossref_primary_10_3139_113_110311
crossref_primary_10_1099_jgv_0_001720
crossref_primary_10_1007_s11157_014_9351_5
crossref_primary_10_1128_microbiolspec_ARBA_0006_2017
crossref_primary_10_1016_j_jhin_2021_08_026
crossref_primary_10_1128_aem_01208_24
crossref_primary_10_1016_j_jcv_2010_10_008
crossref_primary_10_1016_j_fm_2017_03_003
crossref_primary_10_1186_s13756_021_00979_8
crossref_primary_10_1002_jmv_29220
crossref_primary_10_1128_AEM_02800_09
crossref_primary_10_3109_00365548_2012_686671
crossref_primary_10_1038_s41370_023_00592_4
crossref_primary_10_2166_wh_2017_305
crossref_primary_10_1016_j_watres_2011_02_025
crossref_primary_10_3201_eid2907_230117
crossref_primary_10_1016_j_ijfoodmicro_2011_10_014
crossref_primary_10_1016_j_marpolbul_2011_10_037
crossref_primary_10_1016_j_jviromet_2023_114804
crossref_primary_10_3390_s23156830
crossref_primary_10_1016_j_epidem_2010_10_001
crossref_primary_10_1371_journal_pone_0209245
crossref_primary_10_1017_S0950268815002071
crossref_primary_10_1002_jmv_21755
crossref_primary_10_1007_s12560_017_9321_5
crossref_primary_10_1128_microbiolspec_ERV_0001_2019
crossref_primary_10_1007_s12560_012_9093_x
crossref_primary_10_1016_j_envint_2017_11_032
crossref_primary_10_1093_infdis_jiac045
crossref_primary_10_2166_bgs_2021_012
crossref_primary_10_1016_j_ijfoodmicro_2013_06_023
crossref_primary_10_1016_j_ijfoodmicro_2015_09_018
crossref_primary_10_35627_2219_5238_2020_327_6_50_54
crossref_primary_10_1016_j_cofs_2020_04_011
crossref_primary_10_13103_JFHS_2013_28_4_287
crossref_primary_10_1016_j_watres_2018_11_058
crossref_primary_10_1021_acs_est_8b01948
crossref_primary_10_3390_applmicrobiol2030035
crossref_primary_10_1002_fsat_3704_5_x
crossref_primary_10_4315_0362_028X_JFP_17_134
crossref_primary_10_1094_PHYTO_04_14_0111_R
crossref_primary_10_1128_JCM_01664_09
crossref_primary_10_1371_journal_ppat_1002188
crossref_primary_10_1111_risa_12758
crossref_primary_10_1093_molbev_msy131
crossref_primary_10_3390_s17092157
crossref_primary_10_1586_eri_12_21
crossref_primary_10_1093_cid_civ747
crossref_primary_10_1155_2021_5568897
crossref_primary_10_4315_0362_028X_JFP_14_518
crossref_primary_10_1016_j_marpolbul_2020_111318
crossref_primary_10_1186_s12879_018_3461_6
crossref_primary_10_1586_erv_12_4
crossref_primary_10_1038_s41598_020_70973_4
crossref_primary_10_1038_s41541_024_00884_2
crossref_primary_10_1016_j_watres_2018_12_070
crossref_primary_10_3934_mbe_2023777
crossref_primary_10_1017_S0950268811002731
crossref_primary_10_5694_j_1326_5377_2008_tb02136_x
crossref_primary_10_1128_AAC_02417_17
crossref_primary_10_1177_153567601301800306
crossref_primary_10_3201_eid2603_191183
crossref_primary_10_1016_S0140_6736_18_31128_0
crossref_primary_10_1016_j_watres_2013_06_001
crossref_primary_10_1016_j_lwt_2016_12_028
crossref_primary_10_1016_j_scitotenv_2017_05_007
crossref_primary_10_1016_j_mran_2023_100262
crossref_primary_10_1016_j_scitotenv_2019_02_398
crossref_primary_10_3201_eid2601_190778
crossref_primary_10_1038_s41598_019_51750_4
crossref_primary_10_1007_s12560_021_09495_9
crossref_primary_10_1111_risa_12138
crossref_primary_10_1016_j_watres_2020_115814
crossref_primary_10_1155_2020_1646943
crossref_primary_10_1086_660363
crossref_primary_10_1016_j_jcv_2015_10_004
crossref_primary_10_1016_j_scitotenv_2015_03_077
crossref_primary_10_5803_jsfm_33_97
crossref_primary_10_1007_s12560_015_9191_7
crossref_primary_10_1016_j_watres_2019_115365
crossref_primary_10_1093_ofid_ofab126
crossref_primary_10_52420_2071_5943_2023_22_3_57_63
crossref_primary_10_1021_ja403550f
crossref_primary_10_1016_j_ijfoodmicro_2013_07_025
crossref_primary_10_1016_j_ijfoodmicro_2013_07_022
crossref_primary_10_1016_j_watres_2019_03_057
crossref_primary_10_1128_AEM_01162_14
crossref_primary_10_1007_s10096_011_1321_z
crossref_primary_10_1128_AEM_01046_12
crossref_primary_10_1093_jpids_piad114
crossref_primary_10_3390_molecules26154669
crossref_primary_10_1007_s00003_016_1048_y
crossref_primary_10_1111_1541_4337_12899
crossref_primary_10_1128_AEM_01081_12
crossref_primary_10_1007_s12560_024_09605_3
crossref_primary_10_5393_JAMCH_2010_35_4_361
crossref_primary_10_1016_j_marpolbul_2016_08_001
crossref_primary_10_1016_j_watres_2010_10_035
crossref_primary_10_3390_v16050776
crossref_primary_10_1016_j_jviromet_2016_08_012
crossref_primary_10_1016_j_scitotenv_2022_154874
crossref_primary_10_1016_j_apm_2021_03_044
crossref_primary_10_3389_fpubh_2018_00040
crossref_primary_10_1016_j_scitotenv_2018_06_300
crossref_primary_10_1093_infdis_jiu382
crossref_primary_10_1093_infdis_jiu385
crossref_primary_10_1016_j_ijfoodmicro_2012_12_016
crossref_primary_10_1007_s12560_012_9099_4
crossref_primary_10_3390_v14040762
crossref_primary_10_1017_S0950268816001862
crossref_primary_10_1111_risa_12389
crossref_primary_10_1016_j_jhin_2011_05_018
crossref_primary_10_1371_journal_pone_0134277
crossref_primary_10_4315_0362_028X_JFP_16_196
crossref_primary_10_1111_risa_13436
crossref_primary_10_1038_s41596_020_00460_7
crossref_primary_10_1016_j_jviromet_2012_07_018
crossref_primary_10_3390_v11020151
crossref_primary_10_3389_fpubh_2023_1259584
crossref_primary_10_1016_j_ajic_2011_03_033
crossref_primary_10_1016_j_fm_2014_01_009
crossref_primary_10_3390_ijerph17030973
crossref_primary_10_1002_eji_201545512
crossref_primary_10_1016_j_fm_2019_103354
crossref_primary_10_1016_j_virs_2024_05_010
crossref_primary_10_1016_j_yapd_2014_04_003
crossref_primary_10_1016_j_scitotenv_2024_172448
crossref_primary_10_1071_HI13016
crossref_primary_10_3389_fpubh_2023_1065105
crossref_primary_10_1016_j_ijfoodmicro_2018_09_029
crossref_primary_10_1016_j_jcv_2014_08_004
crossref_primary_10_46234_ccdcw2024_197
crossref_primary_10_2903_j_efsa_2019_5762
crossref_primary_10_1016_j_ijfoodmicro_2011_09_013
crossref_primary_10_1016_j_ijfoodmicro_2016_04_018
crossref_primary_10_1016_j_ijfoodmicro_2014_02_026
crossref_primary_10_1111_risa_12323
crossref_primary_10_1111_jam_15121
crossref_primary_10_1111_risa_14301
crossref_primary_10_1016_j_watres_2012_12_012
crossref_primary_10_1128_mBio_02300_14
crossref_primary_10_1007_s13670_017_0195_z
crossref_primary_10_4315_0362_028X_JFP_11_199
crossref_primary_10_1007_s12560_010_9038_1
crossref_primary_10_1128_AEM_04188_13
crossref_primary_10_1089_fpd_2021_0002
crossref_primary_10_1093_aje_kwy198
crossref_primary_10_1111_j_1365_2672_2010_04710_x
crossref_primary_10_1016_j_mran_2024_100321
crossref_primary_10_4315_0362_028X_JFP_13_550
crossref_primary_10_1016_j_fm_2016_05_009
crossref_primary_10_1186_s12879_023_08519_y
crossref_primary_10_1016_j_watres_2024_121197
crossref_primary_10_1021_acs_estlett_0c00752
crossref_primary_10_17269_s41997_024_00969_4
crossref_primary_10_1016_j_watres_2016_03_005
crossref_primary_10_1002_med_21545
crossref_primary_10_1016_j_fm_2014_06_012
crossref_primary_10_1080_10807039_2012_716687
crossref_primary_10_3201_eid1908_130472
crossref_primary_10_4058_jsei_34_83
crossref_primary_10_1016_j_scitotenv_2020_144278
crossref_primary_10_1016_j_ijfoodmicro_2020_108695
crossref_primary_10_1128_AEM_02144_12
crossref_primary_10_1080_21645515_2017_1360455
crossref_primary_10_1016_j_watres_2014_01_060
crossref_primary_10_1016_j_watres_2017_01_046
crossref_primary_10_1371_journal_pone_0071696
crossref_primary_10_1128_AEM_01955_09
crossref_primary_10_1007_s12560_021_09477_x
crossref_primary_10_1016_j_ese_2023_100328
crossref_primary_10_1021_acs_est_6b02110
crossref_primary_10_4315_0362_028X_JFP_12_532
crossref_primary_10_1016_j_coviro_2016_09_009
crossref_primary_10_1017_S0950268811002573
crossref_primary_10_1016_j_scitotenv_2015_04_040
crossref_primary_10_1111_jfs_12450
crossref_primary_10_1039_C9AN02333J
crossref_primary_10_3390_ijerph19052508
crossref_primary_10_1111_j_1574_6976_2011_00306_x
crossref_primary_10_3109_1040841X_2012_709820
crossref_primary_10_1016_j_foodcont_2023_110138
crossref_primary_10_1186_s12879_015_1315_z
crossref_primary_10_1016_j_jhin_2016_01_003
crossref_primary_10_1128_AEM_00292_18
crossref_primary_10_3390_v12121392
crossref_primary_10_1039_D1AY01380G
crossref_primary_10_1039_C8EW00699G
crossref_primary_10_1016_j_ijfoodmicro_2016_06_006
crossref_primary_10_1080_14760584_2020_1777860
crossref_primary_10_1007_s42770_019_00197_w
crossref_primary_10_1007_s12560_022_09539_8
crossref_primary_10_1098_rstb_2018_0267
crossref_primary_10_1016_j_scitotenv_2018_06_158
crossref_primary_10_1016_j_watres_2011_08_030
crossref_primary_10_1007_s12560_015_9205_5
crossref_primary_10_1016_j_jviromet_2020_113939
crossref_primary_10_1186_s13099_023_00595_4
crossref_primary_10_4315_0362_028X_JFP_12_311
crossref_primary_10_1080_21645515_2015_1011019
crossref_primary_10_1371_journal_pone_0227890
crossref_primary_10_1007_s12560_015_9216_2
crossref_primary_10_1038_nrmicro_2016_48
crossref_primary_10_1007_s12560_013_9112_6
crossref_primary_10_1016_j_virol_2009_02_041
crossref_primary_10_1016_j_watres_2019_01_041
crossref_primary_10_2166_wh_2021_068
crossref_primary_10_1371_journal_pcbi_1002097
crossref_primary_10_1016_j_ijfoodmicro_2024_110603
crossref_primary_10_1017_S0950268816002314
crossref_primary_10_1021_acs_est_5b01268
crossref_primary_10_1111_1469_0691_12674
crossref_primary_10_1128_AEM_00081_11
crossref_primary_10_1016_j_ijfoodmicro_2024_110601
crossref_primary_10_1146_annurev_food_022811_101234
crossref_primary_10_1017_S0950268817002783
crossref_primary_10_1016_j_scitotenv_2022_154861
crossref_primary_10_1111_jam_13588
crossref_primary_10_1016_j_marpolbul_2024_117006
crossref_primary_10_1007_s12560_013_9121_5
crossref_primary_10_2166_wh_2021_015
crossref_primary_10_1146_annurev_virology_100114_055204
crossref_primary_10_1016_j_foodcont_2020_107556
crossref_primary_10_1016_j_foodcont_2021_108764
crossref_primary_10_3390_w13070904
crossref_primary_10_1007_s12560_017_9295_3
crossref_primary_10_1016_j_fm_2020_103594
crossref_primary_10_1016_j_scitotenv_2021_151227
crossref_primary_10_4315_0362_028X_JFP_11_360
crossref_primary_10_1007_s00203_023_03818_z
crossref_primary_10_1111_jam_12244
crossref_primary_10_1017_S095026881400274X
crossref_primary_10_1021_acsomega_9b00772
crossref_primary_10_1525_elementa_301
crossref_primary_10_3201_eid2309_161489
crossref_primary_10_1128_JVI_02064_13
crossref_primary_10_58395_pipd_v49i3_71
crossref_primary_10_1016_j_watres_2013_09_022
crossref_primary_10_1586_erv_12_145
crossref_primary_10_1016_j_ijfoodmicro_2024_110664
crossref_primary_10_1538_expanim_61_35
crossref_primary_10_3390_v11040342
crossref_primary_10_1016_j_coviro_2013_12_005
crossref_primary_10_2166_wh_2020_221
crossref_primary_10_1016_j_meegid_2014_12_001
crossref_primary_10_1002_jmv_24242
crossref_primary_10_1093_femsle_fnz235
crossref_primary_10_1111_j_1365_2672_2010_04812_x
crossref_primary_10_1128_CMR_00020_14
crossref_primary_10_3390_app11010043
crossref_primary_10_1016_j_idm_2023_07_004
crossref_primary_10_1016_j_ijfoodmicro_2015_11_015
crossref_primary_10_1016_j_jcv_2019_05_013
crossref_primary_10_3201_eid1810_120833
crossref_primary_10_1016_j_vaccine_2017_06_043
crossref_primary_10_1016_j_scitotenv_2023_167190
crossref_primary_10_4315_0362_028X_JFP_19_410
crossref_primary_10_1111_j_1745_6584_2010_00686_x
crossref_primary_10_1128_JVI_00439_12
crossref_primary_10_1007_s12560_020_09441_1
crossref_primary_10_1017_S0950268814003628
crossref_primary_10_3389_fimmu_2021_781718
crossref_primary_10_1016_j_scitotenv_2018_12_460
crossref_primary_10_1093_cid_ciab808
crossref_primary_10_4315_0362_028X_JFP_12_371
crossref_primary_10_1089_fpd_2010_0782
crossref_primary_10_1016_j_watres_2013_09_001
crossref_primary_10_1002_jmv_22077
crossref_primary_10_1007_s10661_017_6279_6
crossref_primary_10_1111_j_1365_2672_2009_04562_x
crossref_primary_10_2134_jeq2015_01_0048
crossref_primary_10_1111_j_1539_6924_2011_01716_x
crossref_primary_10_1016_j_chemosphere_2011_06_083
crossref_primary_10_1016_j_bioactmat_2022_09_010
crossref_primary_10_1016_j_ijfoodmicro_2021_109089
crossref_primary_10_1007_s12560_011_9056_7
crossref_primary_10_3390_w11050903
crossref_primary_10_1016_j_tvjl_2015_10_026
crossref_primary_10_1371_journal_pone_0124945
crossref_primary_10_1016_j_ijid_2011_02_006
crossref_primary_10_2208_jscejer_70_III_295
crossref_primary_10_1016_j_scitotenv_2015_05_007
crossref_primary_10_1186_s12889_019_8117_y
crossref_primary_10_1182_blood_2010_12_325886
crossref_primary_10_1371_journal_pone_0141050
crossref_primary_10_1007_s12560_014_9150_8
crossref_primary_10_1016_j_coviro_2011_10_029
crossref_primary_10_1111_tmi_12915
crossref_primary_10_1016_j_talanta_2021_122672
crossref_primary_10_4315_0362_028X_JFP_19_238
crossref_primary_10_1016_j_coviro_2011_10_027
crossref_primary_10_1016_j_vaccine_2014_09_073
crossref_primary_10_1016_j_scitotenv_2014_03_108
crossref_primary_10_4315_0362_028X_JFP_12_392
crossref_primary_10_29132_ijpas_956919
crossref_primary_10_1186_1471_2334_10_30
crossref_primary_10_1016_j_jhin_2015_01_011
crossref_primary_10_1111_1541_4337_13293
crossref_primary_10_3390_ijms22168868
crossref_primary_10_1016_j_jmii_2021_10_006
crossref_primary_10_1016_j_watres_2020_116121
crossref_primary_10_1128_mSphere_00352_16
crossref_primary_10_3390_v16030317
crossref_primary_10_1016_j_snb_2018_06_129
crossref_primary_10_17660_ActaHortic_2016_1133_82
crossref_primary_10_1007_s12560_019_09371_7
crossref_primary_10_1016_j_jenvman_2021_113566
crossref_primary_10_1016_j_ijfoodmicro_2014_04_002
crossref_primary_10_1016_j_virusres_2022_198700
crossref_primary_10_1111_jam_13331
crossref_primary_10_1007_s11356_018_2869_2
crossref_primary_10_1016_j_tifs_2021_06_027
crossref_primary_10_1021_acsestwater_1c00378
crossref_primary_10_1128_AEM_01704_13
crossref_primary_10_1016_j_foodcont_2018_12_049
crossref_primary_10_2208_jscejer_72_III_305
crossref_primary_10_1016_j_epidem_2019_100380
crossref_primary_10_1016_j_idm_2019_04_005
crossref_primary_10_1021_acsami_7b13943
crossref_primary_10_1007_s12560_012_9092_y
crossref_primary_10_1007_s12560_024_09632_0
crossref_primary_10_1097_QCO_0000000000000557
crossref_primary_10_1007_s11908_016_0524_y
crossref_primary_10_1093_cid_ciz584
crossref_primary_10_1289_ehp_1104499
crossref_primary_10_1186_1471_2334_13_488
crossref_primary_10_1128_jvi_01262_22
crossref_primary_10_1016_j_scitotenv_2016_01_034
crossref_primary_10_1016_j_watres_2024_121852
crossref_primary_10_1089_fpd_2014_1766
crossref_primary_10_1093_jac_dku363
crossref_primary_10_1111_jam_12656
crossref_primary_10_1002_jmv_23645
crossref_primary_10_1016_j_watres_2016_08_053
crossref_primary_10_3390_foods12040826
crossref_primary_10_1002_jmv_24981
crossref_primary_10_1097_MOG_0b013e328333d7af
crossref_primary_10_1371_journal_pone_0142346
crossref_primary_10_1017_S0950268814000740
crossref_primary_10_1016_j_diagmicrobio_2018_08_002
crossref_primary_10_3389_fpubh_2024_1353709
crossref_primary_10_1016_j_ijfoodmicro_2013_09_018
crossref_primary_10_1128_JVI_03464_12
crossref_primary_10_1021_acs_analchem_8b03300
crossref_primary_10_1080_09603123_2013_769205
crossref_primary_10_1080_10807030903304781
crossref_primary_10_1016_j_fm_2015_07_009
crossref_primary_10_1016_j_coviro_2016_11_008
crossref_primary_10_1094_PHYTO_09_12_0231_FI
crossref_primary_10_1016_j_ijfoodmicro_2014_12_004
crossref_primary_10_11150_kansenshogakuzasshi_87_27
crossref_primary_10_1002_jmv_23669
crossref_primary_10_1128_AEM_01430_12
crossref_primary_10_1128_JVI_02138_16
crossref_primary_10_1128_JCM_02528_09
crossref_primary_10_1016_j_ijfoodmicro_2014_06_012
crossref_primary_10_1016_j_ijfoodmicro_2014_12_013
crossref_primary_10_2166_wh_2015_201
crossref_primary_10_1099_vir_0_000194
crossref_primary_10_1186_s12889_016_3266_8
crossref_primary_10_1186_s40249_017_0236_z
crossref_primary_10_33073_pjm_2024_009
crossref_primary_10_1016_j_foodcont_2016_10_051
crossref_primary_10_1111_j_1600_0668_2009_00621_x
crossref_primary_10_1089_fpd_2016_2216
crossref_primary_10_1007_s12560_014_9170_4
crossref_primary_10_1016_j_coviro_2011_11_005
crossref_primary_10_1093_jambio_lxad029
crossref_primary_10_1146_annurev_virology_100114_055135
crossref_primary_10_1016_j_ijfoodmicro_2014_12_024
crossref_primary_10_1016_j_ijfoodmicro_2014_12_023
crossref_primary_10_1016_j_watres_2017_12_054
crossref_primary_10_1186_s12889_016_3716_3
crossref_primary_10_1016_j_jhin_2015_10_014
crossref_primary_10_1089_fpd_2009_0320
crossref_primary_10_1021_acs_est_9b03274
crossref_primary_10_1016_j_phf_2014_07_009
crossref_primary_10_1097_EDE_0b013e3181e5463a
crossref_primary_10_1007_s12560_013_9127_z
crossref_primary_10_1016_j_epidem_2020_100401
crossref_primary_10_1128_AEM_06600_11
crossref_primary_10_1111_risa_13755
crossref_primary_10_3390_ijms22010171
crossref_primary_10_1128_JCM_00654_10
crossref_primary_10_1007_s12560_016_9236_6
crossref_primary_10_1016_j_nantod_2021_101267
crossref_primary_10_1016_j_watres_2020_116501
crossref_primary_10_2903_j_efsa_2011_2190
crossref_primary_10_1016_j_vaccine_2014_07_070
crossref_primary_10_1111_j_1472_765X_2010_02982_x
crossref_primary_10_1016_j_cger_2016_02_008
crossref_primary_10_2807_1560_7917_ES_2017_22_8_30470
crossref_primary_10_1007_s12560_018_9345_5
crossref_primary_10_1093_cid_cir682
crossref_primary_10_1016_j_watres_2017_01_017
crossref_primary_10_1016_j_ajic_2023_05_017
crossref_primary_10_3389_fmicb_2023_1187142
crossref_primary_10_1061__ASCE_EE_1943_7870_0000833
crossref_primary_10_1016_j_mran_2015_04_001
crossref_primary_10_1080_23744235_2018_1546056
crossref_primary_10_1017_S0950268810000993
crossref_primary_10_1128_AEM_00532_12
crossref_primary_10_2217_fvl_15_57
crossref_primary_10_1186_s12917_018_1723_6
crossref_primary_10_1371_journal_pone_0201850
crossref_primary_10_1016_j_mran_2016_11_004
crossref_primary_10_1016_j_mran_2016_11_003
crossref_primary_10_1016_j_mran_2016_11_002
crossref_primary_10_1061__ASCE_EE_1943_7870_0000827
crossref_primary_10_1016_j_ajic_2010_10_010
crossref_primary_10_1016_j_antiviral_2010_05_002
crossref_primary_10_1126_science_aad5872
crossref_primary_10_12714_egejfas_38_2_16
crossref_primary_10_1128_CMR_00027_09
crossref_primary_10_1007_s12560_017_9279_3
crossref_primary_10_1007_s12560_020_09437_x
crossref_primary_10_1080_10408398_2025_2467209
crossref_primary_10_1097_MAJ_0b013e3181e99893
crossref_primary_10_1016_j_ijid_2022_05_047
crossref_primary_10_1007_s12560_017_9320_6
crossref_primary_10_1002_jmv_21851
crossref_primary_10_1080_15459624_2018_1531131
crossref_primary_10_1016_j_idc_2017_11_004
crossref_primary_10_1016_j_scitotenv_2013_05_059
crossref_primary_10_1016_j_watres_2017_01_002
crossref_primary_10_1016_j_scitotenv_2019_02_107
crossref_primary_10_1128_AEM_00347_13
crossref_primary_10_1111_1541_4337_12140
crossref_primary_10_1016_j_foodcont_2013_05_015
crossref_primary_10_1128_JVI_06712_11
crossref_primary_10_1371_journal_pone_0235891
crossref_primary_10_1016_j_ifset_2021_102756
crossref_primary_10_1016_j_watres_2012_04_030
crossref_primary_10_1016_j_mran_2022_100229
crossref_primary_10_1007_s12560_019_09391_3
crossref_primary_10_1002_jmv_23802
crossref_primary_10_1016_j_ijheh_2022_114077
crossref_primary_10_1093_ofid_ofae714
crossref_primary_10_1016_j_watres_2017_10_034
crossref_primary_10_1016_j_mran_2021_100189
crossref_primary_10_3389_fimmu_2020_01383
crossref_primary_10_1111_risa_12616
crossref_primary_10_1021_acsestwater_3c00652
crossref_primary_10_2903_j_efsa_2012_2662
crossref_primary_10_1017_S0950268815003283
crossref_primary_10_11150_kansenshogakuzasshi_91_399
crossref_primary_10_1089_fpd_2015_2054
crossref_primary_10_1021_acsomega_3c08396
crossref_primary_10_1016_j_ijfoodmicro_2012_10_008
crossref_primary_10_1007_s00705_022_05437_3
crossref_primary_10_1128_JCM_00305_11
crossref_primary_10_1586_14760584_2015_1073110
crossref_primary_10_1021_es101266k
crossref_primary_10_1080_07853890_2023_2246474
crossref_primary_10_1007_s10096_014_2205_9
crossref_primary_10_1093_ofid_ofad619
crossref_primary_10_1016_j_foodcont_2018_11_026
crossref_primary_10_1128_AEM_02763_15
crossref_primary_10_17352_jfsnt_000038
crossref_primary_10_3390_w10111525
crossref_primary_10_1056_NEJMra0804575
crossref_primary_10_1111_cei_12884
crossref_primary_10_1016_j_jhin_2009_06_028
crossref_primary_10_1007_s12560_023_09561_4
crossref_primary_10_1128_AEM_02801_10
crossref_primary_10_1021_acsestwater_0c00113
crossref_primary_10_1093_infdis_jiz220
crossref_primary_10_1007_s11356_022_23621_5
crossref_primary_10_1038_s41467_018_04725_4
crossref_primary_10_4315_0362_028X_JFP_15_444
crossref_primary_10_1016_j_mran_2018_01_003
crossref_primary_10_1016_j_jes_2016_05_041
crossref_primary_10_1038_s41598_021_02938_0
crossref_primary_10_1007_s12560_012_9081_1
crossref_primary_10_1128_jcm_00608_23
crossref_primary_10_2166_ws_2017_114
crossref_primary_10_1016_j_fm_2018_06_015
crossref_primary_10_1021_es501480q
crossref_primary_10_1016_j_ijheh_2020_113669
crossref_primary_10_1111_1541_4337_12349
crossref_primary_10_24323_akademik_gida_475372
crossref_primary_10_1016_j_fm_2018_06_019
crossref_primary_10_1039_D2EW00720G
crossref_primary_10_1007_s12560_014_9174_0
crossref_primary_10_3390_microorganisms8030458
crossref_primary_10_1016_j_watres_2014_07_032
crossref_primary_10_1007_s11356_016_6812_0
crossref_primary_10_1086_594119
crossref_primary_10_3390_children8090807
crossref_primary_10_1016_j_jviromet_2010_12_011
crossref_primary_10_1177_2472630317724769
crossref_primary_10_1128_JCM_01896_14
crossref_primary_10_3390_vaccines9010008
crossref_primary_10_1007_s12560_018_9353_5
crossref_primary_10_1128_AEM_00111_09
crossref_primary_10_3390_v10100548
crossref_primary_10_5942_jawwa_2015_107_0010
crossref_primary_10_3390_v12090955
crossref_primary_10_1111_tid_12212
crossref_primary_10_1371_journal_pone_0126571
crossref_primary_10_1016_j_ijfoodmicro_2024_110582
crossref_primary_10_1016_j_jiph_2014_08_007
crossref_primary_10_1016_j_jcv_2008_10_009
crossref_primary_10_3390_foods10102444
crossref_primary_10_1021_acs_est_1c05060
crossref_primary_10_1128_AEM_00077_11
crossref_primary_10_1093_infdis_jit148
crossref_primary_10_1016_j_scitotenv_2015_10_030
crossref_primary_10_4315_JFP_21_220
crossref_primary_10_1002_jmv_26578
crossref_primary_10_1371_journal_pone_0089071
crossref_primary_10_4315_0362_028X_JFP_15_215
crossref_primary_10_1128_AEM_00649_15
crossref_primary_10_1111_risa_12005
crossref_primary_10_1016_j_foodres_2014_08_018
crossref_primary_10_1186_s13568_015_0156_x
crossref_primary_10_1016_j_idc_2013_05_009
crossref_primary_10_3390_w10101352
crossref_primary_10_1093_infdis_jiu496
crossref_primary_10_1186_s12917_021_02962_2
crossref_primary_10_3390_pathogens6040048
crossref_primary_10_1016_j_fm_2019_103254
crossref_primary_10_1016_j_molmed_2016_10_003
crossref_primary_10_1080_23744235_2025_2479133
crossref_primary_10_1016_j_biosystemseng_2021_05_005
crossref_primary_10_1128_AEM_07350_11
crossref_primary_10_1128_AEM_01219_14
crossref_primary_10_1021_acsestwater_0c00264
crossref_primary_10_1038_srep39241
crossref_primary_10_1136_bmjopen_2013_003060
crossref_primary_10_1093_cid_ciz1106
crossref_primary_10_1128_AEM_00650_15
crossref_primary_10_1016_j_bbrc_2013_04_013
crossref_primary_10_1016_j_watres_2014_08_026
crossref_primary_10_1128_AEM_04096_15
crossref_primary_10_3390_v16010151
crossref_primary_10_52420_2071_5943_2022_21_3_114_128
crossref_primary_10_1016_j_fm_2016_12_002
crossref_primary_10_1074_jbc_M114_602649
crossref_primary_10_3390_v12090997
crossref_primary_10_1016_j_epidem_2012_12_004
crossref_primary_10_1016_j_jenvman_2022_117112
crossref_primary_10_1016_j_micpath_2019_103648
crossref_primary_10_1097_MD_0000000000025123
crossref_primary_10_1002_advs_202403871
crossref_primary_10_1051_medsci_201026173
crossref_primary_10_1177_2051013615613272
crossref_primary_10_1016_j_jhin_2017_02_015
crossref_primary_10_1016_j_jfp_2024_100363
crossref_primary_10_1089_fpd_2013_1521
crossref_primary_10_1128_JVI_00284_09
crossref_primary_10_1371_journal_pone_0173996
crossref_primary_10_1039_D4EW00661E
crossref_primary_10_4315_0362_028X_JFP_15_029
crossref_primary_10_3389_fcimb_2023_1258550
crossref_primary_10_1016_j_wem_2015_02_007
crossref_primary_10_1039_D3LC00904A
crossref_primary_10_4315_0362_028X_JFP_16_088
crossref_primary_10_1016_j_ijfoodmicro_2015_02_012
crossref_primary_10_3136_nskkk_64_1
crossref_primary_10_1017_S0950268813002847
crossref_primary_10_1016_j_patbio_2013_01_002
crossref_primary_10_4315_0362_028X_JFP_11_081
crossref_primary_10_3389_fsufs_2024_1396693
crossref_primary_10_1155_2015_374637
crossref_primary_10_4315_JFP_21_423
crossref_primary_10_2134_jeq2015_11_0560
crossref_primary_10_1016_j_advwatres_2016_12_010
crossref_primary_10_1111_risa_12207
crossref_primary_10_4315_JFP_19_574
crossref_primary_10_4315_0362_028X_JFP_14_487
crossref_primary_10_1016_j_foodcont_2018_02_024
crossref_primary_10_1007_s12560_014_9143_7
crossref_primary_10_1016_j_virusres_2024_199408
crossref_primary_10_1093_cid_ciu120
crossref_primary_10_2166_wh_2022_114
crossref_primary_10_2166_wrd_2015_208
crossref_primary_10_3390_biomedicines12112442
crossref_primary_10_1016_j_fm_2020_103653
crossref_primary_10_1111_j_1539_6924_2012_01808_x
crossref_primary_10_1128_JCM_01622_09
crossref_primary_10_1016_j_watres_2017_05_017
crossref_primary_10_1016_j_tifs_2013_07_005
crossref_primary_10_1111_risa_12235
crossref_primary_10_1128_AEM_00388_15
crossref_primary_10_1111_risa_13300
crossref_primary_10_1016_j_ijfoodmicro_2016_11_019
crossref_primary_10_1055_a_1826_7588
crossref_primary_10_7861_clinmedicine_11_6_548
crossref_primary_10_1128_CMR_00011_14
crossref_primary_10_3390_pathogens10070857
crossref_primary_10_1093_cid_cit287
crossref_primary_10_1007_s11262_013_0945_8
crossref_primary_10_1016_j_fm_2011_12_026
crossref_primary_10_1016_j_agwat_2020_106272
crossref_primary_10_1128_AEM_02843_12
crossref_primary_10_1128_AEM_06875_11
crossref_primary_10_1021_acs_estlett_8b00470
crossref_primary_10_47853_FAS_2022_e26
crossref_primary_10_3390_cimb45050267
crossref_primary_10_1016_j_mran_2018_06_002
crossref_primary_10_1016_j_ijfoodmicro_2020_108787
crossref_primary_10_1016_j_ijfoodmicro_2020_108785
crossref_primary_10_1017_S0950268812000490
crossref_primary_10_1186_s12866_020_02084_z
crossref_primary_10_1017_S0950268817002692
crossref_primary_10_1146_annurev_food_022814_015643
crossref_primary_10_1111_1750_3841_16755
crossref_primary_10_1039_D3EW00362K
crossref_primary_10_1016_j_ijfoodmicro_2010_07_030
crossref_primary_10_1017_S0950268817000498
crossref_primary_10_1111_jam_12167
crossref_primary_10_4315_0362_028X_JFP_14_016
crossref_primary_10_1021_es5020407
crossref_primary_10_1021_es903523q
crossref_primary_10_1016_j_watres_2017_08_021
crossref_primary_10_1002_aws2_1353
crossref_primary_10_4315_0362_028X_JFP_10_235
crossref_primary_10_3851_IMP2229
crossref_primary_10_1016_j_envres_2014_06_002
crossref_primary_10_1016_j_foodcont_2017_08_037
crossref_primary_10_1007_s10068_011_0157_8
crossref_primary_10_1007_s10068_013_0119_4
crossref_primary_10_1016_j_ijfoodmicro_2013_01_011
crossref_primary_10_1007_s12560_016_9262_4
crossref_primary_10_4315_0362_028X_JFP_11_271
crossref_primary_10_4315_0362_028X_JFP_12_438
crossref_primary_10_1016_j_wroa_2020_100071
crossref_primary_10_3390_ijerph15112550
crossref_primary_10_1016_j_scitotenv_2017_03_105
crossref_primary_10_1016_j_trac_2022_116738
crossref_primary_10_1016_j_cofs_2018_12_002
crossref_primary_10_1016_j_watres_2010_03_003
crossref_primary_10_1088_1361_648X_aaa43b
crossref_primary_10_1371_journal_pone_0079087
crossref_primary_10_1016_j_ijheh_2016_07_017
crossref_primary_10_1016_j_watres_2010_07_064
crossref_primary_10_3390_foods13010128
crossref_primary_10_1016_j_fm_2017_08_010
crossref_primary_10_1017_S0950268812000234
crossref_primary_10_1111_risa_13189
crossref_primary_10_1007_s41742_019_00176_x
crossref_primary_10_1016_j_ijfoodmicro_2019_108327
crossref_primary_10_1128_AEM_00027_12
crossref_primary_10_1128_JVI_01333_14
crossref_primary_10_1021_es200566f
crossref_primary_10_4315_0362_028X_73_2_305
crossref_primary_10_1016_j_jinf_2011_08_002
crossref_primary_10_1128_JVI_00647_16
crossref_primary_10_1016_j_mran_2020_100139
crossref_primary_10_1007_s12560_009_9019_4
crossref_primary_10_1002_fft2_280
crossref_primary_10_1371_journal_pcbi_1005481
crossref_primary_10_1016_j_watres_2017_09_041
crossref_primary_10_1016_j_jim_2015_05_001
crossref_primary_10_11150_kansenshogakuzasshi_84_702
crossref_primary_10_1016_j_mran_2020_100132
crossref_primary_10_1016_j_xcrm_2023_100954
crossref_primary_10_3358_shokueishi_58_12
crossref_primary_10_1016_j_jenvman_2020_110309
crossref_primary_10_1002_rmv_704
crossref_primary_10_1016_j_watres_2010_06_048
crossref_primary_10_1016_j_watres_2010_06_049
crossref_primary_10_1038_s41385_019_0199_4
crossref_primary_10_3233_JBR_170164
crossref_primary_10_2134_jeq2011_0430
crossref_primary_10_2208_jscejer_72_III_217
crossref_primary_10_1016_j_watres_2017_08_057
crossref_primary_10_1093_infdis_jis251
crossref_primary_10_4315_0362_028X_JFP_12_216
crossref_primary_10_1080_21645515_2015_1125054
crossref_primary_10_1016_j_scitotenv_2017_05_168
crossref_primary_10_3390_w12020544
crossref_primary_10_1139_cjm_2015_0756
crossref_primary_10_2903_j_efsa_2015_3939
crossref_primary_10_1016_j_marenvres_2017_08_009
crossref_primary_10_1016_j_mran_2019_100102
crossref_primary_10_3390_v14092053
crossref_primary_10_1016_j_envpol_2018_01_105
crossref_primary_10_1016_j_jhin_2015_02_019
crossref_primary_10_1021_acs_estlett_5b00219
crossref_primary_10_4315_0362_028X_JFP_10_438
crossref_primary_10_3201_eid2411_170820
crossref_primary_10_3389_fmicb_2021_722368
crossref_primary_10_1016_j_ijfoodmicro_2009_04_021
crossref_primary_10_2166_wh_2015_255
crossref_primary_10_3390_v11030226
crossref_primary_10_1080_10408398_2020_1719383
crossref_primary_10_1002_jmv_24112
crossref_primary_10_1128_AEM_05806_11
crossref_primary_10_1016_j_envint_2019_03_051
crossref_primary_10_1007_s12560_016_9260_6
crossref_primary_10_3390_w13192794
crossref_primary_10_1016_j_meegid_2014_06_013
crossref_primary_10_3389_fmicb_2024_1353798
crossref_primary_10_3390_w12020327
crossref_primary_10_1128_CMR_00075_14
crossref_primary_10_1111_1469_0691_12746
crossref_primary_10_1016_j_microc_2021_106050
crossref_primary_10_1007_s12560_012_9089_6
crossref_primary_10_1007_s12560_014_9136_6
crossref_primary_10_1016_j_watres_2018_01_056
crossref_primary_10_2166_ws_2015_185
crossref_primary_10_1111_risa_13386
crossref_primary_10_1128_aem_00807_22
crossref_primary_10_1111_jam_13252
crossref_primary_10_1007_s12403_020_00359_4
crossref_primary_10_1039_C9EM00376B
crossref_primary_10_1111_risa_12077
crossref_primary_10_1007_s41999_018_0120_9
crossref_primary_10_1111_ele_14079
crossref_primary_10_1007_s12560_009_9017_6
crossref_primary_10_1016_j_ijfoodmicro_2018_01_015
crossref_primary_10_1017_S0950268813000496
crossref_primary_10_1016_j_foodcont_2020_107225
crossref_primary_10_1007_s12560_011_9053_x
crossref_primary_10_1016_j_ijid_2014_06_022
crossref_primary_10_3390_v12040461
Cites_doi 10.1097/00001574-200101000-00003
10.1093/infdis/154.5.871
10.1007/978-1-4899-4485-6
10.1111/j.1539-6924.1999.tb01143.x
10.1093/infdis/119.6.668
10.1093/infdis/123.3.307
10.1086/432546
10.1086/315588
10.1093/infdis/161.1.18
10.3201/eid1303.060549
10.1128/JVI.01306-06
10.3201/eid0505.990502
10.1111/j.1539-6924.1993.tb00013.x
10.1093/infdis/171.3.566
10.1002/jmv.20423
10.1093/oxfordjournals.aje.a113662
10.1038/nm860
10.1645/0022-3395(2000)086[0884:IOICAM]2.0.CO;2
10.1111/0272-4332.204048
10.3201/eid1107.041273
10.1086/339883
10.1128/JVI.79.8.4977-4990.2005
10.3181/00379727-140-36508
10.1016/0042-6822(67)90271-1
10.1097/01.qco.0000244053.69253.3d
10.3201/eid1708.050841
10.1007/s11908-007-0004-5
10.1093/infdis/170.1.34
10.1016/0273-1223(95)00314-D
10.1128/JVI.79.5.2900-2909.2005
ContentType Journal Article
Copyright Copyright © 2008 Wiley‐Liss, Inc.
2008 INIST-CNRS
Copyright_xml – notice: Copyright © 2008 Wiley‐Liss, Inc.
– notice: 2008 INIST-CNRS
DBID FBQ
BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7U9
8FD
FR3
H94
P64
RC3
7S9
L.6
7X8
DOI 10.1002/jmv.21237
DatabaseName AGRIS
Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Virology and AIDS Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
Genetics Abstracts
Virology and AIDS Abstracts
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList
AGRICOLA
MEDLINE
CrossRef

MEDLINE - Academic
AIDS and Cancer Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1096-9071
EndPage 1476
ExternalDocumentID 18551613
20466302
10_1002_jmv_21237
JMV21237
ark_67375_WNG_WFCL9F7G_4
US201300908599
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID
  funderid: 5R01 A105U351‐03
– fundername: U.S. Environmental protection Agency (cooperative agreement)
  funderid: R‐82936501
– fundername: National Institutes of Health
– fundername: PHS
  funderid: RR00046
– fundername: European Commission (Sixth Framework Programme)
  funderid: SSP22‐CT‐2004‐502084
– fundername: USEPA STAR
  funderid: R‐826139
– fundername: PHS HHS
  grantid: 5R01 A105U351-03
– fundername: NIAID NIH HHS
  grantid: R01 AI056351
– fundername: NCRR NIH HHS
  grantid: RR00046
GroupedDBID ---
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAVGM
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABHUG
ABIJN
ABJNI
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADBTR
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEQTP
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHMBA
AI.
AIACR
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
ECGQY
EJD
ELTNK
EMOBN
F00
F01
F04
F5P
FBQ
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HF~
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
V2E
VH1
W8V
W99
WBKPD
WHG
WIB
WIH
WIJ
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXI
WXSBR
WYISQ
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~KM
~WT
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AIQQE
AITYG
ALVPJ
BSCLL
HGLYW
OIG
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7U9
8FD
FR3
H94
P64
RC3
7S9
L.6
7X8
ID FETCH-LOGICAL-c4777-37fa6a911de71c08cef34320303f65158e31114669885fec8e84c91d270d9eda3
IEDL.DBID DR2
ISSN 0146-6615
1096-9071
IngestDate Fri Sep 05 12:53:18 EDT 2025
Fri Sep 05 08:56:02 EDT 2025
Fri Sep 05 09:34:16 EDT 2025
Mon Jul 21 06:04:18 EDT 2025
Mon Jul 21 09:11:01 EDT 2025
Tue Jul 01 02:24:20 EDT 2025
Thu Apr 24 22:52:27 EDT 2025
Wed Jan 22 16:48:50 EST 2025
Sun Sep 21 06:14:05 EDT 2025
Wed Dec 27 19:18:35 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Norovirus
Human calicivirus
Gastroenteritis
secondary inoculum
Virus
Aggregation
Infection
viral gastroenteritis
Calicivirus
virus aggregation
dose response
Caliciviridae
primary inoculum
Norwalk virus
Digestive diseases
Intestinal disease
Gastric disease
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4777-37fa6a911de71c08cef34320303f65158e31114669885fec8e84c91d270d9eda3
Notes http://dx.doi.org/10.1002/jmv.21237
The views represented in this paper are solely those of the authors and not the representative institution. Use of tradenames and products is not an endorsement.
USEPA STAR - No. R-826139
PHS - No. RR00046
ark:/67375/WNG-WFCL9F7G-4
U.S. Environmental protection Agency (cooperative agreement) - No. R-82936501
European Commission (Sixth Framework Programme) - No. SSP22-CT-2004-502084
National Institutes of Health
istex:62967203DE71E149D2A1062DBBEE84441C6EB645
ArticleID:JMV21237
NIAID - No. 5R01 A105U351-03
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 18551613
PQID 20258784
PQPubID 23462
PageCount 9
ParticipantIDs proquest_miscellaneous_69226877
proquest_miscellaneous_47679874
proquest_miscellaneous_20258784
pubmed_primary_18551613
pascalfrancis_primary_20466302
crossref_primary_10_1002_jmv_21237
crossref_citationtrail_10_1002_jmv_21237
wiley_primary_10_1002_jmv_21237_JMV21237
istex_primary_ark_67375_WNG_WFCL9F7G_4
fao_agris_US201300908599
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2008
PublicationDateYYYYMMDD 2008-08-01
PublicationDate_xml – month: 08
  year: 2008
  text: August 2008
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: New York, NY
– name: United States
PublicationTitle Journal of medical virology
PublicationTitleAlternate J. Med. Virol
PublicationYear 2008
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley-Liss
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley-Liss
References Dolin R, Blacklow NR, DuPont HL, Formal S, Buscho RF, Kasel JA, Chames RP, Hornick R, Chanock RM. 1971. Transmission of acute infectious nonbacterial gastroenteritis to volunteers by oral administration of stool filtrates. J Infect Dis 123: 307-312.
Haas CN, Rose JB, Gerba C, Regli S. 1993. Risk assessment of virus in drinking water. Risk Analysis 13: 545-552.
Cheetham S, Souza M, McGregor R, Meulia T, Wang Q, Saif LJ. 2007. Binding patterns of human norovirus-like particles to buccal and intestinal tissues of gnotobiotic pigs in relation to A/H histo-blood group antigen expression. J Virol 81: 3535-3544.
Dolin R, Blacklow NR, DuPont H, Buscho RF, Wyatt RG, Kasel JA, Hornick R, Chanock RM. 1972. Biological properties of Norwalk agent of acute infectious nonbacterial gastroenteritis (36508). Proc Soc Exp Biol Med 140: 578-583.
Goodgame R. 2007. Norovirus gastroenteritis. Curr Infect Dis Rep 9: 102-109.
Lindesmith L, Moe C, Marionneau S, Ruvoen N, Jiang X, Lindbland L, Stewart P, le Pendu J, Baric R. 2003. Human susceptibility and resistance to Norwalk virus infection. Nat Med 9: 548-553.
Hutson AM, Atmar RL, Graham DY, Estes MK. 2002. Norwalk virus infection and disease is associated with ABO histo-blood group type. J Infect Dis 185: 1335-1337.
Okhuysen PC, Jiang X, Ye L, Johnson PC, Estes MK. 1995. Viral shedding and fecal IgA response after Norwalk virus infection. J Infect Dis 171: 566-569.
Tillett HE, Lightfoot NF. 1995. Quality control in environmental microbiology compared with chemistry: What is homogeneous and what is random? Water Sci Technol 31: 471-477.
Furumoto WA, Mickey R. 1967. A mathematical model for the infectivity-dilution curve of tobacco mosaic virus: Theoretical considerations. Virology 32: 216-223.
Lindesmith L, Moe C, Le Pendu J, Frelinger JA, Treanor J, Baric RS. 2005. Cellular and humoral immunity following Snow Mountain virus challenge. J Virol 79: 2900-2909.
Rohayem J, Munch J, Rethwilm A. 2005. Evidence of recombination in the norovirus capsid gene. J Virol 79: 4977-4990.
Ward RL, Bernstein DI, Young EC, Sherwood JR, Knowlton DR, Schiff GM. 1986. Human Rotavirus studies in volunteers: Determination of infectious dose and serological response to infection. J Infect Dis 154: 871-880.
Graham DY, Jiang X, Tanaka T, Opekun AR, Madore HP, Estes MK. 1994. Norwalk virus infection of volunteers: New insights based on improved assays. J Infect Dis 170: 34-43.
Kroneman A, Vennema H, Harris J, Reuter G, von Bonsdorff C, Hedlund K, Vainio K, Jackson V, Pothier P, Koch J, Schreier E, Böttiger B, Koopmans M. 2006. Increase in norovirus activity reported in Europe. Euro Surveill 11: E061214.1.
Ciarlet M, Estes MK. 2001. Rotavirus and calicivirus infections of the gastrointestinal tract. Curr Opin Gastroenterol 17: 10-16.
Teunis PFM, Nagelkerke NJD, Haas CN. 1999. Dose response models for infectious gastroenteritis. Risk Anal 19: 1251-1260.
Smith DR, Aguilar PV, Coffey LL, Gromowski GD, Wang E, Weaver SC. 2006. Venezuelan equine encephalitis virus transmission and effect on pathogenesis. Emerg Infect Dis 12: 1190-1196.
Yang S, Benson SK, Du C, Healey MC. 2000. Infection of immunosuppressed C57BL/6N adult mice with a single oocyst of Cryptosporidium parvum. J Parasitol 86: 884-887.
Johnson PC, Mathewson JJ, DuPont HL, Greenberg HB. 1990. Multiple challenge study of host susceptibility to Norwalk gastroenteritis in US adults. J Infect Dis 161: 18-21.
Adler JL, Zickl R. 1969. Winter vomiting disease. J Infect Dis 119: 668-673.
Haas CN. 1983. Estimation of risk due to low doses of microorganisms: A comparison of alternative methodologies. Am J Epidemiol 118: 573-582.
Marionneau S, Airaud F, Bovin NV, Le Pendu J, Ruvoen-Clouet N. 2005. Influence of the combined ABO, FUT2, and FUT3 polymorphism on susceptibility to Norwalk virus attachment. J Infect Dis 192: 1071-1077.
Bull RA, Hansman GS, Clancy LE, Tanaka MM, Rawlinson WD, White PA. 2005. Norovirus recombination in ORF1/ORF2 overlap. Emerg Infect Dis 11: 1079-1085.
Gilks WR, Richardson S, Spiegelhalter DJ, editors. 1996. Markov Chain Monte Carlo in practice. London: Chapman and Hall.
Mead PS, Slutsker L, Dietz V, McCaig LF, Bresee JS, Shapiro C, Griffin PM, Tauxe RV. 1999. Food-related illness and death in the United States. Emerg Infect Dis 5: 607-625.
Straub TM, Höner zu Bentrup K, Orosz-Coghlan P, Dohnalkova A, Mayer BK, Bartholomew RA, Valdez CO, Bruckner-Lea CJ, Gerba CP, Abbaszadegan M, Nickerson CA. 2007. In vitro cell culture infectivity assay for human noroviruses. Emerg Infect Dis 13: 396-403.
Estes MK, Prasad BV, Atmar RL. 2006. Noroviruses everywhere: Has something changed? Curr Opin Infect Dis 19: 467-474.
Hutson AM, Airaud F, LePendu J, Estes MK, Atmar RL. 2005. Norwalk virus infection associates with secretor status genotyped from sera. J Med Virol 77: 116-120.
Teunis PFM, Havelaar AH. 2000. The Beta Poisson model is not a single hit model. Risk Anal 20: 511-518.
Teunis PFM, Chappell CL, Okhuysen PC. 2002. Cryptosporidium dose response studies: Variation between isolates Risk Analysis 22: 175-183.
Glass RI, Noel J, Ando T, Fankhauser R, Belliot G, Mounts A, Parashar UD, Bresee JS, Monroe SS. 2000. The epidemiology of enteric caliciviruses from humans: A reassessment using new diagnostics. J Infect Dis 18: S254-S261.
1995; 31
2005; 192
1994; 170
2006; 12
1986; 154
2006; 11
2000; 20
2000; 86
1996
2006; 19
1971; 123
1999; 5
1995; 171
2007; 13
1990; 161
1983; 118
1993; 13
2000; 18
1967; 32
1999; 19
2002; 185
2003; 9
2002; 22
2007; 9
2007; 81
1969; 119
2001; 17
1972; 140
2005; 11
2005; 77
2005; 79
e_1_2_1_20_1
e_1_2_1_23_1
e_1_2_1_24_1
e_1_2_1_21_1
e_1_2_1_22_1
e_1_2_1_27_1
e_1_2_1_28_1
e_1_2_1_25_1
e_1_2_1_26_1
Teunis PFM (e_1_2_1_31_1) 2002; 22
e_1_2_1_29_1
Kroneman A (e_1_2_1_19_1) 2006; 11
e_1_2_1_7_1
e_1_2_1_8_1
e_1_2_1_30_1
e_1_2_1_5_1
e_1_2_1_6_1
e_1_2_1_3_1
e_1_2_1_12_1
e_1_2_1_35_1
e_1_2_1_4_1
e_1_2_1_13_1
e_1_2_1_34_1
e_1_2_1_10_1
e_1_2_1_33_1
e_1_2_1_2_1
e_1_2_1_11_1
e_1_2_1_32_1
e_1_2_1_16_1
e_1_2_1_17_1
e_1_2_1_14_1
e_1_2_1_15_1
e_1_2_1_9_1
e_1_2_1_18_1
References_xml – reference: Cheetham S, Souza M, McGregor R, Meulia T, Wang Q, Saif LJ. 2007. Binding patterns of human norovirus-like particles to buccal and intestinal tissues of gnotobiotic pigs in relation to A/H histo-blood group antigen expression. J Virol 81: 3535-3544.
– reference: Rohayem J, Munch J, Rethwilm A. 2005. Evidence of recombination in the norovirus capsid gene. J Virol 79: 4977-4990.
– reference: Teunis PFM, Havelaar AH. 2000. The Beta Poisson model is not a single hit model. Risk Anal 20: 511-518.
– reference: Kroneman A, Vennema H, Harris J, Reuter G, von Bonsdorff C, Hedlund K, Vainio K, Jackson V, Pothier P, Koch J, Schreier E, Böttiger B, Koopmans M. 2006. Increase in norovirus activity reported in Europe. Euro Surveill 11: E061214.1.
– reference: Goodgame R. 2007. Norovirus gastroenteritis. Curr Infect Dis Rep 9: 102-109.
– reference: Okhuysen PC, Jiang X, Ye L, Johnson PC, Estes MK. 1995. Viral shedding and fecal IgA response after Norwalk virus infection. J Infect Dis 171: 566-569.
– reference: Ciarlet M, Estes MK. 2001. Rotavirus and calicivirus infections of the gastrointestinal tract. Curr Opin Gastroenterol 17: 10-16.
– reference: Haas CN, Rose JB, Gerba C, Regli S. 1993. Risk assessment of virus in drinking water. Risk Analysis 13: 545-552.
– reference: Ward RL, Bernstein DI, Young EC, Sherwood JR, Knowlton DR, Schiff GM. 1986. Human Rotavirus studies in volunteers: Determination of infectious dose and serological response to infection. J Infect Dis 154: 871-880.
– reference: Hutson AM, Airaud F, LePendu J, Estes MK, Atmar RL. 2005. Norwalk virus infection associates with secretor status genotyped from sera. J Med Virol 77: 116-120.
– reference: Adler JL, Zickl R. 1969. Winter vomiting disease. J Infect Dis 119: 668-673.
– reference: Marionneau S, Airaud F, Bovin NV, Le Pendu J, Ruvoen-Clouet N. 2005. Influence of the combined ABO, FUT2, and FUT3 polymorphism on susceptibility to Norwalk virus attachment. J Infect Dis 192: 1071-1077.
– reference: Yang S, Benson SK, Du C, Healey MC. 2000. Infection of immunosuppressed C57BL/6N adult mice with a single oocyst of Cryptosporidium parvum. J Parasitol 86: 884-887.
– reference: Hutson AM, Atmar RL, Graham DY, Estes MK. 2002. Norwalk virus infection and disease is associated with ABO histo-blood group type. J Infect Dis 185: 1335-1337.
– reference: Gilks WR, Richardson S, Spiegelhalter DJ, editors. 1996. Markov Chain Monte Carlo in practice. London: Chapman and Hall.
– reference: Glass RI, Noel J, Ando T, Fankhauser R, Belliot G, Mounts A, Parashar UD, Bresee JS, Monroe SS. 2000. The epidemiology of enteric caliciviruses from humans: A reassessment using new diagnostics. J Infect Dis 18: S254-S261.
– reference: Tillett HE, Lightfoot NF. 1995. Quality control in environmental microbiology compared with chemistry: What is homogeneous and what is random? Water Sci Technol 31: 471-477.
– reference: Lindesmith L, Moe C, Marionneau S, Ruvoen N, Jiang X, Lindbland L, Stewart P, le Pendu J, Baric R. 2003. Human susceptibility and resistance to Norwalk virus infection. Nat Med 9: 548-553.
– reference: Teunis PFM, Chappell CL, Okhuysen PC. 2002. Cryptosporidium dose response studies: Variation between isolates Risk Analysis 22: 175-183.
– reference: Haas CN. 1983. Estimation of risk due to low doses of microorganisms: A comparison of alternative methodologies. Am J Epidemiol 118: 573-582.
– reference: Johnson PC, Mathewson JJ, DuPont HL, Greenberg HB. 1990. Multiple challenge study of host susceptibility to Norwalk gastroenteritis in US adults. J Infect Dis 161: 18-21.
– reference: Smith DR, Aguilar PV, Coffey LL, Gromowski GD, Wang E, Weaver SC. 2006. Venezuelan equine encephalitis virus transmission and effect on pathogenesis. Emerg Infect Dis 12: 1190-1196.
– reference: Estes MK, Prasad BV, Atmar RL. 2006. Noroviruses everywhere: Has something changed? Curr Opin Infect Dis 19: 467-474.
– reference: Bull RA, Hansman GS, Clancy LE, Tanaka MM, Rawlinson WD, White PA. 2005. Norovirus recombination in ORF1/ORF2 overlap. Emerg Infect Dis 11: 1079-1085.
– reference: Mead PS, Slutsker L, Dietz V, McCaig LF, Bresee JS, Shapiro C, Griffin PM, Tauxe RV. 1999. Food-related illness and death in the United States. Emerg Infect Dis 5: 607-625.
– reference: Lindesmith L, Moe C, Le Pendu J, Frelinger JA, Treanor J, Baric RS. 2005. Cellular and humoral immunity following Snow Mountain virus challenge. J Virol 79: 2900-2909.
– reference: Dolin R, Blacklow NR, DuPont HL, Formal S, Buscho RF, Kasel JA, Chames RP, Hornick R, Chanock RM. 1971. Transmission of acute infectious nonbacterial gastroenteritis to volunteers by oral administration of stool filtrates. J Infect Dis 123: 307-312.
– reference: Teunis PFM, Nagelkerke NJD, Haas CN. 1999. Dose response models for infectious gastroenteritis. Risk Anal 19: 1251-1260.
– reference: Straub TM, Höner zu Bentrup K, Orosz-Coghlan P, Dohnalkova A, Mayer BK, Bartholomew RA, Valdez CO, Bruckner-Lea CJ, Gerba CP, Abbaszadegan M, Nickerson CA. 2007. In vitro cell culture infectivity assay for human noroviruses. Emerg Infect Dis 13: 396-403.
– reference: Graham DY, Jiang X, Tanaka T, Opekun AR, Madore HP, Estes MK. 1994. Norwalk virus infection of volunteers: New insights based on improved assays. J Infect Dis 170: 34-43.
– reference: Furumoto WA, Mickey R. 1967. A mathematical model for the infectivity-dilution curve of tobacco mosaic virus: Theoretical considerations. Virology 32: 216-223.
– reference: Dolin R, Blacklow NR, DuPont H, Buscho RF, Wyatt RG, Kasel JA, Hornick R, Chanock RM. 1972. Biological properties of Norwalk agent of acute infectious nonbacterial gastroenteritis (36508). Proc Soc Exp Biol Med 140: 578-583.
– volume: 79
  start-page: 4977
  year: 2005
  end-page: 4990
  article-title: Evidence of recombination in the norovirus capsid gene
  publication-title: J Virol
– volume: 185
  start-page: 1335
  year: 2002
  end-page: 1337
  article-title: Norwalk virus infection and disease is associated with ABO histo‐blood group type
  publication-title: J Infect Dis
– volume: 81
  start-page: 3535
  year: 2007
  end-page: 3544
  article-title: Binding patterns of human norovirus‐like particles to buccal and intestinal tissues of gnotobiotic pigs in relation to A/H histo‐blood group antigen expression
  publication-title: J Virol
– year: 1996
– volume: 13
  start-page: 545
  year: 1993
  end-page: 552
  article-title: Risk assessment of virus in drinking water
  publication-title: Risk Analysis
– volume: 119
  start-page: 668
  year: 1969
  end-page: 673
  article-title: Winter vomiting disease
  publication-title: J Infect Dis
– volume: 170
  start-page: 34
  year: 1994
  end-page: 43
  article-title: Norwalk virus infection of volunteers: New insights based on improved assays
  publication-title: J Infect Dis
– volume: 19
  start-page: 467
  year: 2006
  end-page: 474
  article-title: Noroviruses everywhere: Has something changed?
  publication-title: Curr Opin Infect Dis
– volume: 140
  start-page: 578
  year: 1972
  end-page: 583
  article-title: Biological properties of Norwalk agent of acute infectious nonbacterial gastroenteritis (36508)
  publication-title: Proc Soc Exp Biol Med
– volume: 22
  start-page: 175
  year: 2002
  end-page: 183
  publication-title: Cryptosporidium dose response studies: Variation between isolates Risk Analysis
– volume: 5
  start-page: 607
  year: 1999
  end-page: 625
  article-title: Food‐related illness and death in the United States
  publication-title: Emerg Infect Dis
– volume: 11
  start-page: 1079
  year: 2005
  end-page: 1085
  article-title: Norovirus recombination in ORF1/ORF2 overlap
  publication-title: Emerg Infect Dis
– volume: 18
  start-page: S254
  year: 2000
  end-page: S261
  article-title: The epidemiology of enteric caliciviruses from humans: A reassessment using new diagnostics
  publication-title: J Infect Dis
– volume: 123
  start-page: 307
  year: 1971
  end-page: 312
  article-title: Transmission of acute infectious nonbacterial gastroenteritis to volunteers by oral administration of stool filtrates
  publication-title: J Infect Dis
– volume: 12
  start-page: 1190
  year: 2006
  end-page: 1196
  article-title: Venezuelan equine encephalitis virus transmission and effect on pathogenesis
  publication-title: Emerg Infect Dis
– volume: 17
  start-page: 10
  year: 2001
  end-page: 16
  article-title: Rotavirus and calicivirus infections of the gastrointestinal tract
  publication-title: Curr Opin Gastroenterol
– volume: 9
  start-page: 102
  year: 2007
  end-page: 109
  article-title: Norovirus gastroenteritis
  publication-title: Curr Infect Dis Rep
– volume: 118
  start-page: 573
  year: 1983
  end-page: 582
  article-title: Estimation of risk due to low doses of microorganisms: A comparison of alternative methodologies
  publication-title: Am J Epidemiol
– volume: 20
  start-page: 511
  year: 2000
  end-page: 518
  article-title: The Beta Poisson model is not a single hit model
  publication-title: Risk Anal
– volume: 19
  start-page: 1251
  year: 1999
  end-page: 1260
  article-title: Dose response models for infectious gastroenteritis
  publication-title: Risk Anal
– volume: 86
  start-page: 884
  year: 2000
  end-page: 887
  article-title: Infection of immunosuppressed C57BL/6N adult mice with a single oocyst of
  publication-title: J Parasitol
– volume: 77
  start-page: 116
  year: 2005
  end-page: 120
  article-title: Norwalk virus infection associates with secretor status genotyped from sera
  publication-title: J Med Virol
– volume: 79
  start-page: 2900
  year: 2005
  end-page: 2909
  article-title: Cellular and humoral immunity following Snow Mountain virus challenge
  publication-title: J Virol
– volume: 161
  start-page: 18
  year: 1990
  end-page: 21
  article-title: Multiple challenge study of host susceptibility to Norwalk gastroenteritis in US adults
  publication-title: J Infect Dis
– volume: 171
  start-page: 566
  year: 1995
  end-page: 569
  article-title: Viral shedding and fecal IgA response after Norwalk virus infection
  publication-title: J Infect Dis
– volume: 31
  start-page: 471
  year: 1995
  end-page: 477
  article-title: Quality control in environmental microbiology compared with chemistry: What is homogeneous and what is random?
  publication-title: Water Sci Technol
– volume: 11
  start-page: E061214.1
  year: 2006
  article-title: Increase in norovirus activity reported in Europe
  publication-title: Euro Surveill
– volume: 32
  start-page: 216
  year: 1967
  end-page: 223
  article-title: A mathematical model for the infectivity‐dilution curve of tobacco mosaic virus: Theoretical considerations
  publication-title: Virology
– volume: 9
  start-page: 548
  year: 2003
  end-page: 553
  article-title: Human susceptibility and resistance to Norwalk virus infection
  publication-title: Nat Med
– volume: 192
  start-page: 1071
  year: 2005
  end-page: 1077
  article-title: Influence of the combined ABO, FUT2, and FUT3 polymorphism on susceptibility to Norwalk virus attachment
  publication-title: J Infect Dis
– volume: 13
  start-page: 396
  year: 2007
  end-page: 403
  article-title: In vitro cell culture infectivity assay for human noroviruses
  publication-title: Emerg Infect Dis
– volume: 154
  start-page: 871
  year: 1986
  end-page: 880
  article-title: Human Rotavirus studies in volunteers: Determination of infectious dose and serological response to infection
  publication-title: J Infect Dis
– volume: 11
  start-page: E061214.1
  year: 2006
  ident: e_1_2_1_19_1
  article-title: Increase in norovirus activity reported in Europe
  publication-title: Euro Surveill
– ident: e_1_2_1_5_1
  doi: 10.1097/00001574-200101000-00003
– ident: e_1_2_1_33_1
  doi: 10.1093/infdis/154.5.871
– ident: e_1_2_1_10_1
  doi: 10.1007/978-1-4899-4485-6
– ident: e_1_2_1_30_1
  doi: 10.1111/j.1539-6924.1999.tb01143.x
– ident: e_1_2_1_2_1
  doi: 10.1093/infdis/119.6.668
– ident: e_1_2_1_6_1
  doi: 10.1093/infdis/123.3.307
– ident: e_1_2_1_22_1
  doi: 10.1086/432546
– ident: e_1_2_1_11_1
  doi: 10.1086/315588
– ident: e_1_2_1_18_1
  doi: 10.1093/infdis/161.1.18
– ident: e_1_2_1_27_1
  doi: 10.3201/eid1303.060549
– ident: e_1_2_1_29_1
– ident: e_1_2_1_34_1
– ident: e_1_2_1_4_1
  doi: 10.1128/JVI.01306-06
– ident: e_1_2_1_23_1
  doi: 10.3201/eid0505.990502
– ident: e_1_2_1_15_1
  doi: 10.1111/j.1539-6924.1993.tb00013.x
– ident: e_1_2_1_24_1
  doi: 10.1093/infdis/171.3.566
– volume: 22
  start-page: 175
  year: 2002
  ident: e_1_2_1_31_1
  publication-title: Cryptosporidium dose response studies: Variation between isolates Risk Analysis
– ident: e_1_2_1_17_1
  doi: 10.1002/jmv.20423
– ident: e_1_2_1_14_1
  doi: 10.1093/oxfordjournals.aje.a113662
– ident: e_1_2_1_20_1
  doi: 10.1038/nm860
– ident: e_1_2_1_35_1
  doi: 10.1645/0022-3395(2000)086[0884:IOICAM]2.0.CO;2
– ident: e_1_2_1_28_1
  doi: 10.1111/0272-4332.204048
– ident: e_1_2_1_3_1
  doi: 10.3201/eid1107.041273
– ident: e_1_2_1_16_1
  doi: 10.1086/339883
– ident: e_1_2_1_25_1
  doi: 10.1128/JVI.79.8.4977-4990.2005
– ident: e_1_2_1_7_1
  doi: 10.3181/00379727-140-36508
– ident: e_1_2_1_9_1
  doi: 10.1016/0042-6822(67)90271-1
– ident: e_1_2_1_8_1
  doi: 10.1097/01.qco.0000244053.69253.3d
– ident: e_1_2_1_26_1
  doi: 10.3201/eid1708.050841
– ident: e_1_2_1_12_1
  doi: 10.1007/s11908-007-0004-5
– ident: e_1_2_1_13_1
  doi: 10.1093/infdis/170.1.34
– ident: e_1_2_1_32_1
  doi: 10.1016/0273-1223(95)00314-D
– ident: e_1_2_1_21_1
  doi: 10.1128/JVI.79.5.2900-2909.2005
SSID ssj0008922
Score 2.496649
Snippet Noroviruses are major agents of viral gastroenteritis worldwide. The infectivity of Norwalk virus, the prototype norovirus, has been studied in susceptible...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1468
SubjectTerms Biological and medical sciences
Caliciviridae Infections - genetics
Caliciviridae Infections - physiopathology
Caliciviridae Infections - transmission
Caliciviridae Infections - virology
dose response
Fundamental and applied biological sciences. Psychology
Gastroenteritis - genetics
Gastroenteritis - physiopathology
Gastroenteritis - virology
Human viral diseases
Humans
Infectious diseases
Medical sciences
Microbiology
Microscopy, Electron
Miscellaneous
Models, Biological
Monte Carlo Method
Norovirus
Norwalk virus
Norwalk virus - genetics
Norwalk virus - isolation & purification
Norwalk virus - pathogenicity
Norwalk virus - ultrastructure
primary inoculum
Reverse Transcriptase Polymerase Chain Reaction
Risk Assessment
RNA, Viral - analysis
secondary inoculum
Viral diseases
viral gastroenteritis
Virology
virus aggregation
Title Norwalk virus: How infectious is it
URI https://api.istex.fr/ark:/67375/WNG-WFCL9F7G-4/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmv.21237
https://www.ncbi.nlm.nih.gov/pubmed/18551613
https://www.proquest.com/docview/20258784
https://www.proquest.com/docview/47679874
https://www.proquest.com/docview/69226877
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6VHhAX3lAXKBaqEBen3vV6H3BAqJBGFckBCO0BabVr71YlbYLyaBG_nhk7dhTUIoSUgw-zlmZ2Xs7MfEPILnNlEQJ1ieMBPlBUmifOcwS89BBOtBK6xAHn_kD0hvzwOD_eIG-aWZgaH6L9ww0to_LXaODWzfZWoKHfzy866HdxkpxmAnHz339aQUcpXVcQwBMkEIPyBlUoZXvtybVYdCPYCWSoKNyf2CFpZyCkUG-3uCr9XM9mq3DUvUO-NYzUXSijzmLuOsWvPzAe_5PTu-T2Mk2N39V6dY9s-PF9crO_LMQ_ILuDyfTSno3ii9PpYvY67k0u46avazGLT-E3f_uQDLsfvuz3kuXChaTgUqKzCVZYcH-ll7RIVeEDzp2CH8gCrkxXPqM4xSy0Ujm8UnnFC01LJtNS-9Jmj8jmeDL2WyTOVUmptpDfBMatpU5y4bMiD0I4pssyIq8a0ZtiiUaOSzHOTI2jzAxwbSquI_KiJf1RQ3BcRbQF92fsCbhGM_zMsCCbakRv0xF5WV1qe9hOR9jOJnNzNDgwR939j7orDwyPyM7arbcHWAo8ZymLyPNGDQxYIZZW7NiDWIGC5Uoqfj0Fl1jvkn-hEKCxQklg5XGtYStuFZYzaQZCq_TkejGYw_7X6mH730mfkFt1Ewx2NT4lm_Ppwj-DTGvudiqT-g0-sh6N
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9NADLe2IQEvfMPCxxahCfGSLrlccncICaFBV0bbB1i3vaDTJblDo6NF_dgQfz120qQq2hBCykMefJHss33O2f4ZYIdlRe5clAUZd_iDIsMkyCwnwEuLx4mSqSqowbnXTzsDfnCSnKzB67oXpsKHaC7cyDJKf00GThfSu0vU0G_fz1vkeMU6XKP8HJnlu09L8CipqhwC-oIAT6GkxhUK2W6zdOU0WndmjDEqifcn1UiaKYrJVfMtLgtAV-PZ8kBq34YvNStVHcqwNZ9lrfzXHyiP_8vrHbi1iFT9t5Vq3YU1O7oH13uLXPx92OmPJxfmbOifn07m01d-Z3zh16Vd86l_is_szQMYtN8f7nWCxcyFIOdCkL9xJjXoAQsrojyUuXXUeoquIHY0NV3aOKJG5lRJmeAnpZU8V1HBRFgoW5j4IWyMxiO7CX4iiyhSBkMcx7gxUSZ4auM8cWmaMVUUHrysZa_zBSA5zcU40xWUMtPItS659uB5Q_qjQuG4jGgTN1Cbr-gd9eAzo5xsqAjATXnwotzVZrGZDKmiTST6uL-vj9t7XdUW-5p7sLWy7c0CFiLPccg82K71QKMhUnbFjCyKFSlYIoXkV1NwQSkv8ReKFFU2lQJZeVSp2JJbSRnNKEahlYpytRj0Qe-ofHn876TbcKNz2Ovq7of-xydws6qJoSLHp7Axm8ztMwy8ZtlWaV-_ASTTIqo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbaIlVceEPDo41QhbjsNnEcP-CAqkK6lO4KAUt7QLKc2EZly261jxbx6zuTbLJa1CKElEMO40gznpczM58J2aa5LbyP81bOPBxQZJS2cscQ8NJBOFGSK4sDzt0e7_TZwXF6vEJe17MwFT5E88MNLaP012jgZ9bvLEBDf_w8b6PfFavkBuNwusKM6NMCO0qqqoQArqAFQSitYYUiutMsXQpGq96MIEVF6f7CFkkzASn56nqLq_LP5XS2jEfZbfKt5qRqQxm0Z9O8Xfz-A-TxP1m9Q27N89Rwt1Ksu2TFDe-R9e68En-fbPdG4wtzOgjPT8azyauwM7oI68au2SQ8gWf65gHpZ---7HVa8xsXWgUTAr2NN9yA_7NOxEUkC-dx8BQcQeLxznTpkhjHmLmSMoVPSidZoWJLRWSVsyZ5SNaGo6HbIGEqbRwrAwmOp8yYOBeMu6RIPec5VdYG5GUtel3M4cjxVoxTXQEpUw1c65LrgDxvSM8qDI6riDZg_7T5Dr5R9z9TrMhGCuHbVEBelJvaLDbjAfaziVQf9fb1UbZ3qDKxr1lANpd2vVlAI-A5iWhAtmo10GCGWFsxQwdiBQqaSiHZ9RRMYMFL_IWCg8ZyKYCVR5WGLbiVWM-MExBaqSfXi0EfdL-WL4__nXSLrH98m-nD970PT8jNqiEGOxyfkrXpeOaeQdY1zTdL67oEmSkhWQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Norwalk+virus%3A+how+infectious+is+it%3F&rft.jtitle=Journal+of+medical+virology&rft.au=Teunis%2C+Peter+F+M&rft.au=Moe%2C+Christine+L&rft.au=Liu%2C+Pengbo&rft.au=Miller%2C+Sara+E&rft.date=2008-08-01&rft.eissn=1096-9071&rft.volume=80&rft.issue=8&rft.spage=1468&rft_id=info:doi/10.1002%2Fjmv.21237&rft_id=info%3Apmid%2F18551613&rft.externalDocID=18551613
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0146-6615&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0146-6615&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0146-6615&client=summon