Diagnosis of Multiple Sclerosis Disease in Brain Magnetic Resonance Imaging Based on the Harris Hawks Optimization Algorithm

The damaged areas of brain tissues can be extracted by using segmentation methods, most of which are based on the integration of machine learning and data mining techniques. An important segmentation method is to utilize clustering techniques, especially the fuzzy C-means (FCM) clustering technique,...

Full description

Saved in:
Bibliographic Details
Published inBioMed research international Vol. 2021; no. 1; p. 3248834
Main Authors Iswisi, Amal F. A., Karan, Oğuz, Rahebi, Javad
Format Journal Article
LanguageEnglish
Published United States Hindawi 2021
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN2314-6133
2314-6141
2314-6141
DOI10.1155/2021/3248834

Cover

More Information
Summary:The damaged areas of brain tissues can be extracted by using segmentation methods, most of which are based on the integration of machine learning and data mining techniques. An important segmentation method is to utilize clustering techniques, especially the fuzzy C-means (FCM) clustering technique, which is sufficiently accurate and not overly sensitive to imaging noise. Therefore, the FCM technique is appropriate for multiple sclerosis diagnosis, although the optimal selection of cluster centers can affect segmentation. They are difficult to select because this is an NP-hard problem. In this study, the Harris Hawks optimization (HHO) algorithm was used for the optimal selection of cluster centers in segmentation and FCM algorithms. The HHO is more accurate than other conventional algorithms such as the genetic algorithm and particle swarm optimization. In the proposed method, every membership matrix is assumed as a hawk or an HHO member. The next step is to generate a population of hawks or membership matrices, the most optimal of which is selected to find the optimal cluster centers to decrease the multiple sclerosis clustering error. According to the tests conducted on a number of brain MRIs, the proposed method outperformed the FCM clustering and other techniques such as the k-NN algorithm, support vector machine, and hybrid data mining methods in accuracy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Correction/Retraction-3
Academic Editor: G. M. Siddesh
ISSN:2314-6133
2314-6141
2314-6141
DOI:10.1155/2021/3248834