Arabidopsis glutathione reductase 2 is indispensable in plastids, while mitochondrial glutathione is safeguarded by additional reduction and transport systems

• A highly negative glutathione redox potential (EGSH ) is maintained in the cytosol, plastids and mitochondria of plant cells to support fundamental processes, including antioxidant defence, redox regulation and ironasulfur cluster biogenesis. Out of two glutathione reductase (GR) proteins in Arabi...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 224; no. 4; pp. 1569 - 1584
Main Authors Marty, Laurent, Bausewein, Daniela, Müller, Christopher, Bangash, Sajid Ali Khan, Moseler, Anna, Schwarzländer, Markus, Müller-Schüssele, Stefanie J., Zechmann, Bernd, Riondet, Christophe, Balk, Janneke, Wirtz, Markus, Hell, Rüdiger, Reichheld, Jean-Philippe, Meyer, Andreas J.
Format Journal Article
LanguageEnglish
Published England Wiley 01.12.2019
Wiley Subscription Services, Inc
SeriesNew Phytologist Trust
Subjects
Online AccessGet full text
ISSN0028-646X
1469-8137
1469-8137
DOI10.1111/nph.16086

Cover

Abstract • A highly negative glutathione redox potential (EGSH ) is maintained in the cytosol, plastids and mitochondria of plant cells to support fundamental processes, including antioxidant defence, redox regulation and ironasulfur cluster biogenesis. Out of two glutathione reductase (GR) proteins in Arabidopsis, GR2 is predicted to be dual-targeted to plastids and mitochondria, but its differential roles in these organelles remain unclear. • We dissected the role of GR2 in organelle glutathione redox homeostasis and plant development using a combination of genetic complementation and stacked mutants, biochemical activity studies, immunogold labelling and in vivo biosensing. • Our data demonstrate that GR2 is dual-targeted to plastids and mitochondria, but embryo lethality of gr2 null mutants is caused specifically in plastids. Whereas lack of mitochondrial GR2 leads to a partially oxidised glutathione pool in the matrix, the ATP-binding cassette (ABC) transporter ATM3 and the mitochondrial thioredoxin system provide functional backup and maintain plant viability. • We identify GR2 as essential in the plastid stroma, where it counters GSSG accumulation and developmental arrest. By contrast a functional triad of GR2, ATM3 and the thioredoxin system in the mitochondria provides resilience to excessive glutathione oxidation.
AbstractList A highly negative glutathione redox potential ( E GSH ) is maintained in the cytosol, plastids and mitochondria of plant cells to support fundamental processes, including antioxidant defence, redox regulation and iron−sulfur cluster biogenesis. Out of two glutathione reductase (GR) proteins in Arabidopsis, GR2 is predicted to be dual‐targeted to plastids and mitochondria, but its differential roles in these organelles remain unclear. We dissected the role of GR2 in organelle glutathione redox homeostasis and plant development using a combination of genetic complementation and stacked mutants, biochemical activity studies, immunogold labelling and in vivo biosensing. Our data demonstrate that GR2 is dual‐targeted to plastids and mitochondria, but embryo lethality of gr2 null mutants is caused specifically in plastids. Whereas lack of mitochondrial GR2 leads to a partially oxidised glutathione pool in the matrix, the ATP‐binding cassette (ABC) transporter ATM3 and the mitochondrial thioredoxin system provide functional backup and maintain plant viability. We identify GR2 as essential in the plastid stroma, where it counters GSSG accumulation and developmental arrest. By contrast a functional triad of GR2, ATM3 and the thioredoxin system in the mitochondria provides resilience to excessive glutathione oxidation.
A highly negative glutathione redox potential (EGSH) is maintained in the cytosol, plastids and mitochondria of plant cells to support fundamental processes, including antioxidant defence, redox regulation and iron−sulfur cluster biogenesis. Out of two glutathione reductase (GR) proteins in Arabidopsis, GR2 is predicted to be dual‐targeted to plastids and mitochondria, but its differential roles in these organelles remain unclear. We dissected the role of GR2 in organelle glutathione redox homeostasis and plant development using a combination of genetic complementation and stacked mutants, biochemical activity studies, immunogold labelling and in vivo biosensing. Our data demonstrate that GR2 is dual‐targeted to plastids and mitochondria, but embryo lethality of gr2 null mutants is caused specifically in plastids. Whereas lack of mitochondrial GR2 leads to a partially oxidised glutathione pool in the matrix, the ATP‐binding cassette (ABC) transporter ATM3 and the mitochondrial thioredoxin system provide functional backup and maintain plant viability. We identify GR2 as essential in the plastid stroma, where it counters GSSG accumulation and developmental arrest. By contrast a functional triad of GR2, ATM3 and the thioredoxin system in the mitochondria provides resilience to excessive glutathione oxidation.
• A highly negative glutathione redox potential (EGSH ) is maintained in the cytosol, plastids and mitochondria of plant cells to support fundamental processes, including antioxidant defence, redox regulation and ironasulfur cluster biogenesis. Out of two glutathione reductase (GR) proteins in Arabidopsis, GR2 is predicted to be dual-targeted to plastids and mitochondria, but its differential roles in these organelles remain unclear. • We dissected the role of GR2 in organelle glutathione redox homeostasis and plant development using a combination of genetic complementation and stacked mutants, biochemical activity studies, immunogold labelling and in vivo biosensing. • Our data demonstrate that GR2 is dual-targeted to plastids and mitochondria, but embryo lethality of gr2 null mutants is caused specifically in plastids. Whereas lack of mitochondrial GR2 leads to a partially oxidised glutathione pool in the matrix, the ATP-binding cassette (ABC) transporter ATM3 and the mitochondrial thioredoxin system provide functional backup and maintain plant viability. • We identify GR2 as essential in the plastid stroma, where it counters GSSG accumulation and developmental arrest. By contrast a functional triad of GR2, ATM3 and the thioredoxin system in the mitochondria provides resilience to excessive glutathione oxidation.
A highly negative glutathione redox potential (E ) is maintained in the cytosol, plastids and mitochondria of plant cells to support fundamental processes, including antioxidant defence, redox regulation and iron-sulfur cluster biogenesis. Out of two glutathione reductase (GR) proteins in Arabidopsis, GR2 is predicted to be dual-targeted to plastids and mitochondria, but its differential roles in these organelles remain unclear. We dissected the role of GR2 in organelle glutathione redox homeostasis and plant development using a combination of genetic complementation and stacked mutants, biochemical activity studies, immunogold labelling and in vivo biosensing. Our data demonstrate that GR2 is dual-targeted to plastids and mitochondria, but embryo lethality of gr2 null mutants is caused specifically in plastids. Whereas lack of mitochondrial GR2 leads to a partially oxidised glutathione pool in the matrix, the ATP-binding cassette (ABC) transporter ATM3 and the mitochondrial thioredoxin system provide functional backup and maintain plant viability. We identify GR2 as essential in the plastid stroma, where it counters GSSG accumulation and developmental arrest. By contrast a functional triad of GR2, ATM3 and the thioredoxin system in the mitochondria provides resilience to excessive glutathione oxidation.
A highly negative glutathione redox potential (EGSH ) is maintained in the cytosol, plastids and mitochondria of plant cells to support fundamental processes, including antioxidant defence, redox regulation and iron-sulfur cluster biogenesis. Out of two glutathione reductase (GR) proteins in Arabidopsis, GR2 is predicted to be dual-targeted to plastids and mitochondria, but its differential roles in these organelles remain unclear. We dissected the role of GR2 in organelle glutathione redox homeostasis and plant development using a combination of genetic complementation and stacked mutants, biochemical activity studies, immunogold labelling and in vivo biosensing. Our data demonstrate that GR2 is dual-targeted to plastids and mitochondria, but embryo lethality of gr2 null mutants is caused specifically in plastids. Whereas lack of mitochondrial GR2 leads to a partially oxidised glutathione pool in the matrix, the ATP-binding cassette (ABC) transporter ATM3 and the mitochondrial thioredoxin system provide functional backup and maintain plant viability. We identify GR2 as essential in the plastid stroma, where it counters GSSG accumulation and developmental arrest. By contrast a functional triad of GR2, ATM3 and the thioredoxin system in the mitochondria provides resilience to excessive glutathione oxidation.A highly negative glutathione redox potential (EGSH ) is maintained in the cytosol, plastids and mitochondria of plant cells to support fundamental processes, including antioxidant defence, redox regulation and iron-sulfur cluster biogenesis. Out of two glutathione reductase (GR) proteins in Arabidopsis, GR2 is predicted to be dual-targeted to plastids and mitochondria, but its differential roles in these organelles remain unclear. We dissected the role of GR2 in organelle glutathione redox homeostasis and plant development using a combination of genetic complementation and stacked mutants, biochemical activity studies, immunogold labelling and in vivo biosensing. Our data demonstrate that GR2 is dual-targeted to plastids and mitochondria, but embryo lethality of gr2 null mutants is caused specifically in plastids. Whereas lack of mitochondrial GR2 leads to a partially oxidised glutathione pool in the matrix, the ATP-binding cassette (ABC) transporter ATM3 and the mitochondrial thioredoxin system provide functional backup and maintain plant viability. We identify GR2 as essential in the plastid stroma, where it counters GSSG accumulation and developmental arrest. By contrast a functional triad of GR2, ATM3 and the thioredoxin system in the mitochondria provides resilience to excessive glutathione oxidation.
Summary A highly negative glutathione redox potential (EGSH) is maintained in the cytosol, plastids and mitochondria of plant cells to support fundamental processes, including antioxidant defence, redox regulation and iron−sulfur cluster biogenesis. Out of two glutathione reductase (GR) proteins in Arabidopsis, GR2 is predicted to be dual‐targeted to plastids and mitochondria, but its differential roles in these organelles remain unclear. We dissected the role of GR2 in organelle glutathione redox homeostasis and plant development using a combination of genetic complementation and stacked mutants, biochemical activity studies, immunogold labelling and in vivo biosensing. Our data demonstrate that GR2 is dual‐targeted to plastids and mitochondria, but embryo lethality of gr2 null mutants is caused specifically in plastids. Whereas lack of mitochondrial GR2 leads to a partially oxidised glutathione pool in the matrix, the ATP‐binding cassette (ABC) transporter ATM3 and the mitochondrial thioredoxin system provide functional backup and maintain plant viability. We identify GR2 as essential in the plastid stroma, where it counters GSSG accumulation and developmental arrest. By contrast a functional triad of GR2, ATM3 and the thioredoxin system in the mitochondria provides resilience to excessive glutathione oxidation.
Author Moseler, Anna
Schwarzländer, Markus
Müller-Schüssele, Stefanie J.
Wirtz, Markus
Bangash, Sajid Ali Khan
Meyer, Andreas J.
Reichheld, Jean-Philippe
Hell, Rüdiger
Riondet, Christophe
Balk, Janneke
Bausewein, Daniela
Müller, Christopher
Zechmann, Bernd
Marty, Laurent
Author_xml – sequence: 1
  givenname: Laurent
  surname: Marty
  fullname: Marty, Laurent
– sequence: 2
  givenname: Daniela
  surname: Bausewein
  fullname: Bausewein, Daniela
– sequence: 3
  givenname: Christopher
  surname: Müller
  fullname: Müller, Christopher
– sequence: 4
  givenname: Sajid Ali Khan
  surname: Bangash
  fullname: Bangash, Sajid Ali Khan
– sequence: 5
  givenname: Anna
  surname: Moseler
  fullname: Moseler, Anna
– sequence: 6
  givenname: Markus
  surname: Schwarzländer
  fullname: Schwarzländer, Markus
– sequence: 7
  givenname: Stefanie J.
  surname: Müller-Schüssele
  fullname: Müller-Schüssele, Stefanie J.
– sequence: 8
  givenname: Bernd
  surname: Zechmann
  fullname: Zechmann, Bernd
– sequence: 9
  givenname: Christophe
  surname: Riondet
  fullname: Riondet, Christophe
– sequence: 10
  givenname: Janneke
  surname: Balk
  fullname: Balk, Janneke
– sequence: 11
  givenname: Markus
  surname: Wirtz
  fullname: Wirtz, Markus
– sequence: 12
  givenname: Rüdiger
  surname: Hell
  fullname: Hell, Rüdiger
– sequence: 13
  givenname: Jean-Philippe
  surname: Reichheld
  fullname: Reichheld, Jean-Philippe
– sequence: 14
  givenname: Andreas J.
  surname: Meyer
  fullname: Meyer, Andreas J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31372999$$D View this record in MEDLINE/PubMed
https://univ-perp.hal.science/hal-02290023$$DView record in HAL
BookMark eNqFks1u1DAUhS1URKeFBQ8AssQGJKb1T-LYy1EFDNIIWIDELrqxncajJA62QzUvw7PiYdpBVAKySXzvd45jn3uGTkY_WoSeUnJB83M5Tt0FFUSKB2hBC6GWkvLqBC0IYXIpCvH1FJ3FuCWEqFKwR-iU5z5TSi3Qj1WAxhk_RRfxdT8nSJ3L7jhYM-sE0WKGc8uNxsXJjhGa3uYVnnqIyZn4Gt90LpcGl7zu_GiCg_4Pp6yO0NrrGYKxBjc7DMa4lHsZPGyTvzGMBqcAY5x8SDjuYrJDfIwettBH--T2fY6-vH3z-Wq93Hx89_5qtVnqoqrEslGME92C5Fq2BgoJtjUVVYUVpTaEAmdNZXWpbaMsV6VULYeCGSg1h7IR_By9Ovh20NdTcAOEXe3B1evVpt7XCGMqXyf_TjP78sBOwX-bbUz14KK2fQ-j9XOsGa8KKrig_P8oE5ITVckyoy_uoVs_h3xFe0PKCiELzjL1_Jaam8Ga46_eBfr7IDr4GINtjwgl9X5Y6jws9a9hyezlPVa7nFoOI-fg-n8pbnLku79b1x8-re8Uzw6KbUw-HBX7c1eyEvwnK4Pcmw
CitedBy_id crossref_primary_10_1111_mpp_13210
crossref_primary_10_1016_j_cub_2023_12_005
crossref_primary_10_1093_plphys_kiab172
crossref_primary_10_1093_jxb_erab249
crossref_primary_10_1093_plcell_koac017
crossref_primary_10_1093_jxb_erae075
crossref_primary_10_1111_tpj_17217
crossref_primary_10_3389_fpls_2022_894479
crossref_primary_10_1007_s42976_023_00429_8
crossref_primary_10_1093_jxb_erae194
crossref_primary_10_1093_jxb_erae035
crossref_primary_10_1007_s10265_024_01611_7
crossref_primary_10_1093_jxb_eraa195
crossref_primary_10_1073_pnas_1910501117
crossref_primary_10_1007_s00418_022_02103_2
crossref_primary_10_1016_j_cj_2021_03_010
crossref_primary_10_1111_pce_14631
crossref_primary_10_3390_metabo11090641
crossref_primary_10_3390_agriculture12101528
crossref_primary_10_1111_tpj_14621
crossref_primary_10_1093_plphys_kiac541
crossref_primary_10_1093_plphys_kiab019
crossref_primary_10_1042_BCJ20190124
crossref_primary_10_1007_s12268_021_1669_2
crossref_primary_10_1038_s41580_022_00499_2
crossref_primary_10_1186_s12870_021_03087_2
crossref_primary_10_1093_jxb_erae023
crossref_primary_10_3390_ijms25189845
crossref_primary_10_7554_eLife_76140
crossref_primary_10_1038_s41467_020_17056_0
crossref_primary_10_1007_s44154_023_00097_y
crossref_primary_10_1093_plphys_kiaa077
crossref_primary_10_1111_tpj_14791
crossref_primary_10_1515_hsz_2020_0291
crossref_primary_10_1093_plcell_koab068
crossref_primary_10_3390_biology10040267
crossref_primary_10_1093_jxb_erab502
crossref_primary_10_3390_ijms231911650
crossref_primary_10_1093_jxb_erac030
crossref_primary_10_1093_jxb_erad042
crossref_primary_10_3389_fpls_2020_618835
crossref_primary_10_1093_plphys_kiaa095
crossref_primary_10_1093_jxb_erab018
crossref_primary_10_1093_pcp_pcac150
crossref_primary_10_1093_jxb_erab098
crossref_primary_10_1007_s11356_022_22808_0
crossref_primary_10_1093_pcp_pcz173
crossref_primary_10_3390_biology11020155
crossref_primary_10_1016_j_plantsci_2024_112310
crossref_primary_10_3389_fpls_2022_958490
crossref_primary_10_1016_j_ecoenv_2021_112682
crossref_primary_10_1016_j_plaphy_2022_10_022
Cites_doi 10.1111/j.1365-313X.2007.03389.x
10.1007/s00726-002-0313-9
10.1104/pp.16.00434
10.1104/pp.106.077982
10.1146/annurev-arplant-042817-040322
10.1104/pp.106.089458
10.1007/978-1-59745-365-3_9
10.1089/ars.2007.9.151
10.1073/pnas.0900206106
10.3109/10520296909063335
10.1021/pr060403j
10.1104/pp.106.081091
10.1002/j.1460-2075.1995.tb06989.x
10.1139/b91-063
10.1089/ars.2009.2948
10.1146/annurev.arplant.50.1.601
10.1038/nchembio.1142
10.1104/pp.110.165910
10.1073/pnas.1706003114
10.1016/j.jmb.2004.05.028
10.1073/pnas.0903559106
10.1038/sj.emboj.7600189
10.1104/pp.110.170043
10.1074/jbc.M307525200
10.1146/annurev.micro.55.1.333
10.1105/tpc.12.1.97
10.1089/ars.2008.2177
10.1016/S0006-291X(02)00771-4
10.1074/jbc.M114.553438
10.1016/0168-9452(90)90207-5
10.1016/j.plaphy.2010.10.003
10.1104/pp.104.045179
10.1093/emboj/18.14.3981
10.1073/pnas.95.14.8404
10.1126/science.1246729
10.1016/j.jplph.2007.10.015
10.1073/pnas.1510835112
10.1046/j.1365-313X.1995.08020167.x
10.1016/j.febslet.2004.11.094
10.1046/j.1365-313x.1998.00343.x
10.1105/tpc.107.050849
10.1104/pp.110.153767
10.1016/j.tplants.2010.05.012
10.1038/ncomms14835
10.1104/pp.123.2.497
10.1073/pnas.0913689107
10.1046/j.1365-313x.2001.01071.x
10.1111/j.1365-2818.2008.02030.x
10.3389/fpls.2013.00506
10.1146/annurev.arplant.56.032604.144246
10.1016/j.plantsci.2015.12.002
10.1271/bbb.68.1175
10.1104/pp.010321
10.1146/annurev.arplant.58.032806.103946
10.1016/j.bbabio.2016.02.011
10.1105/tpc.113.117028
10.1111/pce.12919
10.1104/pp.110.167569
10.1146/annurev.arplant.52.1.561
10.1093/mp/sst162
10.1111/jipb.12371
10.1016/j.bbabio.2016.03.001
10.1073/pnas.0913759107
10.1093/nar/19.6.1349
10.1016/j.tplants.2004.08.009
10.1111/plb.12033
10.1111/j.1365-313X.2007.03280.x
10.1016/j.bbagen.2018.11.014
10.1177/1087057113499634
10.1126/science.1086391
10.1039/b900658n
10.1074/mcp.M500180-MCP200
10.1104/pp.110.168120
10.1089/ars.2015.6390
10.1042/bj1150609a
10.1046/j.1365-2818.2000.00697.x
10.1089/ars.2015.6266
10.1105/tpc.107.050989
10.1074/jbc.M404696200
10.1104/pp.109.143651
10.1074/jbc.M413189200
10.1104/pp.112.210997
ContentType Journal Article
Copyright 2019 The Authors © 2019 New Phytologist Trust
2019 The Authors. New Phytologist © 2019 New Phytologist Trust
2019 The Authors. New Phytologist © 2019 New Phytologist Trust.
Copyright © 2019 New Phytologist Trust
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2019 The Authors © 2019 New Phytologist Trust
– notice: 2019 The Authors. New Phytologist © 2019 New Phytologist Trust
– notice: 2019 The Authors. New Phytologist © 2019 New Phytologist Trust.
– notice: Copyright © 2019 New Phytologist Trust
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
1XC
VOOES
DOI 10.1111/nph.16086
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
AGRICOLA


Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 1584
ExternalDocumentID oai_HAL_hal_02290023v1
31372999
10_1111_nph_16086
NPH16086
26837876
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Deutscher Akademischer Austauschdienst
  funderid: Procope exchange grant
– fundername: HEC Pakistan
– fundername: Centre National de la Recherche Scientifique
  funderid: ANR‐Blanc Cynthiol 12‐BSV6‐0011
– fundername: Deutsche Forschungsgemeinschaft
  funderid: ME1567/3‐2
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BBS/E/J/000PR9790
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
123
1OC
29N
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAISJ
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABLJU
ABPLY
ABPVW
ABSQW
ABTLG
ABVKB
ABXSQ
ACAHQ
ACCZN
ACFBH
ACGFS
ACHIC
ACNCT
ACPOU
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGUYK
AGXDD
AGYGG
AHBTC
AHXOZ
AIDQK
AIDYY
AILXY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YNT
YQT
ZZTAW
~02
~IA
~KM
~WT
.Y3
24P
31~
AAHHS
AASVR
ABEFU
ABEML
ACCFJ
ACQPF
ADULT
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
AS~
CAG
COF
DOOOF
EJD
ESX
FIJ
GTFYD
HF~
HGD
HQ2
HTVGU
IPNFZ
JSODD
LPU
LW6
MVM
NEJ
RCA
WHG
WRC
XOL
YXE
ZCG
AAYXX
ABGDZ
ADXHL
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
1XC
VOOES
ID FETCH-LOGICAL-c4776-b9230cfa83c8fda48aefd7194e65cd01a32b7ec5ceb9e39589f3a42da5c3a5b63
IEDL.DBID DR2
ISSN 0028-646X
1469-8137
IngestDate Wed Sep 24 08:23:40 EDT 2025
Fri Sep 05 17:23:42 EDT 2025
Thu Sep 04 18:00:17 EDT 2025
Sun Jul 13 03:27:50 EDT 2025
Mon Jul 21 05:41:57 EDT 2025
Tue Jul 01 02:28:32 EDT 2025
Thu Apr 24 23:12:37 EDT 2025
Wed Jan 22 16:37:26 EST 2025
Thu Jul 03 22:05:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords redox-sensitive GFP
glutathione redox status
embryo lethality
mitochondria
dual targeting
NTR
glutathione reductase 2
ABCB25
Glutathione reductase
Mitocondria
Language English
License Attribution
2019 The Authors. New Phytologist © 2019 New Phytologist Trust.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4776-b9230cfa83c8fda48aefd7194e65cd01a32b7ec5ceb9e39589f3a42da5c3a5b63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4061-1175
0000-0002-6936-8060
0000-0003-4738-1990
0000-0001-7790-4022
0000-0001-8144-4364
0000-0002-6238-4818
0000-0003-4641-8093
0000-0003-0796-8308
0000-0001-6884-0602
0000-0001-7124-8888
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.16086
PMID 31372999
PQID 2312468432
PQPubID 2026848
PageCount 16
ParticipantIDs hal_primary_oai_HAL_hal_02290023v1
proquest_miscellaneous_2374163613
proquest_miscellaneous_2268309785
proquest_journals_2312468432
pubmed_primary_31372999
crossref_primary_10_1111_nph_16086
crossref_citationtrail_10_1111_nph_16086
wiley_primary_10_1111_nph_16086_NPH16086
jstor_primary_26837876
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2019
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: December 2019
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
PublicationSeriesTitle New Phytologist Trust
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2019
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2017; 40
2017; 8
1991; 19
1990; 99
2013; 4
2010; 15
2013; 25
2010; 13
2010; 107
2004; 23
2004; 9
2005; 579
2004; 68
2009; 151
2003; 278
2013; 161
2017; 114
2011; 155
2013; 9
1998; 16
2009; 11
2004; 135
2000; 12
1999; 18
2007; 372
2016; 1857
2014; 16
1969; 44
2007; 9
2010; 153
2014; 19
1999; 50
2000; 123
2001; 55
1998; 95
2014; 7
2008; 231
2001; 52
1989
2014; 289
2007; 19
2004; 340
2016b; 58
1995; 14
2002; 295
2016; 243
2006; 5
2000; 198
2001; 27
2007; 52
2008; 53
2008; 165
2007; 58
1995; 8
2018; 69
2019; 1863
2001; 127
2016a; 1857
2005; 280
1991; 69
2004; 279
2015; 112
2006; 141
2003; 24
2019
2006; 142
2009; 5
2016; 171
2003; 301
2011; 49
1969; 115
2005; 56
2016; 24
2014; 343
2009; 106
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
Nietzel T (e_1_2_7_61_1) 2019
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_77_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_79_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_80_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_82_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_86_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Sambrook J (e_1_2_7_69_1) 1989
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
Müller‐Schüssele SJ (e_1_2_7_59_1) 2019
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_78_1
e_1_2_7_38_1
References_xml – volume: 151
  start-page: 590
  year: 2009
  end-page: 602
  article-title: An allelic mutant series of ATM3 reveals its key role in the biogenesis of cytosolic iron‐sulfur proteins in Arabidopsis
  publication-title: Plant Physiology
– volume: 19
  start-page: 379
  year: 2014
  end-page: 386
  article-title: Redesign of genetically encoded biosensors for monitoring mitochondrial redox status in a broad range of model eukaryotes
  publication-title: Journal of Biomolecular Screening
– start-page: 676213
  year: 2019
  article-title: Redox‐mediated kick‐start of mitochondrial energy metabolism drives resource‐efficient seed germination
  publication-title: bioRxiv
– volume: 372
  start-page: 125
  year: 2007
  end-page: 136
  article-title: Isolation of intact, functional mitochondria from the model plant
  publication-title: Methods in Molecular Biology
– volume: 24
  start-page: 195
  year: 2003
  end-page: 203
  article-title: Production of cysteine for bacterial and plant biotechnology: application of cysteine feedback‐insensitive isoforms of serine acetyltransferase
  publication-title: Amino Acids
– volume: 123
  start-page: 497
  year: 2000
  end-page: 508
  article-title: The role of pyruvate dehydrogenase and acetyl‐coenzyme a synthetase in fatty acid synthesis in developing Arabidopsis seeds
  publication-title: Plant Physiology
– volume: 95
  start-page: 8404
  year: 1998
  end-page: 8409
  article-title: Glutaredoxin function for the carboxyl‐terminal domain of the plant‐type 5′‐adenylylsulfate reductase
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 99
  start-page: 221
  year: 1990
  end-page: 230
  article-title: Biochemical and genetic analysis of different patatin isoforms expressed in various organs of potato ( L.)
  publication-title: Plant Science
– volume: 58
  start-page: 459
  year: 2007
  end-page: 481
  article-title: Oxidative modifications to cellular components in plants
  publication-title: Annual Review of Plant Biology
– year: 2019
  article-title: Chloroplasts require glutathione reductase to balance reactive oxygen species and maintain efficient photosynthesis
  publication-title: bioRxiv
– volume: 44
  start-page: 117
  year: 1969
  end-page: 122
  article-title: Differential staining of aborted and nonaborted pollen
  publication-title: Stain Technology
– volume: 340
  start-page: 783
  year: 2004
  end-page: 795
  article-title: Improved prediction of signal peptides: SignalP 3.0
  publication-title: Journal of Molecular Biology
– volume: 1857
  start-page: 665
  year: 2016a
  end-page: 677
  article-title: Glutathione reductase 2 maintains the function of photosystem II in Arabidopsis under excess light
  publication-title: Biochimica et Biophysica Acta‐Bioenergetics
– volume: 40
  start-page: 1281
  year: 2017
  end-page: 1295
  article-title: Glutathione peroxidase‐like enzymes cover five distinct cell compartments and membrane surfaces in
  publication-title: Plant, Cell & Environment
– year: 1989
– volume: 279
  start-page: 43821
  year: 2004
  end-page: 43827
  article-title: A novel NADPH thioredoxin reductase, localized in the chloroplast, which deficiency causes hypersensitivity to abiotic stress in
  publication-title: Journal of Biological Chemistry
– volume: 142
  start-page: 1364
  year: 2006
  end-page: 1379
  article-title: Plant glutathione peroxidases are functional peroxiredoxins distributed in several subcellular compartments and regulated during biotic and abiotic stresses
  publication-title: Plant Physiology
– volume: 16
  start-page: 735
  year: 1998
  end-page: 743
  article-title: Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana
  publication-title: The Plant Journal
– volume: 155
  start-page: 293
  year: 2011
  end-page: 314
  article-title: Reverse‐genetic analysis of the two biotin‐containing subunit genes of the heteromeric acetyl‐coenzyme A carboxylase in Arabidopsis indicates a unidirectional functional redundancy
  publication-title: Plant Physiology
– volume: 69
  start-page: 209
  year: 2018
  end-page: 236
  article-title: Reactive oxygen species in plant signaling
  publication-title: Annual Review of Plant Biology
– volume: 19
  start-page: 1851
  year: 2007
  end-page: 1865
  article-title: Inactivation of thioredoxin reductases reveals a complex interplay between thioredoxin and glutathione pathways in Arabidopsis development
  publication-title: Plant Cell
– volume: 155
  start-page: 1678
  year: 2011
  end-page: 1689
  article-title: Identification of nuclear genes encoding chloroplast‐localized proteins required for embryo development in Arabidopsis
  publication-title: Plant Physiology
– volume: 343
  start-page: 1137
  year: 2014
  end-page: 1140
  article-title: Crystal structures of nucleotide‐free and glutathione‐bound mitochondrial ABC transporter Atm1
  publication-title: Science
– volume: 5
  start-page: 114
  year: 2006
  end-page: 133
  article-title: The oligomeric stromal proteome of chloroplasts
  publication-title: Molecular and Cellular Proteomics
– volume: 141
  start-page: 446
  year: 2006
  end-page: 455
  article-title: Maturation of Arabidopsis seeds is dependent on glutathione biosynthesis within the embryo
  publication-title: Plant Physiology
– volume: 198
  start-page: 174
  year: 2000
  end-page: 181
  article-title: Direct measurement of glutathione in epidermal cells of intact Arabidopsis roots by two‐photon laser scanning microscopy
  publication-title: Journal of Microscopy
– volume: 14
  start-page: 188
  year: 1995
  end-page: 195
  article-title: An ABC transporter in the mitochondrial inner membrane is required for normal growth of yeast
  publication-title: EMBO Journal
– volume: 107
  start-page: 3900
  year: 2010
  end-page: 3905
  article-title: A membrane‐associated thioredoxin required for plant growth moves from cell to cell, suggestive of a role in intercellular communication
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 12
  start-page: 97
  year: 2000
  end-page: 110
  article-title: The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 gene defines a glutathione‐dependent pathway involved in initiation and maintenance of cell division during postembryonic root development
  publication-title: Plant Cell
– volume: 165
  start-page: 1390
  year: 2008
  end-page: 1403
  article-title: The integration of glutathione homeostasis and redox signaling
  publication-title: Journal of Plant Physiology
– volume: 53
  start-page: 999
  year: 2008
  end-page: 1012
  article-title: Restricting glutathione biosynthesis to the cytosol is sufficient for normal plant development
  publication-title: The Plant Journal
– volume: 11
  start-page: 861
  year: 2009
  end-page: 905
  article-title: Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications
  publication-title: Antioxidants & Redox Signaling
– volume: 579
  start-page: 337
  year: 2005
  end-page: 342
  article-title: AtNTRB is the major mitochondrial thioredoxin reductase in
  publication-title: FEBS Letters
– volume: 56
  start-page: 187
  year: 2005
  end-page: 220
  article-title: Redox regulation: a broadening horizon
  publication-title: Annual Review of Plant Biology
– volume: 135
  start-page: 1206
  year: 2004
  end-page: 1220
  article-title: Identification of genes required for embryo development in Arabidopsis
  publication-title: Plant Physiology
– volume: 8
  start-page: 14835
  year: 2017
  article-title: Glutaredoxin catalysis requires two distinct glutathione interaction sites
  publication-title: Nature Communications
– volume: 52
  start-page: 561
  year: 2001
  end-page: 591
  article-title: Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species
  publication-title: Annual Review of Plant Physiology and Plant Molecular Biology
– volume: 24
  start-page: 752
  year: 2016
  end-page: 762
  article-title: Quantitative redox imaging software
  publication-title: Antioxidants & Redox Signaling
– volume: 27
  start-page: 67
  year: 2001
  end-page: 78
  article-title: Quantitative measurement of glutathione in Arabidopsis cells
  publication-title: The Plant Journal
– volume: 114
  start-page: 12069
  year: 2017
  end-page: 12074
  article-title: NTRC‐dependent redox balance of 2‐Cys peroxiredoxins is needed for optimal function of the photosynthetic apparatus
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 68
  start-page: 1175
  year: 2004
  end-page: 1184
  article-title: Plant acetyl‐CoA carboxylase: structure, biosynthesis, regulation, and gene manipulation for plant breeding
  publication-title: Bioscience, Biotechnology and Biochemistry
– volume: 69
  start-page: 461
  year: 1991
  end-page: 476
  article-title: Early embryogenesis in . II. The developing embryo
  publication-title: Canadian Journal of Botany
– volume: 1863
  start-page: 426
  year: 2019
  end-page: 436
  article-title: The thioredoxin‐mediated recycling of GRXS16 relies on a conserved C‐terminal cysteine
  publication-title: Biochimica et Biophysica Acta (BBA) – General Subjects
– volume: 5
  start-page: 345
  year: 2009
  end-page: 350
  article-title: Moonlighting proteins–an update
  publication-title: Molecular BioSystems
– volume: 107
  start-page: 2331
  year: 2010
  end-page: 2336
  article-title: Plant homologs of the chloroquine‐resistance transporter, PfCRT, are required for glutathione homeostasis and stress responses
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 155
  start-page: 2
  year: 2011
  end-page: 18
  article-title: Ascorbate and glutathione: the heart of the redox hub
  publication-title: Plant Physiology
– volume: 280
  start-page: 12168
  year: 2005
  end-page: 12180
  article-title: The mitochondrial type II peroxiredoxin F is essential for redox homeostasis and root growth of under stress
  publication-title: Journal of Biological Chemistry
– volume: 301
  start-page: 653
  year: 2003
  end-page: 657
  article-title: Genome‐wide insertional mutagenesis of
  publication-title: Science
– volume: 58
  start-page: 29
  year: 2016b
  end-page: 47
  article-title: Decreased glutathione reductase2 leads to early leaf senescence in Arabidopsis
  publication-title: Journal of Integrative Plant Biology
– volume: 243
  start-page: 84
  year: 2016
  end-page: 95
  article-title: Nuclear thiol redox systems in plants
  publication-title: Plant Science
– volume: 112
  start-page: 13735
  year: 2015
  end-page: 13740
  article-title: The mitochondrial monothiol glutaredoxin S15 is essential for iron‐sulfur protein maturation in
  publication-title: Proceedings of the National Academy of Science, USA
– volume: 15
  start-page: 488
  year: 2010
  end-page: 498
  article-title: The cell biology of tetrapyrroles: a life and death struggle
  publication-title: Trends in Plant Science
– volume: 127
  start-page: 615
  year: 2001
  end-page: 623
  article-title: Characterization of two cDNAs encoding mitochondrial lipoamide dehydrogenase from Arabidopsis
  publication-title: Plant Physiology
– volume: 106
  start-page: 9109
  year: 2009
  end-page: 9114
  article-title: The NADPH‐dependent thioredoxin system constitutes a functional backup for cytosolic glutathione reductase in Arabidopsis
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 18
  start-page: 3981
  year: 1999
  end-page: 3989
  article-title: The mitochondrial proteins Atm1p and Nfs1p are essential for biogenesis of cytosolic Fe/S proteins
  publication-title: EMBO Journal
– volume: 106
  start-page: 9908
  year: 2009
  end-page: 9913
  article-title: NTRC links built‐in thioredoxin to light and sucrose in regulating starch synthesis in chloroplasts and amyloplasts
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 289
  start-page: 23264
  year: 2014
  end-page: 23274
  article-title: A conserved mitochondrial ATP‐binding cassette transporter exports glutathione polysulfide for cytosolic metal cofactor assembly
  publication-title: Journal of Biological Chemistry
– volume: 13
  start-page: 621
  year: 2010
  end-page: 650
  article-title: Fluorescent protein‐based redox probes
  publication-title: Antioxidants & Redox Signaling
– volume: 9
  start-page: 490
  year: 2004
  end-page: 498
  article-title: Reactive oxygen gene network of plants
  publication-title: Trends in Plant Science
– volume: 115
  start-page: 609
  year: 1969
  end-page: 619
  article-title: The redox state of free nicotinamide‐adenine dinucleotide phosphate in the cytoplasm of rat liver
  publication-title: Biochemical Journal
– volume: 161
  start-page: 644
  year: 2013
  end-page: 662
  article-title: Acquisition, conservation, and loss of dual‐targeted proteins in land plants
  publication-title: Plant Physiology
– volume: 55
  start-page: 333
  year: 2001
  end-page: 356
  article-title: Novel thiols of prokaryotes
  publication-title: Annual Review of Microbiology
– volume: 19
  start-page: 3170
  year: 2007
  end-page: 3193
  article-title: Proteome analysis of Arabidopsis leaf peroxisomes reveals novel targeting peptides, metabolic pathways, and defense mechanisms
  publication-title: Plant Cell
– volume: 25
  start-page: 4451
  year: 2013
  end-page: 4468
  article-title: Plastid‐localized glutathione reductase2‐regulated glutathione redox status is essential for Arabidopsis root apical meristem maintenance
  publication-title: Plant Cell
– volume: 49
  start-page: 88
  year: 2011
  end-page: 95
  article-title: Expression, localization and phylogenetic analysis of a pyridoxine 5′‐phosphate oxidase in
  publication-title: Plant Physiology and Biochemistry
– volume: 5
  start-page: 3459
  year: 2006
  end-page: 3469
  article-title: Analysis of the soluble ATP‐binding proteome of plant mitochondria identifies new proteins and nucleotide triphosphate interactions within the matrix
  publication-title: Journal of Proteome Research
– volume: 153
  start-page: 1144
  year: 2010
  end-page: 1160
  article-title: Arabidopsis GLUTATHIONE REDUCTASE1 plays a crucial role in leaf responses to intracellular hydrogen peroxide and in ensuring appropriate gene expression through both salicylic acid and jasmonic acid signaling pathways
  publication-title: Plant Physiology
– volume: 9
  start-page: 151
  year: 2007
  end-page: 157
  article-title: How does iron‐sulfur cluster coordination regulate the activity of human glutaredoxin 2?
  publication-title: Antioxidants & Redox Signaling
– volume: 231
  start-page: 299
  year: 2008
  end-page: 316
  article-title: Confocal imaging of glutathione redox potential in living plant cells
  publication-title: Journal of Microscopy
– volume: 9
  start-page: 119
  year: 2013
  end-page: 125
  article-title: Multiple glutathione disulfide removal pathways mediate cytosolic redox homeostasis
  publication-title: Nature Chemical Biology
– volume: 7
  start-page: 30
  year: 2014
  end-page: 44
  article-title: NTR/NRX define a new thioredoxin system in the nucleus of cells
  publication-title: Molecular Plant
– volume: 24
  start-page: 680
  year: 2016
  end-page: 712
  article-title: Dissecting redox biology using fluorescent protein sensors
  publication-title: Antioxidants & Redox Signaling
– volume: 1857
  start-page: 810
  year: 2016
  end-page: 818
  article-title: Adenine nucleotide‐dependent and redox‐independent control of mitochondrial malate dehydrogenase activity in
  publication-title: Biochimica et Biophysica Acta (BBA) – Bioenergetics
– volume: 155
  start-page: 1477
  year: 2011
  end-page: 1485
  article-title: Novel regulators in photosynthetic redox control of plant metabolism and gene expression
  publication-title: Plant Physiology
– volume: 278
  start-page: 46869
  year: 2003
  end-page: 46877
  article-title: Molecular definition of the ascorbate‐glutathione cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants
  publication-title: Journal of Biological Chemistry
– volume: 141
  start-page: 851
  year: 2006
  end-page: 857
  article-title: Early steps in the biosynthesis of NAD in Arabidopsis start with aspartate and occur in the plastid
  publication-title: Plant Physiology
– volume: 4
  start-page: 506
  year: 2013
  article-title: Development of roGFP2‐derived redox probes for measurement of the glutathione redox potential in the cytosol of severely glutathione‐deficient seedlings
  publication-title: Frontiers in Plant Science
– volume: 50
  start-page: 601
  year: 1999
  end-page: 639
  article-title: The water‐water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons
  publication-title: Annual Review of Plant Physiology and Plant Molecular Biology
– volume: 171
  start-page: 1606
  year: 2016
  end-page: 1615
  article-title: ROS, calcium, and electric signals: key mediators of rapid systemic signaling in plants
  publication-title: Plant Physiology
– volume: 8
  start-page: 167
  year: 1995
  end-page: 175
  article-title: Simultaneous targeting of pea glutathione reductase and of a bacterial fusion protein to chloroplasts and mitochondria in transgenic tobacco
  publication-title: The Plant Journal
– volume: 16
  start-page: 58
  year: 2014
  end-page: 67
  article-title: Restricting glutamylcysteine synthetase activity to the cytosol or glutathione biosynthesis to the plastid is sufficient for normal plant development and stress tolerance
  publication-title: Plant Biology
– volume: 52
  start-page: 973
  year: 2007
  end-page: 986
  article-title: Redox‐sensitive GFP in is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer
  publication-title: The Plant Journal
– volume: 295
  start-page: 1046
  year: 2002
  end-page: 1051
  article-title: Glutaredoxins catalyze the reduction of glutathione by dihydrolipoamide with high efficiency
  publication-title: Biochemical and Biophysical Research Communications
– volume: 19
  start-page: 1349
  year: 1991
  article-title: A simple and rapid method for the preparation of plant genomic DNA for PCR analysis
  publication-title: Nucleic Acids Research
– volume: 23
  start-page: 1720
  year: 2004
  end-page: 1728
  article-title: Crystal structure of protoporphyrinogen IX oxidase: a key enzyme in haem and chlorophyll biosynthesis
  publication-title: EMBO Journal
– ident: e_1_2_7_62_1
  doi: 10.1111/j.1365-313X.2007.03389.x
– volume-title: Molecular cloning: a laboratory manual
  year: 1989
  ident: e_1_2_7_69_1
– ident: e_1_2_7_82_1
  doi: 10.1007/s00726-002-0313-9
– ident: e_1_2_7_29_1
  doi: 10.1104/pp.16.00434
– ident: e_1_2_7_15_1
  doi: 10.1104/pp.106.077982
– ident: e_1_2_7_81_1
  doi: 10.1146/annurev-arplant-042817-040322
– ident: e_1_2_7_60_1
  doi: 10.1104/pp.106.089458
– ident: e_1_2_7_77_1
  doi: 10.1007/978-1-59745-365-3_9
– ident: e_1_2_7_11_1
  doi: 10.1089/ars.2007.9.151
– ident: e_1_2_7_43_1
  doi: 10.1073/pnas.0900206106
– ident: e_1_2_7_3_1
  doi: 10.3109/10520296909063335
– ident: e_1_2_7_31_1
  doi: 10.1021/pr060403j
– ident: e_1_2_7_33_1
  doi: 10.1104/pp.106.081091
– ident: e_1_2_7_37_1
  doi: 10.1002/j.1460-2075.1995.tb06989.x
– ident: e_1_2_7_41_1
  doi: 10.1139/b91-063
– ident: e_1_2_7_48_1
  doi: 10.1089/ars.2009.2948
– ident: e_1_2_7_6_1
  doi: 10.1146/annurev.arplant.50.1.601
– ident: e_1_2_7_57_1
  doi: 10.1038/nchembio.1142
– ident: e_1_2_7_38_1
  doi: 10.1104/pp.110.165910
– ident: e_1_2_7_64_1
  doi: 10.1073/pnas.1706003114
– ident: e_1_2_7_9_1
  doi: 10.1016/j.jmb.2004.05.028
– ident: e_1_2_7_52_1
  doi: 10.1073/pnas.0903559106
– ident: e_1_2_7_36_1
  doi: 10.1038/sj.emboj.7600189
– ident: e_1_2_7_20_1
  doi: 10.1104/pp.110.170043
– ident: e_1_2_7_16_1
  doi: 10.1074/jbc.M307525200
– ident: e_1_2_7_24_1
  doi: 10.1146/annurev.micro.55.1.333
– ident: e_1_2_7_80_1
  doi: 10.1105/tpc.12.1.97
– ident: e_1_2_7_26_1
  doi: 10.1089/ars.2008.2177
– ident: e_1_2_7_65_1
  doi: 10.1016/S0006-291X(02)00771-4
– ident: e_1_2_7_72_1
  doi: 10.1074/jbc.M114.553438
– ident: e_1_2_7_30_1
  doi: 10.1016/0168-9452(90)90207-5
– start-page: 676213
  year: 2019
  ident: e_1_2_7_61_1
  article-title: Redox‐mediated kick‐start of mitochondrial energy metabolism drives resource‐efficient seed germination
  publication-title: bioRxiv
– ident: e_1_2_7_70_1
  doi: 10.1016/j.plaphy.2010.10.003
– ident: e_1_2_7_78_1
  doi: 10.1104/pp.104.045179
– ident: e_1_2_7_35_1
  doi: 10.1093/emboj/18.14.3981
– ident: e_1_2_7_12_1
  doi: 10.1073/pnas.95.14.8404
– ident: e_1_2_7_76_1
  doi: 10.1126/science.1246729
– ident: e_1_2_7_46_1
  doi: 10.1016/j.jplph.2007.10.015
– ident: e_1_2_7_58_1
  doi: 10.1073/pnas.1510835112
– ident: e_1_2_7_18_1
  doi: 10.1046/j.1365-313X.1995.08020167.x
– ident: e_1_2_7_67_1
  doi: 10.1016/j.febslet.2004.11.094
– ident: e_1_2_7_17_1
  doi: 10.1046/j.1365-313x.1998.00343.x
– ident: e_1_2_7_66_1
  doi: 10.1105/tpc.107.050849
– ident: e_1_2_7_51_1
  doi: 10.1104/pp.110.153767
– ident: e_1_2_7_54_1
  doi: 10.1016/j.tplants.2010.05.012
– ident: e_1_2_7_8_1
  doi: 10.1038/ncomms14835
– ident: e_1_2_7_34_1
  doi: 10.1104/pp.123.2.497
– ident: e_1_2_7_44_1
  doi: 10.1073/pnas.0913689107
– ident: e_1_2_7_50_1
  doi: 10.1046/j.1365-313x.2001.01071.x
– ident: e_1_2_7_74_1
  doi: 10.1111/j.1365-2818.2008.02030.x
– ident: e_1_2_7_4_1
  doi: 10.3389/fpls.2013.00506
– ident: e_1_2_7_14_1
  doi: 10.1146/annurev.arplant.56.032604.144246
– year: 2019
  ident: e_1_2_7_59_1
  article-title: Chloroplasts require glutathione reductase to balance reactive oxygen species and maintain efficient photosynthesis
  publication-title: bioRxiv
– ident: e_1_2_7_19_1
  doi: 10.1016/j.plantsci.2015.12.002
– ident: e_1_2_7_71_1
  doi: 10.1271/bbb.68.1175
– ident: e_1_2_7_40_1
  doi: 10.1104/pp.010321
– ident: e_1_2_7_56_1
  doi: 10.1146/annurev.arplant.58.032806.103946
– ident: e_1_2_7_21_1
  doi: 10.1016/j.bbabio.2016.02.011
– ident: e_1_2_7_85_1
  doi: 10.1105/tpc.113.117028
– ident: e_1_2_7_7_1
  doi: 10.1111/pce.12919
– ident: e_1_2_7_27_1
  doi: 10.1104/pp.110.167569
– ident: e_1_2_7_55_1
  doi: 10.1146/annurev.arplant.52.1.561
– ident: e_1_2_7_42_1
  doi: 10.1093/mp/sst162
– ident: e_1_2_7_22_1
  doi: 10.1111/jipb.12371
– ident: e_1_2_7_84_1
  doi: 10.1016/j.bbabio.2016.03.001
– ident: e_1_2_7_45_1
  doi: 10.1073/pnas.0913759107
– ident: e_1_2_7_23_1
  doi: 10.1093/nar/19.6.1349
– ident: e_1_2_7_53_1
  doi: 10.1016/j.tplants.2004.08.009
– ident: e_1_2_7_39_1
  doi: 10.1111/plb.12033
– ident: e_1_2_7_47_1
  doi: 10.1111/j.1365-313X.2007.03280.x
– ident: e_1_2_7_86_1
  doi: 10.1016/j.bbagen.2018.11.014
– ident: e_1_2_7_2_1
  doi: 10.1177/1087057113499634
– ident: e_1_2_7_5_1
  doi: 10.1126/science.1086391
– ident: e_1_2_7_32_1
  doi: 10.1039/b900658n
– ident: e_1_2_7_63_1
  doi: 10.1074/mcp.M500180-MCP200
– ident: e_1_2_7_13_1
  doi: 10.1104/pp.110.168120
– ident: e_1_2_7_28_1
  doi: 10.1089/ars.2015.6390
– ident: e_1_2_7_79_1
  doi: 10.1042/bj1150609a
– ident: e_1_2_7_49_1
  doi: 10.1046/j.1365-2818.2000.00697.x
– ident: e_1_2_7_73_1
  doi: 10.1089/ars.2015.6266
– ident: e_1_2_7_68_1
  doi: 10.1105/tpc.107.050989
– ident: e_1_2_7_75_1
  doi: 10.1074/jbc.M404696200
– ident: e_1_2_7_10_1
  doi: 10.1104/pp.109.143651
– ident: e_1_2_7_25_1
  doi: 10.1074/jbc.M413189200
– ident: e_1_2_7_83_1
  doi: 10.1104/pp.112.210997
SSID ssj0009562
Score 2.5487127
Snippet • A highly negative glutathione redox potential (EGSH ) is maintained in the cytosol, plastids and mitochondria of plant cells to support fundamental...
Summary A highly negative glutathione redox potential (EGSH) is maintained in the cytosol, plastids and mitochondria of plant cells to support fundamental...
A highly negative glutathione redox potential ( E GSH ) is maintained in the cytosol, plastids and mitochondria of plant cells to support fundamental...
A highly negative glutathione redox potential (E ) is maintained in the cytosol, plastids and mitochondria of plant cells to support fundamental processes,...
A highly negative glutathione redox potential (EGSH) is maintained in the cytosol, plastids and mitochondria of plant cells to support fundamental processes,...
A highly negative glutathione redox potential (EGSH ) is maintained in the cytosol, plastids and mitochondria of plant cells to support fundamental processes,...
SourceID hal
proquest
pubmed
crossref
wiley
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1569
SubjectTerms ABC transporters
ABCB25
Animal embryos
antioxidant activity
Antioxidants
Arabidopsis
Arabidopsis - genetics
Arabidopsis - growth & development
Arabidopsis - metabolism
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
ATP
ATP-Binding Cassette Transporters - genetics
ATP-Binding Cassette Transporters - metabolism
Biogenesis
Biosensors
Complementation
Cytoplasmic organelles
Cytosol
death
dual targeting
embryo lethality
Embryos
genetic complementation
Genetic Complementation Test
Glutathione
Glutathione - metabolism
glutathione redox status
Glutathione reductase
Glutathione Reductase - genetics
Glutathione Reductase - metabolism
glutathione reductase 2
glutathione-disulfide reductase
Homeostasis
In vivo methods and tests
Labeling
Lethality
Life Sciences
Mitochondria
Mitochondria - metabolism
mutants
Mutation
NTR
Organelles
Oxidation
Oxidation-Reduction
Oxidoreductions
Plant cells
plant development
Plants, Genetically Modified
Plastids
Plastids - genetics
Plastids - metabolism
Redox potential
redox‐sensitive GFP
Reductases
Seeds - genetics
Stroma
Sulfur
Sulphur
Thioredoxin
thioredoxins
Transportation systems
Viability
Title Arabidopsis glutathione reductase 2 is indispensable in plastids, while mitochondrial glutathione is safeguarded by additional reduction and transport systems
URI https://www.jstor.org/stable/26837876
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.16086
https://www.ncbi.nlm.nih.gov/pubmed/31372999
https://www.proquest.com/docview/2312468432
https://www.proquest.com/docview/2268309785
https://www.proquest.com/docview/2374163613
https://univ-perp.hal.science/hal-02290023
Volume 224
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLXaigUb3oVAqQxiwYJUie04sVgNlGp4VRWi0iyQIr_SGQGZaJIBlY_hW7k3L3VQQYjNKBNfO45zrn1iX58Q8sRZnxgW-VDHvggFNzxUipkw00xrzUURFzih__5YTk_Fm1ky2yLPh70wnT7EOOGGntH21-jg2tQXnLys5jg1kqHcdswl6uYffmAXBHclGxSYpZCzXlUIo3jGnBtj0fYcIyG7oMTL6OYme22Hn6Pr5NNQ8S7q5PPBujEH9sdvmo7_eWc3yLWeltJJh6ObZMuXt8iVF0ugjue3yc_JSpuFW1b1oqZngFUMWVyWnq5Q-LWBgZAyCkm4_l1X8GKM-7HgH62AmzcLVz-j3-dQFfoV-g_ob0uHsN8oCXLXuvBniFjvqDmnGOnUTVT2l4FjqktHm0GPnXYy1PUdcnr06uPLadh_2CG0Ik1laIBVRrbQGbdZ4bTItC9cGivhZWJdFGvOTOptYr1RnqskUwXXgjmdWK4TI_ku2SmhbvcIhSKSyAlgsbEXskhVZoDQplY5k8baFQF5Ojzi3Paq5_jxjS_58PYDrZ23rR2Qx6Np1Ul9XGoEOBnTUZx7OnmX47kIpfOBAn2LA7Lbwmg0YxJ1-1PIvTfgKu_7ijoHhs2EzARnAXk0JoOX49KNLv1yDTZYAm65Sf5iw1t2DfwsIHc7zI4V4DEuzyoFzdEi7883mB-fTNuD-_9u-oBcBR6puiifPbLTrNb-IXC1xuyTbSZO4Pfw9dv91kF_AXQ5PzQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbaggQXxKsQKGAQBw5ESmzHiSUuC6IKsF310Ep7i-zY7q4E2WiTgvpn-K3M5KWuVBC3JB7bSWYm_jwefyHkrS1dYljkQh07HwpueKgUM2GmmdaaCx97DOifLGR-Lr4uk-Ue-TDuhen5IaaAG3pG971GB8eA9DUvr-oVxkYyuU9uCQlTF-R1FqfXKHclGzmYpZDLgVcI83imqjuj0f4KcyH7tMSbAOcufu0GoOP75N6AHOmsV_UDsueqh-T2xw2gu6tH5Pdsq83abupm3dALMCfMKtxUjm6Rm7WFsYoyCkW4RN3UMHfFLVNwRmuAz-3aNu_prxV0S3-Ai8MnsbJomTstQe1Ge3eBRuUsNVcUk5H6WOLQDRxTXVnajpTptGeKbh6T8-PPZ5_ycPj3QliKNJWhAeAXlV5nvMy81SLTzts0VsLJpLRRrDkzqSuT0hnluEoy5bkWzOqk5Doxkh-Sgwru7Smh0EQSWQFAM3ZC-lRlBjBnWipr0lhbH5B3ow6KciAmx_9jfC_GCQqoq-jUFZA3k2jds3HcKASKnMqRPzufzQu8FiG7PaCUn3FADjs9T2JMIrV-CrWPRsUXgzs3BYBgJmQmOAvI66kYHBFXV3TlNpcggy3grpjkHzK8A8AAoQLypDeq6QZ4jCuoSsHr6Kzs7w9YLE7z7uDZ_4u-Infys5N5Mf-y-Pac3AXYp_qknCNy0G4v3QuAVq152XnQH5k6ILk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbaglAviFfbQAGDOHAgUmI7TixOy2O1QFntgUp7i-zY7q4E2WiTgvpn-K3M5KWuVBC3JB7bSWYm_jwefyHklS1cYljkQh07HwpueKgUM2GmmdaaCx97DOh_ncvZufi8TJZ75O2wF6bjhxgDbugZ7fcaHbyy_pqTl9UKQyOZ3Ce3BNgdmjcTi2uMu5INFMxSyGVPK4RpPGPVncFof4WpkF1W4k14cxe-tuPP9B652wNHOuk0fZ_sufIBuf1uA-Du6iH5Pdlqs7abql7X9AKsCZMKN6WjW6RmbWCoooxCEa5Q1xVMXXHHFJzRCtBzs7b1G_prBd3SH-Dh8EUsLRrmTktQu9beXaBNOUvNFcVcpC6U2HcDx1SXljYDYzrtiKLrR-R8-vHb-1nY_3ohLESaytAA7osKrzNeZN5qkWnnbRor4WRS2CjWnJnUFUnhjHJcJZnyXAtmdVJwnRjJj8hBCfd2Qig0kURWAM6MnZA-VZkByJkWypo01tYH5PWgg7zoecnx9xjf82F-AurKW3UF5OUoWnVkHDcKgSLHcqTPnk3OcrwWIbk9gJSfcUCOWj2PYkwis34KtU8Hxee9N9c5YGAmZCY4C8iLsRj8EBdXdOk2lyCDLeCmmOQfMrzFv4CgAnLcGdV4AzzGBVSl4HW0Vvb3B8zni1l78Pj_RZ-TO4sP0_zs0_zLE3IIoE91KTmn5KDZXrqnAKwa86x1oD_wgR_0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Arabidopsis+glutathione+reductase+2+is+indispensable+in+plastids%2C+while+mitochondrial+glutathione+is+safeguarded+by+additional+reduction+and+transport+systems&rft.jtitle=The+New+phytologist&rft.au=Marty%2C+Laurent&rft.au=Bausewein%2C+Daniela&rft.au=M%C3%BCller%2C+Christopher&rft.au=Sajid+Ali+Khan+Bangash&rft.date=2019-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=1469-8137&rft.volume=224&rft.issue=4&rft.spage=1569&rft.epage=1584&rft_id=info:doi/10.1111%2Fnph.16086&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon