Norwalk virus: How infectious is it
Noroviruses are major agents of viral gastroenteritis worldwide. The infectivity of Norwalk virus, the prototype norovirus, has been studied in susceptible human volunteers. A new variant of the hit theory model of microbial infection was developed to estimate the variation in Norwalk virus infectiv...
Saved in:
Published in | Journal of medical virology Vol. 80; no. 8; pp. 1468 - 1476 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.08.2008
Wiley-Liss |
Subjects | |
Online Access | Get full text |
ISSN | 0146-6615 1096-9071 1096-9071 |
DOI | 10.1002/jmv.21237 |
Cover
Abstract | Noroviruses are major agents of viral gastroenteritis worldwide. The infectivity of Norwalk virus, the prototype norovirus, has been studied in susceptible human volunteers. A new variant of the hit theory model of microbial infection was developed to estimate the variation in Norwalk virus infectivity, as well as the degree of virus aggregation, consistent with independent (electron microscopic) observations. Explicit modeling of viral aggregation allows us to express virus infectivity per single infectious unit (particle). Comparison of a primary and a secondary inoculum showed that passage through a human host does not change Norwalk virus infectivity. We estimate the average probability of infection for a single Norwalk virus particle to be close to 0.5, exceeding that reported for any other virus studied to date. Infected subjects had a dose-dependent probability of becoming ill, ranging from 0.1 (at a dose of 10³ NV genomes) to 0.7 (at 10⁸ virus genomes). A norovirus dose response model is important for understanding its transmission and essential for development of a quantitative risk model. Norwalk virus is a valuable model system to study virulence because genetic factors are known for both complete and partial protection; the latter can be quantitatively described as heterogeneity in dose response models. J. Med. Virol. 80:1468-1476, 2008. |
---|---|
AbstractList | Noroviruses are major agents of viral gastroenteritis worldwide. The infectivity of Norwalk virus, the prototype norovirus, has been studied in susceptible human volunteers. A new variant of the hit theory model of microbial infection was developed to estimate the variation in Norwalk virus infectivity, as well as the degree of virus aggregation, consistent with independent (electron microscopic) observations. Explicit modeling of viral aggregation allows us to express virus infectivity per single infectious unit (particle). Comparison of a primary and a secondary inoculum showed that passage through a human host does not change Norwalk virus infectivity. We estimate the average probability of infection for a single Norwalk virus particle to be close to 0.5, exceeding that reported for any other virus studied to date. Infected subjects had a dose-dependent probability of becoming ill, ranging from 0.1 (at a dose of 10³ NV genomes) to 0.7 (at 10⁸ virus genomes). A norovirus dose response model is important for understanding its transmission and essential for development of a quantitative risk model. Norwalk virus is a valuable model system to study virulence because genetic factors are known for both complete and partial protection; the latter can be quantitatively described as heterogeneity in dose response models. J. Med. Virol. 80:1468-1476, 2008. Noroviruses are major agents of viral gastroenteritis worldwide. The infectivity of Norwalk virus, the prototype norovirus, has been studied in susceptible human volunteers. A new variant of the hit theory model of microbial infection was developed to estimate the variation in Norwalk virus infectivity, as well as the degree of virus aggregation, consistent with independent (electron microscopic) observations. Explicit modeling of viral aggregation allows us to express virus infectivity per single infectious unit (particle). Comparison of a primary and a secondary inoculum showed that passage through a human host does not change Norwalk virus infectivity. We estimate the average probability of infection for a single Norwalk virus particle to be close to 0.5, exceeding that reported for any other virus studied to date. Infected subjects had a dose-dependent probability of becoming ill, ranging from 0.1 (at a dose of 10³ NV genomes) to 0.7 (at 10¸ virus genomes). A norovirus dose response model is important for understanding its transmission and essential for development of a quantitative risk model. Norwalk virus is a valuable model system to study virulence because genetic factors are known for both complete and partial protection; the latter can be quantitatively described as heterogeneity in dose response models. J. Med. Virol. 80:1468-1476, 2008. Noroviruses are major agents of viral gastroenteritis worldwide. The infectivity of Norwalk virus, the prototype norovirus, has been studied in susceptible human volunteers. A new variant of the hit theory model of microbial infection was developed to estimate the variation in Norwalk virus infectivity, as well as the degree of virus aggregation, consistent with independent (electron microscopic) observations. Explicit modeling of viral aggregation allows us to express virus infectivity per single infectious unit (particle). Comparison of a primary and a secondary inoculum showed that passage through a human host does not change Norwalk virus infectivity. We estimate the average probability of infection for a single Norwalk virus particle to be close to 0.5, exceeding that reported for any other virus studied to date. Infected subjects had a dose-dependent probability of becoming ill, ranging from 0.1 (at a dose of 10(3) NV genomes) to 0.7 (at 10(8) virus genomes). A norovirus dose response model is important for understanding its transmission and essential for development of a quantitative risk model. Norwalk virus is a valuable model system to study virulence because genetic factors are known for both complete and partial protection; the latter can be quantitatively described as heterogeneity in dose response models. Noroviruses are major agents of viral gastroenteritis worldwide. The infectivity of Norwalk virus, the prototype norovirus, has been studied in susceptible human volunteers. A new variant of the hit theory model of microbial infection was developed to estimate the variation in Norwalk virus infectivity, as well as the degree of virus aggregation, consistent with independent (electron microscopic) observations. Explicit modeling of viral aggregation allows us to express virus infectivity per single infectious unit (particle). Comparison of a primary and a secondary inoculum showed that passage through a human host does not change Norwalk virus infectivity. We estimate the average probability of infection for a single Norwalk virus particle to be close to 0.5, exceeding that reported for any other virus studied to date. Infected subjects had a dose‐dependent probability of becoming ill, ranging from 0.1 (at a dose of 10 3 NV genomes) to 0.7 (at 10 8 virus genomes). A norovirus dose response model is important for understanding its transmission and essential for development of a quantitative risk model. Norwalk virus is a valuable model system to study virulence because genetic factors are known for both complete and partial protection; the latter can be quantitatively described as heterogeneity in dose response models. J. Med. Virol. 80:1468–1476, 2008. © 2008 Wiley‐Liss, Inc. Noroviruses are major agents of viral gastroenteritis worldwide. The infectivity of Norwalk virus, the prototype norovirus, has been studied in susceptible human volunteers. A new variant of the hit theory model of microbial infection was developed to estimate the variation in Norwalk virus infectivity, as well as the degree of virus aggregation, consistent with independent (electron microscopic) observations. Explicit modeling of viral aggregation allows us to express virus infectivity per single infectious unit (particle). Comparison of a primary and a secondary inoculum showed that passage through a human host does not change Norwalk virus infectivity. We estimate the average probability of infection for a single Norwalk virus particle to be close to 0.5, exceeding that reported for any other virus studied to date. Infected subjects had a dose‐dependent probability of becoming ill, ranging from 0.1 (at a dose of 103 NV genomes) to 0.7 (at 108 virus genomes). A norovirus dose response model is important for understanding its transmission and essential for development of a quantitative risk model. Norwalk virus is a valuable model system to study virulence because genetic factors are known for both complete and partial protection; the latter can be quantitatively described as heterogeneity in dose response models. J. Med. Virol. 