Diagnosis of Prostate Cancer Using GLCM Enabled KNN Technique by Analyzing MRI Images

Cancer has a disproportionately large influence on the death rate of adults. A patient needs to get a diagnosis of their condition as quickly as is humanly feasible in order to have the greatest chance of surviving their sickness. Skilled medical professionals use medical imaging and other tradition...

Full description

Saved in:
Bibliographic Details
Published inBioMed research international Vol. 2023; no. 1; p. 3913351
Main Authors Anand, L., Mewada, Shivlal, Shamsi, WameedDeyah, Ritonga, Mahyudin, Aflisia, Noza, KumarSarangi, Prakash, NdoleArthur, Moses
Format Journal Article
LanguageEnglish
Published United States Hindawi 2023
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN2314-6133
2314-6141
2314-6141
DOI10.1155/2023/3913351

Cover

Abstract Cancer has a disproportionately large influence on the death rate of adults. A patient needs to get a diagnosis of their condition as quickly as is humanly feasible in order to have the greatest chance of surviving their sickness. Skilled medical professionals use medical imaging and other traditional diagnostic methods to search for clues that may indicate the presence of malignant tendencies inside the body. Nevertheless, manual diagnosis may be time-consuming and subjective owing to the wide range of interobserver variability induced by the enormous number of medical imaging data. This variability is caused by the fact that medical imaging data are collected. Because of this, the process of accurately diagnosing a patient could become more difficult. To execute jobs that included machine learning and the interpretation of complicated imagery, cutting-edge computer technology was necessary. Since the 1980s, researchers have been working on developing a computer-aided diagnostic system that would help medical professionals in the early diagnosis of various malignancies. According to the most recent projections, prostate cancer will be discovered in the body of one out of every seven men at some time throughout the course of their life. It is unacceptable how many men are being told that they have prostate cancer, and the condition is responsible for the deaths of a rising number of men every year. Because of the high quality and multidimensionality of the MRI pictures, you will also need a powerful diagnosis system in addition to the CAD tools. Since it has been shown that CAD technology is beneficial, researchers are looking at methods to improve the accuracy, precision, and speed of the systems that use it. The effectiveness of CAD technology has been shown. This research proposes a strategy that is both effective and efficient for the processing of images and the extraction of features as well as for machine learning. This work makes use of MRI scans and machine learning in an effort to detect prostate cancer at an early stage. Histogram equalization is used while doing the preliminary processing on photographs. The image’s overall quality is elevated as a result. The fuzzy C means approach is used in order to segment the images. Using a Gray Level Cooccurrence Matrix (GLCM), it is feasible to extract features from a dataset. The KNN, random forest, and AdaBoost classification algorithms are used in the classification process.
AbstractList Cancer has a disproportionately large influence on the death rate of adults. A patient needs to get a diagnosis of their condition as quickly as is humanly feasible in order to have the greatest chance of surviving their sickness. Skilled medical professionals use medical imaging and other traditional diagnostic methods to search for clues that may indicate the presence of malignant tendencies inside the body. Nevertheless, manual diagnosis may be time-consuming and subjective owing to the wide range of interobserver variability induced by the enormous number of medical imaging data. This variability is caused by the fact that medical imaging data are collected. Because of this, the process of accurately diagnosing a patient could become more difficult. To execute jobs that included machine learning and the interpretation of complicated imagery, cutting-edge computer technology was necessary. Since the 1980s, researchers have been working on developing a computer-aided diagnostic system that would help medical professionals in the early diagnosis of various malignancies. According to the most recent projections, prostate cancer will be discovered in the body of one out of every seven men at some time throughout the course of their life. It is unacceptable how many men are being told that they have prostate cancer, and the condition is responsible for the deaths of a rising number of men every year. Because of the high quality and multidimensionality of the MRI pictures, you will also need a powerful diagnosis system in addition to the CAD tools. Since it has been shown that CAD technology is beneficial, researchers are looking at methods to improve the accuracy, precision, and speed of the systems that use it. The effectiveness of CAD technology has been shown. This research proposes a strategy that is both effective and efficient for the processing of images and the extraction of features as well as for machine learning. This work makes use of MRI scans and machine learning in an effort to detect prostate cancer at an early stage. Histogram equalization is used while doing the preliminary processing on photographs. The image's overall quality is elevated as a result. The fuzzy C means approach is used in order to segment the images. Using a Gray Level Cooccurrence Matrix (GLCM), it is feasible to extract features from a dataset. The KNN, random forest, and AdaBoost classification algorithms are used in the classification process.
Cancer has a disproportionately large influence on the death rate of adults. A patient needs to get a diagnosis of their condition as quickly as is humanly feasible in order to have the greatest chance of surviving their sickness. Skilled medical professionals use medical imaging and other traditional diagnostic methods to search for clues that may indicate the presence of malignant tendencies inside the body. Nevertheless, manual diagnosis may be time-consuming and subjective owing to the wide range of interobserver variability induced by the enormous number of medical imaging data. This variability is caused by the fact that medical imaging data are collected. Because of this, the process of accurately diagnosing a patient could become more difficult. To execute jobs that included machine learning and the interpretation of complicated imagery, cutting-edge computer technology was necessary. Since the 1980s, researchers have been working on developing a computer-aided diagnostic system that would help medical professionals in the early diagnosis of various malignancies. According to the most recent projections, prostate cancer will be discovered in the body of one out of every seven men at some time throughout the course of their life. It is unacceptable how many men are being told that they have prostate cancer, and the condition is responsible for the deaths of a rising number of men every year. Because of the high quality and multidimensionality of the MRI pictures, you will also need a powerful diagnosis system in addition to the CAD tools. Since it has been shown that CAD technology is beneficial, researchers are looking at methods to improve the accuracy, precision, and speed of the systems that use it. The effectiveness of CAD technology has been shown. This research proposes a strategy that is both effective and efficient for the processing of images and the extraction of features as well as for machine learning. This work makes use of MRI scans and machine learning in an effort to detect prostate cancer at an early stage. Histogram equalization is used while doing the preliminary processing on photographs. The image's overall quality is elevated as a result. The fuzzy C means approach is used in order to segment the images. Using a Gray Level Cooccurrence Matrix (GLCM), it is feasible to extract features from a dataset. The KNN, random forest, and AdaBoost classification algorithms are used in the classification process.Cancer has a disproportionately large influence on the death rate of adults. A patient needs to get a diagnosis of their condition as quickly as is humanly feasible in order to have the greatest chance of surviving their sickness. Skilled medical professionals use medical imaging and other traditional diagnostic methods to search for clues that may indicate the presence of malignant tendencies inside the body. Nevertheless, manual diagnosis may be time-consuming and subjective owing to the wide range of interobserver variability induced by the enormous number of medical imaging data. This variability is caused by the fact that medical imaging data are collected. Because of this, the process of accurately diagnosing a patient could become more difficult. To execute jobs that included machine learning and the interpretation of complicated imagery, cutting-edge computer technology was necessary. Since the 1980s, researchers have been working on developing a computer-aided diagnostic system that would help medical professionals in the early diagnosis of various malignancies. According to the most recent projections, prostate cancer will be discovered in the body of one out of every seven men at some time throughout the course of their life. It is unacceptable how many men are being told that they have prostate cancer, and the condition is responsible for the deaths of a rising number of men every year. Because of the high quality and multidimensionality of the MRI pictures, you will also need a powerful diagnosis system in addition to the CAD tools. Since it has been shown that CAD technology is beneficial, researchers are looking at methods to improve the accuracy, precision, and speed of the systems that use it. The effectiveness of CAD technology has been shown. This research proposes a strategy that is both effective and efficient for the processing of images and the extraction of features as well as for machine learning. This work makes use of MRI scans and machine learning in an effort to detect prostate cancer at an early stage. Histogram equalization is used while doing the preliminary processing on photographs. The image's overall quality is elevated as a result. The fuzzy C means approach is used in order to segment the images. Using a Gray Level Cooccurrence Matrix (GLCM), it is feasible to extract features from a dataset. The KNN, random forest, and AdaBoost classification algorithms are used in the classification process.
Audience Academic
Author Mewada, Shivlal
NdoleArthur, Moses
Anand, L.
Shamsi, WameedDeyah
KumarSarangi, Prakash
Ritonga, Mahyudin
Aflisia, Noza
AuthorAffiliation 5 Institut Agama Islam Negeri Curup, Indonesia
7 Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, Legon P. O. Box LG 54, Accra, Ghana
6 Department of CSE (AI&ML) Vardhaman College of Engineering, Hyderabad, India
2 Dept. of Computer Science, Govt. College, Makdone (Vikram University), Ujjain, India
4 Universitas Muhammadiyah Sumatera Barat, Indonesia
1 Department of Networking and Communications, SRM Institute of Science and Technology, Chennai, India
3 Information Technology, Al-Mustaqbal University College, Babylon 51001, Iraq
AuthorAffiliation_xml – name: 1 Department of Networking and Communications, SRM Institute of Science and Technology, Chennai, India
– name: 3 Information Technology, Al-Mustaqbal University College, Babylon 51001, Iraq
– name: 5 Institut Agama Islam Negeri Curup, Indonesia
– name: 7 Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, Legon P. O. Box LG 54, Accra, Ghana
– name: 4 Universitas Muhammadiyah Sumatera Barat, Indonesia
– name: 6 Department of CSE (AI&ML) Vardhaman College of Engineering, Hyderabad, India
– name: 2 Dept. of Computer Science, Govt. College, Makdone (Vikram University), Ujjain, India
Author_xml – sequence: 1
  givenname: L.
