Dynamic Multi-Swarm Differential Learning Quantum Bird Swarm Algorithm and Its Application in Random Forest Classification Model

Bird swarm algorithm is one of the swarm intelligence algorithms proposed recently. However, the original bird swarm algorithm has some drawbacks, such as easy to fall into local optimum and slow convergence speed. To overcome these short-comings, a dynamic multi-swarm differential learning quantum...

Full description

Saved in:
Bibliographic Details
Published inComputational intelligence and neuroscience Vol. 2020; no. 2020; pp. 1 - 24
Main Authors Fan, Shurui, He, Ziping, Xia, Kewen, Zhang, Jiangnan
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 2020
Hindawi
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN1687-5265
1687-5273
1687-5273
DOI10.1155/2020/6858541

Cover

Abstract Bird swarm algorithm is one of the swarm intelligence algorithms proposed recently. However, the original bird swarm algorithm has some drawbacks, such as easy to fall into local optimum and slow convergence speed. To overcome these short-comings, a dynamic multi-swarm differential learning quantum bird swarm algorithm which combines three hybrid strategies was established. First, establishing a dynamic multi-swarm bird swarm algorithm and the differential evolution strategy was adopted to enhance the randomness of the foraging behavior’s movement, which can make the bird swarm algorithm have a stronger global exploration capability. Next, quantum behavior was introduced into the bird swarm algorithm for more efficient search solution space. Then, the improved bird swarm algorithm is used to optimize the number of decision trees and the number of predictor variables on the random forest classification model. In the experiment, the 18 benchmark functions, 30 CEC2014 functions, and the 8 UCI datasets are tested to show that the improved algorithm and model are very competitive and outperform the other algorithms and models. Finally, the effective random forest classification model was applied to actual oil logging prediction. As the experimental results show, the three strategies can significantly boost the performance of the bird swarm algorithm and the proposed learning scheme can guarantee a more stable random forest classification model with higher accuracy and efficiency compared to others.
AbstractList Bird swarm algorithm is one of the swarm intelligence algorithms proposed recently. However, the original bird swarm algorithm has some drawbacks, such as easy to fall into local optimum and slow convergence speed. To overcome these short-comings, a dynamic multi-swarm differential learning quantum bird swarm algorithm which combines three hybrid strategies was established. First, establishing a dynamic multi-swarm bird swarm algorithm and the differential evolution strategy was adopted to enhance the randomness of the foraging behavior’s movement, which can make the bird swarm algorithm have a stronger global exploration capability. Next, quantum behavior was introduced into the bird swarm algorithm for more efficient search solution space. Then, the improved bird swarm algorithm is used to optimize the number of decision trees and the number of predictor variables on the random forest classification model. In the experiment, the 18 benchmark functions, 30 CEC2014 functions, and the 8 UCI datasets are tested to show that the improved algorithm and model are very competitive and outperform the other algorithms and models. Finally, the effective random forest classification model was applied to actual oil logging prediction. As the experimental results show, the three strategies can significantly boost the performance of the bird swarm algorithm and the proposed learning scheme can guarantee a more stable random forest classification model with higher accuracy and efficiency compared to others.
Bird swarm algorithm is one of the swarm intelligence algorithms proposed recently. However, the original bird swarm algorithm has some drawbacks, such as easy to fall into local optimum and slow convergence speed. To overcome these short-comings, a dynamic multi-swarm differential learning quantum bird swarm algorithm which combines three hybrid strategies was established. First, establishing a dynamic multi-swarm bird swarm algorithm and the differential evolution strategy was adopted to enhance the randomness of the foraging behavior's movement, which can make the bird swarm algorithm have a stronger global exploration capability. Next, quantum behavior was introduced into the bird swarm algorithm for more efficient search solution space. Then, the improved bird swarm algorithm is used to optimize the number of decision trees and the number of predictor variables on the random forest classification model. In the experiment, the 18 benchmark functions, 30 CEC2014 functions, and the 8 UCI datasets are tested to show that the improved algorithm and model are very competitive and outperform the other algorithms and models. Finally, the effective random forest classification model was applied to actual oil logging prediction. As the experimental results show, the three strategies can significantly boost the performance of the bird swarm algorithm and the proposed learning scheme can guarantee a more stable random forest classification model with higher accuracy and efficiency compared to others.Bird swarm algorithm is one of the swarm intelligence algorithms proposed recently. However, the original bird swarm algorithm has some drawbacks, such as easy to fall into local optimum and slow convergence speed. To overcome these short-comings, a dynamic multi-swarm differential learning quantum bird swarm algorithm which combines three hybrid strategies was established. First, establishing a dynamic multi-swarm bird swarm algorithm and the differential evolution strategy was adopted to enhance the randomness of the foraging behavior's movement, which can make the bird swarm algorithm have a stronger global exploration capability. Next, quantum behavior was introduced into the bird swarm algorithm for more efficient search solution space. Then, the improved bird swarm algorithm is used to optimize the number of decision trees and the number of predictor variables on the random forest classification model. In the experiment, the 18 benchmark functions, 30 CEC2014 functions, and the 8 UCI datasets are tested to show that the improved algorithm and model are very competitive and outperform the other algorithms and models. Finally, the effective random forest classification model was applied to actual oil logging prediction. As the experimental results show, the three strategies can significantly boost the performance of the bird swarm algorithm and the proposed learning scheme can guarantee a more stable random forest classification model with higher accuracy and efficiency compared to others.
Audience Academic
Author He, Ziping
Xia, Kewen
Zhang, Jiangnan
Fan, Shurui
AuthorAffiliation School of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401, China
AuthorAffiliation_xml – name: School of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401, China
Author_xml – sequence: 1
  fullname: Fan, Shurui
– sequence: 2
  fullname: He, Ziping
– sequence: 3
  fullname: Xia, Kewen
– sequence: 4
  fullname: Zhang, Jiangnan
BookMark eNqFkUtv1DAUhSNURB-wY40ssUGCUNtJ_NggDVMKlaZCvNaW49gzrhx7sBNGs-tPr4cMjKiEuvKV73fO1T33tDjyweuieI7gW4Sa5hxDDM8Ja1hTo0fFCSKMlg2m1dHfmjTHxWlKNxA2tIH4SXFcYVYhhvhJcXux9bK3ClyPbrDlt42MPbiwxuio_WClAwsto7d-Cb6M0g9jD97b2IEJnLlliHZY9UD6DlwNCczWa2eVHGzwwHrwNf-HHlyGqNMA5k6mZM2f_nXotHtaPDbSJf1s_54VPy4_fJ9_KhefP17NZ4tS1ZQMpaEt56SFXdVCojE3nUSoo6YlbS0Nbo1hLW8lI7WCCsm27iDHnVYcc0ozUp0V5eQ7-rXcbqRzYh1tL-NWICh2SYpdkmKfZObfTfx6bHvdqZxGlAdNkFb82_F2JZbhl6A1ZpzsDF7tDWL4Oeb1RW-T0s5Jr8OYBK6rfB7ECMvoy3voTRijz3HsqLriiBJ6oJbSaWG9CXmu2pmKGak45zXGPFNvJkrFkFLU5qE18T1c2eH3ebK5df8TvZ5EK-s7ubEPjXgx0Toz2sgDjSpGOavuAOhi2g8
CitedBy_id crossref_primary_10_1007_s11269_022_03423_7
crossref_primary_10_1155_2022_5359732
crossref_primary_10_1155_2022_5745457
crossref_primary_10_3390_sym13091706
crossref_primary_10_3390_app13042336
crossref_primary_10_1002_dac_6141
crossref_primary_10_1155_2022_4063354
Cites_doi 10.4103/0974-2700.70743
10.1080/13561820.2016.1233390
10.1155/2017/8986917
10.1002/j.0022-0337.2015.79.8.tb05990.x
10.1016/j.eswa.2019.04.040
10.1016/j.advengsoft.2016.01.008
10.1016/j.nedt.2013.06.022
10.1111/j.1532-5415.1991.tb01616.x
10.1186/s12913-015-0854-8
10.3109/13561820903011927
10.3390/app9224893
10.1007/s00500-018-3473-6
10.1001/jama.282.18.1737
10.3390/s19112515
10.5688/ajpe76580
10.1002/1099-1166(200011)15:11<1021::aid-gps234>3.0.co;2-6
10.1207/s15328015tlm1803_4
10.1016/j.xjep.2016.05.002
10.1080/0952813X.2015.1042530
10.3109/13561820.2015.1017555
10.3109/0142159x.2014.923558
10.2307/3350391
10.1016/j.advengsoft.2013.12.007
10.1016/j.swevo.2017.10.004
10.1016/j.advengsoft.2017.01.004
10.1136/bmjqs-2013-001862
10.1080/21642583.2019.1708830
ContentType Journal Article
Copyright Copyright © 2020 Jiangnan Zhang et al.
COPYRIGHT 2020 John Wiley & Sons, Inc.
Copyright © 2020 Jiangnan Zhang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0
Copyright © 2020 Jiangnan Zhang et al. 2020
Copyright_xml – notice: Copyright © 2020 Jiangnan Zhang et al.
– notice: COPYRIGHT 2020 John Wiley & Sons, Inc.
– notice: Copyright © 2020 Jiangnan Zhang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0
– notice: Copyright © 2020 Jiangnan Zhang et al. 2020
DBID ADJCN
AHFXO
RHU
RHW
RHX
AAYXX
CITATION
3V.
7QF
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7X7
7XB
8AL
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
CWDGH
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
K7-
K9.
KR7
L6V
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PSYQQ
PTHSS
Q9U
7X8
5PM
ADTOC
UNPAY
DOI 10.1155/2020/6858541
DatabaseName الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals
معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete
Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central
ProQuest Advanced Technologies & Aerospace Database
ProQuest Central Essentials
Biological Science Database (Proquest)
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
Natural Science Collection (ProQuest)
ProQuest One Community College
Middle East & Africa Database (ProQuest)
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Engineering Database
ProQuest Central Advanced Technologies & Aerospace Database (via ProQuest)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest One Psychology
Engineering Collection
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Materials Business File
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Middle East & Africa Database
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
Corrosion Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic


Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1687-5273
Editor Köker, Raşit
Editor_xml – sequence: 1
  givenname: Raşit
  surname: Köker
  fullname: Köker, Raşit
EndPage 24
ExternalDocumentID 10.1155/2020/6858541
PMC7428961
A639994229
10_1155_2020_6858541
1138798
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: Key Research Project of Science and Technology from the Ministry of Education of Hebei Province
  grantid: ZD2019010
– fundername: National Natural Science Foundation of China
  grantid: U1813222
– fundername: Natural Science Foundation of Tianjin City
  grantid: 18JCYBJC16500
– fundername: Ministry of Education of the People's Republic of China
  grantid: 201801335014
– fundername: Key Research and Development Project from Hebei Province
  grantid: 19210404D; 20351802D
GroupedDBID ---
0R~
188
24P
29F
2UF
2WC
4.4
53G
5GY
5VS
6J9
7X7
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAFWJ
AAKPC
AAMMB
ABDBF
ABIVO
ABJCF
ABUWG
ACCMX
ACGFO
ACIWK
ACM
ACPRK
ACUHS
ADBBV
ADJCN
ADRAZ
AEFGJ
AENEX
AFKRA
AGXDD
AHFXO
AHMBA
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C1A
CCPQU
CS3
CWDGH
DIK
DWQXO
E3Z
EBD
EBS
EJD
EMOBN
ESX
F5P
FYUFA
GNUQQ
GX1
H13
HCIFZ
HMCUK
HYE
I-F
IAO
IHR
IL9
INR
K6V
K7-
KQ8
L6V
LK8
M1P
M48
M7P
M7S
MK~
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PUEGO
Q2X
RHU
RNS
RPM
SV3
TR2
TUS
UKHRP
UZ4
~8M
3V.
AAJEY
AINHJ
GROUPED_DOAJ
ICD
INH
IPY
ITC
M0N
RHW
RHX
XH6
AAYXX
CITATION
7QF
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7XB
8AL
8BQ
8FD
8FK
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
Q9U
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c476t-f7b996b0d3b06e29fda11d7fb6b4af2bff8b9ba864c0c1ab4d092dec92977b4a3
IEDL.DBID M48
ISSN 1687-5265
1687-5273
IngestDate Sun Oct 26 04:03:19 EDT 2025
Tue Sep 30 15:19:37 EDT 2025
Sat Sep 27 19:48:57 EDT 2025
Tue Oct 07 05:54:27 EDT 2025
Mon Oct 20 22:48:28 EDT 2025
Thu Apr 24 23:05:33 EDT 2025
Wed Oct 01 02:22:12 EDT 2025
Sun Jun 02 18:54:50 EDT 2024
Thu Sep 25 15:16:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2020
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/4.0
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c476t-f7b996b0d3b06e29fda11d7fb6b4af2bff8b9ba864c0c1ab4d092dec92977b4a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Academic Editor: Raşit Köker
ORCID 0000-0003-3968-481X
0000-0002-0091-4182
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1155/2020/6858541
PMID 32831819
PQID 2434391767
PQPubID 237303
PageCount 24
ParticipantIDs unpaywall_primary_10_1155_2020_6858541
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7428961
proquest_miscellaneous_2436871868
proquest_journals_2434391767
gale_infotracmisc_A639994229
crossref_primary_10_1155_2020_6858541
crossref_citationtrail_10_1155_2020_6858541
hindawi_primary_10_1155_2020_6858541
emarefa_primary_1138798
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-00-00
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020-00-00
PublicationDecade 2020
PublicationPlace Cairo, Egypt
PublicationPlace_xml – name: Cairo, Egypt
– name: New York
PublicationTitle Computational intelligence and neuroscience
PublicationYear 2020
Publisher Hindawi Publishing Corporation
Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi Publishing Corporation
– name: Hindawi
– name: John Wiley & Sons, Inc
References 22
(18) 2019; 23
23
24
25
(15) 2012; 21
27
28
29
(31) 2018; 39
(9) 2019
(41) 2017; 105
(1) 2019
(7) 2016; 28
(39) 2016; 95
(42) 2020; 8
(4) 2003
12
34
35
14
36
37
17
(40) 2016; 95
(13) 2019; 19
19
(33) 2019; 130
(16) 2010
(11) 2019; 9
8
(38) 2014; 69
21
43
References_xml – ident: 29
  doi: 10.4103/0974-2700.70743
– ident: 21
  doi: 10.1080/13561820.2016.1233390
– year: 2010
  ident: 16
– ident: 43
  doi: 10.1155/2017/8986917
– ident: 19
  doi: 10.1002/j.0022-0337.2015.79.8.tb05990.x
– volume: 130
  start-page: 276
  year: 2019
  ident: 33
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.04.040
– volume: 95
  start-page: 51
  year: 2016
  ident: 39
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2016.01.008
– ident: 24
  doi: 10.1016/j.nedt.2013.06.022
– ident: 36
  doi: 10.1111/j.1532-5415.1991.tb01616.x
– volume: 21
  start-page: 137
  issue: 2
  year: 2012
  ident: 15
  publication-title: Studies in Informatics and Control
– ident: 27
  doi: 10.1186/s12913-015-0854-8
– ident: 17
  doi: 10.3109/13561820903011927
– volume: 9
  start-page: 4893
  issue: 22
  year: 2019
  ident: 11
  publication-title: Applied Sciences
  doi: 10.3390/app9224893
– volume: 23
  start-page: 8723
  issue: 18
  year: 2019
  ident: 18
  publication-title: Soft Computing
  doi: 10.1007/s00500-018-3473-6
– ident: 35
  doi: 10.1001/jama.282.18.1737
– volume: 19
  start-page: 2515
  issue: 11
  year: 2019
  ident: 13
  publication-title: Sensors
  doi: 10.3390/s19112515
– year: 2019
  ident: 1
– volume: 95
  start-page: 120
  year: 2016
  ident: 40
  publication-title: Knowledge Based Systems
– ident: 8
  doi: 10.5688/ajpe76580
– ident: 37
  doi: 10.1002/1099-1166(200011)15:11<1021::aid-gps234>3.0.co;2-6
– volume-title: Genetic algorithm-optimized multi-channel convolutional neural network for stock market prediction
  year: 2019
  ident: 9
– year: 2003
  ident: 4
– ident: 22
  doi: 10.1207/s15328015tlm1803_4
– ident: 12
  doi: 10.1016/j.xjep.2016.05.002
– volume: 28
  start-page: 673
  issue: 4
  year: 2016
  ident: 7
  publication-title: Journal of Experimental & Theoretical Artificial Intelligence
  doi: 10.1080/0952813X.2015.1042530
– ident: 23
  doi: 10.3109/13561820.2015.1017555
– ident: 25
  doi: 10.3109/0142159x.2014.923558
– ident: 28
  doi: 10.2307/3350391
– volume: 69
  start-page: 46
  year: 2014
  ident: 38
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2013.12.007
– ident: 14
  doi: 10.1002/j.0022-0337.2015.79.8.tb05990.x
– volume: 39
  start-page: 209
  year: 2018
  ident: 31
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2017.10.004
– volume: 105
  start-page: 30
  year: 2017
  ident: 41
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2017.01.004
– ident: 34
  doi: 10.1136/bmjqs-2013-001862
– volume: 8
  start-page: 22
  issue: 1
  year: 2020
  ident: 42
  publication-title: Systems Science & Control Engineering An Open Access Journal
  doi: 10.1080/21642583.2019.1708830
SSID ssj0057502
Score 2.237594
Snippet Bird swarm algorithm is one of the swarm intelligence algorithms proposed recently. However, the original bird swarm algorithm has some drawbacks, such as easy...
SourceID unpaywall
pubmedcentral
proquest
gale
crossref
hindawi
emarefa
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Classification
Decision trees
Evolutionary algorithms
Evolutionary computation
Exploratory behavior
Foraging behavior
Genetic algorithms
Intelligence
Learning
Logging
Machine learning
Methods
Model accuracy
Neural networks
Optimization
Optimization algorithms
Parameter estimation
Random variables
Solution space
Swarm intelligence
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdg0gQvaDA-wgoy0tgLikjSxI4fA2MqSCAxmNS3yHbiNVKSTm2iam_86dw5bkaH-Hhr6kuc5Hy-3y8-3xFyDJSkAM9i_FTH0kdEADYXGl8kUmiYEAtml2I-f2Gzi_jTPJm7JEnr35fwwdshPQ_e2jTpuEH9bsowcut8Nt9OuAA4htBCBvaC2d638e23zt3xPPtlI-GHHGfi_QVy4E21gzRvx0ne69sreb2Rdf2LEzo7IA8ceqTZoO6H5E7ZPiKHWQvMubmmJ9TGc9oP5Yfkx-lQbJ7aPbb-t41cNfTU1UMBu66py616Sb_28H77hr6rVgUdBLP6crmqukVDZVvQj92aZjdL3bRq6Tn8v2wolvZcd9TW1sSoo6EdK6zVj8nF2Yfv72e-q7fg65izzjdcAftRQTFVASsjYQoZhgU3iqlYmkgZkyqhZMpiHehQqrgIRFSUGhAW5yAyfUL22mVbPiN0qgF4cC1UBO6vEAZIjEkTLdPEiBRAnkfebHWRa5eMHGti1LklJUmSo-ZypzmPvB6lr4YkHH-Qe-rUeiMWTlMuUo9MUM05Wi30o8GGdJ4hOhNxFAmPHDv1_-P6k-3YyJ2pr_MI9-YC6WXcI6_GZuwAw9factlbGRicWJnAI3xnTI39YZrv3Za2Wth03xwYomDQ-ck4-v56l8__72GOyH08HD4nTchet-rLFwCwOvXSmtdPVSscTw
  priority: 102
  providerName: Hindawi Publishing
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELdGpwleEDAYgYKMNPaCoiVpvvyAUMY2DSQqGEzaW-SPeK2UpKVNVO2NP507x2kpEuMtik911PvwnX3-_Qg5hJJEwcqi3VSG3MWMAHzO1y6LOJMQEFVsjmK-jOOLq_DzdXS9Q8b9XRhsq-xjognUaiZxj_w4wCuQUFvEyYf5TxdZo_B0tafQ4JZaQb03EGP3yG6AyFgDsntyNv562cdmyE26LsQYXAuB4ftW-CjCXQDv2KCxh_7WIrVXVBwe-Dpo702wXF5Nt5LSv1sq77f1nN-ueFn-sV6dPyIPbaJJs84yHpOdon5C9rMaiuzqlh5R0_pp9tT3ya_Tjpeemuu47vcVX1T01FKnQAgoqYVhvaHfWlBFW9GT6ULRTjArb-CPaiYV5bWin5olzTan4nRa00t4P6sosoAuG2poOLFBqRtHMrbyKbk6P_vx8cK11AyuDJO4cXUioFASnhoJLy4CphX3fZVoEYuQ60BonQomeBqH0pM-F6HyWKAKCclYkoDI6BkZ1LO6eE7oSEKOkkgmAlgpFdNQ7-g0kjyNNEshH3TIu14XubS45UifUeamfomiHDWXW8055O1aet7hdfxD7sCqdSPmj9KEpQ4ZoppzdHCYR4K7yTzDRI6FQcAccmjV_5_fH_a2kduosMw3NuyQN-thnAA73epi1hoZME4kMXBIsmVT6_kQEXx7pJ5ODDJ4AsUki2Hyo7X13fmVL-7-ypfkAUp3O05DMmgWbfEKcrBGvLaO9RunPC0V
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4anSZ44TYugYKMNPaC0qVpEsfiKTCmgcTErdKQJkW-xGtFkk5tomo88dM5TpyWTuIi3pL4KI7t4-PzxcffAdhDSKJwZdFuLAPuGo8A59xQuyzkTKJBVFGzFfP-JDoeB-9Ow9MteNmdhVGGIn7G1WIwMZh0OW2ste3XxYFEtIhw3TtoaNMDNDNKX4PtKERHvAfb45MPyVcDsSKcOob4fX1NR13YexhuvGJjQdrJCo4XfGWgd-xnbDigV8Mnr9flBb9c8jz_ZW06ugVnXavakJRvg7oSA_n9CuHjfzb7Nty0PitJWiW7A1tZeRd2kxLxenFJ9kkTRdr8nt-FH4dtinvSnOx1Py_5vCCHNgsLWpOcWEbXc_KxxlGtC_JqOlekFUzy89l8Wk0KwktF3lYLkqw32Mm0JJ_w-awgJqHooiJNRk8T69SWm7xu-T0YH7358vrYtVkeXBnQqHI1FYi5hKdGwosyn2nFh0NFtYhEwLUvtI4FEzyOAunJIReB8pivMol-HaUoMroPvXJWZg-BjCS6O1Qy4eOiq5hG6KTjUPI41CxG19KBF91Qp9JSoJtMHHnaQKEwTE0np7aTHXi-kr5oqT9-I_fAas1abDiKKYsd6BstSo2twHokzlyZJsYnZIHvMwf27Gj_5f39TvXSTiNS35wIRqgdUQeerYpNBSZorsxmdSODum_yIThAN1R2VZ8hF98sKaeThmScIi5lEVa-v1LuP37lo38VfAw3zG37G6sPvWpeZ0_QsavEUzuBfwLa-EhY
  priority: 102
  providerName: Unpaywall
Title Dynamic Multi-Swarm Differential Learning Quantum Bird Swarm Algorithm and Its Application in Random Forest Classification Model
URI https://search.emarefa.net/detail/BIM-1138798
https://dx.doi.org/10.1155/2020/6858541
https://www.proquest.com/docview/2434391767
https://www.proquest.com/docview/2436871868
https://pubmed.ncbi.nlm.nih.gov/PMC7428961
https://downloads.hindawi.com/journals/cin/2020/6858541.pdf
UnpaywallVersion publishedVersion
Volume 2020
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: KQ8
  dateStart: 20070625
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: KQ8
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate (EBSCOhost)
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1687-5273
  dateEnd: 20230628
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: ABDBF
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: DIK
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: GX1
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: 7X7
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Middle East & Africa Database (ProQuest)
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: CWDGH
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/middleeastafrica
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: 8FG
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250430
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: M48
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: 24P
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTYO9IGB8BEplpLEXFGjSJI4fEMrYR0FaNQqVylNkO_FaKUlHm6r0jT-ds5NmdOJD4iVq62tc9e5894vP9wM4QEiSYGRRdig9buuMAH3OUTbzOZO4ICaB2Yo57we9ofdx5I-2YM02Wv-B899CO80nNZxlr79_W71Dh39rHN73NX7vvDF91PUJ9h2MUUyTOJx7zX4C5iRV9WGALqUbwq9L4G98ew9udzHeYtRjG3FqN805vuDNur071oh5OdnIS29WVd5ZFFd8teRZ9kvIOr0Hd-tck0SVcdyHrbR4APtRgTg7X5FDYqo_zWP1ffhxXFHTE3Mi1_685LOcHNfsKbgKZKTuxHpJPi1QG4ucHE1mCakEo-xyOpuU45zwIiEfyjmJrjfGyaQgA_x8mhNNBDoviWHi1DVK1bjmY8sewvD05Mv7nl2zM9jSo0FpKyoQK4lO0hWdIHWZSrjjJFSJQHhcuUKpUDDBw8CTHelw4SUd5iapxHyMUhTpPoLtYlqkT4B0JaYpVDLhYrBMmELIo0Jf8tBXLMSU0IJXa13Esm5drhk0sthAGN-PtRLjWokWvGykr6qWHX-Qe1yr9VrM6YaUhRa0tJpjbXU4j0SPk3GkcznmuS6z4KBW_z_u31rbRry269jVJ3kRIgfUghfNsJ5AF7sV6XRhZNBONY-BBXTDppr5dFPwzZFiMjbNwSniSRbg5IeN9f31Vz797ymewZ6-UfU8qgXb5WyRPscMrRRtuEVHFK_h6Vkbdo5O-hcDfHc2ctrGLfE66I1wZNi_iL7-BN9wPLs
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VVFW58CoPQ4BFanNBbm3Hrz1wCA0loQ8JaNXezO7abiJsJyS2onDiF_FX-EvM2uuEVKKceuAWZScea_PN7De7szMA2xiShLiyxLovbKZLRoA2Z8Y6dRgV6BBDtzyKOT5xe2f2hwvnYg1-1ndhZFpl7RNLRx2OhNwj37PkFUiMLVxPZVAeRvMZxmfTN_0u_pk7lnXw7nS_p6sWArqwPTfXY48joedG2OaGG1k0Dplphl7MXW6z2OJx7HPKme_awhAm43ZoUCuMBJIGz0ORNj63Nf6myy5V8jRXtey4BeuIc9NqwPr-efd9r_b9yH2qLEcXTVcWnq9T7R1H7jIYe2W1d9tcWQQ3opThB7ZYFDYGMhyfDVdI79WUzc0iG7P5jCXJH-vhwV34Vc9klQbzdbfI-a74fqXI5P8z1ffgjqLmpFPZ0n1Yi7IHsNXJWD5K56RFymTZ8hRiC3505xlLh4KUF5j1zzM2SUlXNZtBp5kQVbj2knwsELxFSt4OJyGpBDvJJerPBylhWUj6-ZR0lnkEZJiRT_j9KCWyb-o0J2XjUpnSVY3L9nXJQzi7kel5BI1slEVPgLQFsjpPUG4htwhpjBFi7DuC-U5MfWTQGryu0RUIVeldNhxJgjLic5xAYjFQWNRgZyE9riqc_EXusQLqUsxs-x71NWhK4AbSJaIegQ5KBB1JfaltWVSDbQXofzy_WaMxUH50GiyhqMGrxbBUIHMDs2hUlDJobrLtgwbeipUs9Mka6qsj2XBQ1lL3MPymLipvLezp2rd8ev1bvoTN3unxUXDUPzl8BrflL6v9uiY08kkRPUcGm_MXym0Q-HLTFvUbbJKrXg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lc9MwENaUdgpceJWHIYCYaXth3MSOLVkHhgkNoaHQ4dWhNyPJVpPBdkJiTyac-F38Ff4MK1tOSGcopx64ZaK1Zcu7q2-lT7sIbUNIEsHMouxAetzWiABszlE28zmT4BAjUm7FvD0iB8fe6xP_ZA39rM_CaFpl7RNLRx2NpF4jb7r6CCTEFoQ2laFFvOv2no-_2bqClN5prctpVCpyGM9nEL5Nn_W78K13XLf38tP-gW0qDNjSoyS3FRWA90UraosWiV2mIu44EVWCCI8rVygVCCZ4QDzZkg4XXtRibhRLwBSUgkgb7nsJbQSEEnAKG_ufu68O6nkAcFDFeCRgxjoJfU2793294tBqlpnfPWdlQtyMUw4_-GKC2Bzo0Hw2XAHAZ-mbV4pszOczniR_zI296-hXPaoVJebrXpGLPfn9TMLJ_3PYb6BrBrLjTmVjN9FanN1CW52M56N0jndxSaItdye20I_uPOPpUOLyYLP9ccYnKe6aIjTgTBNsEtqe4vcFKHWR4hfDSYQrwU5yCu-bD1LMswj38ynuLPkFeJjhD_D_KMW6nuo0x2VBU031qtp1WbvkNjq-kLG4g9azURbfQ7gtAe1RyYQLmCNiCiJHFfiSB75iASBrCz2tNS2UJgO8LkSShGUk6Puh1svQ6KWFdhbS4yrzyV_k7hqlXYo57YCywEINrcShdpXQjwTHJcOOhsTMc11moW2j3P-4f6PWzND412m4VEsLPVk06w40ZzCLR0UpA6any0FYiK5YzKI_nVt9tSUbDsoc6xTCckag892FbZ37lPfPf8rH6DKYTfimf3T4AF3VF1bLeA20nk-K-CEA21w8Mh4Eoy8XbT2_AQ9ftCY
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4anSZ44TYugYKMNPaC0qVpEsfiKTCmgcTErdKQJkW-xGtFkk5tomo88dM5TpyWTuIi3pL4KI7t4-PzxcffAdhDSKJwZdFuLAPuGo8A59xQuyzkTKJBVFGzFfP-JDoeB-9Ow9MteNmdhVGGIn7G1WIwMZh0OW2ste3XxYFEtIhw3TtoaNMDNDNKX4PtKERHvAfb45MPyVcDsSKcOob4fX1NR13YexhuvGJjQdrJCo4XfGWgd-xnbDigV8Mnr9flBb9c8jz_ZW06ugVnXavakJRvg7oSA_n9CuHjfzb7Nty0PitJWiW7A1tZeRd2kxLxenFJ9kkTRdr8nt-FH4dtinvSnOx1Py_5vCCHNgsLWpOcWEbXc_KxxlGtC_JqOlekFUzy89l8Wk0KwktF3lYLkqw32Mm0JJ_w-awgJqHooiJNRk8T69SWm7xu-T0YH7358vrYtVkeXBnQqHI1FYi5hKdGwosyn2nFh0NFtYhEwLUvtI4FEzyOAunJIReB8pivMol-HaUoMroPvXJWZg-BjCS6O1Qy4eOiq5hG6KTjUPI41CxG19KBF91Qp9JSoJtMHHnaQKEwTE0np7aTHXi-kr5oqT9-I_fAas1abDiKKYsd6BstSo2twHokzlyZJsYnZIHvMwf27Gj_5f39TvXSTiNS35wIRqgdUQeerYpNBSZorsxmdSODum_yIThAN1R2VZ8hF98sKaeThmScIi5lEVa-v1LuP37lo38VfAw3zG37G6sPvWpeZ0_QsavEUzuBfwLa-EhY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Multi-Swarm+Differential+Learning+Quantum+Bird+Swarm+Algorithm+and+Its+Application+in+Random+Forest+Classification+Model&rft.jtitle=Computational+intelligence+and+neuroscience&rft.au=Zhang%2C+Jiangnan&rft.au=Xia%2C+Kewen&rft.au=He%2C+Ziping&rft.au=Fan%2C+Shurui&rft.date=2020&rft.pub=Hindawi&rft.issn=1687-5265&rft.eissn=1687-5273&rft.volume=2020&rft_id=info:doi/10.1155%2F2020%2F6858541&rft_id=info%3Apmid%2F32831819&rft.externalDocID=PMC7428961
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-5265&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-5265&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-5265&client=summon