80:1468–1476, 2008. © 2008 Wiley‐Liss, Inc. Noroviruses are major agents of viral gastroenteritis worldwide. The infectivity of Norwalk virus, the prototype norovirus, has been studied in susceptible human volunteers. A new variant of the hit theory model of microbial infection was developed to estimate the variation in Norwalk virus infectivity, as well as the degree of virus aggregation, consistent with independent (electron microscopic) observations. Explicit modeling of viral aggregation allows us to express virus infectivity per single infectious unit (particle). Comparison of a primary and a secondary inoculum showed that passage through a human host does not change Norwalk virus infectivity. We estimate the average probability of infection for a single Norwalk virus particle to be close to 0.5, exceeding that reported for any other virus studied to date. Infected subjects had a dose-dependent probability of becoming ill, ranging from 0.1 (at a dose of 10(3) NV genomes) to 0.7 (at 10(8) virus genomes). A norovirus dose response model is important for understanding its transmission and essential for development of a quantitative risk model. Norwalk virus is a valuable model system to study virulence because genetic factors are known for both complete and partial protection; the latter can be quantitatively described as heterogeneity in dose response models.Noroviruses are major agents of viral gastroenteritis worldwide. The infectivity of Norwalk virus, the prototype norovirus, has been studied in susceptible human volunteers. A new variant of the hit theory model of microbial infection was developed to estimate the variation in Norwalk virus infectivity, as well as the degree of virus aggregation, consistent with independent (electron microscopic) observations. Explicit modeling of viral aggregation allows us to express virus infectivity per single infectious unit (particle). Comparison of a primary and a secondary inoculum showed that passage through a human host does not change Norwalk virus infectivity. We estimate the average probability of infection for a single Norwalk virus particle to be close to 0.5, exceeding that reported for any other virus studied to date. Infected subjects had a dose-dependent probability of becoming ill, ranging from 0.1 (at a dose of 10(3) NV genomes) to 0.7 (at 10(8) virus genomes). A norovirus dose response model is important for understanding its transmission and essential for development of a quantitative risk model. Norwalk virus is a valuable model system to study virulence because genetic factors are known for both complete and partial protection; the latter can be quantitatively described as heterogeneity in dose response models. Noroviruses are major agents of viral gastroenteritis worldwide. The infectivity of Norwalk virus, the prototype norovirus, has been studied in susceptible human volunteers. A new variant of the hit theory model of microbial infection was developed to estimate the variation in Norwalk virus infectivity, as well as the degree of virus aggregation, consistent with independent (electron microscopic) observations. Explicit modeling of viral aggregation allows us to express virus infectivity per single infectious unit (particle). Comparison of a primary and a secondary inoculum showed that passage through a human host does not change Norwalk virus infectivity. We estimate the average probability of infection for a single Norwalk virus particle to be close to 0.5, exceeding that reported for any other virus studied to date. Infected subjects had a dose-dependent probability of becoming ill, ranging from 0.1 (at a dose of 103 NV genomes) to 0.7 (at 108 virus genomes). A norovirus dose response model is important for understanding its transmission and essential for development of a quantitative risk model. Norwalk virus is a valuable model system to study virulence because genetic factors are known for both complete and partial protection; the latter can be quantitatively described as heterogeneity in dose response models. J. Med. Virol. 80:1468-1476, 2008. |
Author | E. Miller, Sara Le Pendu, Jacques Teunis, Peter F.M. Moe, Christine L. Baric, Ralph S. Liu, Pengbo Calderon, Rebecca L. Lindesmith, Lisa |
Author_xml | – sequence: 1 fullname: Teunis, Peter F.M – sequence: 2 fullname: Moe, Christine L – sequence: 3 fullname: Liu, Pengbo – sequence: 4 fullname: Miller, Sara E – sequence: 5 fullname: Lindesmith, Lisa – sequence: 6 fullname: Baric, Ralph S – sequence: 7 fullname: Le Pendu, Jacques – sequence: 8 fullname: Calderon, Rebecca L |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20466302$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/18551613$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9PGzEQxS1EBQF66BcokVAr9bAwY6__9YaiJrQK9NACR8v1epFhs0vtDSnfvk4TQEIqSJbm8nvPb97skM22az0h7xAOEYAeXc_uDilSJjfIAEGLQoPETTIALEUhBPJtspPSNQAoTekW2UbFOQpkA3Jw1sWFbW6GdyHO0-fhSbcYhrb2rg_dPA1Dfv0eeVPbJvm367lLzsdffo5Oiun3ydfR8bRwpZSyYLK2wmrEykt0oJyvWckoMGC14MiVZ4g5kdBK8fyD8qp0GisqodK-smyXfFz53sbu99yn3sxCcr5pbOtzGCNyeKGkfBUspZBayfJVkALlSqol-H4Nzn_NfGVuY5jZeG8eisrAhzVgk7NNHW3rQnrkKOS9GNDMfVpxLnYpRV8_WYFZHsvkY5l_x8rs0TPWhd7m4ts-2tC8pFiExt__39p8O714UBQrRUi9__OosPHGCMkkN5dnE3M5Hk31WE7Msoj9FV_bztirmHc8_0EBGYAGxbVmfwGi-7lw |
CODEN | JMVIDB |
CitedBy_id | crossref_primary_10_1128_AEM_01866_17 crossref_primary_10_1016_j_mran_2016_08_003 crossref_primary_10_1016_j_mran_2019_06_003 crossref_primary_10_1007_s11845_022_03004_y crossref_primary_10_1021_acs_est_9b05747 crossref_primary_10_1016_j_jobe_2023_106706 crossref_primary_10_1128_AEM_00174_11 crossref_primary_10_1021_acsestwater_3c00331 crossref_primary_10_4315_0362_028X_JFP_11_449 crossref_primary_10_1111_1541_4337_12072 crossref_primary_10_2903_j_efsa_2012_2500 crossref_primary_10_3389_fmicb_2020_516445 crossref_primary_10_1016_j_fm_2014_04_002 crossref_primary_10_1021_es200984b crossref_primary_10_1128_JVI_02207_12 crossref_primary_10_1590_1519_6984_232466 crossref_primary_10_1128_CVI_00427_12 crossref_primary_10_4315_0362_028X_73_12_2232 crossref_primary_10_1016_j_jiph_2018_12_007 crossref_primary_10_1016_j_foodcont_2017_11_043 crossref_primary_10_1016_j_ijfoodmicro_2013_11_027 crossref_primary_10_3390_ijerph14121571 crossref_primary_10_1371_journal_pone_0050273 crossref_primary_10_1007_s12560_013_9128_y crossref_primary_10_1021_acs_est_9b02002 crossref_primary_10_1007_s12560_015_9187_3 crossref_primary_10_3390_vaccines12060590 crossref_primary_10_1016_j_jviromet_2011_02_011 crossref_primary_10_1017_S0950268820000965 crossref_primary_10_1016_j_envsoft_2017_01_016 crossref_primary_10_1016_j_jviromet_2018_07_001 crossref_primary_10_1007_s12560_012_9101_1 crossref_primary_10_1371_journal_ppat_1000884 crossref_primary_10_3390_foods8060187 crossref_primary_10_1007_s10096_016_2884_5 crossref_primary_10_1007_s10661_016_5442_9 crossref_primary_10_1016_j_lwt_2017_03_050 crossref_primary_10_4315_0362_028X_JFP_13_079 crossref_primary_10_1016_j_jcv_2012_08_020 crossref_primary_10_1016_j_jfp_2022_100024 crossref_primary_10_1111_jam_12345 crossref_primary_10_4167_jbv_2023_53_1_011 crossref_primary_10_1017_S0950268815000035 crossref_primary_10_1128_AEM_07081_11 crossref_primary_10_1017_S0950268818003217 crossref_primary_10_1016_j_scitotenv_2023_169738 crossref_primary_10_1007_s12560_019_09383_3 crossref_primary_10_4315_0362_028X_JFP_12_052 crossref_primary_10_1128_AEM_01729_09 crossref_primary_10_1038_s41598_018_36779_1 crossref_primary_10_1016_j_foodcont_2024_110943 crossref_primary_10_1016_j_marpolbul_2019_04_073 crossref_primary_10_2217_fmb_14_102 crossref_primary_10_3390_w14050782 crossref_primary_10_2222_jsv_61_193 crossref_primary_10_1111_lam_13702 crossref_primary_10_1128_JCM_00266_14 crossref_primary_10_2166_wh_2020_045 crossref_primary_10_1016_j_clinmicnews_2009_10_001 crossref_primary_10_1056_NEJMc1301022 crossref_primary_10_1073_pnas_1903562116 crossref_primary_10_1128_spectrum_04857_22 crossref_primary_10_1007_s12560_016_9253_5 crossref_primary_10_1098_rstb_2019_0016 crossref_primary_10_1017_S0950268810002839 crossref_primary_10_1073_pnas_1014577107 crossref_primary_10_1016_S1773_035X_14_72363_9 crossref_primary_10_1111_1541_4337_12271 crossref_primary_10_1021_acs_est_9b01188 crossref_primary_10_3389_fmicb_2021_731379 crossref_primary_10_1017_S0950268812000799 crossref_primary_10_1128_JVI_00785_14 crossref_primary_10_15585_mmwr_mm6828a2 crossref_primary_10_1016_j_jmoldx_2021_03_005 crossref_primary_10_3201_eid1611_100877 crossref_primary_10_1093_infdis_jit620 crossref_primary_10_1097_INF_0b013e3182059102 crossref_primary_10_1002_jmv_23784 crossref_primary_10_1016_j_jenvman_2015_05_019 crossref_primary_10_1016_j_bcp_2014_05_021 crossref_primary_10_1016_j_watres_2022_119079 crossref_primary_10_13103_JFHS_2018_33_1_71 crossref_primary_10_1128_jvi_00383_23 crossref_primary_10_1016_j_meegid_2020_104245 crossref_primary_10_1111_j_1365_2672_2011_05196_x crossref_primary_10_1016_j_scitotenv_2020_141574 crossref_primary_10_1016_j_watres_2020_116202 crossref_primary_10_1017_S0950268810000439 crossref_primary_10_1186_1743_422X_8_57 crossref_primary_10_1002_mnfr_201400549 crossref_primary_10_1007_s12560_011_9068_3 crossref_primary_10_1016_j_mran_2017_01_002 crossref_primary_10_1016_j_watres_2016_10_054 crossref_primary_10_1007_s12560_010_9041_6 crossref_primary_10_1021_acs_est_5b05398 crossref_primary_10_1021_acs_estlett_9b00468 crossref_primary_10_1016_j_ijfoodmicro_2021_109151 crossref_primary_10_3389_fmicb_2021_653719 crossref_primary_10_1016_j_fm_2016_09_001 crossref_primary_10_1371_journal_pgph_0002748 crossref_primary_10_1111_jam_13638 crossref_primary_10_1039_C7EM00316A crossref_primary_10_1007_s11356_018_1881_x crossref_primary_10_1016_j_mran_2017_12_001 crossref_primary_10_1016_j_fm_2014_12_004 crossref_primary_10_1021_es100346a crossref_primary_10_1128_JCM_02778_14 crossref_primary_10_1016_j_ijfoodmicro_2021_109365 crossref_primary_10_3389_fmicb_2021_670488 crossref_primary_10_1371_journal_pcbi_1012561 crossref_primary_10_56786_PHWR_2025_18_1_2 crossref_primary_10_1016_j_ijfoodmicro_2018_06_001 crossref_primary_10_1016_j_ijfoodmicro_2022_109884 crossref_primary_10_1128_JVI_03433_12 crossref_primary_10_1016_j_fm_2017_04_018 crossref_primary_10_1029_2021GH000490 crossref_primary_10_1186_s13099_022_00504_1 crossref_primary_10_1021_acs_est_3c01152 crossref_primary_10_1016_j_antiviral_2014_02_012 crossref_primary_10_3390_v13102033 crossref_primary_10_1093_cid_ciy1020 crossref_primary_10_1007_s11262_025_02144_4 crossref_primary_10_1016_j_jphotobiol_2014_08_009 crossref_primary_10_1016_j_watres_2023_119742 crossref_primary_10_1016_j_ijhm_2018_02_001 crossref_primary_10_3390_v2030748 crossref_primary_10_1016_j_jhin_2021_08_006 crossref_primary_10_1371_journal_pone_0143759 crossref_primary_10_1016_j_foodcont_2014_06_026 crossref_primary_10_1128_AEM_01657_15 crossref_primary_10_1016_j_jhazmat_2024_135589 crossref_primary_10_1111_risa_12528 crossref_primary_10_1016_j_ajic_2012_04_330 crossref_primary_10_1128_AEM_02576_13 crossref_primary_10_1007_s12560_024_09590_7 crossref_primary_10_3390_app132312625 crossref_primary_10_1016_j_ajic_2015_04_182 crossref_primary_10_1016_j_ijfoodmicro_2024_111020 crossref_primary_10_1128_aem_01033_22 crossref_primary_10_1016_j_idc_2017_07_012 crossref_primary_10_1016_j_scitotenv_2022_160842 crossref_primary_10_1139_cjce_2018_0216 crossref_primary_10_1016_j_scitotenv_2014_07_078 crossref_primary_10_1007_s12560_010_9043_4 crossref_primary_10_1128_AEM_02112_13 crossref_primary_10_3389_fmicb_2018_02826 crossref_primary_10_3389_fmicb_2017_00554 crossref_primary_10_3390_foods3020336 crossref_primary_10_3139_113_110311 crossref_primary_10_1099_jgv_0_001720 crossref_primary_10_1007_s11157_014_9351_5 crossref_primary_10_1128_microbiolspec_ARBA_0006_2017 crossref_primary_10_1016_j_jhin_2021_08_026 crossref_primary_10_1128_aem_01208_24 crossref_primary_10_1016_j_jcv_2010_10_008 crossref_primary_10_1016_j_fm_2017_03_003 crossref_primary_10_1186_s13756_021_00979_8 crossref_primary_10_1002_jmv_29220 crossref_primary_10_1128_AEM_02800_09 crossref_primary_10_3109_00365548_2012_686671 crossref_primary_10_1038_s41370_023_00592_4 crossref_primary_10_2166_wh_2017_305 crossref_primary_10_1016_j_watres_2011_02_025 crossref_primary_10_3201_eid2907_230117 crossref_primary_10_1016_j_ijfoodmicro_2011_10_014 crossref_primary_10_1016_j_marpolbul_2011_10_037 crossref_primary_10_1016_j_jviromet_2023_114804 crossref_primary_10_3390_s23156830 crossref_primary_10_1016_j_epidem_2010_10_001 crossref_primary_10_1371_journal_pone_0209245 crossref_primary_10_1017_S0950268815002071 crossref_primary_10_1002_jmv_21755 crossref_primary_10_1007_s12560_017_9321_5 crossref_primary_10_1128_microbiolspec_ERV_0001_2019 crossref_primary_10_1007_s12560_012_9093_x crossref_primary_10_1016_j_envint_2017_11_032 crossref_primary_10_1093_infdis_jiac045 crossref_primary_10_2166_bgs_2021_012 crossref_primary_10_1016_j_ijfoodmicro_2013_06_023 crossref_primary_10_1016_j_ijfoodmicro_2015_09_018 crossref_primary_10_35627_2219_5238_2020_327_6_50_54 crossref_primary_10_1016_j_cofs_2020_04_011 crossref_primary_10_13103_JFHS_2013_28_4_287 crossref_primary_10_1016_j_watres_2018_11_058 crossref_primary_10_1021_acs_est_8b01948 crossref_primary_10_3390_applmicrobiol2030035 crossref_primary_10_1002_fsat_3704_5_x crossref_primary_10_4315_0362_028X_JFP_17_134 crossref_primary_10_1094_PHYTO_04_14_0111_R crossref_primary_10_1128_JCM_01664_09 crossref_primary_10_1371_journal_ppat_1002188 crossref_primary_10_1111_risa_12758 crossref_primary_10_1093_molbev_msy131 crossref_primary_10_3390_s17092157 crossref_primary_10_1586_eri_12_21 crossref_primary_10_1093_cid_civ747 crossref_primary_10_1155_2021_5568897 crossref_primary_10_4315_0362_028X_JFP_14_518 crossref_primary_10_1016_j_marpolbul_2020_111318 crossref_primary_10_1186_s12879_018_3461_6 crossref_primary_10_1586_erv_12_4 crossref_primary_10_1038_s41598_020_70973_4 crossref_primary_10_1038_s41541_024_00884_2 crossref_primary_10_1016_j_watres_2018_12_070 crossref_primary_10_3934_mbe_2023777 crossref_primary_10_1017_S0950268811002731 crossref_primary_10_5694_j_1326_5377_2008_tb02136_x crossref_primary_10_1128_AAC_02417_17 crossref_primary_10_1177_153567601301800306 crossref_primary_10_3201_eid2603_191183 crossref_primary_10_1016_S0140_6736_18_31128_0 crossref_primary_10_1016_j_watres_2013_06_001 crossref_primary_10_1016_j_lwt_2016_12_028 crossref_primary_10_1016_j_scitotenv_2017_05_007 crossref_primary_10_1016_j_mran_2023_100262 crossref_primary_10_1016_j_scitotenv_2019_02_398 crossref_primary_10_3201_eid2601_190778 crossref_primary_10_1038_s41598_019_51750_4 crossref_primary_10_1007_s12560_021_09495_9 crossref_primary_10_1111_risa_12138 crossref_primary_10_1016_j_watres_2020_115814 crossref_primary_10_1155_2020_1646943 crossref_primary_10_1086_660363 crossref_primary_10_1016_j_jcv_2015_10_004 crossref_primary_10_1016_j_scitotenv_2015_03_077 crossref_primary_10_5803_jsfm_33_97 crossref_primary_10_1007_s12560_015_9191_7 crossref_primary_10_1016_j_watres_2019_115365 crossref_primary_10_1093_ofid_ofab126 crossref_primary_10_52420_2071_5943_2023_22_3_57_63 crossref_primary_10_1021_ja403550f crossref_primary_10_1016_j_ijfoodmicro_2013_07_025 crossref_primary_10_1016_j_ijfoodmicro_2013_07_022 crossref_primary_10_1016_j_watres_2019_03_057 crossref_primary_10_1128_AEM_01162_14 crossref_primary_10_1007_s10096_011_1321_z crossref_primary_10_1128_AEM_01046_12 crossref_primary_10_1093_jpids_piad114 crossref_primary_10_3390_molecules26154669 crossref_primary_10_1007_s00003_016_1048_y crossref_primary_10_1111_1541_4337_12899 crossref_primary_10_1128_AEM_01081_12 crossref_primary_10_1007_s12560_024_09605_3 crossref_primary_10_5393_JAMCH_2010_35_4_361 crossref_primary_10_1016_j_marpolbul_2016_08_001 crossref_primary_10_1016_j_watres_2010_10_035 crossref_primary_10_3390_v16050776 crossref_primary_10_1016_j_jviromet_2016_08_012 crossref_primary_10_1016_j_scitotenv_2022_154874 crossref_primary_10_1016_j_apm_2021_03_044 crossref_primary_10_3389_fpubh_2018_00040 crossref_primary_10_1016_j_scitotenv_2018_06_300 crossref_primary_10_1093_infdis_jiu382 crossref_primary_10_1093_infdis_jiu385 crossref_primary_10_1016_j_ijfoodmicro_2012_12_016 crossref_primary_10_1007_s12560_012_9099_4 crossref_primary_10_3390_v14040762 crossref_primary_10_1017_S0950268816001862 crossref_primary_10_1111_risa_12389 crossref_primary_10_1016_j_jhin_2011_05_018 crossref_primary_10_1371_journal_pone_0134277 crossref_primary_10_4315_0362_028X_JFP_16_196 crossref_primary_10_1111_risa_13436 crossref_primary_10_1038_s41596_020_00460_7 crossref_primary_10_1016_j_jviromet_2012_07_018 crossref_primary_10_3390_v11020151 crossref_primary_10_3389_fpubh_2023_1259584 crossref_primary_10_1016_j_ajic_2011_03_033 crossref_primary_10_1016_j_fm_2014_01_009 crossref_primary_10_3390_ijerph17030973 crossref_primary_10_1002_eji_201545512 crossref_primary_10_1016_j_fm_2019_103354 crossref_primary_10_1016_j_virs_2024_05_010 crossref_primary_10_1016_j_yapd_2014_04_003 crossref_primary_10_1016_j_scitotenv_2024_172448 crossref_primary_10_1071_HI13016 crossref_primary_10_3389_fpubh_2023_1065105 crossref_primary_10_1016_j_ijfoodmicro_2018_09_029 crossref_primary_10_1016_j_jcv_2014_08_004 crossref_primary_10_46234_ccdcw2024_197 crossref_primary_10_2903_j_efsa_2019_5762 crossref_primary_10_1016_j_ijfoodmicro_2011_09_013 crossref_primary_10_1016_j_ijfoodmicro_2016_04_018 crossref_primary_10_1016_j_ijfoodmicro_2014_02_026 crossref_primary_10_1111_risa_12323 crossref_primary_10_1111_jam_15121 crossref_primary_10_1111_risa_14301 crossref_primary_10_1016_j_watres_2012_12_012 crossref_primary_10_1128_mBio_02300_14 crossref_primary_10_1007_s13670_017_0195_z crossref_primary_10_4315_0362_028X_JFP_11_199 crossref_primary_10_1007_s12560_010_9038_1 crossref_primary_10_1128_AEM_04188_13 crossref_primary_10_1089_fpd_2021_0002 crossref_primary_10_1093_aje_kwy198 crossref_primary_10_1111_j_1365_2672_2010_04710_x crossref_primary_10_1016_j_mran_2024_100321 crossref_primary_10_4315_0362_028X_JFP_13_550 crossref_primary_10_1016_j_fm_2016_05_009 crossref_primary_10_1186_s12879_023_08519_y crossref_primary_10_1016_j_watres_2024_121197 crossref_primary_10_1021_acs_estlett_0c00752 crossref_primary_10_17269_s41997_024_00969_4 crossref_primary_10_1016_j_watres_2016_03_005 crossref_primary_10_1002_med_21545 crossref_primary_10_1016_j_fm_2014_06_012 crossref_primary_10_1080_10807039_2012_716687 crossref_primary_10_3201_eid1908_130472 crossref_primary_10_4058_jsei_34_83 crossref_primary_10_1016_j_scitotenv_2020_144278 crossref_primary_10_1016_j_ijfoodmicro_2020_108695 crossref_primary_10_1128_AEM_02144_12 crossref_primary_10_1080_21645515_2017_1360455 crossref_primary_10_1016_j_watres_2014_01_060 crossref_primary_10_1016_j_watres_2017_01_046 crossref_primary_10_1371_journal_pone_0071696 crossref_primary_10_1128_AEM_01955_09 crossref_primary_10_1007_s12560_021_09477_x crossref_primary_10_1016_j_ese_2023_100328 crossref_primary_10_1021_acs_est_6b02110 crossref_primary_10_4315_0362_028X_JFP_12_532 crossref_primary_10_1016_j_coviro_2016_09_009 crossref_primary_10_1017_S0950268811002573 crossref_primary_10_1016_j_scitotenv_2015_04_040 crossref_primary_10_1111_jfs_12450 crossref_primary_10_1039_C9AN02333J crossref_primary_10_3390_ijerph19052508 crossref_primary_10_1111_j_1574_6976_2011_00306_x crossref_primary_10_3109_1040841X_2012_709820 crossref_primary_10_1016_j_foodcont_2023_110138 crossref_primary_10_1186_s12879_015_1315_z crossref_primary_10_1016_j_jhin_2016_01_003 crossref_primary_10_1128_AEM_00292_18 crossref_primary_10_3390_v12121392 crossref_primary_10_1039_D1AY01380G crossref_primary_10_1039_C8EW00699G crossref_primary_10_1016_j_ijfoodmicro_2016_06_006 crossref_primary_10_1080_14760584_2020_1777860 crossref_primary_10_1007_s42770_019_00197_w crossref_primary_10_1007_s12560_022_09539_8 crossref_primary_10_1098_rstb_2018_0267 crossref_primary_10_1016_j_scitotenv_2018_06_158 crossref_primary_10_1016_j_watres_2011_08_030 crossref_primary_10_1007_s12560_015_9205_5 crossref_primary_10_1016_j_jviromet_2020_113939 crossref_primary_10_1186_s13099_023_00595_4 crossref_primary_10_4315_0362_028X_JFP_12_311 crossref_primary_10_1080_21645515_2015_1011019 crossref_primary_10_1371_journal_pone_0227890 crossref_primary_10_1007_s12560_015_9216_2 crossref_primary_10_1038_nrmicro_2016_48 crossref_primary_10_1007_s12560_013_9112_6 crossref_primary_10_1016_j_virol_2009_02_041 crossref_primary_10_1016_j_watres_2019_01_041 crossref_primary_10_2166_wh_2021_068 crossref_primary_10_1371_journal_pcbi_1002097 crossref_primary_10_1016_j_ijfoodmicro_2024_110603 crossref_primary_10_1017_S0950268816002314 crossref_primary_10_1021_acs_est_5b01268 crossref_primary_10_1111_1469_0691_12674 crossref_primary_10_1128_AEM_00081_11 crossref_primary_10_1016_j_ijfoodmicro_2024_110601 crossref_primary_10_1146_annurev_food_022811_101234 crossref_primary_10_1017_S0950268817002783 crossref_primary_10_1016_j_scitotenv_2022_154861 crossref_primary_10_1111_jam_13588 crossref_primary_10_1016_j_marpolbul_2024_117006 crossref_primary_10_1007_s12560_013_9121_5 crossref_primary_10_2166_wh_2021_015 crossref_primary_10_1146_annurev_virology_100114_055204 crossref_primary_10_1016_j_foodcont_2020_107556 crossref_primary_10_1016_j_foodcont_2021_108764 crossref_primary_10_3390_w13070904 crossref_primary_10_1007_s12560_017_9295_3 crossref_primary_10_1016_j_fm_2020_103594 crossref_primary_10_1016_j_scitotenv_2021_151227 crossref_primary_10_4315_0362_028X_JFP_11_360 crossref_primary_10_1007_s00203_023_03818_z crossref_primary_10_1111_jam_12244 crossref_primary_10_1017_S095026881400274X crossref_primary_10_1021_acsomega_9b00772 crossref_primary_10_1525_elementa_301 crossref_primary_10_3201_eid2309_161489 crossref_primary_10_1128_JVI_02064_13 crossref_primary_10_58395_pipd_v49i3_71 crossref_primary_10_1016_j_watres_2013_09_022 crossref_primary_10_1586_erv_12_145 crossref_primary_10_1016_j_ijfoodmicro_2024_110664 crossref_primary_10_1538_expanim_61_35 crossref_primary_10_3390_v11040342 crossref_primary_10_1016_j_coviro_2013_12_005 crossref_primary_10_2166_wh_2020_221 crossref_primary_10_1016_j_meegid_2014_12_001 crossref_primary_10_1002_jmv_24242 crossref_primary_10_1093_femsle_fnz235 crossref_primary_10_1111_j_1365_2672_2010_04812_x crossref_primary_10_1128_CMR_00020_14 crossref_primary_10_3390_app11010043 crossref_primary_10_1016_j_idm_2023_07_004 crossref_primary_10_1016_j_ijfoodmicro_2015_11_015 crossref_primary_10_1016_j_jcv_2019_05_013 crossref_primary_10_3201_eid1810_120833 crossref_primary_10_1016_j_vaccine_2017_06_043 crossref_primary_10_1016_j_scitotenv_2023_167190 crossref_primary_10_4315_0362_028X_JFP_19_410 crossref_primary_10_1111_j_1745_6584_2010_00686_x crossref_primary_10_1128_JVI_00439_12 crossref_primary_10_1007_s12560_020_09441_1 crossref_primary_10_1017_S0950268814003628 crossref_primary_10_3389_fimmu_2021_781718 crossref_primary_10_1016_j_scitotenv_2018_12_460 crossref_primary_10_1093_cid_ciab808 crossref_primary_10_4315_0362_028X_JFP_12_371 crossref_primary_10_1089_fpd_2010_0782 crossref_primary_10_1016_j_watres_2013_09_001 crossref_primary_10_1002_jmv_22077 crossref_primary_10_1007_s10661_017_6279_6 crossref_primary_10_1111_j_1365_2672_2009_04562_x crossref_primary_10_2134_jeq2015_01_0048 crossref_primary_10_1111_j_1539_6924_2011_01716_x crossref_primary_10_1016_j_chemosphere_2011_06_083 crossref_primary_10_1016_j_bioactmat_2022_09_010 crossref_primary_10_1016_j_ijfoodmicro_2021_109089 crossref_primary_10_1007_s12560_011_9056_7 crossref_primary_10_3390_w11050903 crossref_primary_10_1016_j_tvjl_2015_10_026 crossref_primary_10_1371_journal_pone_0124945 crossref_primary_10_1016_j_ijid_2011_02_006 crossref_primary_10_2208_jscejer_70_III_295 crossref_primary_10_1016_j_scitotenv_2015_05_007 crossref_primary_10_1186_s12889_019_8117_y crossref_primary_10_1182_blood_2010_12_325886 crossref_primary_10_1371_journal_pone_0141050 crossref_primary_10_1007_s12560_014_9150_8 crossref_primary_10_1016_j_coviro_2011_10_029 crossref_primary_10_1111_tmi_12915 crossref_primary_10_1016_j_talanta_2021_122672 crossref_primary_10_4315_0362_028X_JFP_19_238 crossref_primary_10_1016_j_coviro_2011_10_027 crossref_primary_10_1016_j_vaccine_2014_09_073 crossref_primary_10_1016_j_scitotenv_2014_03_108 crossref_primary_10_4315_0362_028X_JFP_12_392 crossref_primary_10_29132_ijpas_956919 crossref_primary_10_1186_1471_2334_10_30 crossref_primary_10_1016_j_jhin_2015_01_011 crossref_primary_10_1111_1541_4337_13293 crossref_primary_10_3390_ijms22168868 crossref_primary_10_1016_j_jmii_2021_10_006 crossref_primary_10_1016_j_watres_2020_116121 crossref_primary_10_1128_mSphere_00352_16 crossref_primary_10_3390_v16030317 crossref_primary_10_1016_j_snb_2018_06_129 crossref_primary_10_17660_ActaHortic_2016_1133_82 crossref_primary_10_1007_s12560_019_09371_7 crossref_primary_10_1016_j_jenvman_2021_113566 crossref_primary_10_1016_j_ijfoodmicro_2014_04_002 crossref_primary_10_1016_j_virusres_2022_198700 crossref_primary_10_1111_jam_13331 crossref_primary_10_1007_s11356_018_2869_2 crossref_primary_10_1016_j_tifs_2021_06_027 crossref_primary_10_1021_acsestwater_1c00378 crossref_primary_10_1128_AEM_01704_13 crossref_primary_10_1016_j_foodcont_2018_12_049 crossref_primary_10_2208_jscejer_72_III_305 crossref_primary_10_1016_j_epidem_2019_100380 crossref_primary_10_1016_j_idm_2019_04_005 crossref_primary_10_1021_acsami_7b13943 crossref_primary_10_1007_s12560_012_9092_y crossref_primary_10_1007_s12560_024_09632_0 crossref_primary_10_1097_QCO_0000000000000557 crossref_primary_10_1007_s11908_016_0524_y crossref_primary_10_1093_cid_ciz584 crossref_primary_10_1289_ehp_1104499 crossref_primary_10_1186_1471_2334_13_488 crossref_primary_10_1128_jvi_01262_22 crossref_primary_10_1016_j_scitotenv_2016_01_034 crossref_primary_10_1016_j_watres_2024_121852 crossref_primary_10_1089_fpd_2014_1766 crossref_primary_10_1093_jac_dku363 crossref_primary_10_1111_jam_12656 crossref_primary_10_1002_jmv_23645 crossref_primary_10_1016_j_watres_2016_08_053 crossref_primary_10_3390_foods12040826 crossref_primary_10_1002_jmv_24981 crossref_primary_10_1097_MOG_0b013e328333d7af crossref_primary_10_1371_journal_pone_0142346 crossref_primary_10_1017_S0950268814000740 crossref_primary_10_1016_j_diagmicrobio_2018_08_002 crossref_primary_10_3389_fpubh_2024_1353709 crossref_primary_10_1016_j_ijfoodmicro_2013_09_018 crossref_primary_10_1128_JVI_03464_12 crossref_primary_10_1021_acs_analchem_8b03300 crossref_primary_10_1080_09603123_2013_769205 crossref_primary_10_1080_10807030903304781 crossref_primary_10_1016_j_fm_2015_07_009 crossref_primary_10_1016_j_coviro_2016_11_008 crossref_primary_10_1094_PHYTO_09_12_0231_FI crossref_primary_10_1016_j_ijfoodmicro_2014_12_004 crossref_primary_10_11150_kansenshogakuzasshi_87_27 crossref_primary_10_1002_jmv_23669 crossref_primary_10_1128_AEM_01430_12 crossref_primary_10_1128_JVI_02138_16 crossref_primary_10_1128_JCM_02528_09 crossref_primary_10_1016_j_ijfoodmicro_2014_06_012 crossref_primary_10_1016_j_ijfoodmicro_2014_12_013 crossref_primary_10_2166_wh_2015_201 crossref_primary_10_1099_vir_0_000194 crossref_primary_10_1186_s12889_016_3266_8 crossref_primary_10_1186_s40249_017_0236_z crossref_primary_10_33073_pjm_2024_009 crossref_primary_10_1016_j_foodcont_2016_10_051 crossref_primary_10_1111_j_1600_0668_2009_00621_x crossref_primary_10_1089_fpd_2016_2216 crossref_primary_10_1007_s12560_014_9170_4 crossref_primary_10_1016_j_coviro_2011_11_005 crossref_primary_10_1093_jambio_lxad029 crossref_primary_10_1146_annurev_virology_100114_055135 crossref_primary_10_1016_j_ijfoodmicro_2014_12_024 crossref_primary_10_1016_j_ijfoodmicro_2014_12_023 crossref_primary_10_1016_j_watres_2017_12_054 crossref_primary_10_1186_s12889_016_3716_3 crossref_primary_10_1016_j_jhin_2015_10_014 crossref_primary_10_1089_fpd_2009_0320 crossref_primary_10_1021_acs_est_9b03274 crossref_primary_10_1016_j_phf_2014_07_009 crossref_primary_10_1097_EDE_0b013e3181e5463a crossref_primary_10_1007_s12560_013_9127_z crossref_primary_10_1016_j_epidem_2020_100401 crossref_primary_10_1128_AEM_06600_11 crossref_primary_10_1111_risa_13755 crossref_primary_10_3390_ijms22010171 crossref_primary_10_1128_JCM_00654_10 crossref_primary_10_1007_s12560_016_9236_6 crossref_primary_10_1016_j_nantod_2021_101267 crossref_primary_10_1016_j_watres_2020_116501 crossref_primary_10_2903_j_efsa_2011_2190 crossref_primary_10_1016_j_vaccine_2014_07_070 crossref_primary_10_1111_j_1472_765X_2010_02982_x crossref_primary_10_1016_j_cger_2016_02_008 crossref_primary_10_2807_1560_7917_ES_2017_22_8_30470 crossref_primary_10_1007_s12560_018_9345_5 crossref_primary_10_1093_cid_cir682 crossref_primary_10_1016_j_watres_2017_01_017 crossref_primary_10_1016_j_ajic_2023_05_017 crossref_primary_10_3389_fmicb_2023_1187142 crossref_primary_10_1061__ASCE_EE_1943_7870_0000833 crossref_primary_10_1016_j_mran_2015_04_001 crossref_primary_10_1080_23744235_2018_1546056 crossref_primary_10_1017_S0950268810000993 crossref_primary_10_1128_AEM_00532_12 crossref_primary_10_2217_fvl_15_57 crossref_primary_10_1186_s12917_018_1723_6 crossref_primary_10_1371_journal_pone_0201850 crossref_primary_10_1016_j_mran_2016_11_004 crossref_primary_10_1016_j_mran_2016_11_003 crossref_primary_10_1016_j_mran_2016_11_002 crossref_primary_10_1061__ASCE_EE_1943_7870_0000827 crossref_primary_10_1016_j_ajic_2010_10_010 crossref_primary_10_1016_j_antiviral_2010_05_002 crossref_primary_10_1126_science_aad5872 crossref_primary_10_12714_egejfas_38_2_16 crossref_primary_10_1128_CMR_00027_09 crossref_primary_10_1007_s12560_017_9279_3 crossref_primary_10_1007_s12560_020_09437_x crossref_primary_10_1080_10408398_2025_2467209 crossref_primary_10_1097_MAJ_0b013e3181e99893 crossref_primary_10_1016_j_ijid_2022_05_047 crossref_primary_10_1007_s12560_017_9320_6 crossref_primary_10_1002_jmv_21851 crossref_primary_10_1080_15459624_2018_1531131 crossref_primary_10_1016_j_idc_2017_11_004 crossref_primary_10_1016_j_scitotenv_2013_05_059 crossref_primary_10_1016_j_watres_2017_01_002 crossref_primary_10_1016_j_scitotenv_2019_02_107 crossref_primary_10_1128_AEM_00347_13 crossref_primary_10_1111_1541_4337_12140 crossref_primary_10_1016_j_foodcont_2013_05_015 crossref_primary_10_1128_JVI_06712_11 crossref_primary_10_1371_journal_pone_0235891 crossref_primary_10_1016_j_ifset_2021_102756 crossref_primary_10_1016_j_watres_2012_04_030 crossref_primary_10_1016_j_mran_2022_100229 crossref_primary_10_1007_s12560_019_09391_3 crossref_primary_10_1002_jmv_23802 crossref_primary_10_1016_j_ijheh_2022_114077 crossref_primary_10_1093_ofid_ofae714 crossref_primary_10_1016_j_watres_2017_10_034 crossref_primary_10_1016_j_mran_2021_100189 crossref_primary_10_3389_fimmu_2020_01383 crossref_primary_10_1111_risa_12616 crossref_primary_10_1021_acsestwater_3c00652 crossref_primary_10_2903_j_efsa_2012_2662 crossref_primary_10_1017_S0950268815003283 crossref_primary_10_11150_kansenshogakuzasshi_91_399 crossref_primary_10_1089_fpd_2015_2054 crossref_primary_10_1021_acsomega_3c08396 crossref_primary_10_1016_j_ijfoodmicro_2012_10_008 crossref_primary_10_1007_s00705_022_05437_3 crossref_primary_10_1128_JCM_00305_11 crossref_primary_10_1586_14760584_2015_1073110 crossref_primary_10_1021_es101266k crossref_primary_10_1080_07853890_2023_2246474 crossref_primary_10_1007_s10096_014_2205_9 crossref_primary_10_1093_ofid_ofad619 crossref_primary_10_1016_j_foodcont_2018_11_026 crossref_primary_10_1128_AEM_02763_15 crossref_primary_10_17352_jfsnt_000038 crossref_primary_10_3390_w10111525 crossref_primary_10_1056_NEJMra0804575 crossref_primary_10_1111_cei_12884 crossref_primary_10_1016_j_jhin_2009_06_028 crossref_primary_10_1007_s12560_023_09561_4 crossref_primary_10_1128_AEM_02801_10 crossref_primary_10_1021_acsestwater_0c00113 crossref_primary_10_1093_infdis_jiz220 crossref_primary_10_1007_s11356_022_23621_5 crossref_primary_10_1038_s41467_018_04725_4 crossref_primary_10_4315_0362_028X_JFP_15_444 crossref_primary_10_1016_j_mran_2018_01_003 crossref_primary_10_1016_j_jes_2016_05_041 crossref_primary_10_1038_s41598_021_02938_0 crossref_primary_10_1007_s12560_012_9081_1 crossref_primary_10_1128_jcm_00608_23 crossref_primary_10_2166_ws_2017_114 crossref_primary_10_1016_j_fm_2018_06_015 crossref_primary_10_1021_es501480q crossref_primary_10_1016_j_ijheh_2020_113669 crossref_primary_10_1111_1541_4337_12349 crossref_primary_10_24323_akademik_gida_475372 crossref_primary_10_1016_j_fm_2018_06_019 crossref_primary_10_1039_D2EW00720G crossref_primary_10_1007_s12560_014_9174_0 crossref_primary_10_3390_microorganisms8030458 crossref_primary_10_1016_j_watres_2014_07_032 crossref_primary_10_1007_s11356_016_6812_0 crossref_primary_10_1086_594119 crossref_primary_10_3390_children8090807 crossref_primary_10_1016_j_jviromet_2010_12_011 crossref_primary_10_1177_2472630317724769 crossref_primary_10_1128_JCM_01896_14 crossref_primary_10_3390_vaccines9010008 crossref_primary_10_1007_s12560_018_9353_5 crossref_primary_10_1128_AEM_00111_09 crossref_primary_10_3390_v10100548 crossref_primary_10_5942_jawwa_2015_107_0010 crossref_primary_10_3390_v12090955 crossref_primary_10_1111_tid_12212 crossref_primary_10_1371_journal_pone_0126571 crossref_primary_10_1016_j_ijfoodmicro_2024_110582 crossref_primary_10_1016_j_jiph_2014_08_007 crossref_primary_10_1016_j_jcv_2008_10_009 crossref_primary_10_3390_foods10102444 crossref_primary_10_1021_acs_est_1c05060 crossref_primary_10_1128_AEM_00077_11 crossref_primary_10_1093_infdis_jit148 crossref_primary_10_1016_j_scitotenv_2015_10_030 crossref_primary_10_4315_JFP_21_220 crossref_primary_10_1002_jmv_26578 crossref_primary_10_1371_journal_pone_0089071 crossref_primary_10_4315_0362_028X_JFP_15_215 crossref_primary_10_1128_AEM_00649_15 crossref_primary_10_1111_risa_12005 crossref_primary_10_1016_j_foodres_2014_08_018 crossref_primary_10_1186_s13568_015_0156_x crossref_primary_10_1016_j_idc_2013_05_009 crossref_primary_10_3390_w10101352 crossref_primary_10_1093_infdis_jiu496 crossref_primary_10_1186_s12917_021_02962_2 crossref_primary_10_3390_pathogens6040048 crossref_primary_10_1016_j_fm_2019_103254 crossref_primary_10_1016_j_molmed_2016_10_003 crossref_primary_10_1080_23744235_2025_2479133 crossref_primary_10_1016_j_biosystemseng_2021_05_005 crossref_primary_10_1128_AEM_07350_11 crossref_primary_10_1128_AEM_01219_14 crossref_primary_10_1021_acsestwater_0c00264 crossref_primary_10_1038_srep39241 crossref_primary_10_1136_bmjopen_2013_003060 crossref_primary_10_1093_cid_ciz1106 crossref_primary_10_1128_AEM_00650_15 crossref_primary_10_1016_j_bbrc_2013_04_013 crossref_primary_10_1016_j_watres_2014_08_026 crossref_primary_10_1128_AEM_04096_15 crossref_primary_10_3390_v16010151 crossref_primary_10_52420_2071_5943_2022_21_3_114_128 crossref_primary_10_1016_j_fm_2016_12_002 crossref_primary_10_1074_jbc_M114_602649 crossref_primary_10_3390_v12090997 crossref_primary_10_1016_j_epidem_2012_12_004 crossref_primary_10_1016_j_jenvman_2022_117112 crossref_primary_10_1016_j_micpath_2019_103648 crossref_primary_10_1097_MD_0000000000025123 crossref_primary_10_1002_advs_202403871 crossref_primary_10_1051_medsci_201026173 crossref_primary_10_1177_2051013615613272 crossref_primary_10_1016_j_jhin_2017_02_015 crossref_primary_10_1016_j_jfp_2024_100363 crossref_primary_10_1089_fpd_2013_1521 crossref_primary_10_1128_JVI_00284_09 crossref_primary_10_1371_journal_pone_0173996 crossref_primary_10_1039_D4EW00661E crossref_primary_10_4315_0362_028X_JFP_15_029 crossref_primary_10_3389_fcimb_2023_1258550 crossref_primary_10_1016_j_wem_2015_02_007 crossref_primary_10_1039_D3LC00904A crossref_primary_10_4315_0362_028X_JFP_16_088 crossref_primary_10_1016_j_ijfoodmicro_2015_02_012 crossref_primary_10_3136_nskkk_64_1 crossref_primary_10_1017_S0950268813002847 crossref_primary_10_1016_j_patbio_2013_01_002 crossref_primary_10_4315_0362_028X_JFP_11_081 crossref_primary_10_3389_fsufs_2024_1396693 crossref_primary_10_1155_2015_374637 crossref_primary_10_4315_JFP_21_423 crossref_primary_10_2134_jeq2015_11_0560 crossref_primary_10_1016_j_advwatres_2016_12_010 crossref_primary_10_1111_risa_12207 crossref_primary_10_4315_JFP_19_574 crossref_primary_10_4315_0362_028X_JFP_14_487 crossref_primary_10_1016_j_foodcont_2018_02_024 crossref_primary_10_1007_s12560_014_9143_7 crossref_primary_10_1016_j_virusres_2024_199408 crossref_primary_10_1093_cid_ciu120 crossref_primary_10_2166_wh_2022_114 crossref_primary_10_2166_wrd_2015_208 crossref_primary_10_3390_biomedicines12112442 crossref_primary_10_1016_j_fm_2020_103653 crossref_primary_10_1111_j_1539_6924_2012_01808_x crossref_primary_10_1128_JCM_01622_09 crossref_primary_10_1016_j_watres_2017_05_017 crossref_primary_10_1016_j_tifs_2013_07_005 crossref_primary_10_1111_risa_12235 crossref_primary_10_1128_AEM_00388_15 crossref_primary_10_1111_risa_13300 crossref_primary_10_1016_j_ijfoodmicro_2016_11_019 crossref_primary_10_1055_a_1826_7588 crossref_primary_10_7861_clinmedicine_11_6_548 crossref_primary_10_1128_CMR_00011_14 crossref_primary_10_3390_pathogens10070857 crossref_primary_10_1093_cid_cit287 crossref_primary_10_1007_s11262_013_0945_8 crossref_primary_10_1016_j_fm_2011_12_026 crossref_primary_10_1016_j_agwat_2020_106272 crossref_primary_10_1128_AEM_02843_12 crossref_primary_10_1128_AEM_06875_11 crossref_primary_10_1021_acs_estlett_8b00470 crossref_primary_10_47853_FAS_2022_e26 crossref_primary_10_3390_cimb45050267 crossref_primary_10_1016_j_mran_2018_06_002 crossref_primary_10_1016_j_ijfoodmicro_2020_108787 crossref_primary_10_1016_j_ijfoodmicro_2020_108785 crossref_primary_10_1017_S0950268812000490 crossref_primary_10_1186_s12866_020_02084_z crossref_primary_10_1017_S0950268817002692 crossref_primary_10_1146_annurev_food_022814_015643 crossref_primary_10_1111_1750_3841_16755 crossref_primary_10_1039_D3EW00362K crossref_primary_10_1016_j_ijfoodmicro_2010_07_030 crossref_primary_10_1017_S0950268817000498 crossref_primary_10_1111_jam_12167 crossref_primary_10_4315_0362_028X_JFP_14_016 crossref_primary_10_1021_es5020407 crossref_primary_10_1021_es903523q crossref_primary_10_1016_j_watres_2017_08_021 crossref_primary_10_1002_aws2_1353 crossref_primary_10_4315_0362_028X_JFP_10_235 crossref_primary_10_3851_IMP2229 crossref_primary_10_1016_j_envres_2014_06_002 crossref_primary_10_1016_j_foodcont_2017_08_037 crossref_primary_10_1007_s10068_011_0157_8 crossref_primary_10_1007_s10068_013_0119_4 crossref_primary_10_1016_j_ijfoodmicro_2013_01_011 crossref_primary_10_1007_s12560_016_9262_4 crossref_primary_10_4315_0362_028X_JFP_11_271 crossref_primary_10_4315_0362_028X_JFP_12_438 crossref_primary_10_1016_j_wroa_2020_100071 crossref_primary_10_3390_ijerph15112550 crossref_primary_10_1016_j_scitotenv_2017_03_105 crossref_primary_10_1016_j_trac_2022_116738 crossref_primary_10_1016_j_cofs_2018_12_002 crossref_primary_10_1016_j_watres_2010_03_003 crossref_primary_10_1088_1361_648X_aaa43b crossref_primary_10_1371_journal_pone_0079087 crossref_primary_10_1016_j_ijheh_2016_07_017 crossref_primary_10_1016_j_watres_2010_07_064 crossref_primary_10_3390_foods13010128 crossref_primary_10_1016_j_fm_2017_08_010 crossref_primary_10_1017_S0950268812000234 crossref_primary_10_1111_risa_13189 crossref_primary_10_1007_s41742_019_00176_x crossref_primary_10_1016_j_ijfoodmicro_2019_108327 crossref_primary_10_1128_AEM_00027_12 crossref_primary_10_1128_JVI_01333_14 crossref_primary_10_1021_es200566f crossref_primary_10_4315_0362_028X_73_2_305 crossref_primary_10_1016_j_jinf_2011_08_002 crossref_primary_10_1128_JVI_00647_16 crossref_primary_10_1016_j_mran_2020_100139 crossref_primary_10_1007_s12560_009_9019_4 crossref_primary_10_1002_fft2_280 crossref_primary_10_1371_journal_pcbi_1005481 crossref_primary_10_1016_j_watres_2017_09_041 crossref_primary_10_1016_j_jim_2015_05_001 crossref_primary_10_11150_kansenshogakuzasshi_84_702 crossref_primary_10_1016_j_mran_2020_100132 crossref_primary_10_1016_j_xcrm_2023_100954 crossref_primary_10_3358_shokueishi_58_12 crossref_primary_10_1016_j_jenvman_2020_110309 crossref_primary_10_1002_rmv_704 crossref_primary_10_1016_j_watres_2010_06_048 crossref_primary_10_1016_j_watres_2010_06_049 crossref_primary_10_1038_s41385_019_0199_4 crossref_primary_10_3233_JBR_170164 crossref_primary_10_2134_jeq2011_0430 crossref_primary_10_2208_jscejer_72_III_217 crossref_primary_10_1016_j_watres_2017_08_057 crossref_primary_10_1093_infdis_jis251 crossref_primary_10_4315_0362_028X_JFP_12_216 crossref_primary_10_1080_21645515_2015_1125054 crossref_primary_10_1016_j_scitotenv_2017_05_168 crossref_primary_10_3390_w12020544 crossref_primary_10_1139_cjm_2015_0756 crossref_primary_10_2903_j_efsa_2015_3939 crossref_primary_10_1016_j_marenvres_2017_08_009 crossref_primary_10_1016_j_mran_2019_100102 crossref_primary_10_3390_v14092053 crossref_primary_10_1016_j_envpol_2018_01_105 crossref_primary_10_1016_j_jhin_2015_02_019 crossref_primary_10_1021_acs_estlett_5b00219 crossref_primary_10_4315_0362_028X_JFP_10_438 crossref_primary_10_3201_eid2411_170820 crossref_primary_10_3389_fmicb_2021_722368 crossref_primary_10_1016_j_ijfoodmicro_2009_04_021 crossref_primary_10_2166_wh_2015_255 crossref_primary_10_3390_v11030226 crossref_primary_10_1080_10408398_2020_1719383 crossref_primary_10_1002_jmv_24112 crossref_primary_10_1128_AEM_05806_11 crossref_primary_10_1016_j_envint_2019_03_051 crossref_primary_10_1007_s12560_016_9260_6 crossref_primary_10_3390_w13192794 crossref_primary_10_1016_j_meegid_2014_06_013 crossref_primary_10_3389_fmicb_2024_1353798 crossref_primary_10_3390_w12020327 crossref_primary_10_1128_CMR_00075_14 crossref_primary_10_1111_1469_0691_12746 crossref_primary_10_1016_j_microc_2021_106050 crossref_primary_10_1007_s12560_012_9089_6 crossref_primary_10_1007_s12560_014_9136_6 crossref_primary_10_1016_j_watres_2018_01_056 crossref_primary_10_2166_ws_2015_185 crossref_primary_10_1111_risa_13386 crossref_primary_10_1128_aem_00807_22 crossref_primary_10_1111_jam_13252 crossref_primary_10_1007_s12403_020_00359_4 crossref_primary_10_1039_C9EM00376B crossref_primary_10_1111_risa_12077 crossref_primary_10_1007_s41999_018_0120_9 crossref_primary_10_1111_ele_14079 crossref_primary_10_1007_s12560_009_9017_6 crossref_primary_10_1016_j_ijfoodmicro_2018_01_015 crossref_primary_10_1017_S0950268813000496 crossref_primary_10_1016_j_foodcont_2020_107225 crossref_primary_10_1007_s12560_011_9053_x crossref_primary_10_1016_j_ijid_2014_06_022 crossref_primary_10_3390_v12040461 |
Cites_doi | 10.1097/00001574-200101000-00003 10.1093/infdis/154.5.871 10.1007/978-1-4899-4485-6 10.1111/j.1539-6924.1999.tb01143.x 10.1093/infdis/119.6.668 10.1093/infdis/123.3.307 10.1086/432546 10.1086/315588 10.1093/infdis/161.1.18 10.3201/eid1303.060549 10.1128/JVI.01306-06 10.3201/eid0505.990502 10.1111/j.1539-6924.1993.tb00013.x 10.1093/infdis/171.3.566 10.1002/jmv.20423 10.1093/oxfordjournals.aje.a113662 10.1038/nm860 10.1645/0022-3395(2000)086[0884:IOICAM]2.0.CO;2 10.1111/0272-4332.204048 10.3201/eid1107.041273 10.1086/339883 10.1128/JVI.79.8.4977-4990.2005 10.3181/00379727-140-36508 10.1016/0042-6822(67)90271-1 10.1097/01.qco.0000244053.69253.3d 10.3201/eid1708.050841 10.1007/s11908-007-0004-5 10.1093/infdis/170.1.34 10.1016/0273-1223(95)00314-D 10.1128/JVI.79.5.2900-2909.2005 |
ContentType | Journal Article |
Copyright | Copyright © 2008 Wiley‐Liss, Inc. 2008 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2008 Wiley‐Liss, Inc. – notice: 2008 INIST-CNRS |
DBID | FBQ BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7U9 8FD FR3 H94 P64 RC3 7S9 L.6 7X8 |
DOI | 10.1002/jmv.21237 |
DatabaseName | AGRIS Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Virology and AIDS Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts Genetics Abstracts Virology and AIDS Abstracts Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | AGRICOLA MEDLINE CrossRef MEDLINE - Academic AIDS and Cancer Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1096-9071 |
EndPage | 1476 |
ExternalDocumentID | 18551613 20466302 10_1002_jmv_21237 JMV21237 ark_67375_WNG_WFCL9F7G_4 US201300908599 |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID funderid: 5R01 A105U351‐03 – fundername: U.S. Environmental protection Agency (cooperative agreement) funderid: R‐82936501 – fundername: National Institutes of Health – fundername: PHS funderid: RR00046 – fundername: European Commission (Sixth Framework Programme) funderid: SSP22‐CT‐2004‐502084 – fundername: USEPA STAR funderid: R‐826139 – fundername: PHS HHS grantid: 5R01 A105U351-03 – fundername: NIAID NIH HHS grantid: R01 AI056351 – fundername: NCRR NIH HHS grantid: RR00046 |
GroupedDBID | --- .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3O- 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAVGM AAXRX AAZKR ABCQN ABCUV ABEML ABHUG ABIJN ABJNI ABOCM ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOF ACMXC ACPOU ACPRK ACSCC ACXBN ACXME ACXQS ADAWD ADBBV ADBTR ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEQTP AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AHMBA AI. AIACR AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS ECGQY EJD ELTNK EMOBN F00 F01 F04 F5P FBQ FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HF~ HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS UB1 V2E VH1 W8V W99 WBKPD WHG WIB WIH WIJ WIK WJL WNSPC WOHZO WQJ WRC WUP WXI WXSBR WYISQ X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~KM ~WT AAHQN AAIPD AAMMB AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AEFGJ AEYWJ AFWVQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AIQQE AITYG ALVPJ BSCLL HGLYW OIG AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7U9 8FD FR3 H94 P64 RC3 7S9 L.6 7X8 |
ID | FETCH-LOGICAL-c4777-37fa6a911de71c08cef34320303f65158e31114669885fec8e84c91d270d9eda3 |
IEDL.DBID | DR2 |
ISSN | 0146-6615 1096-9071 |
IngestDate | Fri Sep 05 12:53:18 EDT 2025 Fri Sep 05 08:56:02 EDT 2025 Fri Sep 05 09:34:16 EDT 2025 Mon Jul 21 06:04:18 EDT 2025 Mon Jul 21 09:11:01 EDT 2025 Tue Jul 01 02:24:20 EDT 2025 Thu Apr 24 22:52:27 EDT 2025 Wed Jan 22 16:48:50 EST 2025 Sun Sep 21 06:14:05 EDT 2025 Wed Dec 27 19:18:35 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Norovirus Human calicivirus Gastroenteritis secondary inoculum Virus Aggregation Infection viral gastroenteritis Calicivirus virus aggregation dose response Caliciviridae primary inoculum Norwalk virus Digestive diseases Intestinal disease Gastric disease |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4777-37fa6a911de71c08cef34320303f65158e31114669885fec8e84c91d270d9eda3 |
Notes | http://dx.doi.org/10.1002/jmv.21237 The views represented in this paper are solely those of the authors and not the representative institution. Use of tradenames and products is not an endorsement. USEPA STAR - No. R-826139 PHS - No. RR00046 ark:/67375/WNG-WFCL9F7G-4 U.S. Environmental protection Agency (cooperative agreement) - No. R-82936501 European Commission (Sixth Framework Programme) - No. SSP22-CT-2004-502084 National Institutes of Health istex:62967203DE71E149D2A1062DBBEE84441C6EB645 ArticleID:JMV21237 NIAID - No. 5R01 A105U351-03 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 18551613 |
PQID | 20258784 |
PQPubID | 23462 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_69226877 proquest_miscellaneous_47679874 proquest_miscellaneous_20258784 pubmed_primary_18551613 pascalfrancis_primary_20466302 crossref_primary_10_1002_jmv_21237 crossref_citationtrail_10_1002_jmv_21237 wiley_primary_10_1002_jmv_21237_JMV21237 istex_primary_ark_67375_WNG_WFCL9F7G_4 fao_agris_US201300908599 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2008 |
PublicationDateYYYYMMDD | 2008-08-01 |
PublicationDate_xml | – month: 08 year: 2008 text: August 2008 |
PublicationDecade | 2000 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: New York, NY – name: United States |
PublicationTitle | Journal of medical virology |
PublicationTitleAlternate | J. Med. Virol |
PublicationYear | 2008 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley-Liss |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley-Liss |
References | Dolin R, Blacklow NR, DuPont HL, Formal S, Buscho RF, Kasel JA, Chames RP, Hornick R, Chanock RM. 1971. Transmission of acute infectious nonbacterial gastroenteritis to volunteers by oral administration of stool filtrates. J Infect Dis 123: 307-312. Haas CN, Rose JB, Gerba C, Regli S. 1993. Risk assessment of virus in drinking water. Risk Analysis 13: 545-552. Cheetham S, Souza M, McGregor R, Meulia T, Wang Q, Saif LJ. 2007. Binding patterns of human norovirus-like particles to buccal and intestinal tissues of gnotobiotic pigs in relation to A/H histo-blood group antigen expression. J Virol 81: 3535-3544. Dolin R, Blacklow NR, DuPont H, Buscho RF, Wyatt RG, Kasel JA, Hornick R, Chanock RM. 1972. Biological properties of Norwalk agent of acute infectious nonbacterial gastroenteritis (36508). Proc Soc Exp Biol Med 140: 578-583. Goodgame R. 2007. Norovirus gastroenteritis. Curr Infect Dis Rep 9: 102-109. Lindesmith L, Moe C, Marionneau S, Ruvoen N, Jiang X, Lindbland L, Stewart P, le Pendu J, Baric R. 2003. Human susceptibility and resistance to Norwalk virus infection. Nat Med 9: 548-553. Hutson AM, Atmar RL, Graham DY, Estes MK. 2002. Norwalk virus infection and disease is associated with ABO histo-blood group type. J Infect Dis 185: 1335-1337. Okhuysen PC, Jiang X, Ye L, Johnson PC, Estes MK. 1995. Viral shedding and fecal IgA response after Norwalk virus infection. J Infect Dis 171: 566-569. Tillett HE, Lightfoot NF. 1995. Quality control in environmental microbiology compared with chemistry: What is homogeneous and what is random? Water Sci Technol 31: 471-477. Furumoto WA, Mickey R. 1967. A mathematical model for the infectivity-dilution curve of tobacco mosaic virus: Theoretical considerations. Virology 32: 216-223. Lindesmith L, Moe C, Le Pendu J, Frelinger JA, Treanor J, Baric RS. 2005. Cellular and humoral immunity following Snow Mountain virus challenge. J Virol 79: 2900-2909. Rohayem J, Munch J, Rethwilm A. 2005. Evidence of recombination in the norovirus capsid gene. J Virol 79: 4977-4990. Ward RL, Bernstein DI, Young EC, Sherwood JR, Knowlton DR, Schiff GM. 1986. Human Rotavirus studies in volunteers: Determination of infectious dose and serological response to infection. J Infect Dis 154: 871-880. Graham DY, Jiang X, Tanaka T, Opekun AR, Madore HP, Estes MK. 1994. Norwalk virus infection of volunteers: New insights based on improved assays. J Infect Dis 170: 34-43. Kroneman A, Vennema H, Harris J, Reuter G, von Bonsdorff C, Hedlund K, Vainio K, Jackson V, Pothier P, Koch J, Schreier E, Böttiger B, Koopmans M. 2006. Increase in norovirus activity reported in Europe. Euro Surveill 11: E061214.1. Ciarlet M, Estes MK. 2001. Rotavirus and calicivirus infections of the gastrointestinal tract. Curr Opin Gastroenterol 17: 10-16. Teunis PFM, Nagelkerke NJD, Haas CN. 1999. Dose response models for infectious gastroenteritis. Risk Anal 19: 1251-1260. Smith DR, Aguilar PV, Coffey LL, Gromowski GD, Wang E, Weaver SC. 2006. Venezuelan equine encephalitis virus transmission and effect on pathogenesis. Emerg Infect Dis 12: 1190-1196. Yang S, Benson SK, Du C, Healey MC. 2000. Infection of immunosuppressed C57BL/6N adult mice with a single oocyst of Cryptosporidium parvum. J Parasitol 86: 884-887. Johnson PC, Mathewson JJ, DuPont HL, Greenberg HB. 1990. Multiple challenge study of host susceptibility to Norwalk gastroenteritis in US adults. J Infect Dis 161: 18-21. Adler JL, Zickl R. 1969. Winter vomiting disease. J Infect Dis 119: 668-673. Haas CN. 1983. Estimation of risk due to low doses of microorganisms: A comparison of alternative methodologies. Am J Epidemiol 118: 573-582. Marionneau S, Airaud F, Bovin NV, Le Pendu J, Ruvoen-Clouet N. 2005. Influence of the combined ABO, FUT2, and FUT3 polymorphism on susceptibility to Norwalk virus attachment. J Infect Dis 192: 1071-1077. Bull RA, Hansman GS, Clancy LE, Tanaka MM, Rawlinson WD, White PA. 2005. Norovirus recombination in ORF1/ORF2 overlap. Emerg Infect Dis 11: 1079-1085. Gilks WR, Richardson S, Spiegelhalter DJ, editors. 1996. Markov Chain Monte Carlo in practice. London: Chapman and Hall. Mead PS, Slutsker L, Dietz V, McCaig LF, Bresee JS, Shapiro C, Griffin PM, Tauxe RV. 1999. Food-related illness and death in the United States. Emerg Infect Dis 5: 607-625. Straub TM, Höner zu Bentrup K, Orosz-Coghlan P, Dohnalkova A, Mayer BK, Bartholomew RA, Valdez CO, Bruckner-Lea CJ, Gerba CP, Abbaszadegan M, Nickerson CA. 2007. In vitro cell culture infectivity assay for human noroviruses. Emerg Infect Dis 13: 396-403. Estes MK, Prasad BV, Atmar RL. 2006. Noroviruses everywhere: Has something changed? Curr Opin Infect Dis 19: 467-474. Hutson AM, Airaud F, LePendu J, Estes MK, Atmar RL. 2005. Norwalk virus infection associates with secretor status genotyped from sera. J Med Virol 77: 116-120. Teunis PFM, Havelaar AH. 2000. The Beta Poisson model is not a single hit model. Risk Anal 20: 511-518. Teunis PFM, Chappell CL, Okhuysen PC. 2002. Cryptosporidium dose response studies: Variation between isolates Risk Analysis 22: 175-183. Glass RI, Noel J, Ando T, Fankhauser R, Belliot G, Mounts A, Parashar UD, Bresee JS, Monroe SS. 2000. The epidemiology of enteric caliciviruses from humans: A reassessment using new diagnostics. J Infect Dis 18: S254-S261. 1995; 31 2005; 192 1994; 170 2006; 12 1986; 154 2006; 11 2000; 20 2000; 86 1996 2006; 19 1971; 123 1999; 5 1995; 171 2007; 13 1990; 161 1983; 118 1993; 13 2000; 18 1967; 32 1999; 19 2002; 185 2003; 9 2002; 22 2007; 9 2007; 81 1969; 119 2001; 17 1972; 140 2005; 11 2005; 77 2005; 79 e_1_2_1_20_1 e_1_2_1_23_1 e_1_2_1_24_1 e_1_2_1_21_1 e_1_2_1_22_1 e_1_2_1_27_1 e_1_2_1_28_1 e_1_2_1_25_1 e_1_2_1_26_1 Teunis PFM (e_1_2_1_31_1) 2002; 22 e_1_2_1_29_1 Kroneman A (e_1_2_1_19_1) 2006; 11 e_1_2_1_7_1 e_1_2_1_8_1 e_1_2_1_30_1 e_1_2_1_5_1 e_1_2_1_6_1 e_1_2_1_3_1 e_1_2_1_12_1 e_1_2_1_35_1 e_1_2_1_4_1 e_1_2_1_13_1 e_1_2_1_34_1 e_1_2_1_10_1 e_1_2_1_33_1 e_1_2_1_2_1 e_1_2_1_11_1 e_1_2_1_32_1 e_1_2_1_16_1 e_1_2_1_17_1 e_1_2_1_14_1 e_1_2_1_15_1 e_1_2_1_9_1 e_1_2_1_18_1 |
References_xml | – reference: Cheetham S, Souza M, McGregor R, Meulia T, Wang Q, Saif LJ. 2007. Binding patterns of human norovirus-like particles to buccal and intestinal tissues of gnotobiotic pigs in relation to A/H histo-blood group antigen expression. J Virol 81: 3535-3544. – reference: Rohayem J, Munch J, Rethwilm A. 2005. Evidence of recombination in the norovirus capsid gene. J Virol 79: 4977-4990. – reference: Teunis PFM, Havelaar AH. 2000. The Beta Poisson model is not a single hit model. Risk Anal 20: 511-518. – reference: Kroneman A, Vennema H, Harris J, Reuter G, von Bonsdorff C, Hedlund K, Vainio K, Jackson V, Pothier P, Koch J, Schreier E, Böttiger B, Koopmans M. 2006. Increase in norovirus activity reported in Europe. Euro Surveill 11: E061214.1. – reference: Goodgame R. 2007. Norovirus gastroenteritis. Curr Infect Dis Rep 9: 102-109. – reference: Okhuysen PC, Jiang X, Ye L, Johnson PC, Estes MK. 1995. Viral shedding and fecal IgA response after Norwalk virus infection. J Infect Dis 171: 566-569. – reference: Ciarlet M, Estes MK. 2001. Rotavirus and calicivirus infections of the gastrointestinal tract. Curr Opin Gastroenterol 17: 10-16. – reference: Haas CN, Rose JB, Gerba C, Regli S. 1993. Risk assessment of virus in drinking water. Risk Analysis 13: 545-552. – reference: Ward RL, Bernstein DI, Young EC, Sherwood JR, Knowlton DR, Schiff GM. 1986. Human Rotavirus studies in volunteers: Determination of infectious dose and serological response to infection. J Infect Dis 154: 871-880. – reference: Hutson AM, Airaud F, LePendu J, Estes MK, Atmar RL. 2005. Norwalk virus infection associates with secretor status genotyped from sera. J Med Virol 77: 116-120. – reference: Adler JL, Zickl R. 1969. Winter vomiting disease. J Infect Dis 119: 668-673. – reference: Marionneau S, Airaud F, Bovin NV, Le Pendu J, Ruvoen-Clouet N. 2005. Influence of the combined ABO, FUT2, and FUT3 polymorphism on susceptibility to Norwalk virus attachment. J Infect Dis 192: 1071-1077. – reference: Yang S, Benson SK, Du C, Healey MC. 2000. Infection of immunosuppressed C57BL/6N adult mice with a single oocyst of Cryptosporidium parvum. J Parasitol 86: 884-887. – reference: Hutson AM, Atmar RL, Graham DY, Estes MK. 2002. Norwalk virus infection and disease is associated with ABO histo-blood group type. J Infect Dis 185: 1335-1337. – reference: Gilks WR, Richardson S, Spiegelhalter DJ, editors. 1996. Markov Chain Monte Carlo in practice. London: Chapman and Hall. – reference: Glass RI, Noel J, Ando T, Fankhauser R, Belliot G, Mounts A, Parashar UD, Bresee JS, Monroe SS. 2000. The epidemiology of enteric caliciviruses from humans: A reassessment using new diagnostics. J Infect Dis 18: S254-S261. – reference: Tillett HE, Lightfoot NF. 1995. Quality control in environmental microbiology compared with chemistry: What is homogeneous and what is random? Water Sci Technol 31: 471-477. – reference: Lindesmith L, Moe C, Marionneau S, Ruvoen N, Jiang X, Lindbland L, Stewart P, le Pendu J, Baric R. 2003. Human susceptibility and resistance to Norwalk virus infection. Nat Med 9: 548-553. – reference: Teunis PFM, Chappell CL, Okhuysen PC. 2002. Cryptosporidium dose response studies: Variation between isolates Risk Analysis 22: 175-183. – reference: Haas CN. 1983. Estimation of risk due to low doses of microorganisms: A comparison of alternative methodologies. Am J Epidemiol 118: 573-582. – reference: Johnson PC, Mathewson JJ, DuPont HL, Greenberg HB. 1990. Multiple challenge study of host susceptibility to Norwalk gastroenteritis in US adults. J Infect Dis 161: 18-21. – reference: Smith DR, Aguilar PV, Coffey LL, Gromowski GD, Wang E, Weaver SC. 2006. Venezuelan equine encephalitis virus transmission and effect on pathogenesis. Emerg Infect Dis 12: 1190-1196. – reference: Estes MK, Prasad BV, Atmar RL. 2006. Noroviruses everywhere: Has something changed? Curr Opin Infect Dis 19: 467-474. – reference: Bull RA, Hansman GS, Clancy LE, Tanaka MM, Rawlinson WD, White PA. 2005. Norovirus recombination in ORF1/ORF2 overlap. Emerg Infect Dis 11: 1079-1085. – reference: Mead PS, Slutsker L, Dietz V, McCaig LF, Bresee JS, Shapiro C, Griffin PM, Tauxe RV. 1999. Food-related illness and death in the United States. Emerg Infect Dis 5: 607-625. – reference: Lindesmith L, Moe C, Le Pendu J, Frelinger JA, Treanor J, Baric RS. 2005. Cellular and humoral immunity following Snow Mountain virus challenge. J Virol 79: 2900-2909. – reference: Dolin R, Blacklow NR, DuPont HL, Formal S, Buscho RF, Kasel JA, Chames RP, Hornick R, Chanock RM. 1971. Transmission of acute infectious nonbacterial gastroenteritis to volunteers by oral administration of stool filtrates. J Infect Dis 123: 307-312. – reference: Teunis PFM, Nagelkerke NJD, Haas CN. 1999. Dose response models for infectious gastroenteritis. Risk Anal 19: 1251-1260. – reference: Straub TM, Höner zu Bentrup K, Orosz-Coghlan P, Dohnalkova A, Mayer BK, Bartholomew RA, Valdez CO, Bruckner-Lea CJ, Gerba CP, Abbaszadegan M, Nickerson CA. 2007. In vitro cell culture infectivity assay for human noroviruses. Emerg Infect Dis 13: 396-403. – reference: Graham DY, Jiang X, Tanaka T, Opekun AR, Madore HP, Estes MK. 1994. Norwalk virus infection of volunteers: New insights based on improved assays. J Infect Dis 170: 34-43. – reference: Furumoto WA, Mickey R. 1967. A mathematical model for the infectivity-dilution curve of tobacco mosaic virus: Theoretical considerations. Virology 32: 216-223. – reference: Dolin R, Blacklow NR, DuPont H, Buscho RF, Wyatt RG, Kasel JA, Hornick R, Chanock RM. 1972. Biological properties of Norwalk agent of acute infectious nonbacterial gastroenteritis (36508). Proc Soc Exp Biol Med 140: 578-583. – volume: 79 start-page: 4977 year: 2005 end-page: 4990 article-title: Evidence of recombination in the norovirus capsid gene publication-title: J Virol – volume: 185 start-page: 1335 year: 2002 end-page: 1337 article-title: Norwalk virus infection and disease is associated with ABO histo‐blood group type publication-title: J Infect Dis – volume: 81 start-page: 3535 year: 2007 end-page: 3544 article-title: Binding patterns of human norovirus‐like particles to buccal and intestinal tissues of gnotobiotic pigs in relation to A/H histo‐blood group antigen expression publication-title: J Virol – year: 1996 – volume: 13 start-page: 545 year: 1993 end-page: 552 article-title: Risk assessment of virus in drinking water publication-title: Risk Analysis – volume: 119 start-page: 668 year: 1969 end-page: 673 article-title: Winter vomiting disease publication-title: J Infect Dis – volume: 170 start-page: 34 year: 1994 end-page: 43 article-title: Norwalk virus infection of volunteers: New insights based on improved assays publication-title: J Infect Dis – volume: 19 start-page: 467 year: 2006 end-page: 474 article-title: Noroviruses everywhere: Has something changed? publication-title: Curr Opin Infect Dis – volume: 140 start-page: 578 year: 1972 end-page: 583 article-title: Biological properties of Norwalk agent of acute infectious nonbacterial gastroenteritis (36508) publication-title: Proc Soc Exp Biol Med – volume: 22 start-page: 175 year: 2002 end-page: 183 publication-title: Cryptosporidium dose response studies: Variation between isolates Risk Analysis – volume: 5 start-page: 607 year: 1999 end-page: 625 article-title: Food‐related illness and death in the United States publication-title: Emerg Infect Dis – volume: 11 start-page: 1079 year: 2005 end-page: 1085 article-title: Norovirus recombination in ORF1/ORF2 overlap publication-title: Emerg Infect Dis – volume: 18 start-page: S254 year: 2000 end-page: S261 article-title: The epidemiology of enteric caliciviruses from humans: A reassessment using new diagnostics publication-title: J Infect Dis – volume: 123 start-page: 307 year: 1971 end-page: 312 article-title: Transmission of acute infectious nonbacterial gastroenteritis to volunteers by oral administration of stool filtrates publication-title: J Infect Dis – volume: 12 start-page: 1190 year: 2006 end-page: 1196 article-title: Venezuelan equine encephalitis virus transmission and effect on pathogenesis publication-title: Emerg Infect Dis – volume: 17 start-page: 10 year: 2001 end-page: 16 article-title: Rotavirus and calicivirus infections of the gastrointestinal tract publication-title: Curr Opin Gastroenterol – volume: 9 start-page: 102 year: 2007 end-page: 109 article-title: Norovirus gastroenteritis publication-title: Curr Infect Dis Rep – volume: 118 start-page: 573 year: 1983 end-page: 582 article-title: Estimation of risk due to low doses of microorganisms: A comparison of alternative methodologies publication-title: Am J Epidemiol – volume: 20 start-page: 511 year: 2000 end-page: 518 article-title: The Beta Poisson model is not a single hit model publication-title: Risk Anal – volume: 19 start-page: 1251 year: 1999 end-page: 1260 article-title: Dose response models for infectious gastroenteritis publication-title: Risk Anal – volume: 86 start-page: 884 year: 2000 end-page: 887 article-title: Infection of immunosuppressed C57BL/6N adult mice with a single oocyst of publication-title: J Parasitol – volume: 77 start-page: 116 year: 2005 end-page: 120 article-title: Norwalk virus infection associates with secretor status genotyped from sera publication-title: J Med Virol – volume: 79 start-page: 2900 year: 2005 end-page: 2909 article-title: Cellular and humoral immunity following Snow Mountain virus challenge publication-title: J Virol – volume: 161 start-page: 18 year: 1990 end-page: 21 article-title: Multiple challenge study of host susceptibility to Norwalk gastroenteritis in US adults publication-title: J Infect Dis – volume: 171 start-page: 566 year: 1995 end-page: 569 article-title: Viral shedding and fecal IgA response after Norwalk virus infection publication-title: J Infect Dis – volume: 31 start-page: 471 year: 1995 end-page: 477 article-title: Quality control in environmental microbiology compared with chemistry: What is homogeneous and what is random? publication-title: Water Sci Technol – volume: 11 start-page: E061214.1 year: 2006 article-title: Increase in norovirus activity reported in Europe publication-title: Euro Surveill – volume: 32 start-page: 216 year: 1967 end-page: 223 article-title: A mathematical model for the infectivity‐dilution curve of tobacco mosaic virus: Theoretical considerations publication-title: Virology – volume: 9 start-page: 548 year: 2003 end-page: 553 article-title: Human susceptibility and resistance to Norwalk virus infection publication-title: Nat Med – volume: 192 start-page: 1071 year: 2005 end-page: 1077 article-title: Influence of the combined ABO, FUT2, and FUT3 polymorphism on susceptibility to Norwalk virus attachment publication-title: J Infect Dis – volume: 13 start-page: 396 year: 2007 end-page: 403 article-title: In vitro cell culture infectivity assay for human noroviruses publication-title: Emerg Infect Dis – volume: 154 start-page: 871 year: 1986 end-page: 880 article-title: Human Rotavirus studies in volunteers: Determination of infectious dose and serological response to infection publication-title: J Infect Dis – volume: 11 start-page: E061214.1 year: 2006 ident: e_1_2_1_19_1 article-title: Increase in norovirus activity reported in Europe publication-title: Euro Surveill – ident: e_1_2_1_5_1 doi: 10.1097/00001574-200101000-00003 – ident: e_1_2_1_33_1 doi: 10.1093/infdis/154.5.871 – ident: e_1_2_1_10_1 doi: 10.1007/978-1-4899-4485-6 – ident: e_1_2_1_30_1 doi: 10.1111/j.1539-6924.1999.tb01143.x – ident: e_1_2_1_2_1 doi: 10.1093/infdis/119.6.668 – ident: e_1_2_1_6_1 doi: 10.1093/infdis/123.3.307 – ident: e_1_2_1_22_1 doi: 10.1086/432546 – ident: e_1_2_1_11_1 doi: 10.1086/315588 – ident: e_1_2_1_18_1 doi: 10.1093/infdis/161.1.18 – ident: e_1_2_1_27_1 doi: 10.3201/eid1303.060549 – ident: e_1_2_1_29_1 – ident: e_1_2_1_34_1 – ident: e_1_2_1_4_1 doi: 10.1128/JVI.01306-06 – ident: e_1_2_1_23_1 doi: 10.3201/eid0505.990502 – ident: e_1_2_1_15_1 doi: 10.1111/j.1539-6924.1993.tb00013.x – ident: e_1_2_1_24_1 doi: 10.1093/infdis/171.3.566 – volume: 22 start-page: 175 year: 2002 ident: e_1_2_1_31_1 publication-title: Cryptosporidium dose response studies: Variation between isolates Risk Analysis – ident: e_1_2_1_17_1 doi: 10.1002/jmv.20423 – ident: e_1_2_1_14_1 doi: 10.1093/oxfordjournals.aje.a113662 – ident: e_1_2_1_20_1 doi: 10.1038/nm860 – ident: e_1_2_1_35_1 doi: 10.1645/0022-3395(2000)086[0884:IOICAM]2.0.CO;2 – ident: e_1_2_1_28_1 doi: 10.1111/0272-4332.204048 – ident: e_1_2_1_3_1 doi: 10.3201/eid1107.041273 – ident: e_1_2_1_16_1 doi: 10.1086/339883 – ident: e_1_2_1_25_1 doi: 10.1128/JVI.79.8.4977-4990.2005 – ident: e_1_2_1_7_1 doi: 10.3181/00379727-140-36508 – ident: e_1_2_1_9_1 doi: 10.1016/0042-6822(67)90271-1 – ident: e_1_2_1_8_1 doi: 10.1097/01.qco.0000244053.69253.3d – ident: e_1_2_1_26_1 doi: 10.3201/eid1708.050841 – ident: e_1_2_1_12_1 doi: 10.1007/s11908-007-0004-5 – ident: e_1_2_1_13_1 doi: 10.1093/infdis/170.1.34 – ident: e_1_2_1_32_1 doi: 10.1016/0273-1223(95)00314-D – ident: e_1_2_1_21_1 doi: 10.1128/JVI.79.5.2900-2909.2005 |
SSID | ssj0008922 |
Score | 2.496649 |
Snippet | Noroviruses are major agents of viral gastroenteritis worldwide. The infectivity of Norwalk virus, the prototype norovirus, has been studied in susceptible... |
SourceID | proquest pubmed pascalfrancis crossref wiley istex fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1468 |
SubjectTerms | Biological and medical sciences Caliciviridae Infections - genetics Caliciviridae Infections - physiopathology Caliciviridae Infections - transmission Caliciviridae Infections - virology dose response Fundamental and applied biological sciences. Psychology Gastroenteritis - genetics Gastroenteritis - physiopathology Gastroenteritis - virology Human viral diseases Humans Infectious diseases Medical sciences Microbiology Microscopy, Electron Miscellaneous Models, Biological Monte Carlo Method Norovirus Norwalk virus Norwalk virus - genetics Norwalk virus - isolation & purification Norwalk virus - pathogenicity Norwalk virus - ultrastructure primary inoculum Reverse Transcriptase Polymerase Chain Reaction Risk Assessment RNA, Viral - analysis secondary inoculum Viral diseases viral gastroenteritis Virology virus aggregation |
Title | Norwalk virus: How infectious is it |
URI | https://api.istex.fr/ark:/67375/WNG-WFCL9F7G-4/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmv.21237 https://www.ncbi.nlm.nih.gov/pubmed/18551613 https://www.proquest.com/docview/20258784 https://www.proquest.com/docview/47679874 https://www.proquest.com/docview/69226877 |
Volume | 80 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6VHhAX3lAXKBaqEBen3vV6H3BAqJBGFckBCO0BabVr71YlbYLyaBG_nhk7dhTUIoSUgw-zlmZ2Xs7MfEPILnNlEQJ1ieMBPlBUmifOcwS89BBOtBK6xAHn_kD0hvzwOD_eIG-aWZgaH6L9ww0to_LXaODWzfZWoKHfzy866HdxkpxmAnHz339aQUcpXVcQwBMkEIPyBlUoZXvtybVYdCPYCWSoKNyf2CFpZyCkUG-3uCr9XM9mq3DUvUO-NYzUXSijzmLuOsWvPzAe_5PTu-T2Mk2N39V6dY9s-PF9crO_LMQ_ILuDyfTSno3ii9PpYvY67k0u46avazGLT-E3f_uQDLsfvuz3kuXChaTgUqKzCVZYcH-ll7RIVeEDzp2CH8gCrkxXPqM4xSy0Ujm8UnnFC01LJtNS-9Jmj8jmeDL2WyTOVUmptpDfBMatpU5y4bMiD0I4pssyIq8a0ZtiiUaOSzHOTI2jzAxwbSquI_KiJf1RQ3BcRbQF92fsCbhGM_zMsCCbakRv0xF5WV1qe9hOR9jOJnNzNDgwR939j7orDwyPyM7arbcHWAo8ZymLyPNGDQxYIZZW7NiDWIGC5Uoqfj0Fl1jvkn-hEKCxQklg5XGtYStuFZYzaQZCq_TkejGYw_7X6mH730mfkFt1Ewx2NT4lm_Ppwj-DTGvudiqT-g0-sh6N |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9NADLe2IQEvfMPCxxahCfGSLrlccncICaFBV0bbB1i3vaDTJblDo6NF_dgQfz120qQq2hBCykMefJHss33O2f4ZYIdlRe5clAUZd_iDIsMkyCwnwEuLx4mSqSqowbnXTzsDfnCSnKzB67oXpsKHaC7cyDJKf00GThfSu0vU0G_fz1vkeMU6XKP8HJnlu09L8CipqhwC-oIAT6GkxhUK2W6zdOU0WndmjDEqifcn1UiaKYrJVfMtLgtAV-PZ8kBq34YvNStVHcqwNZ9lrfzXHyiP_8vrHbi1iFT9t5Vq3YU1O7oH13uLXPx92OmPJxfmbOifn07m01d-Z3zh16Vd86l_is_szQMYtN8f7nWCxcyFIOdCkL9xJjXoAQsrojyUuXXUeoquIHY0NV3aOKJG5lRJmeAnpZU8V1HBRFgoW5j4IWyMxiO7CX4iiyhSBkMcx7gxUSZ4auM8cWmaMVUUHrysZa_zBSA5zcU40xWUMtPItS659uB5Q_qjQuG4jGgTN1Cbr-gd9eAzo5xsqAjATXnwotzVZrGZDKmiTST6uL-vj9t7XdUW-5p7sLWy7c0CFiLPccg82K71QKMhUnbFjCyKFSlYIoXkV1NwQSkv8ReKFFU2lQJZeVSp2JJbSRnNKEahlYpytRj0Qe-ofHn876TbcKNz2Ovq7of-xydws6qJoSLHp7Axm8ztMwy8ZtlWaV-_ASTTIqo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbaIlVceEPDo41QhbjsNnEcP-CAqkK6lO4KAUt7QLKc2EZly261jxbx6zuTbLJa1CKElEMO40gznpczM58J2aa5LbyP81bOPBxQZJS2cscQ8NJBOFGSK4sDzt0e7_TZwXF6vEJe17MwFT5E88MNLaP012jgZ9bvLEBDf_w8b6PfFavkBuNwusKM6NMCO0qqqoQArqAFQSitYYUiutMsXQpGq96MIEVF6f7CFkkzASn56nqLq_LP5XS2jEfZbfKt5qRqQxm0Z9O8Xfz-A-TxP1m9Q27N89Rwt1Ksu2TFDe-R9e68En-fbPdG4wtzOgjPT8azyauwM7oI68au2SQ8gWf65gHpZ---7HVa8xsXWgUTAr2NN9yA_7NOxEUkC-dx8BQcQeLxznTpkhjHmLmSMoVPSidZoWJLRWSVsyZ5SNaGo6HbIGEqbRwrAwmOp8yYOBeMu6RIPec5VdYG5GUtel3M4cjxVoxTXQEpUw1c65LrgDxvSM8qDI6riDZg_7T5Dr5R9z9TrMhGCuHbVEBelJvaLDbjAfaziVQf9fb1UbZ3qDKxr1lANpd2vVlAI-A5iWhAtmo10GCGWFsxQwdiBQqaSiHZ9RRMYMFL_IWCg8ZyKYCVR5WGLbiVWM-MExBaqSfXi0EfdL-WL4__nXSLrH98m-nD970PT8jNqiEGOxyfkrXpeOaeQdY1zTdL67oEmSkhWQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Norwalk+virus%3A+how+infectious+is+it%3F&rft.jtitle=Journal+of+medical+virology&rft.au=Teunis%2C+Peter+F+M&rft.au=Moe%2C+Christine+L&rft.au=Liu%2C+Pengbo&rft.au=Miller%2C+Sara+E&rft.date=2008-08-01&rft.eissn=1096-9071&rft.volume=80&rft.issue=8&rft.spage=1468&rft_id=info:doi/10.1002%2Fjmv.21237&rft_id=info%3Apmid%2F18551613&rft.externalDocID=18551613 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0146-6615&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0146-6615&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0146-6615&client=summon |