  orcidid: 0000-0002-2022-5413
  surname: Anand
  fullname: Anand, L.
  organization: Department of Networking and Communications SRM Institute of Science and Technology Chennai India srmist.edu.in
– sequence: 2
  givenname: Shivlal
  orcidid: 0000-0001-5543-8622
  surname: Mewada
  fullname: Mewada, Shivlal
  organization: Dept. of Computer Science Govt. College Makdone (Vikram University) Ujjain India vikram.mponline.gov.in
– sequence: 3
  givenname: WameedDeyah
  orcidid: 0000-0003-0590-2727
  surname: Shamsi
  fullname: Shamsi, WameedDeyah
  organization: Information Technology Al-Mustaqbal University College Babylon 51001 Iraq uomus.edu.iq
– sequence: 4
  givenname: Mahyudin
  orcidid: 0000-0003-1397-5133
  surname: Ritonga
  fullname: Ritonga, Mahyudin
  organization: Universitas Muhammadiyah Sumatera Barat Indonesia
– sequence: 5
  givenname: Noza
  orcidid: 0000-0002-4638-3559
  surname: Aflisia
  fullname: Aflisia, Noza
  organization: Institut Agama Islam Negeri Curup Indonesia iaincurup.ac.id
– sequence: 6
  givenname: Prakash
  orcidid: 0000-0002-0070-1574
  surname: KumarSarangi
  fullname: KumarSarangi, Prakash
  organization: Department of CSE (AI&ML) Vardhaman College of Engineering Hyderabad India vardhaman.org
– sequence: 7
  givenname: Moses
  orcidid: 0000-0003-2700-6763
  surname: NdoleArthur
  fullname: NdoleArthur, Moses
  organization: Department of Biomedical Engineering School of Engineering Sciences College of Basic and Applied Sciences University of Ghana Legon P. O. Box LG 54 Accra Ghana ug.edu.gh
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36733405$$D View this record in MEDLINE/PubMed
BookMark eNqFkd9v0zAQxy00xMbYG8_IEi9IEOYfsZO8TKrKGBXdQGh9thz70npK7RInTOWvx6Flg0mAX87Sfe57d997ig588IDQc0reUirEKSOMn_KKci7oI3TEOM0zSXN6cPfn_BCdxHhD0iupJJV8gg65LDjPiThCi3dOL32ILuLQ4M9diL3uAU-1N9DhRXR-iS_m00t87nXdgsUfr67wNZiVd18HwPUWT7xut99H7vLLDM_WegnxGXrc6DbCyT4eo8X78-vph2z-6WI2ncwzkxeyz0CAZdRwYSmpAaxgFXDLiBZcALV5RU3JGt1AXRYpL0VNKJfWSil1wRvKj1G20x38Rm9vdduqTefWutsqStTokBodUnuHEn-24zdDvQZrwPedvq8J2qk_M96t1DJ8U1VZVlSOAq_2Al1I-8derV000LbaQxiiYkXBKWOCiIS-fIDehKFLZv2kWFmUUhT31FK3oJxvQuprRlE1KbioKlqSKlEvfp_7buBfd0zAmx1g0gVjB83_fGAPcOPS3V0Yt3bt34pe74pWzlt96_7d4gdcScgB
CitedBy_id crossref_primary_10_1016_j_mehy_2024_111405
crossref_primary_10_3390_fractalfract7030272
crossref_primary_10_1016_j_measurement_2023_114059
crossref_primary_10_1038_s41598_024_70559_4
crossref_primary_10_1109_JBHI_2024_3396424
crossref_primary_10_1016_j_eswa_2024_124838
crossref_primary_10_1016_j_compbiomed_2024_109569
crossref_primary_10_3390_cancers15153839
crossref_primary_10_1155_2024_9875401
crossref_primary_10_1007_s10489_024_06109_2
crossref_primary_10_29132_ijpas_1382974
Cites_doi 10.1088/0031-9155/61/13/4796
10.17762/ijcnis.v13i2.4946
10.1002/jmri.23618
10.17762/ijcnis.v13i3.5114
10.1155/2022/1918379
10.1038/s41598-022-10358-x
10.1109/TMI.2012.2211377
10.1109/42.845174
10.1109/CCWC.2019.8666468
10.1117/12.911758
10.1006/jcss.1997.1504
10.1155/2022/1598796
10.1109/TMI.2015.2496296
10.1007/978-0-387-45528-0
10.1109/IWSSIP48289.2020.9145263
10.1007/s11227-020-03481-x
10.1109/TBME.2013.2289306
10.1109/TBME.2015.2485779
10.1007/978-3-030-49076-8_12
10.1118/1.3315367
10.1155/2022/9005278
10.1007/s11548-008-0261-2
10.1118/1.2842076
10.1155/2022/6841334
10.1118/1.3521470
10.1109/ISBI.2016.7493420
ContentType Journal Article
Copyright Copyright © 2023 L. Anand et al.
COPYRIGHT 2023 John Wiley & Sons, Inc.
Copyright © 2023 L. Anand et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright © 2023 L. Anand et al. 2023
Copyright_xml – notice: Copyright © 2023 L. Anand et al.
– notice: COPYRIGHT 2023 John Wiley & Sons, Inc.
– notice: Copyright © 2023 L. Anand et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
– notice: Copyright © 2023 L. Anand et al. 2023
DBID RHU
RHW
RHX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QO
7T7
7TK
7U7
7U9
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
CWDGH
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7N
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOI 10.1155/2023/3913351
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
Middle East & Africa Database
ProQuest Central
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Middle East & Africa Database
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Toxicology Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

CrossRef
Publicly Available Content Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2314-6141
Editor Kaur, Gaganpreet
Editor_xml – sequence: 1
  givenname: Gaganpreet
  surname: Kaur
  fullname: Kaur, Gaganpreet
ExternalDocumentID 10.1155/2023/3913351
PMC9889161
A735991809
36733405
10_1155_2023_3913351
Genre Retracted Publication
Journal Article
GeographicLocations India
GeographicLocations_xml – name: India
GroupedDBID 04C
3V.
4.4
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJEY
AAWTL
ABDBF
ABUWG
ACIWK
ACPRK
ADBBV
ADRAZ
AENEX
AFKRA
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BMSDO
BPHCQ
BVXVI
CCPQU
CWDGH
DIK
EAD
EAP
EAS
EBD
EBS
ECF
ECT
EIHBH
EMB
EMK
EMOBN
ESX
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
IAG
IAO
IEA
IHR
INH
INR
IOF
ISR
ITC
KQ8
LK8
M1P
M48
M7P
ML0
ML~
OK1
P62
PIMPY
PQQKQ
PROAC
PSQYO
RHU
RHW
RHX
RPM
SV3
TUS
UKHRP
0R~
24P
AAMMB
AAYXX
ACCMX
ACUHS
ADOJX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
EJD
H13
PGMZT
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7T7
7TK
7U7
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c476t-e5ed21c35d10beed529e3d20a535e1d491c82fafeb87bee65b0136dd666a73f13
IEDL.DBID M48
ISSN 2314-6133
2314-6141
IngestDate Sun Oct 26 04:03:19 EDT 2025
Tue Sep 30 17:16:47 EDT 2025
Sun Sep 28 06:16:40 EDT 2025
Tue Oct 07 06:52:02 EDT 2025
Mon Oct 20 22:50:01 EDT 2025
Wed Feb 19 02:08:57 EST 2025
Wed Oct 01 02:37:24 EDT 2025
Thu Apr 24 23:11:35 EDT 2025
Sun Jun 02 19:23:38 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © 2023 L. Anand et al.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c476t-e5ed21c35d10beed529e3d20a535e1d491c82fafeb87bee65b0136dd666a73f13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Correction/Retraction-3
Academic Editor: Gaganpreet Kaur
ORCID 0000-0002-0070-1574
0000-0003-2700-6763
0000-0003-0590-2727
0000-0001-5543-8622
0000-0003-1397-5133
0000-0002-2022-5413
0000-0002-4638-3559
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1155/2023/3913351
PMID 36733405
PQID 2772878657
PQPubID 237798
ParticipantIDs unpaywall_primary_10_1155_2023_3913351
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9889161
proquest_miscellaneous_2773122505
proquest_journals_2772878657
gale_infotracmisc_A735991809
pubmed_primary_36733405
crossref_primary_10_1155_2023_3913351
crossref_citationtrail_10_1155_2023_3913351
hindawi_primary_10_1155_2023_3913351
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-00-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023-00-00
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle BioMed research international
PublicationTitleAlternate Biomed Res Int
PublicationYear 2023
Publisher Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
References e_1_2_8_27_2
e_1_2_8_28_2
e_1_2_8_29_2
e_1_2_8_23_2
e_1_2_8_24_2
e_1_2_8_25_2
e_1_2_8_26_2
e_1_2_8_9_2
e_1_2_8_2_2
e_1_2_8_4_2
e_1_2_8_3_2
e_1_2_8_6_2
e_1_2_8_5_2
e_1_2_8_8_2
e_1_2_8_7_2
e_1_2_8_20_2
e_1_2_8_21_2
e_1_2_8_22_2
e_1_2_8_16_2
e_1_2_8_17_2
e_1_2_8_18_2
e_1_2_8_19_2
e_1_2_8_12_2
e_1_2_8_13_2
e_1_2_8_14_2
e_1_2_8_15_2
Vilanova J. C. (e_1_2_8_1_2) 2017
e_1_2_8_10_2
e_1_2_8_11_2
38230058 - Biomed Res Int. 2024 Jan 9;2024:9875401
References_xml – ident: e_1_2_8_8_2
  doi: 10.1088/0031-9155/61/13/4796
– ident: e_1_2_8_4_2
  doi: 10.17762/ijcnis.v13i2.4946
– ident: e_1_2_8_12_2
  doi: 10.1002/jmri.23618
– ident: e_1_2_8_6_2
  doi: 10.17762/ijcnis.v13i3.5114
– ident: e_1_2_8_3_2
  doi: 10.1155/2022/1918379
– ident: e_1_2_8_15_2
– ident: e_1_2_8_26_2
  doi: 10.1038/s41598-022-10358-x
– ident: e_1_2_8_17_2
  doi: 10.1109/TMI.2012.2211377
– ident: e_1_2_8_11_2
  doi: 10.1109/42.845174
– ident: e_1_2_8_29_2
– ident: e_1_2_8_23_2
  doi: 10.1109/CCWC.2019.8666468
– volume-title: Atlas of Multiparametric Prostate MRI: With PI-RADS Approach and Anatomic-MRI-Pathological Correlation
  year: 2017
  ident: e_1_2_8_1_2
– ident: e_1_2_8_18_2
  doi: 10.1117/12.911758
– ident: e_1_2_8_21_2
  doi: 10.1006/jcss.1997.1504
– ident: e_1_2_8_7_2
  doi: 10.1155/2022/1598796
– ident: e_1_2_8_13_2
  doi: 10.1109/TMI.2015.2496296
– ident: e_1_2_8_22_2
  doi: 10.1007/978-0-387-45528-0
– ident: e_1_2_8_25_2
  doi: 10.1109/IWSSIP48289.2020.9145263
– ident: e_1_2_8_27_2
  doi: 10.1007/s11227-020-03481-x
– ident: e_1_2_8_19_2
  doi: 10.1109/TBME.2013.2289306
– ident: e_1_2_8_2_2
  doi: 10.1109/TBME.2015.2485779
– ident: e_1_2_8_24_2
  doi: 10.1007/978-3-030-49076-8_12
– ident: e_1_2_8_14_2
  doi: 10.1118/1.3315367
– ident: e_1_2_8_28_2
  doi: 10.1155/2022/9005278
– ident: e_1_2_8_20_2
  doi: 10.1007/s11548-008-0261-2
– ident: e_1_2_8_16_2
  doi: 10.1118/1.2842076
– ident: e_1_2_8_5_2
  doi: 10.1155/2022/6841334
– ident: e_1_2_8_10_2
  doi: 10.1118/1.3521470
– ident: e_1_2_8_9_2
  doi: 10.1109/ISBI.2016.7493420
– reference: 38230058 - Biomed Res Int. 2024 Jan 9;2024:9875401
SSID ssj0000816096
Score 2.4219077
SecondaryResourceType retracted_publication
Snippet Cancer has a disproportionately large influence on the death rate of adults. A patient needs to get a diagnosis of their condition as quickly as is humanly...
SourceID unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
hindawi
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3913351
SubjectTerms Algorithms
Automation
Classification
Diagnosis
Diagnostic systems
Early Detection of Cancer
Feature extraction
Health aspects
Histograms
Humans
Image quality
Learning algorithms
Machine Learning
Machine tools
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
Malignancy
Medical imaging
Medical personnel
Medical screening
Pancreatic cancer
Prostate cancer
Prostatic Neoplasms - diagnostic imaging
Prostatic Neoplasms - pathology
Reproductive system
Statistical methods
System effectiveness
Technology
Technology application
Tumors
Wavelet transforms
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT9swFLY2JDZeEOxGgE2exPYyRUvs-JJH1MHKtlYTolLfovgSUalLEW2F4NdzTuJG69jtMTontpPjy_ns4-8QcuS5KkvDTawqY-NMW4eJ3AHzSMOcYqW0Cm8jD4ayP8q-jMU4kCTNHx7hw2qH8Jx_5DmAKbwq_VhLjNw674-7rRTMHZHkbRq5NAMwxPkqxP2X19cWnzAFb14i-L2Z_M7FfBgp-XRZX5W3N-V0-tMydLpDtoP_SI9bg--SR75-Rp4Mwgn5czL61MbOTeZ0VtHveKcDvEnaQ-Ne0yZAgH7-1hvQk-bSlKNfh0N6sSJypeaWNjQld6g3OD-jZz9gwpm_IKPTk4tePw6pE2KbKbmIvfCOpZYLlyYGlkHBcs8dS0rBhU9dlqdWs6qsvNEK5FLgdqh0DsBMqXiV8pdko57Vfo9QXwGk4ipJnNKZSyqkd1G5qZRgSO9oIvJh9U8LG3jFMb3FtGjwhRAFWqAIFojIu077quXT-IPeIZqnwGEGpVno9LY4VlyAP6uTPCJHwWz_KmVl0yKMzXnBAFBopaVQEXnbibECjDer_WzZ6PCUoXsYkVdtF-gq4lJxnqFErXWOTgEZu9cl9eSyYe7OtQZ3HJr1vutGf23__v995gHZwsd2Z-iQbCyul_41-EoL86YZKfd_Fwb7
  priority: 102
  providerName: Hindawi Publishing
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwED-NTny8IL4JDGSkwQuKlthx7DwgNErHBjSaplXaWxR_RKtU0rK2msZfjy9xAhUwXuOTbeXu7Lvz3e8Adi0TZamYCkWldJhIbbCRu_N5UkWNoGWqBVYjj_P0cJJ8PuNnW5B3tTCYVtmdic1BbeYaY-R71JmBUsiUi_eL7yF2jcLX1a6FRulbK5h3DcTYDdimiIw1gO0Po_z4pI-6YJuJKGs7zsWJ85sY67LhOcdAANtjmfvI4417yp_WN8_RT76c_s0a_TOp8va6XpRXl-Vs9tuNdXAP7npTk-y3snEftmz9AG6N_WP6Q5h8bNPspksyr8gxln84w5MMUQ4uSJNLQD59HY7JqKmvMuRLnpPTDvOVqCvSIJr8QLrxyRE5-ubOpuUjmByMToeHoe-yEOpEpKvQcmtorBk3caTcjclpZpmhUckZt7FJslhLWpWVVVK48ZRj5DQ1xvk9pWBVzB7DoJ7X9ikQWznvi4koMkImJqoQCUZkqhKcIhKkCuBt908L7SHIsRPGrGhcEc4L5EDhORDA65560UJv_INuB9lToEa62bTTD13sC8ad6SujLIBdz7b_zdLxtPBqvCx-CV0Ar_phXABT02o7Xzc0LKZoSQbwpBWBfiGWCsYSHBEbwtETILj35kg9PW9AvjMpneXutvWmF6Nr9__s-v0_hztI3QaPdmCwuljbF86cWqmXXkd-AiyCF-0
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ra9swED-6lD2-7L3VWzc06PZlOLUty7JhX0LWrt2WUEoDHaMYyZJpaOqUPCjtXz-dLJtlb_bNRodkSSfpfvLd7wC2NOVCSCp9XsrCj9NCYSJ3g3kSGSkeiaTgGI08GCZ7o_jjMTteg3dNLIxCivipUPPuKWLSy7Hdrd24zrfl-WyMeJ1u08ygK2b2GVXegPWEGUu8A-uj4UHvi80nF8YGFdlM8u45Dhu_d8ZWqlg5kdy-fNO1_iu782f3ydvL6kJcXYrJ5LuzafcenDS9ql1SzrrLhewW1z8QPv5vt-_DXWe0kl6tZQ9gTVcP4dbA_ZZ_BOLroV5Y3md1Qt7XznvjOZmW5ACDSow5S_qoXTNiPRTIh8_9AdmxUVuKfBoOyVHDJEvkFbE8KdcoNzjcJ_vnZsebP4bR7s5Rf893uRv8IubJwtdMqygsKFNhIM05zKJMUxUFglGmQxVnYZFGpSi1TLkpTxjexyZKGTQlOC1D-gQ61bTSG0B0aTAd5UGgeBqroER-GZ7JkrMI-SWlB2-b-csLR2yO-TUmuQU4jOU4crkbOQ9et9IXNaHHb-Q2URVyXOc4gmbVFXmPU2YM6jTIPNhyM_W3Whr9yZvZzCODaFKeJox78KotxgbQ4a3S06WVoWGE9qkHT2t1axuiCac0xhK-ooitAFKGr5ZU41NLHZ6lqcED5rPetCr7x-9_9q-Cz-EOvtaXU5vQWcyW-oUx1xbypVuV3wBQijew
  priority: 102
  providerName: Unpaywall
Title Diagnosis of Prostate Cancer Using GLCM Enabled KNN Technique by Analyzing MRI Images
URI https://dx.doi.org/10.1155/2023/3913351
https://www.ncbi.nlm.nih.gov/pubmed/36733405
https://www.proquest.com/docview/2772878657
https://www.proquest.com/docview/2773122505
https://pubmed.ncbi.nlm.nih.gov/PMC9889161
https://downloads.hindawi.com/journals/bmri/2023/3913351.pdf
UnpaywallVersion publishedVersion
Volume 2023
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2314-6141
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816096
  issn: 2314-6141
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2314-6141
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816096
  issn: 2314-6141
  databaseCode: KQ8
  dateStart: 20121204
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2314-6141
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816096
  issn: 2314-6141
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2314-6141
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816096
  issn: 2314-6141
  databaseCode: ABDBF
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2314-6141
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816096
  issn: 2314-6141
  databaseCode: DIK
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2314-6141
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816096
  issn: 2314-6141
  databaseCode: RPM
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 2314-6141
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816096
  issn: 2314-6141
  databaseCode: 7X7
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Middle East & Africa Database
  customDbUrl:
  eissn: 2314-6141
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816096
  issn: 2314-6141
  databaseCode: CWDGH
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/middleeastafrica
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2314-6141
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816096
  issn: 2314-6141
  databaseCode: BENPR
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2314-6141
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816096
  issn: 2314-6141
  databaseCode: 8FG
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2314-6141
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0000816096
  issn: 2314-6141
  databaseCode: M48
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2314-6141
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816096
  issn: 2314-6141
  databaseCode: 24P
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGJj5eEN8ERmWkwQsKJHEcOw8IldKuAxJV1Sp1T1EcO1qlko5-aJS_nrt8icIAiRc_xKez5Tv77uec7wg5MkykqWLKFrnKbF9mGgu5A-YJlKeFlwaZwNfIURwMJ_7HKZ_ukabaaL2AqyuhHdaTmiznr7993b6DDf-23PCcI35nb1gIaAvfUh-AjQqxiENUO_rlmSzdwAmrSnOuD3iJsSYK_hcGO_apPqWvnyM-vpxd5YX-Hkx5c1NcpNvLdD7_yVIN7pDbtYtJu5VO3CV7prhHbkT1T_T7ZPKhCq-bregipyN89gEOJ-2h_Je0jCGgx597Ee2X76o0_RTH9LTJ9UrVlpaZTL4jXTQ-oSdf4ExaPSCTQf-0N7Tr6gp25otgbRtutOdmjGvXUWApuRcapj0n5YwbV_uhm0kvT3OjpID-gOONaaA14J1UsNxlD8l-sSjMY0JNDqiLCcfRQvrayTEDjAhVLriHGSCVRV41a5pkdepxrIAxT0oIwnmCEkhqCVjkRUt9UaXc-APdIYonQd0AbhnsiyzpCsbB5ZVOaJGjWmz_4tLINGm0L_EAc0ghAy4s8rztxgEwJK0wi01Jw1wPPUiLPKpUoB2IBYIxH3vEjnK0BJjUe7enmJ2Xyb1DKcFjh2m9bNXor_N_8t9DPCW3kFF1n3RI9tfLjXkGHtZadcg1MRXQysFxhxy878ejcafcUNCOh1P4NolH3bMfxgYkzw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lc9MwENaUdKBceD8CBcRM2wvj1pYsyz5w6CRtE_IYhkmmvRnr4WmG4IQmmUz6o_gr_CW0tmwIj3Lqgau1lmX502p3vfoWoR1NeZIIKhyeCun4oVRQyN34PIEgipMkkBxOI_f6QWvovztjZxvoa3kWBtIqS52YK2o1kRAjPyDGDAx5GDBuMyg7erU0_tnsbbtpPuYuIcdHg0bLsSUEHOnzYO5ophXxJGXKc4XZDhiJNFXETRhl2lN-5MmQpEmqRchNe8AgLBgoZYz6hNPUo6bfvekXB6pUwd9cW7LjBto0OPdIDW02TpsnrSqqA2Us3KioaOf5xi-jtMy2ZwwCDfSARuYi89b2Qbsb3DwHP3w5-pO1-3vS5tYimyarZTIe_7QjHt9F38q5LBJhPu0v5mJfXv5CM_n_TPY9dMca5_iwWE330YbOHqBbPZt-8BANm0Vi4miGJyl-DwdmjKmOG7ByLnCefYFPuo0ePspPpCnc6ffxoGTJxWKFcw6YS5DrfWjj9mejzWeP0PBa3vMxqmWTTD9FWKfGX6XcdRUPfeWmwJ3DI5FyRoA7U9TRmxIlsbSk7VA7ZBznzhtjMWAqtpiqo91KelqQlfxFbhsAF4MOM71Jo1FkfMgpM85C6EZ1tGOB-K9eSvDEVvHN4h_IqaPXVTM8AJL5Mj1Z5DLUI2B719GTAtTVg2jAKfWhha_BvRIAOvT1lmx0ntOiR2FofB0zrL1qYVw5_mdXj_8V2moNet242-53nqPbcGcRettGtfnFQr8wxuhcvLQaAKOP1700vgNs4ZRv
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lc9MwENaUdihceD8MBcRMy4Vxa0uWZR8YppM0TUiT6TDN0JuxJXmaITihSSaT_jT-Cn-GXb8gPMqpB67WWpblT6vd9epbQrYNl3Gc8MSWaaJsL1AaC7mDz-MnTEsW-0riaeRe328PvHen4nSNfK3OwmBaZaUTc0Wtxwpj5HsMzMBABj448GmZFnHcbL2dfLGxghT-aa3KaRQQ6ZrlAty36ZtOE771DmOtg5NG2y4rDNjKk_7MNsJo5ioutOsksFsIFhqumRMLLoyrvdBVAUvj1CSBhHZfYNTQ1xps_ljy1OXQ7zWyEfjSB6Ww0fjQPGzXER4saeGERXU71wMfjfMq814IDDrwPR7CReGu7InlznD9DH3yxfBPlu_vCZw35tkkXi7i0ein3bF1m3yr5rVIivm0O58lu-riF8rJ_3Pi75BbpdFO94tVdpesmewe2eyVaQn3yaBZJCwOp3Sc0mM8SAMmPG3gijqneVYGPTxq9OhBflJN026_T08q9lyaLGnODXOBcr33Hdr5DFp--oAMruSlHpL1bJyZx4SaFPxYLh1Hy8DTToqcOjJMUikYcmomFnldISZSJZk71hQZRblTJ0SE-IpKfFlkp5aeFCQmf5HbQvBFqNugNwWaRkX7kgtwIgIntMh2Ccp_9VIBKSoV4jT6gSKLvKyb8QGY5JeZ8TyX4S5Dm9wijwqA1w_ivuTcwxa5Av1aAGnSV1uy4VlOlx4GAfhAMKxX9SK5dPxPLh__C7IJ-I-OOv3uU3ITbywicltkfXY-N8_ARp0lz0tlQMnHq14G3wFseJ03
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ra9swED-6lD2-7L3VWzc06PZlOLUty7JhX0LWrt2WUEoDHaMYyZJpaOqUPCjtXz-dLJtlb_bNRodkSSfpfvLd7wC2NOVCSCp9XsrCj9NCYSJ3g3kSGSkeiaTgGI08GCZ7o_jjMTteg3dNLIxCivipUPPuKWLSy7Hdrd24zrfl-WyMeJ1u08ygK2b2GVXegPWEGUu8A-uj4UHvi80nF8YGFdlM8u45Dhu_d8ZWqlg5kdy-fNO1_iu782f3ydvL6kJcXYrJ5LuzafcenDS9ql1SzrrLhewW1z8QPv5vt-_DXWe0kl6tZQ9gTVcP4dbA_ZZ_BOLroV5Y3md1Qt7XznvjOZmW5ACDSow5S_qoXTNiPRTIh8_9AdmxUVuKfBoOyVHDJEvkFbE8KdcoNzjcJ_vnZsebP4bR7s5Rf893uRv8IubJwtdMqygsKFNhIM05zKJMUxUFglGmQxVnYZFGpSi1TLkpTxjexyZKGTQlOC1D-gQ61bTSG0B0aTAd5UGgeBqroER-GZ7JkrMI-SWlB2-b-csLR2yO-TUmuQU4jOU4crkbOQ9et9IXNaHHb-Q2URVyXOc4gmbVFXmPU2YM6jTIPNhyM_W3Whr9yZvZzCODaFKeJox78KotxgbQ4a3S06WVoWGE9qkHT2t1axuiCac0xhK-ooitAFKGr5ZU41NLHZ6lqcED5rPetCr7x-9_9q-Cz-EOvuLlVMg2obOYLfULY64t5Eu3Kr8BUPk3tQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diagnosis+of+Prostate+Cancer+Using+GLCM+Enabled+KNN+Technique+by+Analyzing+MRI+Images&rft.jtitle=BioMed+research+international&rft.au=Anand%2C+L.&rft.au=Mewada%2C+Shivlal&rft.au=Shamsi%2C+WameedDeyah&rft.au=Ritonga%2C+Mahyudin&rft.date=2023&rft.pub=Hindawi&rft.issn=2314-6133&rft.eissn=2314-6141&rft.volume=2023&rft_id=info:doi/10.1155%2F2023%2F3913351&rft.externalDocID=PMC9889161
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2314-6133&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2314-6133&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2314-6133&client=summon