Automated delineation of head and neck organs at risk using synthetic MRI‐aided mask scoring regional convolutional neural network

Purpose Auto‐segmentation algorithms offer a potential solution to eliminate the labor‐intensive, time‐consuming, and observer‐dependent manual delineation of organs‐at‐risk (OARs) in radiotherapy treatment planning. This study aimed to develop a deep learning‐based automated OAR delineation method...

Full description

Saved in:
Bibliographic Details
Published inMedical physics (Lancaster) Vol. 48; no. 10; pp. 5862 - 5873
Main Authors Dai, Xianjin, Lei, Yang, Wang, Tonghe, Zhou, Jun, Roper, Justin, McDonald, Mark, Beitler, Jonathan J., Curran, Walter J., Liu, Tian, Yang, Xiaofeng
Format Journal Article
LanguageEnglish
Published United States 01.10.2021
Subjects
Online AccessGet full text
ISSN0094-2405
2473-4209
1522-8541
2473-4209
DOI10.1002/mp.15146

Cover

Abstract Purpose Auto‐segmentation algorithms offer a potential solution to eliminate the labor‐intensive, time‐consuming, and observer‐dependent manual delineation of organs‐at‐risk (OARs) in radiotherapy treatment planning. This study aimed to develop a deep learning‐based automated OAR delineation method to tackle the current challenges remaining in achieving reliable expert performance with the state‐of‐the‐art auto‐delineation algorithms. Methods The accuracy of OAR delineation is expected to be improved by utilizing the complementary contrasts provided by computed tomography (CT) (bony‐structure contrast) and magnetic resonance imaging (MRI) (soft‐tissue contrast). Given CT images, synthetic MR images were firstly generated by a pre‐trained cycle‐consistent generative adversarial network. The features of CT and synthetic MRI were then extracted and combined for the final delineation of organs using mask scoring regional convolutional neural network. Both in‐house and public datasets containing CT scans from head‐and‐neck (HN) cancer patients were adopted to quantitatively evaluate the performance of the proposed method against current state‐of‐the‐art algorithms in metrics including Dice similarity coefficient (DSC), 95th percentile Hausdorff distance (HD95), mean surface distance (MSD), and residual mean square distance (RMS). Results Across all of 18 OARs in our in‐house dataset, the proposed method achieved an average DSC, HD95, MSD, and RMS of 0.77 (0.58–0.90), 2.90 mm (1.32–7.63 mm), 0.89 mm (0.42–1.85 mm), and 1.44 mm (0.71–3.15 mm), respectively, outperforming the current state‐of‐the‐art algorithms by 6%, 16%, 25%, and 36%, respectively. On public datasets, for all nine OARs, an average DSC of 0.86 (0.73–0.97) were achieved, 6% better than the competing methods. Conclusion We demonstrated the feasibility of a synthetic MRI‐aided deep learning framework for automated delineation of OARs in HN radiotherapy treatment planning. The proposed method could be adopted into routine HN cancer radiotherapy treatment planning to rapidly contour OARs with high accuracy.
AbstractList Auto-segmentation algorithms offer a potential solution to eliminate the labor-intensive, time-consuming, and observer-dependent manual delineation of organs-at-risk (OARs) in radiotherapy treatment planning. This study aimed to develop a deep learning-based automated OAR delineation method to tackle the current challenges remaining in achieving reliable expert performance with the state-of-the-art auto-delineation algorithms. The accuracy of OAR delineation is expected to be improved by utilizing the complementary contrasts provided by computed tomography (CT) (bony-structure contrast) and magnetic resonance imaging (MRI) (soft-tissue contrast). Given CT images, synthetic MR images were firstly generated by a pre-trained cycle-consistent generative adversarial network. The features of CT and synthetic MRI were then extracted and combined for the final delineation of organs using mask scoring regional convolutional neural network. Both in-house and public datasets containing CT scans from head-and-neck (HN) cancer patients were adopted to quantitatively evaluate the performance of the proposed method against current state-of-the-art algorithms in metrics including Dice similarity coefficient (DSC), 95th percentile Hausdorff distance (HD95), mean surface distance (MSD), and residual mean square distance (RMS). Across all of 18 OARs in our in-house dataset, the proposed method achieved an average DSC, HD95, MSD, and RMS of 0.77 (0.58-0.90), 2.90 mm (1.32-7.63 mm), 0.89 mm (0.42-1.85 mm), and 1.44 mm (0.71-3.15 mm), respectively, outperforming the current state-of-the-art algorithms by 6%, 16%, 25%, and 36%, respectively. On public datasets, for all nine OARs, an average DSC of 0.86 (0.73-0.97) were achieved, 6% better than the competing methods. We demonstrated the feasibility of a synthetic MRI-aided deep learning framework for automated delineation of OARs in HN radiotherapy treatment planning. The proposed method could be adopted into routine HN cancer radiotherapy treatment planning to rapidly contour OARs with high accuracy.
Purpose Auto‐segmentation algorithms offer a potential solution to eliminate the labor‐intensive, time‐consuming, and observer‐dependent manual delineation of organs‐at‐risk (OARs) in radiotherapy treatment planning. This study aimed to develop a deep learning‐based automated OAR delineation method to tackle the current challenges remaining in achieving reliable expert performance with the state‐of‐the‐art auto‐delineation algorithms. Methods The accuracy of OAR delineation is expected to be improved by utilizing the complementary contrasts provided by computed tomography (CT) (bony‐structure contrast) and magnetic resonance imaging (MRI) (soft‐tissue contrast). Given CT images, synthetic MR images were firstly generated by a pre‐trained cycle‐consistent generative adversarial network. The features of CT and synthetic MRI were then extracted and combined for the final delineation of organs using mask scoring regional convolutional neural network. Both in‐house and public datasets containing CT scans from head‐and‐neck (HN) cancer patients were adopted to quantitatively evaluate the performance of the proposed method against current state‐of‐the‐art algorithms in metrics including Dice similarity coefficient (DSC), 95th percentile Hausdorff distance (HD95), mean surface distance (MSD), and residual mean square distance (RMS). Results Across all of 18 OARs in our in‐house dataset, the proposed method achieved an average DSC, HD95, MSD, and RMS of 0.77 (0.58–0.90), 2.90 mm (1.32–7.63 mm), 0.89 mm (0.42–1.85 mm), and 1.44 mm (0.71–3.15 mm), respectively, outperforming the current state‐of‐the‐art algorithms by 6%, 16%, 25%, and 36%, respectively. On public datasets, for all nine OARs, an average DSC of 0.86 (0.73–0.97) were achieved, 6% better than the competing methods. Conclusion We demonstrated the feasibility of a synthetic MRI‐aided deep learning framework for automated delineation of OARs in HN radiotherapy treatment planning. The proposed method could be adopted into routine HN cancer radiotherapy treatment planning to rapidly contour OARs with high accuracy.
Auto-segmentation algorithms offer a potential solution to eliminate the labor-intensive, time-consuming, and observer-dependent manual delineation of organs-at-risk (OARs) in radiotherapy treatment planning. This study aimed to develop a deep learning-based automated OAR delineation method to tackle the current challenges remaining in achieving reliable expert performance with the state-of-the-art auto-delineation algorithms.PURPOSEAuto-segmentation algorithms offer a potential solution to eliminate the labor-intensive, time-consuming, and observer-dependent manual delineation of organs-at-risk (OARs) in radiotherapy treatment planning. This study aimed to develop a deep learning-based automated OAR delineation method to tackle the current challenges remaining in achieving reliable expert performance with the state-of-the-art auto-delineation algorithms.The accuracy of OAR delineation is expected to be improved by utilizing the complementary contrasts provided by computed tomography (CT) (bony-structure contrast) and magnetic resonance imaging (MRI) (soft-tissue contrast). Given CT images, synthetic MR images were firstly generated by a pre-trained cycle-consistent generative adversarial network. The features of CT and synthetic MRI were then extracted and combined for the final delineation of organs using mask scoring regional convolutional neural network. Both in-house and public datasets containing CT scans from head-and-neck (HN) cancer patients were adopted to quantitatively evaluate the performance of the proposed method against current state-of-the-art algorithms in metrics including Dice similarity coefficient (DSC), 95th percentile Hausdorff distance (HD95), mean surface distance (MSD), and residual mean square distance (RMS).METHODSThe accuracy of OAR delineation is expected to be improved by utilizing the complementary contrasts provided by computed tomography (CT) (bony-structure contrast) and magnetic resonance imaging (MRI) (soft-tissue contrast). Given CT images, synthetic MR images were firstly generated by a pre-trained cycle-consistent generative adversarial network. The features of CT and synthetic MRI were then extracted and combined for the final delineation of organs using mask scoring regional convolutional neural network. Both in-house and public datasets containing CT scans from head-and-neck (HN) cancer patients were adopted to quantitatively evaluate the performance of the proposed method against current state-of-the-art algorithms in metrics including Dice similarity coefficient (DSC), 95th percentile Hausdorff distance (HD95), mean surface distance (MSD), and residual mean square distance (RMS).Across all of 18 OARs in our in-house dataset, the proposed method achieved an average DSC, HD95, MSD, and RMS of 0.77 (0.58-0.90), 2.90 mm (1.32-7.63 mm), 0.89 mm (0.42-1.85 mm), and 1.44 mm (0.71-3.15 mm), respectively, outperforming the current state-of-the-art algorithms by 6%, 16%, 25%, and 36%, respectively. On public datasets, for all nine OARs, an average DSC of 0.86 (0.73-0.97) were achieved, 6% better than the competing methods.RESULTSAcross all of 18 OARs in our in-house dataset, the proposed method achieved an average DSC, HD95, MSD, and RMS of 0.77 (0.58-0.90), 2.90 mm (1.32-7.63 mm), 0.89 mm (0.42-1.85 mm), and 1.44 mm (0.71-3.15 mm), respectively, outperforming the current state-of-the-art algorithms by 6%, 16%, 25%, and 36%, respectively. On public datasets, for all nine OARs, an average DSC of 0.86 (0.73-0.97) were achieved, 6% better than the competing methods.We demonstrated the feasibility of a synthetic MRI-aided deep learning framework for automated delineation of OARs in HN radiotherapy treatment planning. The proposed method could be adopted into routine HN cancer radiotherapy treatment planning to rapidly contour OARs with high accuracy.CONCLUSIONWe demonstrated the feasibility of a synthetic MRI-aided deep learning framework for automated delineation of OARs in HN radiotherapy treatment planning. The proposed method could be adopted into routine HN cancer radiotherapy treatment planning to rapidly contour OARs with high accuracy.
Author Yang, Xiaofeng
Zhou, Jun
Beitler, Jonathan J.
Wang, Tonghe
Curran, Walter J.
Dai, Xianjin
Liu, Tian
McDonald, Mark
Lei, Yang
Roper, Justin
Author_xml – sequence: 1
  givenname: Xianjin
  surname: Dai
  fullname: Dai, Xianjin
  organization: Emory University
– sequence: 2
  givenname: Yang
  surname: Lei
  fullname: Lei, Yang
  organization: Emory University
– sequence: 3
  givenname: Tonghe
  surname: Wang
  fullname: Wang, Tonghe
  organization: Emory University
– sequence: 4
  givenname: Jun
  surname: Zhou
  fullname: Zhou, Jun
  organization: Emory University
– sequence: 5
  givenname: Justin
  surname: Roper
  fullname: Roper, Justin
  organization: Emory University
– sequence: 6
  givenname: Mark
  surname: McDonald
  fullname: McDonald, Mark
  organization: Emory University
– sequence: 7
  givenname: Jonathan J.
  surname: Beitler
  fullname: Beitler, Jonathan J.
  organization: Emory University
– sequence: 8
  givenname: Walter J.
  surname: Curran
  fullname: Curran, Walter J.
  organization: Emory University
– sequence: 9
  givenname: Tian
  surname: Liu
  fullname: Liu, Tian
  organization: Emory University
– sequence: 10
  givenname: Xiaofeng
  surname: Yang
  fullname: Yang, Xiaofeng
  email: xiaofeng.yang@emory.edu
  organization: Emory University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34342878$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAURi3Uik4LEk-AvCyLTP2XcbJCVVWgUqtWCNaWYzszZhw72E5Hs2PBA_CMPEnTSakoAlZXlo_Pd33vIdjzwRsAXmE0xwiRk66f4xKzxTMwI4zTghFU74EZQjUrCEPlAThM6QtCaEFL9BwcUEYZqXg1A99Phxw6mY2G2jjrjcw2eBhauDJSQ-k19EatYYhL6ROUGUab1nBI1i9h2vq8MtkqePXx4ue3H9Lq0dPJEUgqxHskmuXokw6q4G-DG_J08maIu5I3Ia5fgP1WumRePtQj8Pnd-aezD8Xl9fuLs9PLQjHOF0XTKkQ4bjShRDLFuWoxb-vKlJgoqmXFSq1Q26JGNpgpymmNamx0y-tK6orRI_Bm8g6-l9uNdE700XYybgVG4n6SouvFbpIj-3Zi-6HpjFbG57HjRz5IK57eeLsSy3ArMOYIUc5Hw_GDIYavg0lZdDYp45z0JgxJkLLkJa1LREf09e9hjym_9jQC8wlQMaQUTSuUzbtVjdnW_a394z8e_OenxYRurDPbf3Li6mbi7wD9acRt
CitedBy_id crossref_primary_10_3390_biomedinformatics3030050
crossref_primary_10_3390_bioengineering10091078
crossref_primary_10_1016_j_semradonc_2023_10_003
crossref_primary_10_3389_fonc_2022_833816
crossref_primary_10_1002_mp_16197
crossref_primary_10_1002_mp_16001
crossref_primary_10_1016_j_ijrobp_2023_04_026
crossref_primary_10_1093_jrr_rrad090
crossref_primary_10_1002_mp_16378
crossref_primary_10_3390_e24111661
crossref_primary_10_1016_j_clon_2023_01_016
crossref_primary_10_1002_mp_16924
crossref_primary_10_1016_j_ctro_2023_100635
crossref_primary_10_1002_mp_15507
crossref_primary_10_1016_j_phro_2022_09_005
crossref_primary_10_1088_1361_6560_ace674
crossref_primary_10_3390_jpm13060946
crossref_primary_10_1016_j_ijrobp_2024_07_2149
crossref_primary_10_1186_s12938_023_01159_y
crossref_primary_10_1002_acm2_14155
crossref_primary_10_3390_app12073223
crossref_primary_10_2463_mrms_rev_2023_0047
Cites_doi 10.1002/mp.13147
10.1016/j.ijrobp.2008.06.1285
10.1002/mp.13617
10.1109/CVPR42600.2020.00428
10.1002/mp.14569
10.1109/TMI.2019.2948320
10.1002/mp.14539
10.1016/j.radonc.2019.09.028
10.1109/TMI.2018.2806309
10.1259/bjr.20180505
10.1007/978-3-319-24574-4_28
10.1186/1748-717X-8-154
10.1016/j.radonc.2019.03.004
10.1016/j.radonc.2014.08.028
10.1088/1361-6560/abb31f
10.1016/j.ijrobp.2009.09.062
10.1109/CVPR.2019.00657
10.1259/bjr/41321492
10.1109/CVPR.2014.81
10.1109/CVPR.2019.00949
10.1002/mp.12197
10.1148/radiol.2019182012
10.1148/radiol.2018181432
10.1002/mp.14307
10.1016/j.radonc.2015.07.041
10.1088/1361-6560/abd953
10.1016/j.media.2019.03.003
10.1186/1748-717X-7-32
10.1016/j.ijrobp.2008.06.196
10.1109/ICCV.2017.322
10.1002/mp.14946
10.1002/mp.13933
10.1016/j.radonc.2019.09.022
10.1016/j.ijrobp.2019.02.040
10.1002/mp.13264
10.1002/mp.13649
10.1002/mp.12480
10.1038/s42256-019-0099-z
10.1109/ICCV.2017.244
10.1002/mp.12045
10.1088/2057-1976/aad100
10.1016/j.radonc.2019.05.010
ContentType Journal Article
Copyright 2021 American Association of Physicists in Medicine
2021 American Association of Physicists in Medicine.
Copyright_xml – notice: 2021 American Association of Physicists in Medicine
– notice: 2021 American Association of Physicists in Medicine.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1002/mp.15146
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 2473-4209
EndPage 5873
ExternalDocumentID oai:pubmedcentral.nih.gov:11700377
PMC11700377
34342878
10_1002_mp_15146
MP15146
Genre article
Journal Article
GrantInformation_xml – fundername: Department of Defense (DoD) Prostate Cancer Research Program (PCRP)
  funderid: W81XWH‐17‐1‐0438; W81XWH‐19‐1‐0567
– fundername: HHS | NIH | National Cancer Institute (NCI)
  funderid: R01CA215718
– fundername: HHS | NIH | National Cancer Institute (NCI)
  grantid: R01CA215718
– fundername: Department of Defense (DoD) Prostate Cancer Research Program (PCRP)
  grantid: W81XWH-17-1-0438
– fundername: NCI NIH HHS
  grantid: R01 CA215718
– fundername: Department of Defense (DoD) Prostate Cancer Research Program (PCRP)
  grantid: W81XWH-19-1-0567
GroupedDBID ---
--Z
-DZ
.GJ
0R~
1OB
1OC
29M
2WC
33P
36B
3O-
4.4
53G
5GY
5RE
5VS
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAQQT
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDPE
ABEFU
ABFTF
ABJNI
ABLJU
ABQWH
ABTAH
ABXGK
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AHBTC
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
BFHJK
C45
CS3
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F5P
HDBZQ
HGLYW
I-F
KBYEO
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
OVD
P2P
P2W
PALCI
PHY
RJQFR
RNS
ROL
SAMSI
SUPJJ
SV3
TEORI
TN5
TWZ
USG
WOHZO
WXSBR
XJT
ZGI
ZVN
ZXP
ZY4
ZZTAW
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
LH4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ABUFD
ADTOC
UNPAY
ID FETCH-LOGICAL-c4776-bfc0271bd232a4c77cf17f98e512c3da845dc0ff0bab14c3739091edf798ad843
IEDL.DBID UNPAY
ISSN 0094-2405
2473-4209
1522-8541
IngestDate Sun Oct 26 04:07:24 EDT 2025
Tue Sep 30 17:06:11 EDT 2025
Fri Sep 05 12:05:53 EDT 2025
Thu Apr 03 06:59:56 EDT 2025
Thu Apr 24 22:56:14 EDT 2025
Wed Oct 01 06:02:29 EDT 2025
Wed Jan 22 16:28:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords synthetic MRI
deep learning
multi-organ segmentation
Language English
License 2021 American Association of Physicists in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4776-bfc0271bd232a4c77cf17f98e512c3da845dc0ff0bab14c3739091edf798ad843
Notes Xianjin Dai and Yang Lei Co‐first author.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Xianjin Dai and Yang Lei Co-first author.
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/11700377
PMID 34342878
PQID 2557539503
PQPubID 23479
PageCount 12
ParticipantIDs unpaywall_primary_10_1002_mp_15146
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11700377
proquest_miscellaneous_2557539503
pubmed_primary_34342878
crossref_citationtrail_10_1002_mp_15146
crossref_primary_10_1002_mp_15146
wiley_primary_10_1002_mp_15146_MP15146
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2021
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 2021
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Medical physics (Lancaster)
PublicationTitleAlternate Med Phys
PublicationYear 2021
References 2010; 77
2021; 48
2019; 290
2019; 291
2019; 92
2021; 66
2006; 79
2020; 142
2019; 1
2019; 54
2017; 44
2019; 104
2019; 39
2008; 72
2018; 45
2013; 8
2019; 141
2014; 112
2018; 4
2020
2019; 46
2019; 138
2019
2019; 135
2018
2020; 47
2017
2015
2015; 117
2014
2020; 65
2012; 7
2018; 37
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
Xing L (e_1_2_9_13_1) 2020
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 112
  start-page: 321
  issue: 3
  year: 2014
  end-page: 325
  article-title: Prospective randomized double‐blind study of atlas‐based organ‐at‐risk autosegmentation‐assisted radiation planning in head and neck cancer [published online ahead of print 2014/09/14]
  publication-title: Radiother Oncol
– volume: 117
  start-page: 83
  issue: 1
  year: 2015
  end-page: 90
  article-title: CT‐based delineation of organs at risk in the head and neck region: DAHANCA, EORTC, GORTEC, HKNPCSG, NCIC CTG, NCRI, NRG Oncology and TROG consensus guidelines
  publication-title: Radiother Oncol
– volume: 138
  start-page: 68
  year: 2019
  end-page: 74
  article-title: Benefits of deep learning for delineation of organs at risk in head and neck cancer
  publication-title: Radiother Oncol
– volume: 39
  start-page: 1316
  issue: 5
  year: 2019
  end-page: 1325
  article-title: Modified U‐Net (mU‐Net) with incorporation of object‐dependent high level features for improved liver and liver‐tumor segmentation in CT images
  publication-title: IEEE Trans Med Imaging
– volume: 291
  start-page: 677
  issue: 3
  year: 2019
  end-page: 686
  article-title: Deep learning for automated contouring of primary tumor volumes by MRI for nasopharyngeal carcinoma [published online ahead of print 2019/03/27]
  publication-title: Radiology
– volume: 66
  issue: 4
  year: 2021
  article-title: Head‐and‐neck organs‐at‐risk auto‐delineation using dual pyramid networks for CBCT‐guided adaptive radiotherapy [published online ahead of print 2021/01/08]
  publication-title: Phys Med Biol
– volume: 44
  start-page: 547
  issue: 2
  year: 2017
  end-page: 557
  article-title: Segmentation of organs‐at‐risks in head and neck CT images using convolutional neural networks
  publication-title: Med Phys
– volume: 290
  start-page: 669
  issue: 3
  year: 2019
  end-page: 679
  article-title: Automated abdominal segmentation of CT scans for body composition analysis using deep learning
  publication-title: Radiology
– volume: 37
  start-page: 1822
  issue: 8
  year: 2018
  end-page: 1834
  article-title: Automatic multi‐organ segmentation on abdominal CT with Dense V‐Networks [published online ahead of print 2018/07/12]
  publication-title: IEEE Trans Med Imaging
– volume: 46
  start-page: e1
  issue: 1
  year: 2019
  end-page: e36
  article-title: Deep learning in medical imaging and radiation therapy [published online ahead of print 2018/10/28]
  publication-title: Med Phys
– volume: 7
  start-page: 32
  issue: 1
  year: 2012
  article-title: 3D Variation in delineation of head and neck organs at risk
  publication-title: Radiat Oncol
– volume: 47
  start-page: 6343
  issue: 12
  year: 2020
  end-page: 6354
  article-title: Multimodal MRI synthesis using unified generative adversarial networks [published online ahead of print 2020/10/15]
  publication-title: Med Phys
– volume: 48
  start-page: 204
  issue: 1
  year: 2021
  end-page: 214
  article-title: Breast tumor segmentation in 3D automatic breast ultrasound using Mask scoring R‐CNN [published online ahead of print 2020/11/01]
  publication-title: Med Phys
– volume: 47
  start-page: 4115
  issue: 9
  year: 2020
  end-page: 4124
  article-title: Automatic multi‐catheter detection using deeply supervised convolutional neural network in MRI‐guided HDR prostate brachytherapy
  publication-title: Med Phys
– volume: 44
  start-page: 2020
  issue: 5
  year: 2017
  end-page: 2036
  article-title: Evaluation of segmentation methods on head and neck CT: auto‐segmentation challenge 2015 [published online ahead of print 2017/03/09]
  publication-title: Med Phys
– volume: 8
  start-page: 154
  issue: 1
  year: 2013
  article-title: Atlas‐based automatic segmentation of head and neck organs at risk and nodal target volumes: a clinical validation
  publication-title: Radiat Oncol
– volume: 1
  start-page: 480
  issue: 10
  year: 2019
  end-page: 491
  article-title: Clinically applicable deep learning framework for organs at risk delineation in CT images
  publication-title: Nat Mach Int
– volume: 135
  start-page: 130
  year: 2019
  end-page: 140
  article-title: Rapid advances in auto‐segmentation of organs at risk and target volumes in head and neck cancer
  publication-title: Radiother Oncol
– volume: 92
  start-page: 20180505
  issue: 1094
  year: 2019
  article-title: Role and future of MRI in radiation oncology [published online ahead of print 2018/11/02]
  publication-title: Br J Radiol
– volume: 142
  start-page: 115
  year: 2020
  end-page: 123
  article-title: Improving automatic delineation for head and neck organs at risk by Deep Learning Contouring
  publication-title: Radiother Oncol
– year: 2018
– volume: 47
  start-page: e148
  issue: 5
  year: 2020
  end-page: e167
  article-title: Machine learning techniques for biomedical image segmentation: An overview of technical aspects and introduction to state‐of‐art applications
  publication-title: Med Phys
– volume: 104
  start-page: 677
  issue: 3
  year: 2019
  end-page: 684
  article-title: Deep learning‐based delineation of head and neck organs at risk: geometric and dosimetric evaluation
  publication-title: Int J Radiat Oncol Biol Phys
– year: 2014
– volume: 77
  start-page: 950
  issue: 3
  year: 2010
  end-page: 958
  article-title: Emphasizing conformal avoidance versus target definition for IMRT planning in head‐and‐neck cancer [published online ahead of print 2010/04/10]
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 46
  start-page: 3565
  issue: 8
  year: 2019
  end-page: 3581
  article-title: MRI‐only based synthetic CT generation using dense cycle consistent generative adversarial networks
  publication-title: Med Phys
– volume: 141
  start-page: 192
  year: 2019
  end-page: 199
  article-title: Synthetic MRI‐aided multi‐organ segmentation on male pelvic CT using cycle consistent deep attention network
  publication-title: Radiother Oncol
– volume: 44
  start-page: 5221
  issue: 10
  year: 2017
  end-page: 5233
  article-title: Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method [published online ahead of print 2017/07/22]
  publication-title: Med Phys
– year: 2020
– volume: 79
  start-page: S2
  issue: special_issue_1
  year: 2006
  end-page: S15
  article-title: New developments in MRI for target volume delineation in radiotherapy [published online ahead of print 2006/09/19]
  publication-title: Br J Radiol
– volume: 72
  start-page: S401
  issue: 1
  year: 2008
  article-title: Atlas based auto‐segmentation of ct images: clinical evaluation of using auto‐contouring in high‐dose, high‐precision radiotherapy of cancer in the head and neck
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 54
  start-page: 168
  year: 2019
  end-page: 178
  article-title: CT male pelvic organ segmentation using fully convolutional networks with boundary sensitive representation
  publication-title: Med Image Anal
– volume: 4
  issue: 5
  year: 2018
  article-title: Segmentation of the prostate and organs at risk in male pelvic CT images using deep learning
  publication-title: Biomed Phys Eng Exp
– volume: 72
  start-page: S591
  issue: 1
  year: 2008
  article-title: Atlas‐based auto‐segmentation of CT images in head and neck cancer: what is the best approach
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 45
  start-page: 4558
  issue: 10
  year: 2018
  end-page: 4567
  article-title: Fully automatic multi‐organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks
  publication-title: Med Phys
– year: 2017
– volume: 48
  start-page: 3916
  issue: 7
  year: 2021
  end-page: 3926
  article-title: Self‐supervised learning for accelerated 3D high‐resolution ultrasound imaging [published online ahead of print 2021/05/17]
  publication-title: Med Phys
– year: 2019
– volume: 65
  start-page: 215025
  issue: 21
  year: 2020
  article-title: Intensity non‐uniformity correction in MR imaging using residual cycle generative adversarial network [published online ahead of print 2020/11/28]
  publication-title: Phys Med Biol
– year: 2015
– volume: 47
  start-page: 530
  issue: 2
  year: 2020
  end-page: 540
  article-title: CT prostate segmentation based on synthetic MRI‐aided deep attention fully convolution network [published online ahead of print 2019/11/21]
  publication-title: Med Phys
– ident: e_1_2_9_19_1
  doi: 10.1002/mp.13147
– ident: e_1_2_9_9_1
  doi: 10.1016/j.ijrobp.2008.06.1285
– ident: e_1_2_9_37_1
  doi: 10.1002/mp.13617
– ident: e_1_2_9_17_1
  doi: 10.1109/CVPR42600.2020.00428
– ident: e_1_2_9_36_1
  doi: 10.1002/mp.14569
– ident: e_1_2_9_28_1
  doi: 10.1109/TMI.2019.2948320
– ident: e_1_2_9_12_1
  doi: 10.1002/mp.14539
– ident: e_1_2_9_31_1
  doi: 10.1016/j.radonc.2019.09.028
– ident: e_1_2_9_27_1
  doi: 10.1109/TMI.2018.2806309
– ident: e_1_2_9_33_1
  doi: 10.1259/bjr.20180505
– ident: e_1_2_9_38_1
  doi: 10.1007/978-3-319-24574-4_28
– ident: e_1_2_9_7_1
  doi: 10.1186/1748-717X-8-154
– ident: e_1_2_9_6_1
  doi: 10.1016/j.radonc.2019.03.004
– ident: e_1_2_9_5_1
  doi: 10.1016/j.radonc.2014.08.028
– ident: e_1_2_9_11_1
  doi: 10.1088/1361-6560/abb31f
– ident: e_1_2_9_2_1
  doi: 10.1016/j.ijrobp.2009.09.062
– ident: e_1_2_9_43_1
  doi: 10.1109/CVPR.2019.00657
– ident: e_1_2_9_39_1
– ident: e_1_2_9_32_1
  doi: 10.1259/bjr/41321492
– ident: e_1_2_9_40_1
  doi: 10.1109/CVPR.2014.81
– ident: e_1_2_9_42_1
  doi: 10.1109/CVPR.2019.00949
– ident: e_1_2_9_47_1
  doi: 10.1002/mp.12197
– ident: e_1_2_9_14_1
  doi: 10.1148/radiol.2019182012
– ident: e_1_2_9_26_1
  doi: 10.1148/radiol.2018181432
– ident: e_1_2_9_44_1
  doi: 10.1002/mp.14307
– ident: e_1_2_9_4_1
  doi: 10.1016/j.radonc.2015.07.041
– volume-title: Artificial intelligence in medicine: technical basis and clinical applications
  year: 2020
  ident: e_1_2_9_13_1
– ident: e_1_2_9_23_1
  doi: 10.1088/1361-6560/abd953
– ident: e_1_2_9_29_1
  doi: 10.1016/j.media.2019.03.003
– ident: e_1_2_9_3_1
  doi: 10.1186/1748-717X-7-32
– ident: e_1_2_9_8_1
  doi: 10.1016/j.ijrobp.2008.06.196
– ident: e_1_2_9_45_1
  doi: 10.1109/ICCV.2017.322
– ident: e_1_2_9_46_1
– ident: e_1_2_9_10_1
  doi: 10.1002/mp.14946
– ident: e_1_2_9_34_1
  doi: 10.1002/mp.13933
– ident: e_1_2_9_41_1
– ident: e_1_2_9_18_1
  doi: 10.1016/j.radonc.2019.09.022
– ident: e_1_2_9_16_1
  doi: 10.1016/j.ijrobp.2019.02.040
– ident: e_1_2_9_20_1
  doi: 10.1002/mp.13264
– ident: e_1_2_9_22_1
  doi: 10.1002/mp.13649
– ident: e_1_2_9_25_1
  doi: 10.1002/mp.12480
– ident: e_1_2_9_15_1
  doi: 10.1038/s42256-019-0099-z
– ident: e_1_2_9_35_1
  doi: 10.1109/ICCV.2017.244
– ident: e_1_2_9_24_1
  doi: 10.1002/mp.12045
– ident: e_1_2_9_30_1
  doi: 10.1088/2057-1976/aad100
– ident: e_1_2_9_21_1
  doi: 10.1016/j.radonc.2019.05.010
SSID ssj0006350
Score 2.5225358
Snippet Purpose Auto‐segmentation algorithms offer a potential solution to eliminate the labor‐intensive, time‐consuming, and observer‐dependent manual delineation of...
Auto-segmentation algorithms offer a potential solution to eliminate the labor-intensive, time-consuming, and observer-dependent manual delineation of...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5862
SubjectTerms deep learning
Head - diagnostic imaging
Head and Neck Neoplasms - diagnostic imaging
Head and Neck Neoplasms - radiotherapy
Humans
Image Processing, Computer-Assisted
Magnetic Resonance Imaging
multi‐organ segmentation
Neural Networks, Computer
Organs at Risk
Radiotherapy Planning, Computer-Assisted
synthetic MRI
Title Automated delineation of head and neck organs at risk using synthetic MRI‐aided mask scoring regional convolutional neural network
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmp.15146
https://www.ncbi.nlm.nih.gov/pubmed/34342878
https://www.proquest.com/docview/2557539503
https://pubmed.ncbi.nlm.nih.gov/PMC11700377
https://www.ncbi.nlm.nih.gov/pmc/articles/11700377
UnpaywallVersion submittedVersion
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2473-4209
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0006350
  issn: 0094-2405
  databaseCode: ADMLS
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB4trWC58FhgKY-VQQhOSdPYqZNjBawWRFcroNJyihw_YLVtWpFWaDlx4AfwG_klzDhJRVlAcLIiT5xEHtvfxJ-_AXhEQXKBSBiRmyNRbZkFaTwogqTQLrNWZ9LQf8jx4fBgIl4eJ8dbELdnYTxpXxcnYTmdheXJB8-tXMx0v-WJ9SlVSsSlvADdYYL4uwPdyeHR6F0tNylouyDxIqkYZaWJT10ZC8kDEUdZqz4bxf3ZIsTFjnDvz-vROZB5niu5vSoX6uyTmk438axfkPav1ocEK69jSDyU03C1LEL9-ReVx__71mtwpcGnbFTXXYctW-7ApXGzA78DFz1lVFc34OtotZwj3rWGGTrUXoNPNncM53fDVGlYafUp83mjKqaWjGjsjIj271l1ViLyxGew8esX3798I6FKw2YKDSrtOYGMUkZQmMCIGN8MELwiAU5fePr6TZjsP3_79CBocjoEWkg5DAqnMRAeFAaRnBJaSu0G0mWpReChuVGpSIyOnIsKVQyE5pJniGiscTJLlUkFvwWdcl7a28Cw84SzRjjEXGIYcXItjfMRx3utclEPnrQ9m-tG8JzybkzzWqo5zmeL3PtADx6sLRe1yMfvbFrnyHEE0raKKu18VeUYlGHMlyUR78Fu7SzrVrjgFJOmPUg33GhtQOremzXoCF7lu-37Hjxce9xf3u6xd8U_GuTjI1_e-ZfW7sLlmKg7nrN4DzrLjyt7H7HXstiD7ujZ-NWbvWbQ_QB-BjAx
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LjtMwFLWGjnhseAyv8JJBCFZJ09ipk2WFGA1IHY0QlYZV5PgBo2nciDRCw4oFH8A38iXc6yQVZQDByop84yTytX1ufHwuIU8xSC4BCQNysyiqLfIwSyZlmJbK5saoXGj8Dzk_nB4s-Ovj9HiHJMNZGE_aV-VJ5JZV5E4-eG5lXanxwBMbY6qUmAlxgexOU8DfI7K7ODyavevkJjluF6ReJBWirCz1qSsTLljIkzgf1GfjZFzVESx2iHt_Xo_OgczzXMnLravl2Se5XG7jWb8g7V_rDgk2XscQeSinUbsuI_X5F5XH__vW6-Rqj0_prKu7QXaM2yOX5v0O_B656CmjqrlJvs7a9QrwrtFU46H2DnzSlaUwv2sqnabOqFPq80Y1VK4p0tgpEu3f0-bMAfKEZ9D5m1ffv3xDoUpNKwkGjfKcQIopIzBMoEiM7wcIXKEApy88ff0WWey_fPviIOxzOoSKCzENS6sgEJ6UGpCc5EoIZSfC5pkB4KGYlhlPtYqtjUtZTrhiguWAaIy2Is-kzji7TUZu5cxdQqHzuDWaW8BcfBozdC0F8xGDe420cUCeDz1bqF7wHPNuLItOqjkpqrrwPhCQxxvLuhP5-J3N4BwFjEDcVpHOrNqmgKAMYr48jVlA7nTOsmmFcYYxaRaQbMuNNgao7r1dA47gVb6Hvg_Ik43H_eXtnnlX_KNBMT_y5b1_ae0-uZIgdcdzFh-Q0fpjax4C9lqXj_rB9gMEui6d
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+delineation+of+head+and+neck+organs+at+risk+using+synthetic+MRI-aided+mask+scoring+regional+convolutional+neural+network&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Dai%2C+Xianjin&rft.au=Lei%2C+Yang&rft.au=Wang%2C+Tonghe&rft.au=Zhou%2C+Jun&rft.date=2021-10-01&rft.issn=0094-2405&rft.eissn=2473-4209&rft.volume=48&rft.issue=10&rft.spage=5862&rft.epage=5873&rft_id=info:doi/10.1002%2Fmp.15146&rft_id=info%3Apmid%2F34342878&rft.externalDocID=PMC11700377
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon