Arabidopsis glutathione reductase 2 is indispensable in plastids, while mitochondrial glutathione is safeguarded by additional reduction and transport systems
• A highly negative glutathione redox potential (EGSH ) is maintained in the cytosol, plastids and mitochondria of plant cells to support fundamental processes, including antioxidant defence, redox regulation and ironasulfur cluster biogenesis. Out of two glutathione reductase (GR) proteins in Arabi...
Saved in:
Published in | The New phytologist Vol. 224; no. 4; pp. 1569 - 1584 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley
01.12.2019
Wiley Subscription Services, Inc |
Series | New Phytologist Trust |
Subjects | |
Online Access | Get full text |
ISSN | 0028-646X 1469-8137 1469-8137 |
DOI | 10.1111/nph.16086 |
Cover
Abstract | • A highly negative glutathione redox potential (EGSH
) is maintained in the cytosol, plastids and mitochondria of plant cells to support fundamental processes, including antioxidant defence, redox regulation and ironasulfur cluster biogenesis. Out of two glutathione reductase (GR) proteins in Arabidopsis, GR2 is predicted to be dual-targeted to plastids and mitochondria, but its differential roles in these organelles remain unclear.
• We dissected the role of GR2 in organelle glutathione redox homeostasis and plant development using a combination of genetic complementation and stacked mutants, biochemical activity studies, immunogold labelling and in vivo biosensing.
• Our data demonstrate that GR2 is dual-targeted to plastids and mitochondria, but embryo lethality of gr2 null mutants is caused specifically in plastids. Whereas lack of mitochondrial GR2 leads to a partially oxidised glutathione pool in the matrix, the ATP-binding cassette (ABC) transporter ATM3 and the mitochondrial thioredoxin system provide functional backup and maintain plant viability.
• We identify GR2 as essential in the plastid stroma, where it counters GSSG accumulation and developmental arrest. By contrast a functional triad of GR2, ATM3 and the thioredoxin system in the mitochondria provides resilience to excessive glutathione oxidation. |
---|---|
AbstractList | A highly negative glutathione redox potential (
E
GSH
) is maintained in the cytosol, plastids and mitochondria of plant cells to support fundamental processes, including antioxidant defence, redox regulation and iron−sulfur cluster biogenesis. Out of two glutathione reductase (GR) proteins in Arabidopsis, GR2 is predicted to be dual‐targeted to plastids and mitochondria, but its differential roles in these organelles remain unclear.
We dissected the role of GR2 in organelle glutathione redox homeostasis and plant development using a combination of genetic complementation and stacked mutants, biochemical activity studies, immunogold labelling and
in vivo
biosensing.
Our data demonstrate that GR2 is dual‐targeted to plastids and mitochondria, but embryo lethality of
gr2
null mutants is caused specifically in plastids. Whereas lack of mitochondrial GR2 leads to a partially oxidised glutathione pool in the matrix, the ATP‐binding cassette (ABC) transporter ATM3 and the mitochondrial thioredoxin system provide functional backup and maintain plant viability.
We identify GR2 as essential in the plastid stroma, where it counters GSSG accumulation and developmental arrest. By contrast a functional triad of GR2, ATM3 and the thioredoxin system in the mitochondria provides resilience to excessive glutathione oxidation. A highly negative glutathione redox potential (EGSH) is maintained in the cytosol, plastids and mitochondria of plant cells to support fundamental processes, including antioxidant defence, redox regulation and iron−sulfur cluster biogenesis. Out of two glutathione reductase (GR) proteins in Arabidopsis, GR2 is predicted to be dual‐targeted to plastids and mitochondria, but its differential roles in these organelles remain unclear. We dissected the role of GR2 in organelle glutathione redox homeostasis and plant development using a combination of genetic complementation and stacked mutants, biochemical activity studies, immunogold labelling and in vivo biosensing. Our data demonstrate that GR2 is dual‐targeted to plastids and mitochondria, but embryo lethality of gr2 null mutants is caused specifically in plastids. Whereas lack of mitochondrial GR2 leads to a partially oxidised glutathione pool in the matrix, the ATP‐binding cassette (ABC) transporter ATM3 and the mitochondrial thioredoxin system provide functional backup and maintain plant viability. We identify GR2 as essential in the plastid stroma, where it counters GSSG accumulation and developmental arrest. By contrast a functional triad of GR2, ATM3 and the thioredoxin system in the mitochondria provides resilience to excessive glutathione oxidation. • A highly negative glutathione redox potential (EGSH ) is maintained in the cytosol, plastids and mitochondria of plant cells to support fundamental processes, including antioxidant defence, redox regulation and ironasulfur cluster biogenesis. Out of two glutathione reductase (GR) proteins in Arabidopsis, GR2 is predicted to be dual-targeted to plastids and mitochondria, but its differential roles in these organelles remain unclear. • We dissected the role of GR2 in organelle glutathione redox homeostasis and plant development using a combination of genetic complementation and stacked mutants, biochemical activity studies, immunogold labelling and in vivo biosensing. • Our data demonstrate that GR2 is dual-targeted to plastids and mitochondria, but embryo lethality of gr2 null mutants is caused specifically in plastids. Whereas lack of mitochondrial GR2 leads to a partially oxidised glutathione pool in the matrix, the ATP-binding cassette (ABC) transporter ATM3 and the mitochondrial thioredoxin system provide functional backup and maintain plant viability. • We identify GR2 as essential in the plastid stroma, where it counters GSSG accumulation and developmental arrest. By contrast a functional triad of GR2, ATM3 and the thioredoxin system in the mitochondria provides resilience to excessive glutathione oxidation. A highly negative glutathione redox potential (E ) is maintained in the cytosol, plastids and mitochondria of plant cells to support fundamental processes, including antioxidant defence, redox regulation and iron-sulfur cluster biogenesis. Out of two glutathione reductase (GR) proteins in Arabidopsis, GR2 is predicted to be dual-targeted to plastids and mitochondria, but its differential roles in these organelles remain unclear. We dissected the role of GR2 in organelle glutathione redox homeostasis and plant development using a combination of genetic complementation and stacked mutants, biochemical activity studies, immunogold labelling and in vivo biosensing. Our data demonstrate that GR2 is dual-targeted to plastids and mitochondria, but embryo lethality of gr2 null mutants is caused specifically in plastids. Whereas lack of mitochondrial GR2 leads to a partially oxidised glutathione pool in the matrix, the ATP-binding cassette (ABC) transporter ATM3 and the mitochondrial thioredoxin system provide functional backup and maintain plant viability. We identify GR2 as essential in the plastid stroma, where it counters GSSG accumulation and developmental arrest. By contrast a functional triad of GR2, ATM3 and the thioredoxin system in the mitochondria provides resilience to excessive glutathione oxidation. A highly negative glutathione redox potential (EGSH ) is maintained in the cytosol, plastids and mitochondria of plant cells to support fundamental processes, including antioxidant defence, redox regulation and iron-sulfur cluster biogenesis. Out of two glutathione reductase (GR) proteins in Arabidopsis, GR2 is predicted to be dual-targeted to plastids and mitochondria, but its differential roles in these organelles remain unclear. We dissected the role of GR2 in organelle glutathione redox homeostasis and plant development using a combination of genetic complementation and stacked mutants, biochemical activity studies, immunogold labelling and in vivo biosensing. Our data demonstrate that GR2 is dual-targeted to plastids and mitochondria, but embryo lethality of gr2 null mutants is caused specifically in plastids. Whereas lack of mitochondrial GR2 leads to a partially oxidised glutathione pool in the matrix, the ATP-binding cassette (ABC) transporter ATM3 and the mitochondrial thioredoxin system provide functional backup and maintain plant viability. We identify GR2 as essential in the plastid stroma, where it counters GSSG accumulation and developmental arrest. By contrast a functional triad of GR2, ATM3 and the thioredoxin system in the mitochondria provides resilience to excessive glutathione oxidation.A highly negative glutathione redox potential (EGSH ) is maintained in the cytosol, plastids and mitochondria of plant cells to support fundamental processes, including antioxidant defence, redox regulation and iron-sulfur cluster biogenesis. Out of two glutathione reductase (GR) proteins in Arabidopsis, GR2 is predicted to be dual-targeted to plastids and mitochondria, but its differential roles in these organelles remain unclear. We dissected the role of GR2 in organelle glutathione redox homeostasis and plant development using a combination of genetic complementation and stacked mutants, biochemical activity studies, immunogold labelling and in vivo biosensing. Our data demonstrate that GR2 is dual-targeted to plastids and mitochondria, but embryo lethality of gr2 null mutants is caused specifically in plastids. Whereas lack of mitochondrial GR2 leads to a partially oxidised glutathione pool in the matrix, the ATP-binding cassette (ABC) transporter ATM3 and the mitochondrial thioredoxin system provide functional backup and maintain plant viability. We identify GR2 as essential in the plastid stroma, where it counters GSSG accumulation and developmental arrest. By contrast a functional triad of GR2, ATM3 and the thioredoxin system in the mitochondria provides resilience to excessive glutathione oxidation. Summary A highly negative glutathione redox potential (EGSH) is maintained in the cytosol, plastids and mitochondria of plant cells to support fundamental processes, including antioxidant defence, redox regulation and iron−sulfur cluster biogenesis. Out of two glutathione reductase (GR) proteins in Arabidopsis, GR2 is predicted to be dual‐targeted to plastids and mitochondria, but its differential roles in these organelles remain unclear. We dissected the role of GR2 in organelle glutathione redox homeostasis and plant development using a combination of genetic complementation and stacked mutants, biochemical activity studies, immunogold labelling and in vivo biosensing. Our data demonstrate that GR2 is dual‐targeted to plastids and mitochondria, but embryo lethality of gr2 null mutants is caused specifically in plastids. Whereas lack of mitochondrial GR2 leads to a partially oxidised glutathione pool in the matrix, the ATP‐binding cassette (ABC) transporter ATM3 and the mitochondrial thioredoxin system provide functional backup and maintain plant viability. We identify GR2 as essential in the plastid stroma, where it counters GSSG accumulation and developmental arrest. By contrast a functional triad of GR2, ATM3 and the thioredoxin system in the mitochondria provides resilience to excessive glutathione oxidation. |
Author | Moseler, Anna Schwarzländer, Markus Müller-Schüssele, Stefanie J. Wirtz, Markus Bangash, Sajid Ali Khan Meyer, Andreas J. Reichheld, Jean-Philippe Hell, Rüdiger Riondet, Christophe Balk, Janneke Bausewein, Daniela Müller, Christopher Zechmann, Bernd Marty, Laurent |
Author_xml | – sequence: 1 givenname: Laurent surname: Marty fullname: Marty, Laurent – sequence: 2 givenname: Daniela surname: Bausewein fullname: Bausewein, Daniela – sequence: 3 givenname: Christopher surname: Müller fullname: Müller, Christopher – sequence: 4 givenname: Sajid Ali Khan surname: Bangash fullname: Bangash, Sajid Ali Khan – sequence: 5 givenname: Anna surname: Moseler fullname: Moseler, Anna – sequence: 6 givenname: Markus surname: Schwarzländer fullname: Schwarzländer, Markus – sequence: 7 givenname: Stefanie J. surname: Müller-Schüssele fullname: Müller-Schüssele, Stefanie J. – sequence: 8 givenname: Bernd surname: Zechmann fullname: Zechmann, Bernd – sequence: 9 givenname: Christophe surname: Riondet fullname: Riondet, Christophe – sequence: 10 givenname: Janneke surname: Balk fullname: Balk, Janneke – sequence: 11 givenname: Markus surname: Wirtz fullname: Wirtz, Markus – sequence: 12 givenname: Rüdiger surname: Hell fullname: Hell, Rüdiger – sequence: 13 givenname: Jean-Philippe surname: Reichheld fullname: Reichheld, Jean-Philippe – sequence: 14 givenname: Andreas J. surname: Meyer fullname: Meyer, Andreas J. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31372999$$D View this record in MEDLINE/PubMed https://univ-perp.hal.science/hal-02290023$$DView record in HAL |
BookMark | eNqFks1u1DAUhS1URKeFBQ8AssQGJKb1T-LYy1EFDNIIWIDELrqxncajJA62QzUvw7PiYdpBVAKySXzvd45jn3uGTkY_WoSeUnJB83M5Tt0FFUSKB2hBC6GWkvLqBC0IYXIpCvH1FJ3FuCWEqFKwR-iU5z5TSi3Qj1WAxhk_RRfxdT8nSJ3L7jhYM-sE0WKGc8uNxsXJjhGa3uYVnnqIyZn4Gt90LpcGl7zu_GiCg_4Pp6yO0NrrGYKxBjc7DMa4lHsZPGyTvzGMBqcAY5x8SDjuYrJDfIwettBH--T2fY6-vH3z-Wq93Hx89_5qtVnqoqrEslGME92C5Fq2BgoJtjUVVYUVpTaEAmdNZXWpbaMsV6VULYeCGSg1h7IR_By9Ovh20NdTcAOEXe3B1evVpt7XCGMqXyf_TjP78sBOwX-bbUz14KK2fQ-j9XOsGa8KKrig_P8oE5ITVckyoy_uoVs_h3xFe0PKCiELzjL1_Jaam8Ga46_eBfr7IDr4GINtjwgl9X5Y6jws9a9hyezlPVa7nFoOI-fg-n8pbnLku79b1x8-re8Uzw6KbUw-HBX7c1eyEvwnK4Pcmw |
CitedBy_id | crossref_primary_10_1111_mpp_13210 crossref_primary_10_1016_j_cub_2023_12_005 crossref_primary_10_1093_plphys_kiab172 crossref_primary_10_1093_jxb_erab249 crossref_primary_10_1093_plcell_koac017 crossref_primary_10_1093_jxb_erae075 crossref_primary_10_1111_tpj_17217 crossref_primary_10_3389_fpls_2022_894479 crossref_primary_10_1007_s42976_023_00429_8 crossref_primary_10_1093_jxb_erae194 crossref_primary_10_1093_jxb_erae035 crossref_primary_10_1007_s10265_024_01611_7 crossref_primary_10_1093_jxb_eraa195 crossref_primary_10_1073_pnas_1910501117 crossref_primary_10_1007_s00418_022_02103_2 crossref_primary_10_1016_j_cj_2021_03_010 crossref_primary_10_1111_pce_14631 crossref_primary_10_3390_metabo11090641 crossref_primary_10_3390_agriculture12101528 crossref_primary_10_1111_tpj_14621 crossref_primary_10_1093_plphys_kiac541 crossref_primary_10_1093_plphys_kiab019 crossref_primary_10_1042_BCJ20190124 crossref_primary_10_1007_s12268_021_1669_2 crossref_primary_10_1038_s41580_022_00499_2 crossref_primary_10_1186_s12870_021_03087_2 crossref_primary_10_1093_jxb_erae023 crossref_primary_10_3390_ijms25189845 crossref_primary_10_7554_eLife_76140 crossref_primary_10_1038_s41467_020_17056_0 crossref_primary_10_1007_s44154_023_00097_y crossref_primary_10_1093_plphys_kiaa077 crossref_primary_10_1111_tpj_14791 crossref_primary_10_1515_hsz_2020_0291 crossref_primary_10_1093_plcell_koab068 crossref_primary_10_3390_biology10040267 crossref_primary_10_1093_jxb_erab502 crossref_primary_10_3390_ijms231911650 crossref_primary_10_1093_jxb_erac030 crossref_primary_10_1093_jxb_erad042 crossref_primary_10_3389_fpls_2020_618835 crossref_primary_10_1093_plphys_kiaa095 crossref_primary_10_1093_jxb_erab018 crossref_primary_10_1093_pcp_pcac150 crossref_primary_10_1093_jxb_erab098 crossref_primary_10_1007_s11356_022_22808_0 crossref_primary_10_1093_pcp_pcz173 crossref_primary_10_3390_biology11020155 crossref_primary_10_1016_j_plantsci_2024_112310 crossref_primary_10_3389_fpls_2022_958490 crossref_primary_10_1016_j_ecoenv_2021_112682 crossref_primary_10_1016_j_plaphy_2022_10_022 |
Cites_doi | 10.1111/j.1365-313X.2007.03389.x 10.1007/s00726-002-0313-9 10.1104/pp.16.00434 10.1104/pp.106.077982 10.1146/annurev-arplant-042817-040322 10.1104/pp.106.089458 10.1007/978-1-59745-365-3_9 10.1089/ars.2007.9.151 10.1073/pnas.0900206106 10.3109/10520296909063335 10.1021/pr060403j 10.1104/pp.106.081091 10.1002/j.1460-2075.1995.tb06989.x 10.1139/b91-063 10.1089/ars.2009.2948 10.1146/annurev.arplant.50.1.601 10.1038/nchembio.1142 10.1104/pp.110.165910 10.1073/pnas.1706003114 10.1016/j.jmb.2004.05.028 10.1073/pnas.0903559106 10.1038/sj.emboj.7600189 10.1104/pp.110.170043 10.1074/jbc.M307525200 10.1146/annurev.micro.55.1.333 10.1105/tpc.12.1.97 10.1089/ars.2008.2177 10.1016/S0006-291X(02)00771-4 10.1074/jbc.M114.553438 10.1016/0168-9452(90)90207-5 10.1016/j.plaphy.2010.10.003 10.1104/pp.104.045179 10.1093/emboj/18.14.3981 10.1073/pnas.95.14.8404 10.1126/science.1246729 10.1016/j.jplph.2007.10.015 10.1073/pnas.1510835112 10.1046/j.1365-313X.1995.08020167.x 10.1016/j.febslet.2004.11.094 10.1046/j.1365-313x.1998.00343.x 10.1105/tpc.107.050849 10.1104/pp.110.153767 10.1016/j.tplants.2010.05.012 10.1038/ncomms14835 10.1104/pp.123.2.497 10.1073/pnas.0913689107 10.1046/j.1365-313x.2001.01071.x 10.1111/j.1365-2818.2008.02030.x 10.3389/fpls.2013.00506 10.1146/annurev.arplant.56.032604.144246 10.1016/j.plantsci.2015.12.002 10.1271/bbb.68.1175 10.1104/pp.010321 10.1146/annurev.arplant.58.032806.103946 10.1016/j.bbabio.2016.02.011 10.1105/tpc.113.117028 10.1111/pce.12919 10.1104/pp.110.167569 10.1146/annurev.arplant.52.1.561 10.1093/mp/sst162 10.1111/jipb.12371 10.1016/j.bbabio.2016.03.001 10.1073/pnas.0913759107 10.1093/nar/19.6.1349 10.1016/j.tplants.2004.08.009 10.1111/plb.12033 10.1111/j.1365-313X.2007.03280.x 10.1016/j.bbagen.2018.11.014 10.1177/1087057113499634 10.1126/science.1086391 10.1039/b900658n 10.1074/mcp.M500180-MCP200 10.1104/pp.110.168120 10.1089/ars.2015.6390 10.1042/bj1150609a 10.1046/j.1365-2818.2000.00697.x 10.1089/ars.2015.6266 10.1105/tpc.107.050989 10.1074/jbc.M404696200 10.1104/pp.109.143651 10.1074/jbc.M413189200 10.1104/pp.112.210997 |
ContentType | Journal Article |
Copyright | 2019 The Authors © 2019 New Phytologist Trust 2019 The Authors. New Phytologist © 2019 New Phytologist Trust 2019 The Authors. New Phytologist © 2019 New Phytologist Trust. Copyright © 2019 New Phytologist Trust Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2019 The Authors © 2019 New Phytologist Trust – notice: 2019 The Authors. New Phytologist © 2019 New Phytologist Trust – notice: 2019 The Authors. New Phytologist © 2019 New Phytologist Trust. – notice: Copyright © 2019 New Phytologist Trust – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 1XC VOOES |
DOI | 10.1111/nph.16086 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1469-8137 |
EndPage | 1584 |
ExternalDocumentID | oai_HAL_hal_02290023v1 31372999 10_1111_nph_16086 NPH16086 26837876 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Deutscher Akademischer Austauschdienst funderid: Procope exchange grant – fundername: HEC Pakistan – fundername: Centre National de la Recherche Scientifique funderid: ANR‐Blanc Cynthiol 12‐BSV6‐0011 – fundername: Deutsche Forschungsgemeinschaft funderid: ME1567/3‐2 – fundername: Biotechnology and Biological Sciences Research Council grantid: BBS/E/J/000PR9790 |
GroupedDBID | --- -~X .3N .GA 05W 0R~ 10A 123 1OC 29N 2WC 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAHQN AAISJ AAKGQ AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABLJU ABPLY ABPVW ABSQW ABTLG ABVKB ABXSQ ACAHQ ACCZN ACFBH ACGFS ACHIC ACNCT ACPOU ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUPB AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGUYK AGXDD AGYGG AHBTC AHXOZ AIDQK AIDYY AILXY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CBGCD CS3 CUYZI D-E D-F DCZOG DEVKO DIK DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY F00 F01 F04 F5P G-S G.N GODZA H.T H.X HGLYW HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 YNT YQT ZZTAW ~02 ~IA ~KM ~WT .Y3 24P 31~ AAHHS AASVR ABEFU ABEML ACCFJ ACQPF ADULT AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE AS~ CAG COF DOOOF EJD ESX FIJ GTFYD HF~ HGD HQ2 HTVGU IPNFZ JSODD LPU LW6 MVM NEJ RCA WHG WRC XOL YXE ZCG AAYXX ABGDZ ADXHL CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 1XC VOOES |
ID | FETCH-LOGICAL-c4776-b9230cfa83c8fda48aefd7194e65cd01a32b7ec5ceb9e39589f3a42da5c3a5b63 |
IEDL.DBID | DR2 |
ISSN | 0028-646X 1469-8137 |
IngestDate | Wed Sep 24 08:23:40 EDT 2025 Fri Sep 05 17:23:42 EDT 2025 Thu Sep 04 18:00:17 EDT 2025 Sun Jul 13 03:27:50 EDT 2025 Mon Jul 21 05:41:57 EDT 2025 Tue Jul 01 02:28:32 EDT 2025 Thu Apr 24 23:12:37 EDT 2025 Wed Jan 22 16:37:26 EST 2025 Thu Jul 03 22:05:41 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | redox-sensitive GFP glutathione redox status embryo lethality mitochondria dual targeting NTR glutathione reductase 2 ABCB25 Glutathione reductase Mitocondria |
Language | English |
License | Attribution 2019 The Authors. New Phytologist © 2019 New Phytologist Trust. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4776-b9230cfa83c8fda48aefd7194e65cd01a32b7ec5ceb9e39589f3a42da5c3a5b63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4061-1175 0000-0002-6936-8060 0000-0003-4738-1990 0000-0001-7790-4022 0000-0001-8144-4364 0000-0002-6238-4818 0000-0003-4641-8093 0000-0003-0796-8308 0000-0001-6884-0602 0000-0001-7124-8888 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.16086 |
PMID | 31372999 |
PQID | 2312468432 |
PQPubID | 2026848 |
PageCount | 16 |
ParticipantIDs | hal_primary_oai_HAL_hal_02290023v1 proquest_miscellaneous_2374163613 proquest_miscellaneous_2268309785 proquest_journals_2312468432 pubmed_primary_31372999 crossref_primary_10_1111_nph_16086 crossref_citationtrail_10_1111_nph_16086 wiley_primary_10_1111_nph_16086_NPH16086 jstor_primary_26837876 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2019 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: December 2019 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Lancaster |
PublicationSeriesTitle | New Phytologist Trust |
PublicationTitle | The New phytologist |
PublicationTitleAlternate | New Phytol |
PublicationYear | 2019 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2017; 40 2017; 8 1991; 19 1990; 99 2013; 4 2010; 15 2013; 25 2010; 13 2010; 107 2004; 23 2004; 9 2005; 579 2004; 68 2009; 151 2003; 278 2013; 161 2017; 114 2011; 155 2013; 9 1998; 16 2009; 11 2004; 135 2000; 12 1999; 18 2007; 372 2016; 1857 2014; 16 1969; 44 2007; 9 2010; 153 2014; 19 1999; 50 2000; 123 2001; 55 1998; 95 2014; 7 2008; 231 2001; 52 1989 2014; 289 2007; 19 2004; 340 2016b; 58 1995; 14 2002; 295 2016; 243 2006; 5 2000; 198 2001; 27 2007; 52 2008; 53 2008; 165 2007; 58 1995; 8 2018; 69 2019; 1863 2001; 127 2016a; 1857 2005; 280 1991; 69 2004; 279 2015; 112 2006; 141 2003; 24 2019 2006; 142 2009; 5 2016; 171 2003; 301 2011; 49 1969; 115 2005; 56 2016; 24 2014; 343 2009; 106 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 Nietzel T (e_1_2_7_61_1) 2019 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_77_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_75_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_79_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_80_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_82_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_86_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 Sambrook J (e_1_2_7_69_1) 1989 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 Müller‐Schüssele SJ (e_1_2_7_59_1) 2019 e_1_2_7_74_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_78_1 e_1_2_7_38_1 |
References_xml | – volume: 151 start-page: 590 year: 2009 end-page: 602 article-title: An allelic mutant series of ATM3 reveals its key role in the biogenesis of cytosolic iron‐sulfur proteins in Arabidopsis publication-title: Plant Physiology – volume: 19 start-page: 379 year: 2014 end-page: 386 article-title: Redesign of genetically encoded biosensors for monitoring mitochondrial redox status in a broad range of model eukaryotes publication-title: Journal of Biomolecular Screening – start-page: 676213 year: 2019 article-title: Redox‐mediated kick‐start of mitochondrial energy metabolism drives resource‐efficient seed germination publication-title: bioRxiv – volume: 372 start-page: 125 year: 2007 end-page: 136 article-title: Isolation of intact, functional mitochondria from the model plant publication-title: Methods in Molecular Biology – volume: 24 start-page: 195 year: 2003 end-page: 203 article-title: Production of cysteine for bacterial and plant biotechnology: application of cysteine feedback‐insensitive isoforms of serine acetyltransferase publication-title: Amino Acids – volume: 123 start-page: 497 year: 2000 end-page: 508 article-title: The role of pyruvate dehydrogenase and acetyl‐coenzyme a synthetase in fatty acid synthesis in developing Arabidopsis seeds publication-title: Plant Physiology – volume: 95 start-page: 8404 year: 1998 end-page: 8409 article-title: Glutaredoxin function for the carboxyl‐terminal domain of the plant‐type 5′‐adenylylsulfate reductase publication-title: Proceedings of the National Academy of Sciences, USA – volume: 99 start-page: 221 year: 1990 end-page: 230 article-title: Biochemical and genetic analysis of different patatin isoforms expressed in various organs of potato ( L.) publication-title: Plant Science – volume: 58 start-page: 459 year: 2007 end-page: 481 article-title: Oxidative modifications to cellular components in plants publication-title: Annual Review of Plant Biology – year: 2019 article-title: Chloroplasts require glutathione reductase to balance reactive oxygen species and maintain efficient photosynthesis publication-title: bioRxiv – volume: 44 start-page: 117 year: 1969 end-page: 122 article-title: Differential staining of aborted and nonaborted pollen publication-title: Stain Technology – volume: 340 start-page: 783 year: 2004 end-page: 795 article-title: Improved prediction of signal peptides: SignalP 3.0 publication-title: Journal of Molecular Biology – volume: 1857 start-page: 665 year: 2016a end-page: 677 article-title: Glutathione reductase 2 maintains the function of photosystem II in Arabidopsis under excess light publication-title: Biochimica et Biophysica Acta‐Bioenergetics – volume: 40 start-page: 1281 year: 2017 end-page: 1295 article-title: Glutathione peroxidase‐like enzymes cover five distinct cell compartments and membrane surfaces in publication-title: Plant, Cell & Environment – year: 1989 – volume: 279 start-page: 43821 year: 2004 end-page: 43827 article-title: A novel NADPH thioredoxin reductase, localized in the chloroplast, which deficiency causes hypersensitivity to abiotic stress in publication-title: Journal of Biological Chemistry – volume: 142 start-page: 1364 year: 2006 end-page: 1379 article-title: Plant glutathione peroxidases are functional peroxiredoxins distributed in several subcellular compartments and regulated during biotic and abiotic stresses publication-title: Plant Physiology – volume: 16 start-page: 735 year: 1998 end-page: 743 article-title: Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana publication-title: The Plant Journal – volume: 155 start-page: 293 year: 2011 end-page: 314 article-title: Reverse‐genetic analysis of the two biotin‐containing subunit genes of the heteromeric acetyl‐coenzyme A carboxylase in Arabidopsis indicates a unidirectional functional redundancy publication-title: Plant Physiology – volume: 69 start-page: 209 year: 2018 end-page: 236 article-title: Reactive oxygen species in plant signaling publication-title: Annual Review of Plant Biology – volume: 19 start-page: 1851 year: 2007 end-page: 1865 article-title: Inactivation of thioredoxin reductases reveals a complex interplay between thioredoxin and glutathione pathways in Arabidopsis development publication-title: Plant Cell – volume: 155 start-page: 1678 year: 2011 end-page: 1689 article-title: Identification of nuclear genes encoding chloroplast‐localized proteins required for embryo development in Arabidopsis publication-title: Plant Physiology – volume: 343 start-page: 1137 year: 2014 end-page: 1140 article-title: Crystal structures of nucleotide‐free and glutathione‐bound mitochondrial ABC transporter Atm1 publication-title: Science – volume: 5 start-page: 114 year: 2006 end-page: 133 article-title: The oligomeric stromal proteome of chloroplasts publication-title: Molecular and Cellular Proteomics – volume: 141 start-page: 446 year: 2006 end-page: 455 article-title: Maturation of Arabidopsis seeds is dependent on glutathione biosynthesis within the embryo publication-title: Plant Physiology – volume: 198 start-page: 174 year: 2000 end-page: 181 article-title: Direct measurement of glutathione in epidermal cells of intact Arabidopsis roots by two‐photon laser scanning microscopy publication-title: Journal of Microscopy – volume: 14 start-page: 188 year: 1995 end-page: 195 article-title: An ABC transporter in the mitochondrial inner membrane is required for normal growth of yeast publication-title: EMBO Journal – volume: 107 start-page: 3900 year: 2010 end-page: 3905 article-title: A membrane‐associated thioredoxin required for plant growth moves from cell to cell, suggestive of a role in intercellular communication publication-title: Proceedings of the National Academy of Sciences, USA – volume: 12 start-page: 97 year: 2000 end-page: 110 article-title: The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 gene defines a glutathione‐dependent pathway involved in initiation and maintenance of cell division during postembryonic root development publication-title: Plant Cell – volume: 165 start-page: 1390 year: 2008 end-page: 1403 article-title: The integration of glutathione homeostasis and redox signaling publication-title: Journal of Plant Physiology – volume: 53 start-page: 999 year: 2008 end-page: 1012 article-title: Restricting glutathione biosynthesis to the cytosol is sufficient for normal plant development publication-title: The Plant Journal – volume: 11 start-page: 861 year: 2009 end-page: 905 article-title: Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications publication-title: Antioxidants & Redox Signaling – volume: 579 start-page: 337 year: 2005 end-page: 342 article-title: AtNTRB is the major mitochondrial thioredoxin reductase in publication-title: FEBS Letters – volume: 56 start-page: 187 year: 2005 end-page: 220 article-title: Redox regulation: a broadening horizon publication-title: Annual Review of Plant Biology – volume: 135 start-page: 1206 year: 2004 end-page: 1220 article-title: Identification of genes required for embryo development in Arabidopsis publication-title: Plant Physiology – volume: 8 start-page: 14835 year: 2017 article-title: Glutaredoxin catalysis requires two distinct glutathione interaction sites publication-title: Nature Communications – volume: 52 start-page: 561 year: 2001 end-page: 591 article-title: Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species publication-title: Annual Review of Plant Physiology and Plant Molecular Biology – volume: 24 start-page: 752 year: 2016 end-page: 762 article-title: Quantitative redox imaging software publication-title: Antioxidants & Redox Signaling – volume: 27 start-page: 67 year: 2001 end-page: 78 article-title: Quantitative measurement of glutathione in Arabidopsis cells publication-title: The Plant Journal – volume: 114 start-page: 12069 year: 2017 end-page: 12074 article-title: NTRC‐dependent redox balance of 2‐Cys peroxiredoxins is needed for optimal function of the photosynthetic apparatus publication-title: Proceedings of the National Academy of Sciences, USA – volume: 68 start-page: 1175 year: 2004 end-page: 1184 article-title: Plant acetyl‐CoA carboxylase: structure, biosynthesis, regulation, and gene manipulation for plant breeding publication-title: Bioscience, Biotechnology and Biochemistry – volume: 69 start-page: 461 year: 1991 end-page: 476 article-title: Early embryogenesis in . II. The developing embryo publication-title: Canadian Journal of Botany – volume: 1863 start-page: 426 year: 2019 end-page: 436 article-title: The thioredoxin‐mediated recycling of GRXS16 relies on a conserved C‐terminal cysteine publication-title: Biochimica et Biophysica Acta (BBA) – General Subjects – volume: 5 start-page: 345 year: 2009 end-page: 350 article-title: Moonlighting proteins–an update publication-title: Molecular BioSystems – volume: 107 start-page: 2331 year: 2010 end-page: 2336 article-title: Plant homologs of the chloroquine‐resistance transporter, PfCRT, are required for glutathione homeostasis and stress responses publication-title: Proceedings of the National Academy of Sciences, USA – volume: 155 start-page: 2 year: 2011 end-page: 18 article-title: Ascorbate and glutathione: the heart of the redox hub publication-title: Plant Physiology – volume: 280 start-page: 12168 year: 2005 end-page: 12180 article-title: The mitochondrial type II peroxiredoxin F is essential for redox homeostasis and root growth of under stress publication-title: Journal of Biological Chemistry – volume: 301 start-page: 653 year: 2003 end-page: 657 article-title: Genome‐wide insertional mutagenesis of publication-title: Science – volume: 58 start-page: 29 year: 2016b end-page: 47 article-title: Decreased glutathione reductase2 leads to early leaf senescence in Arabidopsis publication-title: Journal of Integrative Plant Biology – volume: 243 start-page: 84 year: 2016 end-page: 95 article-title: Nuclear thiol redox systems in plants publication-title: Plant Science – volume: 112 start-page: 13735 year: 2015 end-page: 13740 article-title: The mitochondrial monothiol glutaredoxin S15 is essential for iron‐sulfur protein maturation in publication-title: Proceedings of the National Academy of Science, USA – volume: 15 start-page: 488 year: 2010 end-page: 498 article-title: The cell biology of tetrapyrroles: a life and death struggle publication-title: Trends in Plant Science – volume: 127 start-page: 615 year: 2001 end-page: 623 article-title: Characterization of two cDNAs encoding mitochondrial lipoamide dehydrogenase from Arabidopsis publication-title: Plant Physiology – volume: 106 start-page: 9109 year: 2009 end-page: 9114 article-title: The NADPH‐dependent thioredoxin system constitutes a functional backup for cytosolic glutathione reductase in Arabidopsis publication-title: Proceedings of the National Academy of Sciences, USA – volume: 18 start-page: 3981 year: 1999 end-page: 3989 article-title: The mitochondrial proteins Atm1p and Nfs1p are essential for biogenesis of cytosolic Fe/S proteins publication-title: EMBO Journal – volume: 106 start-page: 9908 year: 2009 end-page: 9913 article-title: NTRC links built‐in thioredoxin to light and sucrose in regulating starch synthesis in chloroplasts and amyloplasts publication-title: Proceedings of the National Academy of Sciences, USA – volume: 289 start-page: 23264 year: 2014 end-page: 23274 article-title: A conserved mitochondrial ATP‐binding cassette transporter exports glutathione polysulfide for cytosolic metal cofactor assembly publication-title: Journal of Biological Chemistry – volume: 13 start-page: 621 year: 2010 end-page: 650 article-title: Fluorescent protein‐based redox probes publication-title: Antioxidants & Redox Signaling – volume: 9 start-page: 490 year: 2004 end-page: 498 article-title: Reactive oxygen gene network of plants publication-title: Trends in Plant Science – volume: 115 start-page: 609 year: 1969 end-page: 619 article-title: The redox state of free nicotinamide‐adenine dinucleotide phosphate in the cytoplasm of rat liver publication-title: Biochemical Journal – volume: 161 start-page: 644 year: 2013 end-page: 662 article-title: Acquisition, conservation, and loss of dual‐targeted proteins in land plants publication-title: Plant Physiology – volume: 55 start-page: 333 year: 2001 end-page: 356 article-title: Novel thiols of prokaryotes publication-title: Annual Review of Microbiology – volume: 19 start-page: 3170 year: 2007 end-page: 3193 article-title: Proteome analysis of Arabidopsis leaf peroxisomes reveals novel targeting peptides, metabolic pathways, and defense mechanisms publication-title: Plant Cell – volume: 25 start-page: 4451 year: 2013 end-page: 4468 article-title: Plastid‐localized glutathione reductase2‐regulated glutathione redox status is essential for Arabidopsis root apical meristem maintenance publication-title: Plant Cell – volume: 49 start-page: 88 year: 2011 end-page: 95 article-title: Expression, localization and phylogenetic analysis of a pyridoxine 5′‐phosphate oxidase in publication-title: Plant Physiology and Biochemistry – volume: 5 start-page: 3459 year: 2006 end-page: 3469 article-title: Analysis of the soluble ATP‐binding proteome of plant mitochondria identifies new proteins and nucleotide triphosphate interactions within the matrix publication-title: Journal of Proteome Research – volume: 153 start-page: 1144 year: 2010 end-page: 1160 article-title: Arabidopsis GLUTATHIONE REDUCTASE1 plays a crucial role in leaf responses to intracellular hydrogen peroxide and in ensuring appropriate gene expression through both salicylic acid and jasmonic acid signaling pathways publication-title: Plant Physiology – volume: 9 start-page: 151 year: 2007 end-page: 157 article-title: How does iron‐sulfur cluster coordination regulate the activity of human glutaredoxin 2? publication-title: Antioxidants & Redox Signaling – volume: 231 start-page: 299 year: 2008 end-page: 316 article-title: Confocal imaging of glutathione redox potential in living plant cells publication-title: Journal of Microscopy – volume: 9 start-page: 119 year: 2013 end-page: 125 article-title: Multiple glutathione disulfide removal pathways mediate cytosolic redox homeostasis publication-title: Nature Chemical Biology – volume: 7 start-page: 30 year: 2014 end-page: 44 article-title: NTR/NRX define a new thioredoxin system in the nucleus of cells publication-title: Molecular Plant – volume: 24 start-page: 680 year: 2016 end-page: 712 article-title: Dissecting redox biology using fluorescent protein sensors publication-title: Antioxidants & Redox Signaling – volume: 1857 start-page: 810 year: 2016 end-page: 818 article-title: Adenine nucleotide‐dependent and redox‐independent control of mitochondrial malate dehydrogenase activity in publication-title: Biochimica et Biophysica Acta (BBA) – Bioenergetics – volume: 155 start-page: 1477 year: 2011 end-page: 1485 article-title: Novel regulators in photosynthetic redox control of plant metabolism and gene expression publication-title: Plant Physiology – volume: 278 start-page: 46869 year: 2003 end-page: 46877 article-title: Molecular definition of the ascorbate‐glutathione cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants publication-title: Journal of Biological Chemistry – volume: 141 start-page: 851 year: 2006 end-page: 857 article-title: Early steps in the biosynthesis of NAD in Arabidopsis start with aspartate and occur in the plastid publication-title: Plant Physiology – volume: 4 start-page: 506 year: 2013 article-title: Development of roGFP2‐derived redox probes for measurement of the glutathione redox potential in the cytosol of severely glutathione‐deficient seedlings publication-title: Frontiers in Plant Science – volume: 50 start-page: 601 year: 1999 end-page: 639 article-title: The water‐water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons publication-title: Annual Review of Plant Physiology and Plant Molecular Biology – volume: 171 start-page: 1606 year: 2016 end-page: 1615 article-title: ROS, calcium, and electric signals: key mediators of rapid systemic signaling in plants publication-title: Plant Physiology – volume: 8 start-page: 167 year: 1995 end-page: 175 article-title: Simultaneous targeting of pea glutathione reductase and of a bacterial fusion protein to chloroplasts and mitochondria in transgenic tobacco publication-title: The Plant Journal – volume: 16 start-page: 58 year: 2014 end-page: 67 article-title: Restricting glutamylcysteine synthetase activity to the cytosol or glutathione biosynthesis to the plastid is sufficient for normal plant development and stress tolerance publication-title: Plant Biology – volume: 52 start-page: 973 year: 2007 end-page: 986 article-title: Redox‐sensitive GFP in is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer publication-title: The Plant Journal – volume: 295 start-page: 1046 year: 2002 end-page: 1051 article-title: Glutaredoxins catalyze the reduction of glutathione by dihydrolipoamide with high efficiency publication-title: Biochemical and Biophysical Research Communications – volume: 19 start-page: 1349 year: 1991 article-title: A simple and rapid method for the preparation of plant genomic DNA for PCR analysis publication-title: Nucleic Acids Research – volume: 23 start-page: 1720 year: 2004 end-page: 1728 article-title: Crystal structure of protoporphyrinogen IX oxidase: a key enzyme in haem and chlorophyll biosynthesis publication-title: EMBO Journal – ident: e_1_2_7_62_1 doi: 10.1111/j.1365-313X.2007.03389.x – volume-title: Molecular cloning: a laboratory manual year: 1989 ident: e_1_2_7_69_1 – ident: e_1_2_7_82_1 doi: 10.1007/s00726-002-0313-9 – ident: e_1_2_7_29_1 doi: 10.1104/pp.16.00434 – ident: e_1_2_7_15_1 doi: 10.1104/pp.106.077982 – ident: e_1_2_7_81_1 doi: 10.1146/annurev-arplant-042817-040322 – ident: e_1_2_7_60_1 doi: 10.1104/pp.106.089458 – ident: e_1_2_7_77_1 doi: 10.1007/978-1-59745-365-3_9 – ident: e_1_2_7_11_1 doi: 10.1089/ars.2007.9.151 – ident: e_1_2_7_43_1 doi: 10.1073/pnas.0900206106 – ident: e_1_2_7_3_1 doi: 10.3109/10520296909063335 – ident: e_1_2_7_31_1 doi: 10.1021/pr060403j – ident: e_1_2_7_33_1 doi: 10.1104/pp.106.081091 – ident: e_1_2_7_37_1 doi: 10.1002/j.1460-2075.1995.tb06989.x – ident: e_1_2_7_41_1 doi: 10.1139/b91-063 – ident: e_1_2_7_48_1 doi: 10.1089/ars.2009.2948 – ident: e_1_2_7_6_1 doi: 10.1146/annurev.arplant.50.1.601 – ident: e_1_2_7_57_1 doi: 10.1038/nchembio.1142 – ident: e_1_2_7_38_1 doi: 10.1104/pp.110.165910 – ident: e_1_2_7_64_1 doi: 10.1073/pnas.1706003114 – ident: e_1_2_7_9_1 doi: 10.1016/j.jmb.2004.05.028 – ident: e_1_2_7_52_1 doi: 10.1073/pnas.0903559106 – ident: e_1_2_7_36_1 doi: 10.1038/sj.emboj.7600189 – ident: e_1_2_7_20_1 doi: 10.1104/pp.110.170043 – ident: e_1_2_7_16_1 doi: 10.1074/jbc.M307525200 – ident: e_1_2_7_24_1 doi: 10.1146/annurev.micro.55.1.333 – ident: e_1_2_7_80_1 doi: 10.1105/tpc.12.1.97 – ident: e_1_2_7_26_1 doi: 10.1089/ars.2008.2177 – ident: e_1_2_7_65_1 doi: 10.1016/S0006-291X(02)00771-4 – ident: e_1_2_7_72_1 doi: 10.1074/jbc.M114.553438 – ident: e_1_2_7_30_1 doi: 10.1016/0168-9452(90)90207-5 – start-page: 676213 year: 2019 ident: e_1_2_7_61_1 article-title: Redox‐mediated kick‐start of mitochondrial energy metabolism drives resource‐efficient seed germination publication-title: bioRxiv – ident: e_1_2_7_70_1 doi: 10.1016/j.plaphy.2010.10.003 – ident: e_1_2_7_78_1 doi: 10.1104/pp.104.045179 – ident: e_1_2_7_35_1 doi: 10.1093/emboj/18.14.3981 – ident: e_1_2_7_12_1 doi: 10.1073/pnas.95.14.8404 – ident: e_1_2_7_76_1 doi: 10.1126/science.1246729 – ident: e_1_2_7_46_1 doi: 10.1016/j.jplph.2007.10.015 – ident: e_1_2_7_58_1 doi: 10.1073/pnas.1510835112 – ident: e_1_2_7_18_1 doi: 10.1046/j.1365-313X.1995.08020167.x – ident: e_1_2_7_67_1 doi: 10.1016/j.febslet.2004.11.094 – ident: e_1_2_7_17_1 doi: 10.1046/j.1365-313x.1998.00343.x – ident: e_1_2_7_66_1 doi: 10.1105/tpc.107.050849 – ident: e_1_2_7_51_1 doi: 10.1104/pp.110.153767 – ident: e_1_2_7_54_1 doi: 10.1016/j.tplants.2010.05.012 – ident: e_1_2_7_8_1 doi: 10.1038/ncomms14835 – ident: e_1_2_7_34_1 doi: 10.1104/pp.123.2.497 – ident: e_1_2_7_44_1 doi: 10.1073/pnas.0913689107 – ident: e_1_2_7_50_1 doi: 10.1046/j.1365-313x.2001.01071.x – ident: e_1_2_7_74_1 doi: 10.1111/j.1365-2818.2008.02030.x – ident: e_1_2_7_4_1 doi: 10.3389/fpls.2013.00506 – ident: e_1_2_7_14_1 doi: 10.1146/annurev.arplant.56.032604.144246 – year: 2019 ident: e_1_2_7_59_1 article-title: Chloroplasts require glutathione reductase to balance reactive oxygen species and maintain efficient photosynthesis publication-title: bioRxiv – ident: e_1_2_7_19_1 doi: 10.1016/j.plantsci.2015.12.002 – ident: e_1_2_7_71_1 doi: 10.1271/bbb.68.1175 – ident: e_1_2_7_40_1 doi: 10.1104/pp.010321 – ident: e_1_2_7_56_1 doi: 10.1146/annurev.arplant.58.032806.103946 – ident: e_1_2_7_21_1 doi: 10.1016/j.bbabio.2016.02.011 – ident: e_1_2_7_85_1 doi: 10.1105/tpc.113.117028 – ident: e_1_2_7_7_1 doi: 10.1111/pce.12919 – ident: e_1_2_7_27_1 doi: 10.1104/pp.110.167569 – ident: e_1_2_7_55_1 doi: 10.1146/annurev.arplant.52.1.561 – ident: e_1_2_7_42_1 doi: 10.1093/mp/sst162 – ident: e_1_2_7_22_1 doi: 10.1111/jipb.12371 – ident: e_1_2_7_84_1 doi: 10.1016/j.bbabio.2016.03.001 – ident: e_1_2_7_45_1 doi: 10.1073/pnas.0913759107 – ident: e_1_2_7_23_1 doi: 10.1093/nar/19.6.1349 – ident: e_1_2_7_53_1 doi: 10.1016/j.tplants.2004.08.009 – ident: e_1_2_7_39_1 doi: 10.1111/plb.12033 – ident: e_1_2_7_47_1 doi: 10.1111/j.1365-313X.2007.03280.x – ident: e_1_2_7_86_1 doi: 10.1016/j.bbagen.2018.11.014 – ident: e_1_2_7_2_1 doi: 10.1177/1087057113499634 – ident: e_1_2_7_5_1 doi: 10.1126/science.1086391 – ident: e_1_2_7_32_1 doi: 10.1039/b900658n – ident: e_1_2_7_63_1 doi: 10.1074/mcp.M500180-MCP200 – ident: e_1_2_7_13_1 doi: 10.1104/pp.110.168120 – ident: e_1_2_7_28_1 doi: 10.1089/ars.2015.6390 – ident: e_1_2_7_79_1 doi: 10.1042/bj1150609a – ident: e_1_2_7_49_1 doi: 10.1046/j.1365-2818.2000.00697.x – ident: e_1_2_7_73_1 doi: 10.1089/ars.2015.6266 – ident: e_1_2_7_68_1 doi: 10.1105/tpc.107.050989 – ident: e_1_2_7_75_1 doi: 10.1074/jbc.M404696200 – ident: e_1_2_7_10_1 doi: 10.1104/pp.109.143651 – ident: e_1_2_7_25_1 doi: 10.1074/jbc.M413189200 – ident: e_1_2_7_83_1 doi: 10.1104/pp.112.210997 |
SSID | ssj0009562 |
Score | 2.5487127 |
Snippet | • A highly negative glutathione redox potential (EGSH
) is maintained in the cytosol, plastids and mitochondria of plant cells to support fundamental... Summary A highly negative glutathione redox potential (EGSH) is maintained in the cytosol, plastids and mitochondria of plant cells to support fundamental... A highly negative glutathione redox potential ( E GSH ) is maintained in the cytosol, plastids and mitochondria of plant cells to support fundamental... A highly negative glutathione redox potential (E ) is maintained in the cytosol, plastids and mitochondria of plant cells to support fundamental processes,... A highly negative glutathione redox potential (EGSH) is maintained in the cytosol, plastids and mitochondria of plant cells to support fundamental processes,... A highly negative glutathione redox potential (EGSH ) is maintained in the cytosol, plastids and mitochondria of plant cells to support fundamental processes,... |
SourceID | hal proquest pubmed crossref wiley jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1569 |
SubjectTerms | ABC transporters ABCB25 Animal embryos antioxidant activity Antioxidants Arabidopsis Arabidopsis - genetics Arabidopsis - growth & development Arabidopsis - metabolism Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism ATP ATP-Binding Cassette Transporters - genetics ATP-Binding Cassette Transporters - metabolism Biogenesis Biosensors Complementation Cytoplasmic organelles Cytosol death dual targeting embryo lethality Embryos genetic complementation Genetic Complementation Test Glutathione Glutathione - metabolism glutathione redox status Glutathione reductase Glutathione Reductase - genetics Glutathione Reductase - metabolism glutathione reductase 2 glutathione-disulfide reductase Homeostasis In vivo methods and tests Labeling Lethality Life Sciences Mitochondria Mitochondria - metabolism mutants Mutation NTR Organelles Oxidation Oxidation-Reduction Oxidoreductions Plant cells plant development Plants, Genetically Modified Plastids Plastids - genetics Plastids - metabolism Redox potential redox‐sensitive GFP Reductases Seeds - genetics Stroma Sulfur Sulphur Thioredoxin thioredoxins Transportation systems Viability |
Title | Arabidopsis glutathione reductase 2 is indispensable in plastids, while mitochondrial glutathione is safeguarded by additional reduction and transport systems |
URI | https://www.jstor.org/stable/26837876 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.16086 https://www.ncbi.nlm.nih.gov/pubmed/31372999 https://www.proquest.com/docview/2312468432 https://www.proquest.com/docview/2268309785 https://www.proquest.com/docview/2374163613 https://univ-perp.hal.science/hal-02290023 |
Volume | 224 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLXaigUb3oVAqQxiwYJUie04sVgNlGp4VRWi0iyQIr_SGQGZaJIBlY_hW7k3L3VQQYjNKBNfO45zrn1iX58Q8sRZnxgW-VDHvggFNzxUipkw00xrzUURFzih__5YTk_Fm1ky2yLPh70wnT7EOOGGntH21-jg2tQXnLys5jg1kqHcdswl6uYffmAXBHclGxSYpZCzXlUIo3jGnBtj0fYcIyG7oMTL6OYme22Hn6Pr5NNQ8S7q5PPBujEH9sdvmo7_eWc3yLWeltJJh6ObZMuXt8iVF0ugjue3yc_JSpuFW1b1oqZngFUMWVyWnq5Q-LWBgZAyCkm4_l1X8GKM-7HgH62AmzcLVz-j3-dQFfoV-g_ob0uHsN8oCXLXuvBniFjvqDmnGOnUTVT2l4FjqktHm0GPnXYy1PUdcnr06uPLadh_2CG0Ik1laIBVRrbQGbdZ4bTItC9cGivhZWJdFGvOTOptYr1RnqskUwXXgjmdWK4TI_ku2SmhbvcIhSKSyAlgsbEXskhVZoDQplY5k8baFQF5Ojzi3Paq5_jxjS_58PYDrZ23rR2Qx6Np1Ul9XGoEOBnTUZx7OnmX47kIpfOBAn2LA7Lbwmg0YxJ1-1PIvTfgKu_7ijoHhs2EzARnAXk0JoOX49KNLv1yDTZYAm65Sf5iw1t2DfwsIHc7zI4V4DEuzyoFzdEi7883mB-fTNuD-_9u-oBcBR6puiifPbLTrNb-IXC1xuyTbSZO4Pfw9dv91kF_AXQ5PzQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbaggQXxKsQKGAQBw5ESmzHiSUuC6IKsF310Ep7i-zY7q4E2WiTgvpn-K3M5KWuVBC3JB7bSWYm_jwefyHkrS1dYljkQh07HwpueKgUM2GmmdaaCx97DOifLGR-Lr4uk-Ue-TDuhen5IaaAG3pG971GB8eA9DUvr-oVxkYyuU9uCQlTF-R1FqfXKHclGzmYpZDLgVcI83imqjuj0f4KcyH7tMSbAOcufu0GoOP75N6AHOmsV_UDsueqh-T2xw2gu6tH5Pdsq83abupm3dALMCfMKtxUjm6Rm7WFsYoyCkW4RN3UMHfFLVNwRmuAz-3aNu_prxV0S3-Ai8MnsbJomTstQe1Ge3eBRuUsNVcUk5H6WOLQDRxTXVnajpTptGeKbh6T8-PPZ5_ycPj3QliKNJWhAeAXlV5nvMy81SLTzts0VsLJpLRRrDkzqSuT0hnluEoy5bkWzOqk5Doxkh-Sgwru7Smh0EQSWQFAM3ZC-lRlBjBnWipr0lhbH5B3ow6KciAmx_9jfC_GCQqoq-jUFZA3k2jds3HcKASKnMqRPzufzQu8FiG7PaCUn3FADjs9T2JMIrV-CrWPRsUXgzs3BYBgJmQmOAvI66kYHBFXV3TlNpcggy3grpjkHzK8A8AAoQLypDeq6QZ4jCuoSsHr6Kzs7w9YLE7z7uDZ_4u-Infys5N5Mf-y-Pac3AXYp_qknCNy0G4v3QuAVq152XnQH5k6ILk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbaglAviFfbQAGDOHAgUmI7TixOy2O1QFntgUp7i-zY7q4E2WiTgvpn-K3M5KWuVBC3JB7bSWYm_jwefyHklS1cYljkQh07HwpueKgUM2GmmdaaCx97DOh_ncvZufi8TJZ75O2wF6bjhxgDbugZ7fcaHbyy_pqTl9UKQyOZ3Ce3BNgdmjcTi2uMu5INFMxSyGVPK4RpPGPVncFof4WpkF1W4k14cxe-tuPP9B652wNHOuk0fZ_sufIBuf1uA-Du6iH5Pdlqs7abql7X9AKsCZMKN6WjW6RmbWCoooxCEa5Q1xVMXXHHFJzRCtBzs7b1G_prBd3SH-Dh8EUsLRrmTktQu9beXaBNOUvNFcVcpC6U2HcDx1SXljYDYzrtiKLrR-R8-vHb-1nY_3ohLESaytAA7osKrzNeZN5qkWnnbRor4WRS2CjWnJnUFUnhjHJcJZnyXAtmdVJwnRjJj8hBCfd2Qig0kURWAM6MnZA-VZkByJkWypo01tYH5PWgg7zoecnx9xjf82F-AurKW3UF5OUoWnVkHDcKgSLHcqTPnk3OcrwWIbk9gJSfcUCOWj2PYkwis34KtU8Hxee9N9c5YGAmZCY4C8iLsRj8EBdXdOk2lyCDLeCmmOQfMrzFv4CgAnLcGdV4AzzGBVSl4HW0Vvb3B8zni1l78Pj_RZ-TO4sP0_zs0_zLE3IIoE91KTmn5KDZXrqnAKwa86x1oD_wgR_0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Arabidopsis+glutathione+reductase+2+is+indispensable+in+plastids%2C+while+mitochondrial+glutathione+is+safeguarded+by+additional+reduction+and+transport+systems&rft.jtitle=The+New+phytologist&rft.au=Marty%2C+Laurent&rft.au=Bausewein%2C+Daniela&rft.au=M%C3%BCller%2C+Christopher&rft.au=Sajid+Ali+Khan+Bangash&rft.date=2019-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=1469-8137&rft.volume=224&rft.issue=4&rft.spage=1569&rft.epage=1584&rft_id=info:doi/10.1111%2Fnph.16086&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |