Dynamic Multi-Swarm Differential Learning Quantum Bird Swarm Algorithm and Its Application in Random Forest Classification Model
Bird swarm algorithm is one of the swarm intelligence algorithms proposed recently. However, the original bird swarm algorithm has some drawbacks, such as easy to fall into local optimum and slow convergence speed. To overcome these short-comings, a dynamic multi-swarm differential learning quantum...
Saved in:
| Published in | Computational intelligence and neuroscience Vol. 2020; no. 2020; pp. 1 - 24 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Cairo, Egypt
Hindawi Publishing Corporation
2020
Hindawi John Wiley & Sons, Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1687-5265 1687-5273 1687-5273 |
| DOI | 10.1155/2020/6858541 |
Cover
| Abstract | Bird swarm algorithm is one of the swarm intelligence algorithms proposed recently. However, the original bird swarm algorithm has some drawbacks, such as easy to fall into local optimum and slow convergence speed. To overcome these short-comings, a dynamic multi-swarm differential learning quantum bird swarm algorithm which combines three hybrid strategies was established. First, establishing a dynamic multi-swarm bird swarm algorithm and the differential evolution strategy was adopted to enhance the randomness of the foraging behavior’s movement, which can make the bird swarm algorithm have a stronger global exploration capability. Next, quantum behavior was introduced into the bird swarm algorithm for more efficient search solution space. Then, the improved bird swarm algorithm is used to optimize the number of decision trees and the number of predictor variables on the random forest classification model. In the experiment, the 18 benchmark functions, 30 CEC2014 functions, and the 8 UCI datasets are tested to show that the improved algorithm and model are very competitive and outperform the other algorithms and models. Finally, the effective random forest classification model was applied to actual oil logging prediction. As the experimental results show, the three strategies can significantly boost the performance of the bird swarm algorithm and the proposed learning scheme can guarantee a more stable random forest classification model with higher accuracy and efficiency compared to others. |
|---|---|
| AbstractList | Bird swarm algorithm is one of the swarm intelligence algorithms proposed recently. However, the original bird swarm algorithm has some drawbacks, such as easy to fall into local optimum and slow convergence speed. To overcome these short-comings, a dynamic multi-swarm differential learning quantum bird swarm algorithm which combines three hybrid strategies was established. First, establishing a dynamic multi-swarm bird swarm algorithm and the differential evolution strategy was adopted to enhance the randomness of the foraging behavior’s movement, which can make the bird swarm algorithm have a stronger global exploration capability. Next, quantum behavior was introduced into the bird swarm algorithm for more efficient search solution space. Then, the improved bird swarm algorithm is used to optimize the number of decision trees and the number of predictor variables on the random forest classification model. In the experiment, the 18 benchmark functions, 30 CEC2014 functions, and the 8 UCI datasets are tested to show that the improved algorithm and model are very competitive and outperform the other algorithms and models. Finally, the effective random forest classification model was applied to actual oil logging prediction. As the experimental results show, the three strategies can significantly boost the performance of the bird swarm algorithm and the proposed learning scheme can guarantee a more stable random forest classification model with higher accuracy and efficiency compared to others. Bird swarm algorithm is one of the swarm intelligence algorithms proposed recently. However, the original bird swarm algorithm has some drawbacks, such as easy to fall into local optimum and slow convergence speed. To overcome these short-comings, a dynamic multi-swarm differential learning quantum bird swarm algorithm which combines three hybrid strategies was established. First, establishing a dynamic multi-swarm bird swarm algorithm and the differential evolution strategy was adopted to enhance the randomness of the foraging behavior's movement, which can make the bird swarm algorithm have a stronger global exploration capability. Next, quantum behavior was introduced into the bird swarm algorithm for more efficient search solution space. Then, the improved bird swarm algorithm is used to optimize the number of decision trees and the number of predictor variables on the random forest classification model. In the experiment, the 18 benchmark functions, 30 CEC2014 functions, and the 8 UCI datasets are tested to show that the improved algorithm and model are very competitive and outperform the other algorithms and models. Finally, the effective random forest classification model was applied to actual oil logging prediction. As the experimental results show, the three strategies can significantly boost the performance of the bird swarm algorithm and the proposed learning scheme can guarantee a more stable random forest classification model with higher accuracy and efficiency compared to others.Bird swarm algorithm is one of the swarm intelligence algorithms proposed recently. However, the original bird swarm algorithm has some drawbacks, such as easy to fall into local optimum and slow convergence speed. To overcome these short-comings, a dynamic multi-swarm differential learning quantum bird swarm algorithm which combines three hybrid strategies was established. First, establishing a dynamic multi-swarm bird swarm algorithm and the differential evolution strategy was adopted to enhance the randomness of the foraging behavior's movement, which can make the bird swarm algorithm have a stronger global exploration capability. Next, quantum behavior was introduced into the bird swarm algorithm for more efficient search solution space. Then, the improved bird swarm algorithm is used to optimize the number of decision trees and the number of predictor variables on the random forest classification model. In the experiment, the 18 benchmark functions, 30 CEC2014 functions, and the 8 UCI datasets are tested to show that the improved algorithm and model are very competitive and outperform the other algorithms and models. Finally, the effective random forest classification model was applied to actual oil logging prediction. As the experimental results show, the three strategies can significantly boost the performance of the bird swarm algorithm and the proposed learning scheme can guarantee a more stable random forest classification model with higher accuracy and efficiency compared to others. |
| Audience | Academic |
| Author | He, Ziping Xia, Kewen Zhang, Jiangnan Fan, Shurui |
| AuthorAffiliation | School of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401, China |
| AuthorAffiliation_xml | – name: School of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401, China |
| Author_xml | – sequence: 1 fullname: Fan, Shurui – sequence: 2 fullname: He, Ziping – sequence: 3 fullname: Xia, Kewen – sequence: 4 fullname: Zhang, Jiangnan |
| BookMark | eNqFkUtv1DAUhSNURB-wY40ssUGCUNtJ_NggDVMKlaZCvNaW49gzrhx7sBNGs-tPr4cMjKiEuvKV73fO1T33tDjyweuieI7gW4Sa5hxDDM8Ja1hTo0fFCSKMlg2m1dHfmjTHxWlKNxA2tIH4SXFcYVYhhvhJcXux9bK3ClyPbrDlt42MPbiwxuio_WClAwsto7d-Cb6M0g9jD97b2IEJnLlliHZY9UD6DlwNCczWa2eVHGzwwHrwNf-HHlyGqNMA5k6mZM2f_nXotHtaPDbSJf1s_54VPy4_fJ9_KhefP17NZ4tS1ZQMpaEt56SFXdVCojE3nUSoo6YlbS0Nbo1hLW8lI7WCCsm27iDHnVYcc0ozUp0V5eQ7-rXcbqRzYh1tL-NWICh2SYpdkmKfZObfTfx6bHvdqZxGlAdNkFb82_F2JZbhl6A1ZpzsDF7tDWL4Oeb1RW-T0s5Jr8OYBK6rfB7ECMvoy3voTRijz3HsqLriiBJ6oJbSaWG9CXmu2pmKGak45zXGPFNvJkrFkFLU5qE18T1c2eH3ebK5df8TvZ5EK-s7ubEPjXgx0Toz2sgDjSpGOavuAOhi2g8 |
| CitedBy_id | crossref_primary_10_1007_s11269_022_03423_7 crossref_primary_10_1155_2022_5359732 crossref_primary_10_1155_2022_5745457 crossref_primary_10_3390_sym13091706 crossref_primary_10_3390_app13042336 crossref_primary_10_1002_dac_6141 crossref_primary_10_1155_2022_4063354 |
| Cites_doi | 10.4103/0974-2700.70743 10.1080/13561820.2016.1233390 10.1155/2017/8986917 10.1002/j.0022-0337.2015.79.8.tb05990.x 10.1016/j.eswa.2019.04.040 10.1016/j.advengsoft.2016.01.008 10.1016/j.nedt.2013.06.022 10.1111/j.1532-5415.1991.tb01616.x 10.1186/s12913-015-0854-8 10.3109/13561820903011927 10.3390/app9224893 10.1007/s00500-018-3473-6 10.1001/jama.282.18.1737 10.3390/s19112515 10.5688/ajpe76580 10.1002/1099-1166(200011)15:11<1021::aid-gps234>3.0.co;2-6 10.1207/s15328015tlm1803_4 10.1016/j.xjep.2016.05.002 10.1080/0952813X.2015.1042530 10.3109/13561820.2015.1017555 10.3109/0142159x.2014.923558 10.2307/3350391 10.1016/j.advengsoft.2013.12.007 10.1016/j.swevo.2017.10.004 10.1016/j.advengsoft.2017.01.004 10.1136/bmjqs-2013-001862 10.1080/21642583.2019.1708830 |
| ContentType | Journal Article |
| Copyright | Copyright © 2020 Jiangnan Zhang et al. COPYRIGHT 2020 John Wiley & Sons, Inc. Copyright © 2020 Jiangnan Zhang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0 Copyright © 2020 Jiangnan Zhang et al. 2020 |
| Copyright_xml | – notice: Copyright © 2020 Jiangnan Zhang et al. – notice: COPYRIGHT 2020 John Wiley & Sons, Inc. – notice: Copyright © 2020 Jiangnan Zhang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0 – notice: Copyright © 2020 Jiangnan Zhang et al. 2020 |
| DBID | ADJCN AHFXO RHU RHW RHX AAYXX CITATION 3V. 7QF 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7X7 7XB 8AL 8BQ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU CWDGH DWQXO F28 FR3 FYUFA GHDGH GNUQQ H8D H8G HCIFZ JG9 JQ2 K7- K9. KR7 L6V L7M LK8 L~C L~D M0N M0S M1P M7P M7S P5Z P62 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PSYQQ PTHSS Q9U 7X8 5PM ADTOC UNPAY |
| DOI | 10.1155/2020/6858541 |
| DatabaseName | الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef ProQuest Central (Corporate) Aluminium Industry Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central ProQuest Advanced Technologies & Aerospace Database ProQuest Central Essentials Biological Science Database (Proquest) ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) Natural Science Collection (ProQuest) ProQuest One Community College Middle East & Africa Database (ProQuest) ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Engineering Database ProQuest Central Advanced Technologies & Aerospace Database (via ProQuest) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest One Psychology Engineering Collection ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest One Psychology Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File ProQuest One Applied & Life Sciences Engineered Materials Abstracts Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Ceramic Abstracts Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Health & Medical Research Collection ProQuest Engineering Collection Middle East & Africa Database Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection Corrosion Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1687-5273 |
| Editor | Köker, Raşit |
| Editor_xml | – sequence: 1 givenname: Raşit surname: Köker fullname: Köker, Raşit |
| EndPage | 24 |
| ExternalDocumentID | 10.1155/2020/6858541 PMC7428961 A639994229 10_1155_2020_6858541 1138798 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GrantInformation_xml | – fundername: Key Research Project of Science and Technology from the Ministry of Education of Hebei Province grantid: ZD2019010 – fundername: National Natural Science Foundation of China grantid: U1813222 – fundername: Natural Science Foundation of Tianjin City grantid: 18JCYBJC16500 – fundername: Ministry of Education of the People's Republic of China grantid: 201801335014 – fundername: Key Research and Development Project from Hebei Province grantid: 19210404D; 20351802D |
| GroupedDBID | --- 0R~ 188 24P 29F 2UF 2WC 4.4 53G 5GY 5VS 6J9 7X7 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAFWJ AAKPC AAMMB ABDBF ABIVO ABJCF ABUWG ACCMX ACGFO ACIWK ACM ACPRK ACUHS ADBBV ADJCN ADRAZ AEFGJ AENEX AFKRA AGXDD AHFXO AHMBA AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C1A CCPQU CS3 CWDGH DIK DWQXO E3Z EBD EBS EJD EMOBN ESX F5P FYUFA GNUQQ GX1 H13 HCIFZ HMCUK HYE I-F IAO IHR IL9 INR K6V K7- KQ8 L6V LK8 M1P M48 M7P M7S MK~ O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PTHSS PUEGO Q2X RHU RNS RPM SV3 TR2 TUS UKHRP UZ4 ~8M 3V. AAJEY AINHJ GROUPED_DOAJ ICD INH IPY ITC M0N RHW RHX XH6 AAYXX CITATION 7QF 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7XB 8AL 8BQ 8FD 8FK F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D PKEHL PQEST PQUKI Q9U 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c476t-f7b996b0d3b06e29fda11d7fb6b4af2bff8b9ba864c0c1ab4d092dec92977b4a3 |
| IEDL.DBID | M48 |
| ISSN | 1687-5265 1687-5273 |
| IngestDate | Sun Oct 26 04:03:19 EDT 2025 Tue Sep 30 15:19:37 EDT 2025 Sat Sep 27 19:48:57 EDT 2025 Tue Oct 07 05:54:27 EDT 2025 Mon Oct 20 22:48:28 EDT 2025 Thu Apr 24 23:05:33 EDT 2025 Wed Oct 01 02:22:12 EDT 2025 Sun Jun 02 18:54:50 EDT 2024 Thu Sep 25 15:16:23 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2020 |
| Language | English |
| License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0 other-oa |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c476t-f7b996b0d3b06e29fda11d7fb6b4af2bff8b9ba864c0c1ab4d092dec92977b4a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Academic Editor: Raşit Köker |
| ORCID | 0000-0003-3968-481X 0000-0002-0091-4182 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1155/2020/6858541 |
| PMID | 32831819 |
| PQID | 2434391767 |
| PQPubID | 237303 |
| PageCount | 24 |
| ParticipantIDs | unpaywall_primary_10_1155_2020_6858541 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7428961 proquest_miscellaneous_2436871868 proquest_journals_2434391767 gale_infotracmisc_A639994229 crossref_primary_10_1155_2020_6858541 crossref_citationtrail_10_1155_2020_6858541 hindawi_primary_10_1155_2020_6858541 emarefa_primary_1138798 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-00-00 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – year: 2020 text: 2020-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | Cairo, Egypt |
| PublicationPlace_xml | – name: Cairo, Egypt – name: New York |
| PublicationTitle | Computational intelligence and neuroscience |
| PublicationYear | 2020 |
| Publisher | Hindawi Publishing Corporation Hindawi John Wiley & Sons, Inc |
| Publisher_xml | – name: Hindawi Publishing Corporation – name: Hindawi – name: John Wiley & Sons, Inc |
| References | 22 (18) 2019; 23 23 24 25 (15) 2012; 21 27 28 29 (31) 2018; 39 (9) 2019 (41) 2017; 105 (1) 2019 (7) 2016; 28 (39) 2016; 95 (42) 2020; 8 (4) 2003 12 34 35 14 36 37 17 (40) 2016; 95 (13) 2019; 19 19 (33) 2019; 130 (16) 2010 (11) 2019; 9 8 (38) 2014; 69 21 43 |
| References_xml | – ident: 29 doi: 10.4103/0974-2700.70743 – ident: 21 doi: 10.1080/13561820.2016.1233390 – year: 2010 ident: 16 – ident: 43 doi: 10.1155/2017/8986917 – ident: 19 doi: 10.1002/j.0022-0337.2015.79.8.tb05990.x – volume: 130 start-page: 276 year: 2019 ident: 33 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2019.04.040 – volume: 95 start-page: 51 year: 2016 ident: 39 publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2016.01.008 – ident: 24 doi: 10.1016/j.nedt.2013.06.022 – ident: 36 doi: 10.1111/j.1532-5415.1991.tb01616.x – volume: 21 start-page: 137 issue: 2 year: 2012 ident: 15 publication-title: Studies in Informatics and Control – ident: 27 doi: 10.1186/s12913-015-0854-8 – ident: 17 doi: 10.3109/13561820903011927 – volume: 9 start-page: 4893 issue: 22 year: 2019 ident: 11 publication-title: Applied Sciences doi: 10.3390/app9224893 – volume: 23 start-page: 8723 issue: 18 year: 2019 ident: 18 publication-title: Soft Computing doi: 10.1007/s00500-018-3473-6 – ident: 35 doi: 10.1001/jama.282.18.1737 – volume: 19 start-page: 2515 issue: 11 year: 2019 ident: 13 publication-title: Sensors doi: 10.3390/s19112515 – year: 2019 ident: 1 – volume: 95 start-page: 120 year: 2016 ident: 40 publication-title: Knowledge Based Systems – ident: 8 doi: 10.5688/ajpe76580 – ident: 37 doi: 10.1002/1099-1166(200011)15:11<1021::aid-gps234>3.0.co;2-6 – volume-title: Genetic algorithm-optimized multi-channel convolutional neural network for stock market prediction year: 2019 ident: 9 – year: 2003 ident: 4 – ident: 22 doi: 10.1207/s15328015tlm1803_4 – ident: 12 doi: 10.1016/j.xjep.2016.05.002 – volume: 28 start-page: 673 issue: 4 year: 2016 ident: 7 publication-title: Journal of Experimental & Theoretical Artificial Intelligence doi: 10.1080/0952813X.2015.1042530 – ident: 23 doi: 10.3109/13561820.2015.1017555 – ident: 25 doi: 10.3109/0142159x.2014.923558 – ident: 28 doi: 10.2307/3350391 – volume: 69 start-page: 46 year: 2014 ident: 38 publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2013.12.007 – ident: 14 doi: 10.1002/j.0022-0337.2015.79.8.tb05990.x – volume: 39 start-page: 209 year: 2018 ident: 31 publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2017.10.004 – volume: 105 start-page: 30 year: 2017 ident: 41 publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2017.01.004 – ident: 34 doi: 10.1136/bmjqs-2013-001862 – volume: 8 start-page: 22 issue: 1 year: 2020 ident: 42 publication-title: Systems Science & Control Engineering An Open Access Journal doi: 10.1080/21642583.2019.1708830 |
| SSID | ssj0057502 |
| Score | 2.237594 |
| Snippet | Bird swarm algorithm is one of the swarm intelligence algorithms proposed recently. However, the original bird swarm algorithm has some drawbacks, such as easy... |
| SourceID | unpaywall pubmedcentral proquest gale crossref hindawi emarefa |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Classification Decision trees Evolutionary algorithms Evolutionary computation Exploratory behavior Foraging behavior Genetic algorithms Intelligence Learning Logging Machine learning Methods Model accuracy Neural networks Optimization Optimization algorithms Parameter estimation Random variables Solution space Swarm intelligence |
| SummonAdditionalLinks | – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdg0gQvaDA-wgoy0tgLikjSxI4fA2MqSCAxmNS3yHbiNVKSTm2iam_86dw5bkaH-Hhr6kuc5Hy-3y8-3xFyDJSkAM9i_FTH0kdEADYXGl8kUmiYEAtml2I-f2Gzi_jTPJm7JEnr35fwwdshPQ_e2jTpuEH9bsowcut8Nt9OuAA4htBCBvaC2d638e23zt3xPPtlI-GHHGfi_QVy4E21gzRvx0ne69sreb2Rdf2LEzo7IA8ceqTZoO6H5E7ZPiKHWQvMubmmJ9TGc9oP5Yfkx-lQbJ7aPbb-t41cNfTU1UMBu66py616Sb_28H77hr6rVgUdBLP6crmqukVDZVvQj92aZjdL3bRq6Tn8v2wolvZcd9TW1sSoo6EdK6zVj8nF2Yfv72e-q7fg65izzjdcAftRQTFVASsjYQoZhgU3iqlYmkgZkyqhZMpiHehQqrgIRFSUGhAW5yAyfUL22mVbPiN0qgF4cC1UBO6vEAZIjEkTLdPEiBRAnkfebHWRa5eMHGti1LklJUmSo-ZypzmPvB6lr4YkHH-Qe-rUeiMWTlMuUo9MUM05Wi30o8GGdJ4hOhNxFAmPHDv1_-P6k-3YyJ2pr_MI9-YC6WXcI6_GZuwAw9factlbGRicWJnAI3xnTI39YZrv3Za2Wth03xwYomDQ-ck4-v56l8__72GOyH08HD4nTchet-rLFwCwOvXSmtdPVSscTw priority: 102 providerName: Hindawi Publishing – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELdGpwleEDAYgYKMNPaCoiVpvvyAUMY2DSQqGEzaW-SPeK2UpKVNVO2NP507x2kpEuMtik911PvwnX3-_Qg5hJJEwcqi3VSG3MWMAHzO1y6LOJMQEFVsjmK-jOOLq_DzdXS9Q8b9XRhsq-xjognUaiZxj_w4wCuQUFvEyYf5TxdZo_B0tafQ4JZaQb03EGP3yG6AyFgDsntyNv562cdmyE26LsQYXAuB4ftW-CjCXQDv2KCxh_7WIrVXVBwe-Dpo702wXF5Nt5LSv1sq77f1nN-ueFn-sV6dPyIPbaJJs84yHpOdon5C9rMaiuzqlh5R0_pp9tT3ya_Tjpeemuu47vcVX1T01FKnQAgoqYVhvaHfWlBFW9GT6ULRTjArb-CPaiYV5bWin5olzTan4nRa00t4P6sosoAuG2poOLFBqRtHMrbyKbk6P_vx8cK11AyuDJO4cXUioFASnhoJLy4CphX3fZVoEYuQ60BonQomeBqH0pM-F6HyWKAKCclYkoDI6BkZ1LO6eE7oSEKOkkgmAlgpFdNQ7-g0kjyNNEshH3TIu14XubS45UifUeamfomiHDWXW8055O1aet7hdfxD7sCqdSPmj9KEpQ4ZoppzdHCYR4K7yTzDRI6FQcAccmjV_5_fH_a2kduosMw3NuyQN-thnAA73epi1hoZME4kMXBIsmVT6_kQEXx7pJ5ODDJ4AsUki2Hyo7X13fmVL-7-ypfkAUp3O05DMmgWbfEKcrBGvLaO9RunPC0V priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4anSZ44TYugYKMNPaC0qVpEsfiKTCmgcTErdKQJkW-xGtFkk5tomo88dM5TpyWTuIi3pL4KI7t4-PzxcffAdhDSKJwZdFuLAPuGo8A59xQuyzkTKJBVFGzFfP-JDoeB-9Ow9MteNmdhVGGIn7G1WIwMZh0OW2ste3XxYFEtIhw3TtoaNMDNDNKX4PtKERHvAfb45MPyVcDsSKcOob4fX1NR13YexhuvGJjQdrJCo4XfGWgd-xnbDigV8Mnr9flBb9c8jz_ZW06ugVnXavakJRvg7oSA_n9CuHjfzb7Nty0PitJWiW7A1tZeRd2kxLxenFJ9kkTRdr8nt-FH4dtinvSnOx1Py_5vCCHNgsLWpOcWEbXc_KxxlGtC_JqOlekFUzy89l8Wk0KwktF3lYLkqw32Mm0JJ_w-awgJqHooiJNRk8T69SWm7xu-T0YH7358vrYtVkeXBnQqHI1FYi5hKdGwosyn2nFh0NFtYhEwLUvtI4FEzyOAunJIReB8pivMol-HaUoMroPvXJWZg-BjCS6O1Qy4eOiq5hG6KTjUPI41CxG19KBF91Qp9JSoJtMHHnaQKEwTE0np7aTHXi-kr5oqT9-I_fAas1abDiKKYsd6BstSo2twHokzlyZJsYnZIHvMwf27Gj_5f39TvXSTiNS35wIRqgdUQeerYpNBSZorsxmdSODum_yIThAN1R2VZ8hF98sKaeThmScIi5lEVa-v1LuP37lo38VfAw3zG37G6sPvWpeZ0_QsavEUzuBfwLa-EhY priority: 102 providerName: Unpaywall |
| Title | Dynamic Multi-Swarm Differential Learning Quantum Bird Swarm Algorithm and Its Application in Random Forest Classification Model |
| URI | https://search.emarefa.net/detail/BIM-1138798 https://dx.doi.org/10.1155/2020/6858541 https://www.proquest.com/docview/2434391767 https://www.proquest.com/docview/2436871868 https://pubmed.ncbi.nlm.nih.gov/PMC7428961 https://downloads.hindawi.com/journals/cin/2020/6858541.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 2020 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: KQ8 dateStart: 20070625 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: KQ8 dateStart: 20070101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: Academic Search Ultimate (EBSCOhost) customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1687-5273 dateEnd: 20230628 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: ABDBF dateStart: 20070101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: DIK dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: GX1 dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: RPM dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1687-5273 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: 7X7 dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Middle East & Africa Database (ProQuest) customDbUrl: eissn: 1687-5273 dateEnd: 20250131 omitProxy: false ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: CWDGH dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/middleeastafrica providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1687-5273 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: 8FG dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1687-5273 dateEnd: 20250430 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: M48 dateStart: 20070101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: 24P dateStart: 20070101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTYO9IGB8BEplpLEXFGjSJI4fEMrYR0FaNQqVylNkO_FaKUlHm6r0jT-ds5NmdOJD4iVq62tc9e5894vP9wM4QEiSYGRRdig9buuMAH3OUTbzOZO4ICaB2Yo57we9ofdx5I-2YM02Wv-B899CO80nNZxlr79_W71Dh39rHN73NX7vvDF91PUJ9h2MUUyTOJx7zX4C5iRV9WGALqUbwq9L4G98ew9udzHeYtRjG3FqN805vuDNur071oh5OdnIS29WVd5ZFFd8teRZ9kvIOr0Hd-tck0SVcdyHrbR4APtRgTg7X5FDYqo_zWP1ffhxXFHTE3Mi1_685LOcHNfsKbgKZKTuxHpJPi1QG4ucHE1mCakEo-xyOpuU45zwIiEfyjmJrjfGyaQgA_x8mhNNBDoviWHi1DVK1bjmY8sewvD05Mv7nl2zM9jSo0FpKyoQK4lO0hWdIHWZSrjjJFSJQHhcuUKpUDDBw8CTHelw4SUd5iapxHyMUhTpPoLtYlqkT4B0JaYpVDLhYrBMmELIo0Jf8tBXLMSU0IJXa13Esm5drhk0sthAGN-PtRLjWokWvGykr6qWHX-Qe1yr9VrM6YaUhRa0tJpjbXU4j0SPk3GkcznmuS6z4KBW_z_u31rbRry269jVJ3kRIgfUghfNsJ5AF7sV6XRhZNBONY-BBXTDppr5dFPwzZFiMjbNwSniSRbg5IeN9f31Vz797ymewZ6-UfU8qgXb5WyRPscMrRRtuEVHFK_h6Vkbdo5O-hcDfHc2ctrGLfE66I1wZNi_iL7-BN9wPLs |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VVFW58CoPQ4BFanNBbm3Hrz1wCA0loQ8JaNXezO7abiJsJyS2onDiF_FX-EvM2uuEVKKceuAWZScea_PN7De7szMA2xiShLiyxLovbKZLRoA2Z8Y6dRgV6BBDtzyKOT5xe2f2hwvnYg1-1ndhZFpl7RNLRx2OhNwj37PkFUiMLVxPZVAeRvMZxmfTN_0u_pk7lnXw7nS_p6sWArqwPTfXY48joedG2OaGG1k0Dplphl7MXW6z2OJx7HPKme_awhAm43ZoUCuMBJIGz0ORNj63Nf6myy5V8jRXtey4BeuIc9NqwPr-efd9r_b9yH2qLEcXTVcWnq9T7R1H7jIYe2W1d9tcWQQ3opThB7ZYFDYGMhyfDVdI79WUzc0iG7P5jCXJH-vhwV34Vc9klQbzdbfI-a74fqXI5P8z1ffgjqLmpFPZ0n1Yi7IHsNXJWD5K56RFymTZ8hRiC3505xlLh4KUF5j1zzM2SUlXNZtBp5kQVbj2knwsELxFSt4OJyGpBDvJJerPBylhWUj6-ZR0lnkEZJiRT_j9KCWyb-o0J2XjUpnSVY3L9nXJQzi7kel5BI1slEVPgLQFsjpPUG4htwhpjBFi7DuC-U5MfWTQGryu0RUIVeldNhxJgjLic5xAYjFQWNRgZyE9riqc_EXusQLqUsxs-x71NWhK4AbSJaIegQ5KBB1JfaltWVSDbQXofzy_WaMxUH50GiyhqMGrxbBUIHMDs2hUlDJobrLtgwbeipUs9Mka6qsj2XBQ1lL3MPymLipvLezp2rd8ev1bvoTN3unxUXDUPzl8BrflL6v9uiY08kkRPUcGm_MXym0Q-HLTFvUbbJKrXg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lc9MwENaUdgpceJWHIYCYaXth3MSOLVkHhgkNoaHQ4dWhNyPJVpPBdkJiTyac-F38Ff4MK1tOSGcopx64ZaK1Zcu7q2-lT7sIbUNIEsHMouxAetzWiABszlE28zmT4BAjUm7FvD0iB8fe6xP_ZA39rM_CaFpl7RNLRx2NpF4jb7r6CCTEFoQ2laFFvOv2no-_2bqClN5prctpVCpyGM9nEL5Nn_W78K13XLf38tP-gW0qDNjSoyS3FRWA90UraosWiV2mIu44EVWCCI8rVygVCCZ4QDzZkg4XXtRibhRLwBSUgkgb7nsJbQSEEnAKG_ufu68O6nkAcFDFeCRgxjoJfU2793294tBqlpnfPWdlQtyMUw4_-GKC2Bzo0Hw2XAHAZ-mbV4pszOczniR_zI296-hXPaoVJebrXpGLPfn9TMLJ_3PYb6BrBrLjTmVjN9FanN1CW52M56N0jndxSaItdye20I_uPOPpUOLyYLP9ccYnKe6aIjTgTBNsEtqe4vcFKHWR4hfDSYQrwU5yCu-bD1LMswj38ynuLPkFeJjhD_D_KMW6nuo0x2VBU031qtp1WbvkNjq-kLG4g9azURbfQ7gtAe1RyYQLmCNiCiJHFfiSB75iASBrCz2tNS2UJgO8LkSShGUk6Puh1svQ6KWFdhbS4yrzyV_k7hqlXYo57YCywEINrcShdpXQjwTHJcOOhsTMc11moW2j3P-4f6PWzND412m4VEsLPVk06w40ZzCLR0UpA6any0FYiK5YzKI_nVt9tSUbDsoc6xTCckag892FbZ37lPfPf8rH6DKYTfimf3T4AF3VF1bLeA20nk-K-CEA21w8Mh4Eoy8XbT2_AQ9ftCY |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4anSZ44TYugYKMNPaC0qVpEsfiKTCmgcTErdKQJkW-xGtFkk5tomo88dM5TpyWTuIi3pL4KI7t4-PzxcffAdhDSKJwZdFuLAPuGo8A59xQuyzkTKJBVFGzFfP-JDoeB-9Ow9MteNmdhVGGIn7G1WIwMZh0OW2ste3XxYFEtIhw3TtoaNMDNDNKX4PtKERHvAfb45MPyVcDsSKcOob4fX1NR13YexhuvGJjQdrJCo4XfGWgd-xnbDigV8Mnr9flBb9c8jz_ZW06ugVnXavakJRvg7oSA_n9CuHjfzb7Nty0PitJWiW7A1tZeRd2kxLxenFJ9kkTRdr8nt-FH4dtinvSnOx1Py_5vCCHNgsLWpOcWEbXc_KxxlGtC_JqOlekFUzy89l8Wk0KwktF3lYLkqw32Mm0JJ_w-awgJqHooiJNRk8T69SWm7xu-T0YH7358vrYtVkeXBnQqHI1FYi5hKdGwosyn2nFh0NFtYhEwLUvtI4FEzyOAunJIReB8pivMol-HaUoMroPvXJWZg-BjCS6O1Qy4eOiq5hG6KTjUPI41CxG19KBF91Qp9JSoJtMHHnaQKEwTE0np7aTHXi-kr5oqT9-I_fAas1abDiKKYsd6BstSo2twHokzlyZJsYnZIHvMwf27Gj_5f39TvXSTiNS35wIRqgdUQeerYpNBSZorsxmdSODum_yIThAN1R2VZ8hF98sKaeThmScIi5lEVa-v1LuP37lo38VfAw3zG37G6sPvWpeZ0_QsavEUzuBfwLa-EhY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Multi-Swarm+Differential+Learning+Quantum+Bird+Swarm+Algorithm+and+Its+Application+in+Random+Forest+Classification+Model&rft.jtitle=Computational+intelligence+and+neuroscience&rft.au=Zhang%2C+Jiangnan&rft.au=Xia%2C+Kewen&rft.au=He%2C+Ziping&rft.au=Fan%2C+Shurui&rft.date=2020&rft.pub=Hindawi&rft.issn=1687-5265&rft.eissn=1687-5273&rft.volume=2020&rft_id=info:doi/10.1155%2F2020%2F6858541&rft_id=info%3Apmid%2F32831819&rft.externalDocID=PMC7428961 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-5265&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-5265&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-5265&client=summon |