Prediction of clinical deterioration within one year in chronic obstructive pulmonary disease using the systemic coagulation-inflammation index: a retrospective study employing multiple machine learning method

Inflammatory response and the coagulation system are pivotal in the pathogenesis of clinical deterioration in chronic obstructive pulmonary disease (COPD), prompting us to hypothesize that the systemic coagulation-inflammation (SCI) index is associated with clinical deterioration in COPD. A cohort o...

Full description

Saved in:
Bibliographic Details
Published inPeerJ (San Francisco, CA) Vol. 13; p. e18989
Main Authors Hou, Ling, Min, Ming, Hou, Rui, Tan, Wei, Zhang, Minghua, Liu, Qianfei
Format Journal Article
LanguageEnglish
Published United States PeerJ. Ltd 25.02.2025
PeerJ, Inc
PeerJ Inc
Subjects
Online AccessGet full text
ISSN2167-8359
2167-8359
DOI10.7717/peerj.18989

Cover

Abstract Inflammatory response and the coagulation system are pivotal in the pathogenesis of clinical deterioration in chronic obstructive pulmonary disease (COPD), prompting us to hypothesize that the systemic coagulation-inflammation (SCI) index is associated with clinical deterioration in COPD. A cohort of 957 COPD patients (mean age: 68.4 ± 7.8 years; 74.4% male) from January 2018 to December 2021 was analyzed. Six machine learning models (XGBoost, logistic regression, Random Forest, elastic net (ENT), support vector machine (SVM), and K-nearest neighbors (KNN)) were evaluated using accuracy, precision, recall, F1-score, and the area under the receiver operating characteristic curve (AUC-ROC). Our study encompassed 957 patients, out of which 171 were classified in the clinical deterioration of COPD (cd-COPD) cohort. Significant disparities in age, comorbidities like respiratory failure, C-reactive protein, lymphocyte count, red blood cell distribution width (RDW), SCI, procalcitonin (PCT), and D-dimer were depicted between the cd-COPD and non-cd-COPD groups. Concerning machine learning and model comparison, the SVM model showcased consistent performance and strong generalization capabilities on both the training and testing sets compared to the other five machine learning (ML) models. The SCI index, as the most influential predictor, demonstrated a median of 93.08 in cd-COPD compared to 81.67 in non-cd-COPD patients. The SCI is markedly elevated in cd-COPD patients compared to COPD patients, and SVM demonstrates reliable performance in cd-COPD prediction.
AbstractList BackgroundInflammatory response and the coagulation system are pivotal in the pathogenesis of clinical deterioration in chronic obstructive pulmonary disease (COPD), prompting us to hypothesize that the systemic coagulation-inflammation (SCI) index is associated with clinical deterioration in COPD. MethodsA cohort of 957 COPD patients (mean age: 68.4 ± 7.8 years; 74.4% male) from January 2018 to December 2021 was analyzed. Six machine learning models (XGBoost, logistic regression, Random Forest, elastic net (ENT), support vector machine (SVM), and K-nearest neighbors (KNN)) were evaluated using accuracy, precision, recall, F1-score, and the area under the receiver operating characteristic curve (AUC-ROC). ResultsOur study encompassed 957 patients, out of which 171 were classified in the clinical deterioration of COPD (cd-COPD) cohort. Significant disparities in age, comorbidities like respiratory failure, C-reactive protein, lymphocyte count, red blood cell distribution width (RDW), SCI, procalcitonin (PCT), and D-dimer were depicted between the cd-COPD and non-cd-COPD groups. Concerning machine learning and model comparison, the SVM model showcased consistent performance and strong generalization capabilities on both the training and testing sets compared to the other five machine learning (ML) models. The SCI index, as the most influential predictor, demonstrated a median of 93.08 in cd-COPD compared to 81.67 in non-cd-COPD patients. ConclusionThe SCI is markedly elevated in cd-COPD patients compared to COPD patients, and SVM demonstrates reliable performance in cd-COPD prediction.
Inflammatory response and the coagulation system are pivotal in the pathogenesis of clinical deterioration in chronic obstructive pulmonary disease (COPD), prompting us to hypothesize that the systemic coagulation-inflammation (SCI) index is associated with clinical deterioration in COPD.BackgroundInflammatory response and the coagulation system are pivotal in the pathogenesis of clinical deterioration in chronic obstructive pulmonary disease (COPD), prompting us to hypothesize that the systemic coagulation-inflammation (SCI) index is associated with clinical deterioration in COPD.A cohort of 957 COPD patients (mean age: 68.4 ± 7.8 years; 74.4% male) from January 2018 to December 2021 was analyzed. Six machine learning models (XGBoost, logistic regression, Random Forest, elastic net (ENT), support vector machine (SVM), and K-nearest neighbors (KNN)) were evaluated using accuracy, precision, recall, F1-score, and the area under the receiver operating characteristic curve (AUC-ROC).MethodsA cohort of 957 COPD patients (mean age: 68.4 ± 7.8 years; 74.4% male) from January 2018 to December 2021 was analyzed. Six machine learning models (XGBoost, logistic regression, Random Forest, elastic net (ENT), support vector machine (SVM), and K-nearest neighbors (KNN)) were evaluated using accuracy, precision, recall, F1-score, and the area under the receiver operating characteristic curve (AUC-ROC).Our study encompassed 957 patients, out of which 171 were classified in the clinical deterioration of COPD (cd-COPD) cohort. Significant disparities in age, comorbidities like respiratory failure, C-reactive protein, lymphocyte count, red blood cell distribution width (RDW), SCI, procalcitonin (PCT), and D-dimer were depicted between the cd-COPD and non-cd-COPD groups. Concerning machine learning and model comparison, the SVM model showcased consistent performance and strong generalization capabilities on both the training and testing sets compared to the other five machine learning (ML) models. The SCI index, as the most influential predictor, demonstrated a median of 93.08 in cd-COPD compared to 81.67 in non-cd-COPD patients.ResultsOur study encompassed 957 patients, out of which 171 were classified in the clinical deterioration of COPD (cd-COPD) cohort. Significant disparities in age, comorbidities like respiratory failure, C-reactive protein, lymphocyte count, red blood cell distribution width (RDW), SCI, procalcitonin (PCT), and D-dimer were depicted between the cd-COPD and non-cd-COPD groups. Concerning machine learning and model comparison, the SVM model showcased consistent performance and strong generalization capabilities on both the training and testing sets compared to the other five machine learning (ML) models. The SCI index, as the most influential predictor, demonstrated a median of 93.08 in cd-COPD compared to 81.67 in non-cd-COPD patients.The SCI is markedly elevated in cd-COPD patients compared to COPD patients, and SVM demonstrates reliable performance in cd-COPD prediction.ConclusionThe SCI is markedly elevated in cd-COPD patients compared to COPD patients, and SVM demonstrates reliable performance in cd-COPD prediction.
Inflammatory response and the coagulation system are pivotal in the pathogenesis of clinical deterioration in chronic obstructive pulmonary disease (COPD), prompting us to hypothesize that the systemic coagulation-inflammation (SCI) index is associated with clinical deterioration in COPD. A cohort of 957 COPD patients (mean age: 68.4±7.8 years; 74.4% male) from January 2018 to December 2021 was analyzed. Six machine learning models (XGBoost, logistic regression, Random Forest, elastic net (ENT), support vector machine (SVM), and K-nearest neighbors (KNN)) were evaluated using accuracy, precision, recall, F1-score, and the area under the receiver operating characteristic curve (AUC-ROC). Our study encompassed 957 patients, out of which 171 were classified in the clinical deterioration of COPD (cd-COPD) cohort. Significant disparities in age, comorbidities like respiratory failure, C-reactive protein, lymphocyte count, red blood cell distribution width (RDW), SCI, procalcitonin (PCT), and D-dimer were depicted between the cd-COPD and non-cd-COPD groups. Concerning machine learning and model comparison, the SVM model showcased consistent performance and strong generalization capabilities on both the training and testing sets compared to the other five machine learning (ML) models. The SCI index, as the most influential predictor, demonstrated a median of 93.08 in cd-COPD compared to 81.67 in non-cd-COPD patients. The SCI is markedly elevated in cd-COPD patients compared to COPD patients, and SVM demonstrates reliable performance in cd-COPD prediction.
Inflammatory response and the coagulation system are pivotal in the pathogenesis of clinical deterioration in chronic obstructive pulmonary disease (COPD), prompting us to hypothesize that the systemic coagulation-inflammation (SCI) index is associated with clinical deterioration in COPD. A cohort of 957 COPD patients (mean age: 68.4 ± 7.8 years; 74.4% male) from January 2018 to December 2021 was analyzed. Six machine learning models (XGBoost, logistic regression, Random Forest, elastic net (ENT), support vector machine (SVM), and K-nearest neighbors (KNN)) were evaluated using accuracy, precision, recall, F1-score, and the area under the receiver operating characteristic curve (AUC-ROC). Our study encompassed 957 patients, out of which 171 were classified in the clinical deterioration of COPD (cd-COPD) cohort. Significant disparities in age, comorbidities like respiratory failure, C-reactive protein, lymphocyte count, red blood cell distribution width (RDW), SCI, procalcitonin (PCT), and D-dimer were depicted between the cd-COPD and non-cd-COPD groups. Concerning machine learning and model comparison, the SVM model showcased consistent performance and strong generalization capabilities on both the training and testing sets compared to the other five machine learning (ML) models. The SCI index, as the most influential predictor, demonstrated a median of 93.08 in cd-COPD compared to 81.67 in non-cd-COPD patients. The SCI is markedly elevated in cd-COPD patients compared to COPD patients, and SVM demonstrates reliable performance in cd-COPD prediction.
Background Inflammatory response and the coagulation system are pivotal in the pathogenesis of clinical deterioration in chronic obstructive pulmonary disease (COPD), prompting us to hypothesize that the systemic coagulation-inflammation (SCI) index is associated with clinical deterioration in COPD. Methods A cohort of 957 COPD patients (mean age: 68.4 ± 7.8 years; 74.4% male) from January 2018 to December 2021 was analyzed. Six machine learning models (XGBoost, logistic regression, Random Forest, elastic net (ENT), support vector machine (SVM), and K-nearest neighbors (KNN)) were evaluated using accuracy, precision, recall, F1-score, and the area under the receiver operating characteristic curve (AUC-ROC). Results Our study encompassed 957 patients, out of which 171 were classified in the clinical deterioration of COPD (cd-COPD) cohort. Significant disparities in age, comorbidities like respiratory failure, C-reactive protein, lymphocyte count, red blood cell distribution width (RDW), SCI, procalcitonin (PCT), and D-dimer were depicted between the cd-COPD and non-cd-COPD groups. Concerning machine learning and model comparison, the SVM model showcased consistent performance and strong generalization capabilities on both the training and testing sets compared to the other five machine learning (ML) models. The SCI index, as the most influential predictor, demonstrated a median of 93.08 in cd-COPD compared to 81.67 in non-cd-COPD patients. Conclusion The SCI is markedly elevated in cd-COPD patients compared to COPD patients, and SVM demonstrates reliable performance in cd-COPD prediction.
Background Inflammatory response and the coagulation system are pivotal in the pathogenesis of clinical deterioration in chronic obstructive pulmonary disease (COPD), prompting us to hypothesize that the systemic coagulation-inflammation (SCI) index is associated with clinical deterioration in COPD. Methods A cohort of 957 COPD patients (mean age: 68.4±7.8 years; 74.4% male) from January 2018 to December 2021 was analyzed. Six machine learning models (XGBoost, logistic regression, Random Forest, elastic net (ENT), support vector machine (SVM), and K-nearest neighbors (KNN)) were evaluated using accuracy, precision, recall, F1-score, and the area under the receiver operating characteristic curve (AUC-ROC). Results Our study encompassed 957 patients, out of which 171 were classified in the clinical deterioration of COPD (cd-COPD) cohort. Significant disparities in age, comorbidities like respiratory failure, C-reactive protein, lymphocyte count, red blood cell distribution width (RDW), SCI, procalcitonin (PCT), and D-dimer were depicted between the cd-COPD and non-cd-COPD groups. Concerning machine learning and model comparison, the SVM model showcased consistent performance and strong generalization capabilities on both the training and testing sets compared to the other five machine learning (ML) models. The SCI index, as the most influential predictor, demonstrated a median of 93.08 in cd-COPD compared to 81.67 in non-cd-COPD patients. Conclusion The SCI is markedly elevated in cd-COPD patients compared to COPD patients, and SVM demonstrates reliable performance in cd-COPD prediction.
ArticleNumber e18989
Audience Academic
Author Min, Ming
Liu, Qianfei
Tan, Wei
Zhang, Minghua
Hou, Ling
Hou, Rui
Author_xml – sequence: 1
  givenname: Ling
  surname: Hou
  fullname: Hou, Ling
  organization: Department of Central Hospital of Tujia and Miao Autonomous Prefecture, Hubei University of Medicine, Hubei, China
– sequence: 2
  givenname: Ming
  surname: Min
  fullname: Min, Ming
  organization: Department of Pulmonary and Critical Care Medicine, Central Hospital of Tujia and Miao Autonomous Prefecture, Enshi, China
– sequence: 3
  givenname: Rui
  surname: Hou
  fullname: Hou, Rui
  organization: Hubei Enshi College, Enshi, China
– sequence: 4
  givenname: Wei
  surname: Tan
  fullname: Tan, Wei
  organization: Department of Pulmonary and Critical Care Medicine, Central Hospital of Tujia and Miao Autonomous Prefecture, Enshi, China
– sequence: 5
  givenname: Minghua
  surname: Zhang
  fullname: Zhang, Minghua
  organization: Department of Pulmonary and Critical Care Medicine, Central Hospital of Tujia and Miao Autonomous Prefecture, Enshi, China
– sequence: 6
  givenname: Qianfei
  surname: Liu
  fullname: Liu, Qianfei
  organization: Department of Pulmonary and Critical Care Medicine, Central Hospital of Tujia and Miao Autonomous Prefecture, Enshi, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40028201$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNUREvpij2yhISQYAY_8rDZVRWPSpVgAevoTnI945FjB9uhzM_kH-HMlNIiRLyIZX_3-NjnPi6OnHdYFE8ZXTYNa96MiGG7ZFJJ9aA44axuFlJU6ujO_Lg4i3FL8yd5TaV4VByXlHLJKTspfn4O2JsuGe-I16SzxpkOLOkxYTA-wH7n2qSNyYBDskMIJM-7TfAZJX4VU5iywHck42QH7yDsSG8iQkQyRePWJG2QxF1MOOSCzsN6snvdhXHawjAcDjGuxx9vCZCAKfg44kE0pqnfERxG63ez2DDZZEaLZIAum0JisyO338G08f2T4qEGG_Hs5n9afH3_7svFx8XVpw-XF-dXi65s6rTQgLRksulKJrjUUleSKQq8U0KUfa2hhEqCLCtZS6YbpRnvQa-0rqiq6mYlTovLg27vYduOwQz54q0H0-4XfFi3EJLpLLYlVbRZMURV6hI1yB65goYpxrlQmmat1wetyY2wuwZrbwUZbeeg233Q7T7ojL884GPw3yaMqR1M7NBacOin2ArWiBxxJcqMPv8L3fopuPwwrchni1oJ3vyh1pDt5lR8CtDNou255LLhopazy-U_qDz6OdjcHNrk9XsFL-4UbBBs2kRvpznueB98duNyWg3Y317-d59m4NUB6HJnxID6v-_zC2Wu_cA
Cites_doi 10.1016/j.arbres.2011.04.011
10.1177/2045894020948470
10.1152/ajplung.00121.2021
10.1371/journal.pone.0037483
10.1016/j.ccm.2020.06.007
10.1164/rccm.201509-1722PP
10.3389/fimmu.2023.1131292
10.1016/j.jaci.2016.05.011
10.1016/j.jacasi.2022.06.007
10.3389/fphar.2017.00512
10.1016/s0140-6736(18)30841-9
10.1136/thoraxjnl-2012-201871
10.1016/j.modpat.2024.100680
10.3238/arztebl.2014.0825
10.1111/resp.14000
10.4046/trd.2017.80.3.313
10.7326/aitc202008040
10.1161/jaha.121.023021
10.1016/j.micres.2022.127244
10.1164/rccm.200707-1037OC
10.3324/haematol.2019.217463
10.1042/cs20160718
10.1183/09059180.00003609
10.1016/j.eclinm.2023.101936
10.1016/j.redox.2022.102587
10.1080/10937404.2023.2208886
10.18087/cardio.2023.10.n2586
10.1016/j.alit.2018.01.001
10.1161/jaha.121.022277
10.1186/s12931-015-0240-4
10.5543/tkda.2023.30344
10.1186/s12989-024-00614-5
ContentType Journal Article
Copyright 2025 Hou et al.
COPYRIGHT 2025 PeerJ. Ltd.
2025 Hou et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 Hou et al.
– notice: COPYRIGHT 2025 PeerJ. Ltd.
– notice: 2025 Hou et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
ADTOC
UNPAY
DOA
DOI 10.7717/peerj.18989
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database (Proquest)
Biological Science Database (Proquest)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic

MEDLINE



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2167-8359
ExternalDocumentID oai_doaj_org_article_40907b1ee94f4efa8de29a71912239f0
10.7717/peerj.18989
A828723680
40028201
10_7717_peerj_18989
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 53G
5VS
88I
8FE
8FH
AAFWJ
AAYXX
ABUWG
ADBBV
ADRAZ
AENEX
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
DIK
DWQXO
ECGQY
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
IAO
IEA
IHR
IHW
ITC
KQ8
LK8
M2P
M7P
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PUEGO
RPM
W2D
YAO
CGR
CUY
CVF
ECM
EIF
H13
M48
NPM
3V.
7XB
8FK
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c476t-fae04187c41328f8f58190a2c9334d6fa4a58a8458681f79f12dafbff509567b3
IEDL.DBID UNPAY
ISSN 2167-8359
IngestDate Fri Oct 03 12:45:48 EDT 2025
Sun Oct 26 04:09:23 EDT 2025
Thu Oct 02 12:06:30 EDT 2025
Tue Sep 30 12:10:40 EDT 2025
Mon Oct 20 22:45:03 EDT 2025
Mon Oct 20 16:58:17 EDT 2025
Thu May 22 21:23:47 EDT 2025
Mon May 12 02:38:49 EDT 2025
Wed Oct 01 06:52:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Chronic obstructive pulmonary disease
Predictor
Clinical deterioration
Machine learning
Systemic coagulation-inflammation index
Language English
License https://creativecommons.org/licenses/by/4.0
2025 Hou et al.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c476t-fae04187c41328f8f58190a2c9334d6fa4a58a8458681f79f12dafbff509567b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.7717/peerj.18989
PMID 40028201
PQID 3239369327
PQPubID 2045935
ParticipantIDs doaj_primary_oai_doaj_org_article_40907b1ee94f4efa8de29a71912239f0
unpaywall_primary_10_7717_peerj_18989
proquest_miscellaneous_3173400534
proquest_journals_3239369327
gale_infotracmisc_A828723680
gale_infotracacademiconefile_A828723680
gale_healthsolutions_A828723680
pubmed_primary_40028201
crossref_primary_10_7717_peerj_18989
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-25
PublicationDateYYYYMMDD 2025-02-25
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-25
  day: 25
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Diego
PublicationTitle PeerJ (San Francisco, CA)
PublicationTitleAlternate PeerJ
PublicationYear 2025
Publisher PeerJ. Ltd
PeerJ, Inc
PeerJ Inc
Publisher_xml – name: PeerJ. Ltd
– name: PeerJ, Inc
– name: PeerJ Inc
References Pantanowitz (10.7717/peerj.18989/ref-20) 2024; 38
Bazzan (10.7717/peerj.18989/ref-3) 2023; 14
Raherison (10.7717/peerj.18989/ref-23) 2009; 18
Sandström (10.7717/peerj.18989/ref-26) 2024; 21
Hikichi (10.7717/peerj.18989/ref-9) 2018; 67
Liu (10.7717/peerj.18989/ref-15) 2011; 47
Mkorombindo (10.7717/peerj.18989/ref-17) 2021; 26
Agustí (10.7717/peerj.18989/ref-1) 2012; 7
Solinc (10.7717/peerj.18989/ref-27) 2022; 11
Zengin (10.7717/peerj.18989/ref-33) 2023; 63
Barnes (10.7717/peerj.18989/ref-2) 2016; 138
Dey (10.7717/peerj.18989/ref-5) 2022; 322
Özkan (10.7717/peerj.18989/ref-18) 2024; 52
Papakonstantinou (10.7717/peerj.18989/ref-21) 2015; 16
Upadhyay (10.7717/peerj.18989/ref-28) 2023; 26
Liu (10.7717/peerj.18989/ref-14) 2022; 2
Perros (10.7717/peerj.18989/ref-22) 2008; 178
Wang (10.7717/peerj.18989/ref-29) 2018; 391
GBD 2019 Chronic Respiratory Diseases Collaborators (10.7717/peerj.18989/ref-8) 2023; 59
Chaurasia (10.7717/peerj.18989/ref-4) 2019; 104
Miller (10.7717/peerj.18989/ref-16) 2016; 193
Pandey (10.7717/peerj.18989/ref-19) 2017; 8
R Core Team (10.7717/peerj.18989/ref-24) 2023
Karhunen (10.7717/peerj.18989/ref-10) 2021; 10
Li (10.7717/peerj.18989/ref-13) 2017; 131
Kim (10.7717/peerj.18989/ref-11) 2017; 80
Fan (10.7717/peerj.18989/ref-7) 2023; 59
Labaki (10.7717/peerj.18989/ref-12) 2020; 173
Welte (10.7717/peerj.18989/ref-30) 2014; 111
Yu (10.7717/peerj.18989/ref-32) 2023; 266
Wu (10.7717/peerj.18989/ref-31) 2020; 10
Duvoix (10.7717/peerj.18989/ref-6) 2013; 68
Ritchie (10.7717/peerj.18989/ref-25) 2020; 41
References_xml – volume: 47
  start-page: 427
  year: 2011
  ident: 10.7717/peerj.18989/ref-15
  article-title: High value of combined serum C-reactive protein and BODE score for mortality prediction in patients with stable COPD
  publication-title: Archivos de Bronconeumología
  doi: 10.1016/j.arbres.2011.04.011
– volume: 10
  start-page: 2045894020948470
  year: 2020
  ident: 10.7717/peerj.18989/ref-31
  article-title: Endothelial platelet-derived growth factor-mediated activation of smooth muscle platelet-derived growth factor receptors in pulmonary arterial hypertension
  publication-title: Pulmonary Circulation
  doi: 10.1177/2045894020948470
– year: 2023
  ident: 10.7717/peerj.18989/ref-24
  article-title: R: a language and environment for statistical computing
– volume: 322
  start-page: L64
  year: 2022
  ident: 10.7717/peerj.18989/ref-5
  article-title: Pathogenesis, clinical features of asthma COPD overlap, and therapeutic modalities
  publication-title: American Journal of Physiology-Lung Cellular and Molecular Physiology
  doi: 10.1152/ajplung.00121.2021
– volume: 7
  start-page: e37483
  year: 2012
  ident: 10.7717/peerj.18989/ref-1
  article-title: Persistent systemic inflammation is associated with poor clinical outcomes in COPD: a novel phenotype
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0037483
– volume: 41
  start-page: 421
  year: 2020
  ident: 10.7717/peerj.18989/ref-25
  article-title: Definition, causes, pathogenesis, and consequences of chronic obstructive pulmonary disease exacerbations
  publication-title: Clinics in Chest Medicine
  doi: 10.1016/j.ccm.2020.06.007
– volume: 193
  start-page: 607
  year: 2016
  ident: 10.7717/peerj.18989/ref-16
  article-title: Plasma fibrinogen qualification as a drug development tool in chronic obstructive pulmonary disease. perspective of the chronic obstructive pulmonary disease biomarker qualification consortium
  publication-title: American Journal of Respiratory and Critical Care Medicine
  doi: 10.1164/rccm.201509-1722PP
– volume: 14
  start-page: 1131292
  year: 2023
  ident: 10.7717/peerj.18989/ref-3
  article-title: Macrophages-derived factor XIII links coagulation to inflammation in COPD
  publication-title: Frontiers in Immunology
  doi: 10.3389/fimmu.2023.1131292
– volume: 138
  start-page: 16
  year: 2016
  ident: 10.7717/peerj.18989/ref-2
  article-title: Inflammatory mechanisms in patients with chronic obstructive pulmonary disease
  publication-title: Journal of Allergy and Clinical Immunology
  doi: 10.1016/j.jaci.2016.05.011
– volume: 2
  start-page: 763
  year: 2022
  ident: 10.7717/peerj.18989/ref-14
  article-title: Prognostic impact of systemic coagulation-inflammation index in acute type A aortic dissection surgery
  publication-title: JACC Asia
  doi: 10.1016/j.jacasi.2022.06.007
– volume: 8
  start-page: 512
  year: 2017
  ident: 10.7717/peerj.18989/ref-19
  article-title: Role of proteases in chronic obstructive pulmonary disease
  publication-title: Frontiers in Pharmacology
  doi: 10.3389/fphar.2017.00512
– volume: 391
  start-page: 1706
  year: 2018
  ident: 10.7717/peerj.18989/ref-29
  article-title: Prevalence and risk factors of chronic obstructive pulmonary disease in China (the China Pulmonary Health [CPH] study): a national cross-sectional study
  publication-title: Lancet
  doi: 10.1016/s0140-6736(18)30841-9
– volume: 68
  start-page: 670
  year: 2013
  ident: 10.7717/peerj.18989/ref-6
  article-title: Blood fibrinogen as a biomarker of chronic obstructive pulmonary disease
  publication-title: Thorax
  doi: 10.1136/thoraxjnl-2012-201871
– volume: 38
  start-page: 100680
  issue: 3
  year: 2024
  ident: 10.7717/peerj.18989/ref-20
  article-title: Non-generative artificial intelligence (AI) in medicine: advancements and applications in supervised and unsupervised machine learning
  publication-title: Modern Pathology
  doi: 10.1016/j.modpat.2024.100680
– volume: 111
  start-page: 825
  year: 2014
  ident: 10.7717/peerj.18989/ref-30
  article-title: Chronic obstructive pulmonary disease- a growing cause of death and disability worldwide
  publication-title: Deutsches Arzteblatt International
  doi: 10.3238/arztebl.2014.0825
– volume: 26
  start-page: 290
  year: 2021
  ident: 10.7717/peerj.18989/ref-17
  article-title: COPD: cOagulation-associated Pulmonary Disease?
  publication-title: Respirology
  doi: 10.1111/resp.14000
– volume: 80
  start-page: 313
  year: 2017
  ident: 10.7717/peerj.18989/ref-11
  article-title: Systemic white blood cell count as a biomarker for chronic obstructive pulmonary disease: utility and limitations
  publication-title: Tuberculosis and Respiratory Diseases
  doi: 10.4046/trd.2017.80.3.313
– volume: 173
  start-page: Itc17
  year: 2020
  ident: 10.7717/peerj.18989/ref-12
  article-title: Chronic obstructive pulmonary disease
  publication-title: Annals of Internal Medicine
  doi: 10.7326/aitc202008040
– volume: 11
  start-page: e023021
  year: 2022
  ident: 10.7717/peerj.18989/ref-27
  article-title: Platelet-derived growth factor receptor type α activation drives pulmonary vascular remodeling via progenitor cell proliferation and induces pulmonary hypertension
  publication-title: Journal of the American Heart Association:
  doi: 10.1161/jaha.121.023021
– volume: 266
  start-page: 127244
  year: 2023
  ident: 10.7717/peerj.18989/ref-32
  article-title: The association between the respiratory tract microbiome and clinical outcomes in patients with COPD
  publication-title: Microbiological Research
  doi: 10.1016/j.micres.2022.127244
– volume: 178
  start-page: 81
  year: 2008
  ident: 10.7717/peerj.18989/ref-22
  article-title: Platelet-derived growth factor expression and function in idiopathic pulmonary arterial hypertension
  publication-title: American Journal of Respiratory and Critical Care Medicine
  doi: 10.1164/rccm.200707-1037OC
– volume: 104
  start-page: 2482
  year: 2019
  ident: 10.7717/peerj.18989/ref-4
  article-title: Platelet HIF-2α promotes thrombogenicity through PAI-1 synthesis and extracellular vesicle release
  publication-title: Haematologica
  doi: 10.3324/haematol.2019.217463
– volume: 131
  start-page: 2847
  year: 2017
  ident: 10.7717/peerj.18989/ref-13
  article-title: What do polymorphisms tell us about the mechanisms of COPD?
  publication-title: Clinical Science
  doi: 10.1042/cs20160718
– volume: 18
  start-page: 213
  year: 2009
  ident: 10.7717/peerj.18989/ref-23
  article-title: Epidemiology of COPD
  publication-title: European Respiratory Review
  doi: 10.1183/09059180.00003609
– volume: 59
  start-page: 101936
  year: 2023
  ident: 10.7717/peerj.18989/ref-8
  article-title: Global burden of chronic respiratory diseases and risk factors, 1990–2019: an update from the Global Burden of Disease Study 2019
  publication-title: EClinicalMedicine
  doi: 10.1016/j.eclinm.2023.101936
– volume: 59
  start-page: 102587
  year: 2023
  ident: 10.7717/peerj.18989/ref-7
  article-title: PM2.5 increases susceptibility to acute exacerbation of COPD via NOX4/Nrf2 redox imbalance-mediated mitophagy
  publication-title: Redox Biology
  doi: 10.1016/j.redox.2022.102587
– volume: 26
  start-page: 275
  year: 2023
  ident: 10.7717/peerj.18989/ref-28
  article-title: Animal models and mechanisms of tobacco smoke-induced chronic obstructive pulmonary disease (COPD)
  publication-title: Journal of Toxicology and Environmental Health: Part B, Critical Reviews
  doi: 10.1080/10937404.2023.2208886
– volume: 63
  start-page: 72
  year: 2023
  ident: 10.7717/peerj.18989/ref-33
  article-title: Systemic coagulation inflammation index associated with bleeding in acute coronary syndrome
  publication-title: Kardiologiia
  doi: 10.18087/cardio.2023.10.n2586
– volume: 67
  start-page: 179
  year: 2018
  ident: 10.7717/peerj.18989/ref-9
  article-title: Asthma and COPD overlap pathophysiology of ACO
  publication-title: Allergology International
  doi: 10.1016/j.alit.2018.01.001
– volume: 10
  start-page: e022277
  year: 2021
  ident: 10.7717/peerj.18989/ref-10
  article-title: Modifiable risk factors for intracranial aneurysm and aneurysmal subarachnoid hemorrhage: a mendelian randomization study
  publication-title: Journal of the American Heart Association:
  doi: 10.1161/jaha.121.022277
– volume: 16
  start-page: 78
  year: 2015
  ident: 10.7717/peerj.18989/ref-21
  article-title: Acute exacerbations of COPD are associated with significant activation of matrix metalloproteinase 9 irrespectively of airway obstruction, emphysema and infection
  publication-title: Respiratory Research
  doi: 10.1186/s12931-015-0240-4
– volume: 52
  start-page: 36
  year: 2024
  ident: 10.7717/peerj.18989/ref-18
  article-title: A novel potential biomarker for predicting the development of septic embolism in patients with infective endocarditis: systemic coagulation inflammation index
  publication-title: Turk Kardiyoloji Derneği Arşivi
  doi: 10.5543/tkda.2023.30344
– volume: 21
  start-page: 53
  year: 2024
  ident: 10.7717/peerj.18989/ref-26
  article-title: Acute airway inflammation following controlled biodiesel exhaust exposure in healthy subjects
  publication-title: Particle and Fibre Toxicology
  doi: 10.1186/s12989-024-00614-5
SSID ssj0000826083
Score 2.3526757
Snippet Inflammatory response and the coagulation system are pivotal in the pathogenesis of clinical deterioration in chronic obstructive pulmonary disease (COPD),...
Background Inflammatory response and the coagulation system are pivotal in the pathogenesis of clinical deterioration in chronic obstructive pulmonary disease...
BackgroundInflammatory response and the coagulation system are pivotal in the pathogenesis of clinical deterioration in chronic obstructive pulmonary disease...
SourceID doaj
unpaywall
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e18989
SubjectTerms Aged
Blood clotting
Blood Coagulation
C-reactive protein
Cardiac arrhythmia
Cardiovascular disease
Cell number
Chronic illnesses
Chronic obstructive pulmonary disease
Clinical deterioration
Coagulation
Comorbidity
Coronary vessels
Development and progression
Diabetes
Disease Progression
Erythrocytes
Female
Health aspects
Hematology
Hemoglobin
Hospitalization
Hospitals
Humans
Hypertension
Inflammation
Inflammation - blood
Learning algorithms
Lung diseases
Lung diseases, Obstructive
Lymphocytes
Machine Learning
Male
Medical research
Medicine, Experimental
Methods
Middle Aged
Mortality
Patients
Physiological aspects
Predictor
Procalcitonin
Prognosis
Pulmonary Disease, Chronic Obstructive - blood
Pulmonary Disease, Chronic Obstructive - diagnosis
Pulmonary Disease, Chronic Obstructive - physiopathology
Python
Regression analysis
Respiratory failure
Retrospective Studies
Statistical analysis
Support vector machines
Systemic coagulation-inflammation index
Variables
Vein & artery diseases
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD8AF8SZQYJCKOEXNw4ltbgVRVUhFHKjUW2Q7dlVpm6zCLmh_Jv-IGdsb7QoJLtyi9STaeL7MI5n5hrGjxjhZW1fnXmNugh7D5OjHVd7LxqrCWNX29L7j_Et7dsE_XzaXO6O-qCYs0gPHjTvG_KMQpnROcc-d17J3ldIC0wx0bMqHbL2QaieZCjYYo2YMLmJDnsCU5Xjp3IR2gaYl7rmgwNT_pz3ecUh31sNSb37qxWLH85zeZ_dSyAgn8a8-YLfc8JDdPk8fxR-xX18nOqYdhtHDttcReqp0uU4qBnrheo0Cg4MNohvw2EZiXBhNYpH94WC5XiAw9bSB9OkGqDL-CjBOhMj6jCfYUV-lsV85IhRBFRsgIXAvvgcNk1tN47aLEwKHLbgwXJgutq1ihJtQyukgza7AlTDQ-jG7OP307eNZniY15JaLdoWKdgUvpbDoEivppW8o0NCVVXXN-9ZrrhupJW9kK0svlC-rXnvjfUM8iMLUT9jBgBvwjAFHnyocXUwbbpRVpeatL62wDnPZvszY0VZ53TIScnSYyJCOu6DjLug4Yx9IsbMIsWiHHxBbXcJW9y9sZew1waKLLamzLehOaEpAVbcSJd4FCbIGq0lbnZoa8F6IV2tP8nBPEp9iu7-8hV6XrMj3riZ-uhYjbJGxN_MynUmVcYMb1yhTipqTKeUZexohO980Dxl1gXv2dsbw3zbt-f_YtBfsbkUzkqntvzlkBwhg9xIDt5V5FZ7R31gQRkY
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEF_qFdQX8bNGq45Q8Sk0H5vsRhBppaUIPYpY6FvYbHaPwpnEeKfcn-l_5MxmE3sIfQvZSUh2Zudjd-Y3jB1klZGpNmloFcYmaDGqEO14EdYy00VU6SKvab_jfJ6fXfIvV9nVDpuPtTCUVjnqRKeo61bTHvlhSlhdOXob4lP3I6SuUXS6OrbQUL61Qv3RQYzdYbsJIWPN2O7xyfzi67TrggYvR6djKNQTGMocdsb0qC-oi-KWaXII_v_r6RuG6t666dTmt1oub1ik04fsgXcl4Wjg_SO2Y5rH7O65Pyx_wv5c9HRNMw-thbEGEmrKgLn2rAfaiL1GgsbABqUe8FoPgLnQVh5d9peBbr3EGVD9BvyRDlDG_ALQf4QBDRof0K1a-HZgIUouCttQGAkOk_EDKOjNqm_H6k5w2LZgXNNhetmY3QjfXYqnAd_TAkdco-un7PL05Nvns9B3cAg1F_kKBcBEPJZCo6lMpJU2IwdEJbpIU17nVnGVSSV5JnMZW1HYOKmVrazNCB9RVOkzNmtwAp4z4GhrhaGXqYpXhS5ixXMba6ENxrh1HLCDkXllNwB1lBjgEI9Lx-PS8Thgx8TYiYTQtd2Ntl-UfrGWGPNGooqNKbjlxipZm6RQAkNbdKYKGwXsDYlFOZSqTjqiPKLuAUmaS6R47yhIS6x6pZUvdsB_IbytLcr9LUpc3Xp7eBS90muXn-W_tRCwt9MwPUkZc41p10gTi5STiuUB2xtEdvpp7iLtCOfs3STDt03ai9s_4iW7n1BXZCr0z_bZDEXTvEJXbVW99uvvL14mRIs
  priority: 102
  providerName: ProQuest
Title Prediction of clinical deterioration within one year in chronic obstructive pulmonary disease using the systemic coagulation-inflammation index: a retrospective study employing multiple machine learning method
URI https://www.ncbi.nlm.nih.gov/pubmed/40028201
https://www.proquest.com/docview/3239369327
https://www.proquest.com/docview/3173400534
https://doi.org/10.7717/peerj.18989
https://doaj.org/article/40907b1ee94f4efa8de29a71912239f0
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2167-8359
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000826083
  issn: 2167-8359
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2167-8359
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000826083
  issn: 2167-8359
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2167-8359
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000826083
  issn: 2167-8359
  databaseCode: DIK
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2167-8359
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000826083
  issn: 2167-8359
  databaseCode: GX1
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2167-8359
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000826083
  issn: 2167-8359
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2167-8359
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000826083
  issn: 2167-8359
  databaseCode: RPM
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2167-8359
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000826083
  issn: 2167-8359
  databaseCode: BENPR
  dateStart: 20130212
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELZGKwEv_B4URjFiiKeMJnFim7cONiakVRWiUnmKbMeeJkpThRZU_kv-I-4cp2qHBLxUUX2JEvuz786--46Qw0xbkRqbRk6BbwIaQ0egx2VUiszIgTYyL3G_43yUn03Yh2k23SMv2lyYrfN7Dp7G64W1NUxnLHJ4jXTzDAzuDulORuPhZywbh6zdYEPIJvPu6h07usZT8v-58G5pnhur-UKtf6jZbEvFnN4m79qXayJLvhytlvrI_LzC2_iPt79DbgUTkw4bTNwle3Z-j1w_D4fo98mvcY3XOCK0crTNjaQlRsZcBkhQ3KC9BIG5pWuYDRSuTUOkSysdWGe_W7pYzQDIql7TcNRDMZL-goJdSRuWaLjBVOoilAmLANEAwiZhknquxjdU0dou66rN-qSe85ZaX4wYH9ZGPdKvPvTT0lDrAlp8AewHZHJ68untWRQqO0SG8XwJwLADFgtuQIUmwgmXoWGiEiPTlJW5U0xlQgmWiVzEjksXJ6Vy2rkMeRO5TvdJZw4d8IhQBjqYW3yY0kxLI2PFchcbbiz4vmXcI4ctBopFQ-BRgOODw1P44Sn88PTIMeJjI4Ks2_4PGM4iTOICfOEB17G1kjlmnRKlTaTi4PKCkSXdoEeeIbqKJoV1s3YUQ6wqkKS5AIlXXgJXj2WtjApJEPAtyMO1I3mwIwmz3uw2twguwqrzrUiRzy4Hi5z3yPNNM96JkXRzW61AJuYpw6WX9cjDBvmbj2beAx9An73cTIW_ddrj_5R7Qm4mWDYZmQCyA9IBjNqnYMstdZ90j09G4499vxcCv--ncT_M7982sVB2
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYoSKWXqu9uS4srgXqKyMOJnUqogha0FHaFKpC4GcexV0jbzTbsFu2f63_oP-qM46SsKnHjFiUTK_GM52HPzEfIVloYkWiTBFZBbAIWowjAjudBKVKdh4XOsxL3OwbDrH_Ovl2kFyvkd1sLg2mVrU50irqsNO6R7yTYqysDb4N_nv4MEDUKT1dbCA3loRXKXddizBd2HJvFDYRw17tHX4Hf23F8eHD2pR94lIFAM57N4CNNyCLBNajzWFhhUzSSKtYQ6rMys4qpVCjBUpGJyPLcRnGpbGFtij38eJHAuA_IGktYDsHf2v7B8PR7t8sDBjYDJ6cpDOQQOu1MjalBPyFq45IpdIgB_9uFW4ZxfT6ZqsWNGo9vWcDDJ-Sxd13pXiNrT8mKmTwjDwf-cP45-XNa4zVymlaWtjWXtMSMmysvahQ3fq-AYGLoAqaPwrVuGvTSqvDdbH8ZOp2PYcZVvaD-CIlihv6Igr9Km-7T8IKu1MjDjwWwUkC4m0JM6npAfqKK1mZWV201KXW9dKlxIMc4WJtNSX-4lFJDPYYGPHHA2i_I-b3w8iVZncAEvCaUgW3nBgdTBStynUeKZTbSXBuIqcuoR7Za5slp0xhEQkCFPJaOx9LxuEf2kbEdCXbzdjeqeiS9cpAQY4e8iIzJmWXGKlGaOFccQmlw3nIb9sgmioVsSmM7nST3EK0gTjIBFB8dBWqlWa208sUV8C_Y32uJcmOJErSJXn7cip702uxa_lt7PfKhe4xvYobexFRzoIl4wlClsx551Yhs99PMRfYhzNl2J8N3Tdqbuz9ik6z3zwYn8uRoePyWPIoRkRmbDKQbZBXE1LwDN3FWvPdrkZLL-17-fwFVN4DH
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJg1eEN8UBjPSJp6i5sOJHaQJbWzVxlhVISbtzTiOXU0qTclapv6LvPEfcec4YRXS3vYWJRcr8Z3vw777HSE7aWFEok0SWAWxCViMIgA7ngelSHUeFjrPStzvOBtmx-fs80V6sUZ-t7UwmFbZ6kSnqMtK4x55P0Gsrgy8Dd63Pi1idDj4OPsZYAcpPGlt22ko32ah3HNwY77I49QsryGcu9o7OQTe78bx4Ojbp-PAdxwINOPZHD7YhCwSXINqj4UVNkWDqWINYT8rM6uYSoUSLBWZiCzPbRSXyhbWpojnx4sExr1HNvDwC5TExsHRcPS12_EBY5uBw9MUCXIIo_ozY2rQVdjBccUsuu4B_9uIG0by_mI6U8trNZncsIaDR-Shd2PpfiN3j8mamT4hm2f-oP4p-TOq8Rq5TitL2_pLWmL2zaUXO4qbwJdAMDV0CdNH4Vo3YL20Kjyy7S9DZ4sJzLiql9QfJ1HM1h9T8F1pg0QNL-hKjX0rsgBWDQh6U5RJHR7kB6pobeZ11VaWUoerS41reIyDtZmV9IdLLzXU99OAJ67J9jNyfie8fE7WpzABLwllYOe5wcFUwYpc55FimY001wbi6zLqkZ2WeXLWgIRICK6Qx9LxWDoe98gBMrYjQWRvd6Oqx9IrCgnxdsiLyJicWWasEqWJc8UhrAZHLrdhj2yjWMimTLbTT3IfOxfESSaA4r2jQA01r5VWvtAC_gWxvlYot1YoQbPo1cet6Emv2a7kv3XYI--6x_gmZutNTbUAmognDNU765EXjch2P81clB_CnO12MnzbpL26_SO2ySaoAfnlZHj6mjyIsTkz4g2kW2QdpNS8AY9xXrz1S5GS73e9-v8C9YaE9g
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdGJwEvfH8UBhxiiKeMJnFim7fyMU1Im_ZApfEU2Y49TZS0Ci2o_Jf8R9w5TtUOCXiL4nOU2D_77uK73zG2Xxgnc-vyxGv0TVBjmAT1uEpqWVg1MlaVNf3vOD4pjyb841lxtsNe9LkwG-f3Aj2N13PnWlzOVOTwCtstCzS4B2x3cnI6_kxl44i1G20I1WXeXe6xpWsCJf-fG--G5rm2bOZ69UNPpxsq5vAme9-_XBdZ8uVguTAH9ucl3sZ_vP0tdiOamDDuMHGb7bjmDrt6HA_R77Jfpy1d04zAzEOfGwk1RcZcREgA_aC9QIHGwQpXA-C17Yh0YWYi6-x3B_PlFIGs2xXEox6gSPpzQLsSOpZo7GBn-jyWCUsQ0QjCLmESAlfjG9DQukU767M-IXDeggvFiOlhfdQjfA2hnw5irQtsCQWw77HJ4YdP746SWNkhsVyUCwSGG_FUCosqNJNe-oIME51Zlee8Lr3mupBa8kKWMvVC-TSrtTfeF8SbKEx-nw0aHICHDDjqYOHoYdpwo6xKNS99aoV16PvW6ZDt9xio5h2BR4WOD01PFaanCtMzZG8JH2sRYt0ON3A6q7iIK_SFR8KkzinuufNa1i5TWqDLi0aW8qMhe0boqroU1vXeUY2pqkCWlxIlXgUJ2j0WrbY6JkHgtxAP15bk3pYkrnq73dwjuIq7zrcqJz67Ei1yMWTP183UkyLpGjdbokwqck5bLx-yBx3y1x_Ngwc-wjF7uV4Kfxu0R_8p95hdz6hsMjEBFHtsgBh1T9CWW5incS3_BhXATPY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+clinical+deterioration+within+one+year+in+chronic+obstructive+pulmonary+disease+using+the+systemic+coagulation-inflammation+index%3A+a+retrospective+study+employing+multiple+machine+learning+method&rft.jtitle=PeerJ+%28San+Francisco%2C+CA%29&rft.au=Hou%2C+Ling&rft.au=Min%2C+Ming&rft.au=Hou%2C+Rui&rft.au=Tan%2C+Wei&rft.date=2025-02-25&rft.issn=2167-8359&rft.eissn=2167-8359&rft.volume=13&rft.spage=e18989&rft_id=info:doi/10.7717%2Fpeerj.18989&rft.externalDBID=n%2Fa&rft.externalDocID=10_7717_peerj_18989
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2167-8359&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2167-8359&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2167-8359&client=summon