Review: Metabolic engineering of unusual lipids in the synthetic biology era

•Transgenic oilseeds can be engineered to synthesize unusual lipids.•Enhanced production of unusual lipids requires the expression of multiple enzymes.•The interaction between endogenous and introduced pathways needs to be considered.•Eliminating competing endogenous enzymes can increase unusual lip...

Full description

Saved in:
Bibliographic Details
Published inPlant science (Limerick) Vol. 263; no. C; pp. 126 - 131
Main Authors Aznar-Moreno, Jose A., Durrett, Timothy P.
Format Journal Article
LanguageEnglish
Published Ireland Elsevier B.V 01.10.2017
Elsevier
Subjects
Online AccessGet full text
ISSN0168-9452
1873-2259
1873-2259
DOI10.1016/j.plantsci.2017.07.007

Cover

Abstract •Transgenic oilseeds can be engineered to synthesize unusual lipids.•Enhanced production of unusual lipids requires the expression of multiple enzymes.•The interaction between endogenous and introduced pathways needs to be considered.•Eliminating competing endogenous enzymes can increase unusual lipid accumulation.•Pathway segregation represents a strategy to enhance unusual lipid synthesis. The plant kingdom produces a variety of fatty acid structures, many of which possess functional groups useful for industrial applications. The species that produce these unusual fatty acids are often not suitable for large scale commercial production. The ability to create genetically modified plants, together with emerging synthetic biology approaches, offers the potential to develop alternative oil seed crops capable of producing high levels of modified lipids. In some cases, by combining genes from different species, non-natural lipids with a targeted structure can be conceived. However, the expression of the biosynthetic enzymes responsible for the synthesis of unusual fatty acids typically results in poor accumulation of the desired product. An improved understanding of fatty acid flux from synthesis to storage revealed that specialized enzymes are needed to traffic unusual fatty acids. Co-expression of some of these additional enzymes has incrementally increased the levels of unusual fatty acids in transgenic seeds. Understanding how the introduced pathways interact with the endogenous pathways will be important for further enhancing the levels of unusual fatty acids in transgenic plants. Eliminating endogenous activities, as well as segregating the different pathways, represent strategies to further increase accumulation of unusual lipids.
AbstractList The plant kingdom produces a variety of fatty acid structures, many of which possess functional groups useful for industrial applications. The species that produce these unusual fatty acids are often not suitable for large scale commercial production. The ability to create genetically modified plants, together with emerging synthetic biology approaches, offers the potential to develop alternative oil seed crops capable of producing high levels of modified lipids. In some cases, by combining genes from different species, non-natural lipids with a targeted structure can be conceived. However, the expression of the biosynthetic enzymes responsible for the synthesis of unusual fatty acids typically results in poor accumulation of the desired product. An improved understanding of fatty acid flux from synthesis to storage revealed that specialized enzymes are needed to traffic unusual fatty acids. Co-expression of some of these additional enzymes has incrementally increased the levels of unusual fatty acids in transgenic seeds. Understanding how the introduced pathways interact with the endogenous pathways will be important for further enhancing the levels of unusual fatty acids in transgenic plants. Eliminating endogenous activities, as well as segregating the different pathways, represent strategies to further increase accumulation of unusual lipids.
Not provided.
•Transgenic oilseeds can be engineered to synthesize unusual lipids.•Enhanced production of unusual lipids requires the expression of multiple enzymes.•The interaction between endogenous and introduced pathways needs to be considered.•Eliminating competing endogenous enzymes can increase unusual lipid accumulation.•Pathway segregation represents a strategy to enhance unusual lipid synthesis. The plant kingdom produces a variety of fatty acid structures, many of which possess functional groups useful for industrial applications. The species that produce these unusual fatty acids are often not suitable for large scale commercial production. The ability to create genetically modified plants, together with emerging synthetic biology approaches, offers the potential to develop alternative oil seed crops capable of producing high levels of modified lipids. In some cases, by combining genes from different species, non-natural lipids with a targeted structure can be conceived. However, the expression of the biosynthetic enzymes responsible for the synthesis of unusual fatty acids typically results in poor accumulation of the desired product. An improved understanding of fatty acid flux from synthesis to storage revealed that specialized enzymes are needed to traffic unusual fatty acids. Co-expression of some of these additional enzymes has incrementally increased the levels of unusual fatty acids in transgenic seeds. Understanding how the introduced pathways interact with the endogenous pathways will be important for further enhancing the levels of unusual fatty acids in transgenic plants. Eliminating endogenous activities, as well as segregating the different pathways, represent strategies to further increase accumulation of unusual lipids.
The plant kingdom produces a variety of fatty acid structures, many of which possess functional groups useful for industrial applications. The species that produce these unusual fatty acids are often not suitable for large scale commercial production. The ability to create genetically modified plants, together with emerging synthetic biology approaches, offers the potential to develop alternative oil seed crops capable of producing high levels of modified lipids. In some cases, by combining genes from different species, non-natural lipids with a targeted structure can be conceived. However, the expression of the biosynthetic enzymes responsible for the synthesis of unusual fatty acids typically results in poor accumulation of the desired product. An improved understanding of fatty acid flux from synthesis to storage revealed that specialized enzymes are needed to traffic unusual fatty acids. Co-expression of some of these additional enzymes has incrementally increased the levels of unusual fatty acids in transgenic seeds. Understanding how the introduced pathways interact with the endogenous pathways will be important for further enhancing the levels of unusual fatty acids in transgenic plants. Eliminating endogenous activities, as well as segregating the different pathways, represent strategies to further increase accumulation of unusual lipids.The plant kingdom produces a variety of fatty acid structures, many of which possess functional groups useful for industrial applications. The species that produce these unusual fatty acids are often not suitable for large scale commercial production. The ability to create genetically modified plants, together with emerging synthetic biology approaches, offers the potential to develop alternative oil seed crops capable of producing high levels of modified lipids. In some cases, by combining genes from different species, non-natural lipids with a targeted structure can be conceived. However, the expression of the biosynthetic enzymes responsible for the synthesis of unusual fatty acids typically results in poor accumulation of the desired product. An improved understanding of fatty acid flux from synthesis to storage revealed that specialized enzymes are needed to traffic unusual fatty acids. Co-expression of some of these additional enzymes has incrementally increased the levels of unusual fatty acids in transgenic seeds. Understanding how the introduced pathways interact with the endogenous pathways will be important for further enhancing the levels of unusual fatty acids in transgenic plants. Eliminating endogenous activities, as well as segregating the different pathways, represent strategies to further increase accumulation of unusual lipids.
Author Aznar-Moreno, Jose A.
Durrett, Timothy P.
Author_xml – sequence: 1
  givenname: Jose A.
  surname: Aznar-Moreno
  fullname: Aznar-Moreno, Jose A.
– sequence: 2
  givenname: Timothy P.
  surname: Durrett
  fullname: Durrett, Timothy P.
  email: tdurrett@ksu.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28818368$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1538745$$D View this record in Osti.gov
BookMark eNqFkUuLFDEUhYOMOD2jf2EoXLmpNklVKilx4TD4ghZBdB3yuOlJU520SUrpf2-Knt64abhwN9-593DODboKMQBCdwSvCSbD2936MKlQsvFriglf4zqYP0MrInjXUsrGK7SqoGjHntFrdJPzDmNMGeMv0DUVgohuECu0-QF_PPx913yDonScvGkgbH0ASD5sm-iaOcx5VlMz-YO3ufGhKY_Q5GOoq1Rc-zjF7bGBpF6i505NGV497Vv069PHnw9f2s33z18f7jet6flQWksVZ666IcwYofFoHO-JVo4L0qmBOY1Z1w-Oa-AdYyCw5VZZa5zTQgvb3aLXp7sxFy9rBgXMo4khgCmSsE7wnlXozQk6pPh7hlzk3mcDU40N4pwlrQZYz0U_XkTJ2OFe9BQv6N0TOus9WHlIfq_SUZ4TrcD7E2BSzDmBk9WeKj6GkpSfJMFyKVDu5LlAuRQocR3Mq3z4T37-cFH44SSEGnytNC25QDBgfVpisdFfOvEPT365Sg
CitedBy_id crossref_primary_10_1007_s11101_021_09770_4
crossref_primary_10_1016_j_jchromb_2018_10_012
crossref_primary_10_3389_fpls_2019_01442
crossref_primary_10_1093_jxb_erab533
crossref_primary_10_1111_pbi_13014
crossref_primary_10_1002_pld3_67
crossref_primary_10_1007_s00709_020_01562_5
crossref_primary_10_1186_s12870_020_02441_0
crossref_primary_10_1016_j_jbc_2021_101396
crossref_primary_10_3389_fpls_2022_1079146
crossref_primary_10_1016_j_pbi_2020_03_007
crossref_primary_10_1016_j_indcrop_2020_112870
crossref_primary_10_1186_s13068_022_02120_2
crossref_primary_10_1007_s00497_018_0325_6
crossref_primary_10_1093_pcp_pcx177
Cites_doi 10.2307/3393073
10.1007/BF02533174
10.1111/pbi.12663
10.1042/bj2800507
10.1111/j.1467-7652.2008.00361.x
10.1016/j.plantsci.2012.09.015
10.1016/0163-7827(80)90002-8
10.1104/pp.111.192153
10.1105/tpc.104.030403
10.1104/pp.114.254110
10.1007/s11745-998-0326-3
10.1093/pcp/pcx058
10.4137/LPI.S40233
10.1371/journal.pone.0030100
10.1073/pnas.92.15.6743
10.3732/ajb.92.1.53
10.1007/s00425-003-1015-6
10.1139/y63-214
10.1016/0005-2760(83)90076-0
10.1073/pnas.0908848106
10.1007/s11745-010-3385-4
10.1111/j.1365-313X.2008.03430.x
10.1074/jbc.M705447200
10.1111/j.1365-313X.2005.02636.x
10.1111/j.1365-313X.2011.04693.x
10.1105/tpc.112.104604
10.1046/j.1365-313X.1998.00023.x
10.1111/pbi.12325
10.1104/pp.113.3.933
10.1105/tpc.106.043695
10.1074/jbc.M113.521815
10.3390/ijms17040507
10.1074/jbc.M114.572883
10.1111/tpj.12278
10.1007/BF02638857
10.1104/pp.102.010835
10.1073/pnas.1318511111
10.1104/pp.16.01865
10.1016/j.indcrop.2014.11.019
10.1016/j.pbi.2013.02.015
10.1186/s12864-015-1413-8
10.1104/pp.112.204438
10.2134/agronj2011.0210
10.1073/pnas.1001707107
10.1111/pbi.12671
10.1199/tab.0161
10.1081/JLC-120018421
10.1111/tpj.13163
10.1016/j.pbi.2016.01.007
10.1016/0005-2760(67)90128-2
10.1104/pp.109.137737
10.1186/s13068-017-0751-y
10.1074/jbc.M110.204412
10.1104/pp.110.167239
10.1105/tpc.109.071795
10.1016/j.phytochem.2006.09.020
10.1016/j.phytochem.2006.04.013
10.1073/pnas.96.22.12935
10.1016/j.gene.2014.09.051
10.1126/science.282.5392.1315
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright © 2017 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2017 Elsevier B.V.
– notice: Copyright © 2017 Elsevier B.V. All rights reserved.
CorporateAuthor Colorado State Univ., Fort Collins, CO (United States)
CorporateAuthor_xml – name: Colorado State Univ., Fort Collins, CO (United States)
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
OTOTI
DOI 10.1016/j.plantsci.2017.07.007
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
OSTI.GOV
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE

AGRICOLA

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1873-2259
EndPage 131
ExternalDocumentID 1538745
28818368
10_1016_j_plantsci_2017_07_007
S0168945217303606
Genre Journal Article
Review
GroupedDBID ---
--K
--M
.~1
0R~
123
1B1
1RT
1~.
29O
4.4
457
5VS
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABGSF
ABJNI
ABLJU
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HLW
HVGLF
HZ~
IHE
J1W
K-O
KOM
LW9
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SBG
SCC
SCU
SDF
SDG
SDP
SES
SEW
SPCBC
SSA
SSU
SSZ
T5K
TN5
WH7
WUQ
ZCG
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
ACLOT
~HD
7S9
L.6
AALMO
AAPBV
ABPIF
ABPTK
ABQIS
OTOTI
ID FETCH-LOGICAL-c476t-d2a75f00015cc8b09cf741baf7813a65fb05346f7be7355e80d7daddcffb8b8d3
IEDL.DBID AIKHN
ISSN 0168-9452
1873-2259
IngestDate Fri May 19 02:19:07 EDT 2023
Sat Sep 27 19:38:46 EDT 2025
Thu Sep 25 08:44:45 EDT 2025
Mon Jul 21 05:55:53 EDT 2025
Tue Jul 01 00:25:25 EDT 2025
Thu Apr 24 22:56:20 EDT 2025
Fri Feb 23 02:28:50 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Acetyl-TAG
Synthetic biology
Unusual fatty acid
Hydroxy fatty acid
Transgenic oilseed crop
Language English
License Copyright © 2017 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c476t-d2a75f00015cc8b09cf741baf7813a65fb05346f7be7355e80d7daddcffb8b8d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
USDOE Office of Science (SC)
SC0012459
OpenAccessLink https://www.osti.gov/biblio/1549582
PMID 28818368
PQID 1930484209
PQPubID 23479
PageCount 6
ParticipantIDs osti_scitechconnect_1538745
proquest_miscellaneous_2000547849
proquest_miscellaneous_1930484209
pubmed_primary_28818368
crossref_citationtrail_10_1016_j_plantsci_2017_07_007
crossref_primary_10_1016_j_plantsci_2017_07_007
elsevier_sciencedirect_doi_10_1016_j_plantsci_2017_07_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2017
2017-10-00
2017-Oct
20171001
2017-10-01
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: October 2017
PublicationDecade 2010
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
– name: United States
PublicationTitle Plant science (Limerick)
PublicationTitleAlternate Plant Sci
PublicationYear 2017
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References van de Loo, Broun, Turner, Somerville (bib0150) 1995; 92
Badami, Patil (bib0030) 1980; 19
Liu (bib0080) 2015; 13
Durrett (bib0005) 2010; 107
Brown (bib0015) 2012; 7
Li (bib0060) 2017; 8
Arroyo-Caro (bib0245) 2013; 199-200
Lou, Schwender, Shanklin (bib0310) 2014; 289
Lin, Turner, Liao, McKeon (bib0050) 2003; 26
Salywon, Dierig, Rebman, de Rodriguez (bib0070) 2005; 92
Bates (bib0230) 2014; 111
Cahoon (bib0210) 1999; 96
Jiang (bib0275) 2017; 15
Canvin (bib0045) 1963; 41
Chen (bib0250) 2016; 17
Liu, Siloto, Snyder, Weselake (bib0185) 2011; 286
Dyer (bib0215) 2002; 130
Hu, Ren, Lu (bib0255) 2012; 158
Horn (bib0295) 2013; 76
Li, Yu, Hildebrand (bib0195) 2010; 45
Horn (bib0010) 2016; 86
Shockey (bib0190) 2006; 18
Kleiman, Miller, Earle, Wolff (bib0095) 1967; 2
Bates, Stymne, Ohlrogge (bib0110) 2013; 16
Liu, Hu, Palla, Tuskan, Yang (bib0025) 2016; 30
Al-Shehbaz, O'Kane (bib0065) 2002; 12
Broun, Somerville (bib0205) 1997; 113
Li-Beisson (bib0115) 2013; 11
Broun, Shanklin, Whittle, Somerville (bib0135) 1998; 282
Bates, Durrett, Ohlrogge, Pollard (bib0120) 2009; 150
Lu, Xin, Ren, Miquel, Browse (bib0170) 2009; 106
Hayes, Kleiman, Phillips (bib0075) 1995; 72
Bates, Ohlrogge, Pollard (bib0125) 2007; 282
Burgal (bib0235) 2008; 6
Bates (bib0155) 2012; 160
Broun, Boddupalli, Somerville (bib0290) 1998; 13
Wang (bib0165) 2012; 24
Jeong, Choi, Shin, Bae, Shin (bib0305) 2014; 553
Bafor, Smith, Jonsson, Stobart, Stymne (bib0130) 1991; 280
Lu, Fulda, Wallis, Browse (bib0220) 2006; 45
Smith, Moon, Chowrira, Kunst (bib0225) 2003; 217
Bagby, Smith (bib0090) 1967; 137
Aznar Moreno, Durrett (bib0285) 2017; 58
Zhang, Fan, Taylor, Ohlrogge (bib0180) 2009; 21
Marmon (bib0300) 2017; 173
Kim, Chen (bib0020) 2015; 16
van Erp, Bates, Burgal, Shockey, Browse (bib0260) 2011; 155
Lager (bib0160) 2013; 288
Morineau (bib0280) 2016; 15
Cahoon (bib0140) 2006; 67
Liu, Hammond, Nikolau (bib0145) 1998; 33
Patel, Dumancas, Kasi Viswanath, Maples, Subong (bib0040) 2016; 9
Niedzielski (bib0105) 1976; 15
Bates, Browse (bib0240) 2011; 68
van Erp, Shockey, Zhang, Adhikari, Browse (bib0265) 2015; 168
Liu (bib0085) 2015; 65
Dyer, Stymne, Green, Carlsson (bib0035) 2008; 54
Severino (bib0055) 2012; 104
Kroon, Wei, Simon, Slabas (bib0200) 2006; 67
Tran (bib0100) 2017; 10
Slack, Campbell, Browse, Roughan (bib0175) 1983; 754
Kim, Li, Huang (bib0270) 2005; 17
Niedzielski (10.1016/j.plantsci.2017.07.007_bib0105) 1976; 15
Broun (10.1016/j.plantsci.2017.07.007_bib0135) 1998; 282
Bates (10.1016/j.plantsci.2017.07.007_bib0155) 2012; 160
Hu (10.1016/j.plantsci.2017.07.007_bib0255) 2012; 158
Cahoon (10.1016/j.plantsci.2017.07.007_bib0140) 2006; 67
Morineau (10.1016/j.plantsci.2017.07.007_bib0280) 2016; 15
Li (10.1016/j.plantsci.2017.07.007_bib0195) 2010; 45
Chen (10.1016/j.plantsci.2017.07.007_bib0250) 2016; 17
Burgal (10.1016/j.plantsci.2017.07.007_bib0235) 2008; 6
Kim (10.1016/j.plantsci.2017.07.007_bib0270) 2005; 17
Li (10.1016/j.plantsci.2017.07.007_bib0060) 2017; 8
Smith (10.1016/j.plantsci.2017.07.007_bib0225) 2003; 217
Aznar Moreno (10.1016/j.plantsci.2017.07.007_bib0285) 2017; 58
Broun (10.1016/j.plantsci.2017.07.007_bib0290) 1998; 13
Kim (10.1016/j.plantsci.2017.07.007_bib0020) 2015; 16
Liu (10.1016/j.plantsci.2017.07.007_bib0080) 2015; 13
Jeong (10.1016/j.plantsci.2017.07.007_bib0305) 2014; 553
Severino (10.1016/j.plantsci.2017.07.007_bib0055) 2012; 104
Tran (10.1016/j.plantsci.2017.07.007_bib0100) 2017; 10
Al-Shehbaz (10.1016/j.plantsci.2017.07.007_bib0065) 2002; 12
Lou (10.1016/j.plantsci.2017.07.007_bib0310) 2014; 289
van Erp (10.1016/j.plantsci.2017.07.007_bib0265) 2015; 168
Badami (10.1016/j.plantsci.2017.07.007_bib0030) 1980; 19
Horn (10.1016/j.plantsci.2017.07.007_bib0010) 2016; 86
Horn (10.1016/j.plantsci.2017.07.007_bib0295) 2013; 76
Cahoon (10.1016/j.plantsci.2017.07.007_bib0210) 1999; 96
Hayes (10.1016/j.plantsci.2017.07.007_bib0075) 1995; 72
Liu (10.1016/j.plantsci.2017.07.007_bib0185) 2011; 286
Lin (10.1016/j.plantsci.2017.07.007_bib0050) 2003; 26
Bagby (10.1016/j.plantsci.2017.07.007_bib0090) 1967; 137
Bafor (10.1016/j.plantsci.2017.07.007_bib0130) 1991; 280
Dyer (10.1016/j.plantsci.2017.07.007_bib0215) 2002; 130
Liu (10.1016/j.plantsci.2017.07.007_bib0085) 2015; 65
Brown (10.1016/j.plantsci.2017.07.007_bib0015) 2012; 7
Salywon (10.1016/j.plantsci.2017.07.007_bib0070) 2005; 92
Li-Beisson (10.1016/j.plantsci.2017.07.007_bib0115) 2013; 11
Broun (10.1016/j.plantsci.2017.07.007_bib0205) 1997; 113
Bates (10.1016/j.plantsci.2017.07.007_bib0125) 2007; 282
Jiang (10.1016/j.plantsci.2017.07.007_bib0275) 2017; 15
Arroyo-Caro (10.1016/j.plantsci.2017.07.007_bib0245) 2013; 199-200
Wang (10.1016/j.plantsci.2017.07.007_bib0165) 2012; 24
Lu (10.1016/j.plantsci.2017.07.007_bib0220) 2006; 45
Marmon (10.1016/j.plantsci.2017.07.007_bib0300) 2017; 173
Shockey (10.1016/j.plantsci.2017.07.007_bib0190) 2006; 18
Bates (10.1016/j.plantsci.2017.07.007_bib0110) 2013; 16
Canvin (10.1016/j.plantsci.2017.07.007_bib0045) 1963; 41
van de Loo (10.1016/j.plantsci.2017.07.007_bib0150) 1995; 92
Durrett (10.1016/j.plantsci.2017.07.007_bib0005) 2010; 107
Slack (10.1016/j.plantsci.2017.07.007_bib0175) 1983; 754
Dyer (10.1016/j.plantsci.2017.07.007_bib0035) 2008; 54
Bates (10.1016/j.plantsci.2017.07.007_bib0230) 2014; 111
Kroon (10.1016/j.plantsci.2017.07.007_bib0200) 2006; 67
Patel (10.1016/j.plantsci.2017.07.007_bib0040) 2016; 9
Bates (10.1016/j.plantsci.2017.07.007_bib0240) 2011; 68
Kleiman (10.1016/j.plantsci.2017.07.007_bib0095) 1967; 2
Liu (10.1016/j.plantsci.2017.07.007_bib0145) 1998; 33
Lager (10.1016/j.plantsci.2017.07.007_bib0160) 2013; 288
Liu (10.1016/j.plantsci.2017.07.007_bib0025) 2016; 30
Bates (10.1016/j.plantsci.2017.07.007_bib0120) 2009; 150
Lu (10.1016/j.plantsci.2017.07.007_bib0170) 2009; 106
van Erp (10.1016/j.plantsci.2017.07.007_bib0260) 2011; 155
Zhang (10.1016/j.plantsci.2017.07.007_bib0180) 2009; 21
References_xml – volume: 21
  start-page: 3885
  year: 2009
  end-page: 3901
  ident: bib0180
  article-title: DGAT1 and PDAT1 acyltransferases have overlapping functions in
  publication-title: Plant Cell
– volume: 282
  start-page: 31206
  year: 2007
  end-page: 31216
  ident: bib0125
  article-title: Incorporation of newly synthesized fatty acids into cytosolic glycerolipids in pea leaves occurs via acyl editing
  publication-title: J. Biol. Chem.
– volume: 168
  start-page: 36
  year: 2015
  end-page: 46
  ident: bib0265
  article-title: Reducing isozyme competition increases target fatty acid accumulation in seed triacylglycerols of Transgenic Arabidopsis
  publication-title: Plant Physiol.
– volume: 106
  start-page: 18837
  year: 2009
  end-page: 18842
  ident: bib0170
  article-title: An enzyme regulating triacylglycerol composition is encoded by the
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 113
  start-page: 933
  year: 1997
  end-page: 942
  ident: bib0205
  article-title: Accumulation of ricinoleic, lesquerolic, and densipolic acids in seeds of transgenic Arabidopsis plants that express a fatty acyl hydroxylase cDNA from castor bean
  publication-title: Plant Physiol.
– volume: 16
  start-page: 358
  year: 2013
  end-page: 364
  ident: bib0110
  article-title: Biochemical pathways in seed oil synthesis
  publication-title: Curr. Opin. Plant Biol.
– volume: 76
  start-page: 138
  year: 2013
  end-page: 150
  ident: bib0295
  article-title: Imaging heterogeneity of membrane and storage lipids in transgenic
  publication-title: Plant J.
– volume: 130
  start-page: 2027
  year: 2002
  end-page: 2038
  ident: bib0215
  article-title: Molecular analysis of a bifunctional fatty acid conjugase/desaturase from tung. Implications for the evolution of plant fatty acid diversity
  publication-title: Plant Physiol.
– volume: 45
  start-page: 847
  year: 2006
  end-page: 856
  ident: bib0220
  article-title: A high-throughput screen for genes from castor that boost hydroxy fatty acid accumulation in seed oils of transgenic Arabidopsis
  publication-title: Plant J.
– volume: 158
  start-page: 1944
  year: 2012
  end-page: 1954
  ident: bib0255
  article-title: The phosphatidylcholine diacylglycerol cholinephosphotransferase is required for efficient hydroxy fatty acid accumulation in transgenic Arabidopsis
  publication-title: Plant Physiol.
– volume: 19
  start-page: 119
  year: 1980
  end-page: 153
  ident: bib0030
  article-title: Structure and occurrence of unusual fatty acids in minor seed oils
  publication-title: Prog. Lipid Res.
– volume: 15
  start-page: 729
  year: 2016
  end-page: 739
  ident: bib0280
  article-title: Selective gene dosage by CRISPR-Cas9 genome editing in hexaploid
  publication-title: Plant Biotechnol. J.
– volume: 6
  start-page: 819
  year: 2008
  end-page: 831
  ident: bib0235
  article-title: Metabolic engineering of hydroxy fatty acid production in plants: rcDGAT2 drives dramatic increases in ricinoleate levels in seed oil
  publication-title: Plant Biotechnol. J.
– volume: 58
  start-page: 1260
  year: 2017
  end-page: 1267
  ident: bib0285
  article-title: Simultaneous targeting of multiple gene homeologues to alter seed oil production in
  publication-title: Plant Cell Physiol.
– volume: 24
  start-page: 4652
  year: 2012
  end-page: 4669
  ident: bib0165
  article-title: Metabolic interactions between the lands cycle and the Kennedy pathway of glycerolipid synthesis in arabidopsis developing seeds
  publication-title: Plant Cell
– volume: 137
  start-page: 475
  year: 1967
  end-page: 477
  ident: bib0090
  article-title: Asymmetric triglycerides from
  publication-title: Biochim. Biophys. Acta
– volume: 45
  start-page: 145
  year: 2010
  end-page: 157
  ident: bib0195
  article-title: DGAT1, DGAT2 and PDAT expression in seeds and other tissues of epoxy and hydroxy fatty acid accumulating plants
  publication-title: Lipids
– volume: 17
  start-page: 507
  year: 2016
  ident: bib0250
  article-title: Expression of castor LPAT2 enhances ricinoleic acid content at the
  publication-title: Int. J. Mol. Sci.
– volume: 65
  start-page: 259
  year: 2015
  end-page: 268
  ident: bib0085
  article-title: Field production, purification and analysis of high-oleic acetyl-triacylglycerols from transgenic
  publication-title: Ind. Crop Prod.
– volume: 107
  start-page: 9464
  year: 2010
  end-page: 9469
  ident: bib0005
  article-title: A distinct DGAT with
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 54
  start-page: 640
  year: 2008
  end-page: 655
  ident: bib0035
  article-title: High-value oils from plants
  publication-title: Plant J.
– volume: 15
  start-page: 648
  year: 2017
  end-page: 657
  ident: bib0275
  article-title: Significant enhancement of fatty acid composition in seeds of the allohexaploid,
  publication-title: Plant Biotechnol. J.
– volume: 286
  start-page: 13115
  year: 2011
  end-page: 13126
  ident: bib0185
  article-title: Functional and topological analysis of yeast acyl-CoA: diacylglycerol acyltransferase 2, an endoplasmic reticulum enzyme essential for triacylglycerol biosynthesis
  publication-title: J. Biol. Chem.
– volume: 92
  start-page: 53
  year: 2005
  end-page: 62
  ident: bib0070
  article-title: Evaluation of new
  publication-title: Am. J. Bot.
– volume: 68
  start-page: 387
  year: 2011
  end-page: 399
  ident: bib0240
  article-title: The pathway of triacylglycerol synthesis through phosphatidylcholine in Arabidopsis produces a bottleneck for the accumulation of unusual fatty acids in transgenic seeds
  publication-title: Plant J.
– volume: 173
  start-page: 2081
  year: 2017
  end-page: 2095
  ident: bib0300
  article-title: Two acyltransferases contribute differently to linolenic acid levels in seed oil
  publication-title: Plant Physiol.
– volume: 155
  start-page: 683
  year: 2011
  end-page: 693
  ident: bib0260
  article-title: Castor phospholipid: diacylglycerol acyltransferase facilitates efficient metabolism of hydroxy fatty acids in transgenic Arabidopsis
  publication-title: Plant Physiol.
– volume: 160
  start-page: 1530
  year: 2012
  end-page: 1539
  ident: bib0155
  article-title: Acyl editing and headgroup exchange are the major mechanisms that direct polyunsaturated fatty acid flux into triacylglycerols
  publication-title: Plant Physiol.
– volume: 104
  start-page: 853
  year: 2012
  end-page: 880
  ident: bib0055
  article-title: A review on the challenges for increased production of castor
  publication-title: Agron. J.
– volume: 282
  start-page: 1315
  year: 1998
  end-page: 1317
  ident: bib0135
  article-title: Catalytic plasticity of fatty acid modification enzymes underlying chemical diversity of plant lipids
  publication-title: Science
– volume: 18
  start-page: 2294
  year: 2006
  end-page: 2313
  ident: bib0190
  article-title: Tung tree DGAT1 and DGAT2 have nonredundant functions in triacylglycerol biosynthesis and are localized to different subdomains of the endoplasmic reticulum
  publication-title: Plant Cell
– volume: 7
  start-page: e30100
  year: 2012
  ident: bib0015
  article-title: Tissue-specific whole transcriptome sequencing in castor, directed at understanding triacylglycerol lipid biosynthetic pathways
  publication-title: PLoS One
– volume: 9
  start-page: 1
  year: 2016
  end-page: 12
  ident: bib0040
  article-title: Castor oil: properties, uses, and optimization of processing parameters in commercial production
  publication-title: Lipid Insights
– volume: 67
  start-page: 1166
  year: 2006
  end-page: 1176
  ident: bib0140
  article-title: Conjugated fatty acids accumulate to high levels in phospholipids of metabolically engineered soybean and Arabidopsis seeds
  publication-title: Phytochemistry
– volume: 16
  start-page: 230
  year: 2015
  ident: bib0020
  article-title: Identification of hydroxy fatty acid and triacylglycerol metabolism-related genes in lesquerella through seed transcriptome analysis
  publication-title: BMC Genomics
– volume: 199-200
  start-page: 29
  year: 2013
  end-page: 40
  ident: bib0245
  article-title: The multigene family of lysophosphatidate acyltransferase (LPAT)-related enzymes in
  publication-title: Plant Sci.
– volume: 17
  start-page: 1073
  year: 2005
  end-page: 1089
  ident: bib0270
  article-title: Ubiquitous and endoplasmic reticulum-located lysophosphatidyl acyltransferase LPAT2, is essential for female but not male gametophyte development in Arabidopsis
  publication-title: Plant Cell
– volume: 72
  start-page: 559
  year: 1995
  end-page: 569
  ident: bib0075
  article-title: The triglyceride composition, structure, and presence of estolides in the oils of Lesquerella and related species
  publication-title: J. Am. Oil Chem. Soc.
– volume: 33
  start-page: 1217
  year: 1998
  end-page: 1221
  ident: bib0145
  article-title: In vivo studies of the biosynthesis of vernolic acid in the seed of
  publication-title: Lipids
– volume: 96
  start-page: 12935
  year: 1999
  end-page: 12940
  ident: bib0210
  article-title: Biosynthetic origin of conjugated double bonds: production of fatty acid components of high-value drying oils in transgenic soybean embryos
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 217
  start-page: 507
  year: 2003
  end-page: 516
  ident: bib0225
  article-title: Heterologous expression of a fatty acid hydroxylase gene in developing seeds of
  publication-title: Planta
– volume: 15
  start-page: 54
  year: 1976
  end-page: 58
  ident: bib0105
  article-title: Neopentyl polyol ester lubricants − bulk property optimization
  publication-title: Ind. Eng. Chem. Prod. Res. Dev.
– volume: 553
  start-page: 17
  year: 2014
  end-page: 23
  ident: bib0305
  article-title: Seed-specific expression of seven Arabidopsis promoters
  publication-title: Gene
– volume: 289
  start-page: 17996
  year: 2014
  end-page: 18007
  ident: bib0310
  article-title: FAD2 and FAD3 desaturases form heterodimers that facilitate metabolic channeling in vivo
  publication-title: J. Biol. Chem.
– volume: 86
  start-page: 322
  year: 2016
  end-page: 348
  ident: bib0010
  article-title: Identification of multiple lipid genes with modifications in expression and sequence associated with the evolution of hydroxy fatty acid accumulation in
  publication-title: Plant J.
– volume: 26
  start-page: 773
  year: 2003
  end-page: 780
  ident: bib0050
  article-title: Identification and quantification of the molecular species of acylglycerols in castor oil by HPLC using ELSD
  publication-title: J. Liq. Chromatogr. Relat. Technol.
– volume: 288
  start-page: 36902
  year: 2013
  end-page: 36914
  ident: bib0160
  article-title: Plant acyl-CoA: lysophosphatidylcholine acyltransferases (LPCATs) have different specificities in their forward and reverse reactions
  publication-title: J. Biol. Chem.
– volume: 10
  start-page: 69
  year: 2017
  ident: bib0100
  article-title: Metabolic engineering of
  publication-title: Biotechnol. Biofuels
– volume: 150
  start-page: 55
  year: 2009
  end-page: 72
  ident: bib0120
  article-title: Analysis of acyl fluxes through multiple pathways of triacylglycerol synthesis in developing soybean embryos
  publication-title: Plant Physiol.
– volume: 8
  year: 2017
  ident: bib0060
  article-title: Investigation of plant species with identified seed oil fatty acids in chinese literature and analysis of five unsurveyed chinese endemic species
  publication-title: Front. Plant Sci.
– volume: 754
  start-page: 10
  year: 1983
  end-page: 20
  ident: bib0175
  article-title: Some evidence for the reversibility of the cholinephosphotransferase-catalyzed reaction in developing linseed cotyledons in vivo
  publication-title: Biochim. Biophys. Acta
– volume: 111
  start-page: 1204
  year: 2014
  end-page: 1209
  ident: bib0230
  article-title: Fatty acid synthesis is inhibited by inefficient utilization of unusual fatty acids for glycerolipid assembly
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 30
  start-page: 70
  year: 2016
  end-page: 77
  ident: bib0025
  article-title: Advances and perspectives on the use of CRISPR/Cas9 systems in plant genomics research
  publication-title: Curr. Opin. Plant Biol.
– volume: 11
  start-page: e0161
  year: 2013
  ident: bib0115
  article-title: Acyl-lipid metabolism
  publication-title: Arabidopsis Book
– volume: 41
  start-page: 1879
  year: 1963
  ident: bib0045
  article-title: Formation of oil in seed of
  publication-title: Can. J. Biochem. Phys.
– volume: 280
  start-page: 507
  year: 1991
  end-page: 514
  ident: bib0130
  article-title: Ricinoleic acid biosynthesis and triacylglycerol assembly in microsomal preparations from developing castor-bean (
  publication-title: Biochem. J.
– volume: 92
  start-page: 6743
  year: 1995
  end-page: 6747
  ident: bib0150
  article-title: An oleate 12-hydroxylase from
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 12
  start-page: 319
  year: 2002
  end-page: 329
  ident: bib0065
  article-title: is united with
  publication-title: Novon
– volume: 2
  start-page: 473
  year: 1967
  end-page: 478
  ident: bib0095
  article-title: (
  publication-title: Lipids
– volume: 13
  start-page: 858
  year: 2015
  end-page: 865
  ident: bib0080
  article-title: Metabolic engineering of oilseed crops top produce high levels of novel acetyl glyceride oils with reduced viscosity, freezing point and calorific value
  publication-title: Plant Biotechnol. J.
– volume: 67
  start-page: 2541
  year: 2006
  end-page: 2549
  ident: bib0200
  article-title: Identification and functional expression of a type 2 acyl-CoA:diacylglycerol acyltransferase (DGAT2) in developing castor bean seeds which has high homology to the major triglyceride biosynthetic enzyme of fungi and animals
  publication-title: Phytochemistry
– volume: 13
  start-page: 201
  year: 1998
  end-page: 210
  ident: bib0290
  article-title: A bifunctional oleate 12-hydroxylase: desaturase from
  publication-title: Plant J.
– volume: 12
  start-page: 319
  year: 2002
  ident: 10.1016/j.plantsci.2017.07.007_bib0065
  article-title: Lesquerella is united with Physaria (Brassicaceae)
  publication-title: Novon
  doi: 10.2307/3393073
– volume: 2
  start-page: 473
  year: 1967
  ident: 10.1016/j.plantsci.2017.07.007_bib0095
  article-title: (S)-1,2-diacyl-3-acetins: optically active triglycerides from Euonymus verrucosus seed oil
  publication-title: Lipids
  doi: 10.1007/BF02533174
– volume: 15
  start-page: 648
  year: 2017
  ident: 10.1016/j.plantsci.2017.07.007_bib0275
  article-title: Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.12663
– volume: 280
  start-page: 507
  year: 1991
  ident: 10.1016/j.plantsci.2017.07.007_bib0130
  article-title: Ricinoleic acid biosynthesis and triacylglycerol assembly in microsomal preparations from developing castor-bean (Ricinus communis) endosperm
  publication-title: Biochem. J.
  doi: 10.1042/bj2800507
– volume: 6
  start-page: 819
  year: 2008
  ident: 10.1016/j.plantsci.2017.07.007_bib0235
  article-title: Metabolic engineering of hydroxy fatty acid production in plants: rcDGAT2 drives dramatic increases in ricinoleate levels in seed oil
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/j.1467-7652.2008.00361.x
– volume: 199-200
  start-page: 29
  year: 2013
  ident: 10.1016/j.plantsci.2017.07.007_bib0245
  article-title: The multigene family of lysophosphatidate acyltransferase (LPAT)-related enzymes in Ricinus communis: cloning and molecular characterization of two LPAT genes that are expressed in castor seeds
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2012.09.015
– volume: 19
  start-page: 119
  year: 1980
  ident: 10.1016/j.plantsci.2017.07.007_bib0030
  article-title: Structure and occurrence of unusual fatty acids in minor seed oils
  publication-title: Prog. Lipid Res.
  doi: 10.1016/0163-7827(80)90002-8
– volume: 158
  start-page: 1944
  year: 2012
  ident: 10.1016/j.plantsci.2017.07.007_bib0255
  article-title: The phosphatidylcholine diacylglycerol cholinephosphotransferase is required for efficient hydroxy fatty acid accumulation in transgenic Arabidopsis
  publication-title: Plant Physiol.
  doi: 10.1104/pp.111.192153
– volume: 17
  start-page: 1073
  year: 2005
  ident: 10.1016/j.plantsci.2017.07.007_bib0270
  article-title: Ubiquitous and endoplasmic reticulum-located lysophosphatidyl acyltransferase LPAT2, is essential for female but not male gametophyte development in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.104.030403
– volume: 168
  start-page: 36
  year: 2015
  ident: 10.1016/j.plantsci.2017.07.007_bib0265
  article-title: Reducing isozyme competition increases target fatty acid accumulation in seed triacylglycerols of Transgenic Arabidopsis
  publication-title: Plant Physiol.
  doi: 10.1104/pp.114.254110
– volume: 33
  start-page: 1217
  year: 1998
  ident: 10.1016/j.plantsci.2017.07.007_bib0145
  article-title: In vivo studies of the biosynthesis of vernolic acid in the seed of Vernonia galamensis
  publication-title: Lipids
  doi: 10.1007/s11745-998-0326-3
– volume: 58
  start-page: 1260
  year: 2017
  ident: 10.1016/j.plantsci.2017.07.007_bib0285
  article-title: Simultaneous targeting of multiple gene homeologues to alter seed oil production in Camelina sativa
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcx058
– volume: 9
  start-page: 1
  year: 2016
  ident: 10.1016/j.plantsci.2017.07.007_bib0040
  article-title: Castor oil: properties, uses, and optimization of processing parameters in commercial production
  publication-title: Lipid Insights
  doi: 10.4137/LPI.S40233
– volume: 7
  start-page: e30100
  year: 2012
  ident: 10.1016/j.plantsci.2017.07.007_bib0015
  article-title: Tissue-specific whole transcriptome sequencing in castor, directed at understanding triacylglycerol lipid biosynthetic pathways
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0030100
– volume: 92
  start-page: 6743
  year: 1995
  ident: 10.1016/j.plantsci.2017.07.007_bib0150
  article-title: An oleate 12-hydroxylase from Ricinus communis L. is a fatty acyl desaturase homolog
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.92.15.6743
– volume: 92
  start-page: 53
  year: 2005
  ident: 10.1016/j.plantsci.2017.07.007_bib0070
  article-title: Evaluation of new Lesquerella and Physaria (Brassicaceae) oilseed germplasm
  publication-title: Am. J. Bot.
  doi: 10.3732/ajb.92.1.53
– volume: 217
  start-page: 507
  year: 2003
  ident: 10.1016/j.plantsci.2017.07.007_bib0225
  article-title: Heterologous expression of a fatty acid hydroxylase gene in developing seeds of Arabidopsis thaliana
  publication-title: Planta
  doi: 10.1007/s00425-003-1015-6
– volume: 41
  start-page: 1879
  year: 1963
  ident: 10.1016/j.plantsci.2017.07.007_bib0045
  article-title: Formation of oil in seed of Ricinus communis L
  publication-title: Can. J. Biochem. Phys.
  doi: 10.1139/y63-214
– volume: 754
  start-page: 10
  year: 1983
  ident: 10.1016/j.plantsci.2017.07.007_bib0175
  article-title: Some evidence for the reversibility of the cholinephosphotransferase-catalyzed reaction in developing linseed cotyledons in vivo
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0005-2760(83)90076-0
– volume: 106
  start-page: 18837
  year: 2009
  ident: 10.1016/j.plantsci.2017.07.007_bib0170
  article-title: An enzyme regulating triacylglycerol composition is encoded by the ROD1 gene of Arabidopsis
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0908848106
– volume: 45
  start-page: 145
  year: 2010
  ident: 10.1016/j.plantsci.2017.07.007_bib0195
  article-title: DGAT1, DGAT2 and PDAT expression in seeds and other tissues of epoxy and hydroxy fatty acid accumulating plants
  publication-title: Lipids
  doi: 10.1007/s11745-010-3385-4
– volume: 54
  start-page: 640
  year: 2008
  ident: 10.1016/j.plantsci.2017.07.007_bib0035
  article-title: High-value oils from plants
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2008.03430.x
– volume: 282
  start-page: 31206
  year: 2007
  ident: 10.1016/j.plantsci.2017.07.007_bib0125
  article-title: Incorporation of newly synthesized fatty acids into cytosolic glycerolipids in pea leaves occurs via acyl editing
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M705447200
– volume: 45
  start-page: 847
  year: 2006
  ident: 10.1016/j.plantsci.2017.07.007_bib0220
  article-title: A high-throughput screen for genes from castor that boost hydroxy fatty acid accumulation in seed oils of transgenic Arabidopsis
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2005.02636.x
– volume: 68
  start-page: 387
  year: 2011
  ident: 10.1016/j.plantsci.2017.07.007_bib0240
  article-title: The pathway of triacylglycerol synthesis through phosphatidylcholine in Arabidopsis produces a bottleneck for the accumulation of unusual fatty acids in transgenic seeds
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2011.04693.x
– volume: 24
  start-page: 4652
  year: 2012
  ident: 10.1016/j.plantsci.2017.07.007_bib0165
  article-title: Metabolic interactions between the lands cycle and the Kennedy pathway of glycerolipid synthesis in arabidopsis developing seeds
  publication-title: Plant Cell
  doi: 10.1105/tpc.112.104604
– volume: 13
  start-page: 201
  year: 1998
  ident: 10.1016/j.plantsci.2017.07.007_bib0290
  article-title: A bifunctional oleate 12-hydroxylase: desaturase from Lesquerella fendleri
  publication-title: Plant J.
  doi: 10.1046/j.1365-313X.1998.00023.x
– volume: 13
  start-page: 858
  year: 2015
  ident: 10.1016/j.plantsci.2017.07.007_bib0080
  article-title: Metabolic engineering of oilseed crops top produce high levels of novel acetyl glyceride oils with reduced viscosity, freezing point and calorific value
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.12325
– volume: 113
  start-page: 933
  year: 1997
  ident: 10.1016/j.plantsci.2017.07.007_bib0205
  article-title: Accumulation of ricinoleic, lesquerolic, and densipolic acids in seeds of transgenic Arabidopsis plants that express a fatty acyl hydroxylase cDNA from castor bean
  publication-title: Plant Physiol.
  doi: 10.1104/pp.113.3.933
– volume: 18
  start-page: 2294
  year: 2006
  ident: 10.1016/j.plantsci.2017.07.007_bib0190
  article-title: Tung tree DGAT1 and DGAT2 have nonredundant functions in triacylglycerol biosynthesis and are localized to different subdomains of the endoplasmic reticulum
  publication-title: Plant Cell
  doi: 10.1105/tpc.106.043695
– volume: 288
  start-page: 36902
  year: 2013
  ident: 10.1016/j.plantsci.2017.07.007_bib0160
  article-title: Plant acyl-CoA: lysophosphatidylcholine acyltransferases (LPCATs) have different specificities in their forward and reverse reactions
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.521815
– volume: 17
  start-page: 507
  year: 2016
  ident: 10.1016/j.plantsci.2017.07.007_bib0250
  article-title: Expression of castor LPAT2 enhances ricinoleic acid content at the sn-2 position of triacylglycerols in Lesquerella seed
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms17040507
– volume: 289
  start-page: 17996
  year: 2014
  ident: 10.1016/j.plantsci.2017.07.007_bib0310
  article-title: FAD2 and FAD3 desaturases form heterodimers that facilitate metabolic channeling in vivo
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.572883
– volume: 76
  start-page: 138
  year: 2013
  ident: 10.1016/j.plantsci.2017.07.007_bib0295
  article-title: Imaging heterogeneity of membrane and storage lipids in transgenic Camelina sativa seeds with altered fatty acid profiles
  publication-title: Plant J.
  doi: 10.1111/tpj.12278
– volume: 72
  start-page: 559
  year: 1995
  ident: 10.1016/j.plantsci.2017.07.007_bib0075
  article-title: The triglyceride composition, structure, and presence of estolides in the oils of Lesquerella and related species
  publication-title: J. Am. Oil Chem. Soc.
  doi: 10.1007/BF02638857
– volume: 130
  start-page: 2027
  year: 2002
  ident: 10.1016/j.plantsci.2017.07.007_bib0215
  article-title: Molecular analysis of a bifunctional fatty acid conjugase/desaturase from tung. Implications for the evolution of plant fatty acid diversity
  publication-title: Plant Physiol.
  doi: 10.1104/pp.102.010835
– volume: 111
  start-page: 1204
  year: 2014
  ident: 10.1016/j.plantsci.2017.07.007_bib0230
  article-title: Fatty acid synthesis is inhibited by inefficient utilization of unusual fatty acids for glycerolipid assembly
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1318511111
– volume: 173
  start-page: 2081
  year: 2017
  ident: 10.1016/j.plantsci.2017.07.007_bib0300
  article-title: Two acyltransferases contribute differently to linolenic acid levels in seed oil
  publication-title: Plant Physiol.
  doi: 10.1104/pp.16.01865
– volume: 65
  start-page: 259
  year: 2015
  ident: 10.1016/j.plantsci.2017.07.007_bib0085
  article-title: Field production, purification and analysis of high-oleic acetyl-triacylglycerols from transgenic Camelina sativa
  publication-title: Ind. Crop Prod.
  doi: 10.1016/j.indcrop.2014.11.019
– volume: 16
  start-page: 358
  year: 2013
  ident: 10.1016/j.plantsci.2017.07.007_bib0110
  article-title: Biochemical pathways in seed oil synthesis
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2013.02.015
– volume: 16
  start-page: 230
  year: 2015
  ident: 10.1016/j.plantsci.2017.07.007_bib0020
  article-title: Identification of hydroxy fatty acid and triacylglycerol metabolism-related genes in lesquerella through seed transcriptome analysis
  publication-title: BMC Genomics
  doi: 10.1186/s12864-015-1413-8
– volume: 160
  start-page: 1530
  year: 2012
  ident: 10.1016/j.plantsci.2017.07.007_bib0155
  article-title: Acyl editing and headgroup exchange are the major mechanisms that direct polyunsaturated fatty acid flux into triacylglycerols
  publication-title: Plant Physiol.
  doi: 10.1104/pp.112.204438
– volume: 104
  start-page: 853
  year: 2012
  ident: 10.1016/j.plantsci.2017.07.007_bib0055
  article-title: A review on the challenges for increased production of castor
  publication-title: Agron. J.
  doi: 10.2134/agronj2011.0210
– volume: 107
  start-page: 9464
  year: 2010
  ident: 10.1016/j.plantsci.2017.07.007_bib0005
  article-title: A distinct DGAT with sn-3 acetyltransferase activity that synthesizes unusual, reduced-viscosity oils in Euonymus and transgenic seeds
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1001707107
– volume: 15
  start-page: 729
  year: 2016
  ident: 10.1016/j.plantsci.2017.07.007_bib0280
  article-title: Selective gene dosage by CRISPR-Cas9 genome editing in hexaploid Camelina sativa
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.12671
– volume: 11
  start-page: e0161
  year: 2013
  ident: 10.1016/j.plantsci.2017.07.007_bib0115
  article-title: Acyl-lipid metabolism
  publication-title: Arabidopsis Book
  doi: 10.1199/tab.0161
– volume: 26
  start-page: 773
  year: 2003
  ident: 10.1016/j.plantsci.2017.07.007_bib0050
  article-title: Identification and quantification of the molecular species of acylglycerols in castor oil by HPLC using ELSD
  publication-title: J. Liq. Chromatogr. Relat. Technol.
  doi: 10.1081/JLC-120018421
– volume: 86
  start-page: 322
  year: 2016
  ident: 10.1016/j.plantsci.2017.07.007_bib0010
  article-title: Identification of multiple lipid genes with modifications in expression and sequence associated with the evolution of hydroxy fatty acid accumulation in Physaria fendleri
  publication-title: Plant J.
  doi: 10.1111/tpj.13163
– volume: 30
  start-page: 70
  year: 2016
  ident: 10.1016/j.plantsci.2017.07.007_bib0025
  article-title: Advances and perspectives on the use of CRISPR/Cas9 systems in plant genomics research
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2016.01.007
– volume: 15
  start-page: 54
  year: 1976
  ident: 10.1016/j.plantsci.2017.07.007_bib0105
  article-title: Neopentyl polyol ester lubricants − bulk property optimization
  publication-title: Ind. Eng. Chem. Prod. Res. Dev.
– volume: 137
  start-page: 475
  year: 1967
  ident: 10.1016/j.plantsci.2017.07.007_bib0090
  article-title: Asymmetric triglycerides from Impatiens edgeworthii seed oil
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0005-2760(67)90128-2
– volume: 150
  start-page: 55
  year: 2009
  ident: 10.1016/j.plantsci.2017.07.007_bib0120
  article-title: Analysis of acyl fluxes through multiple pathways of triacylglycerol synthesis in developing soybean embryos
  publication-title: Plant Physiol.
  doi: 10.1104/pp.109.137737
– volume: 10
  start-page: 69
  year: 2017
  ident: 10.1016/j.plantsci.2017.07.007_bib0100
  article-title: Metabolic engineering of Saccharomyces cerevisiae to produce a reduced viscosity oil from lignocellulose
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-017-0751-y
– volume: 286
  start-page: 13115
  year: 2011
  ident: 10.1016/j.plantsci.2017.07.007_bib0185
  article-title: Functional and topological analysis of yeast acyl-CoA: diacylglycerol acyltransferase 2, an endoplasmic reticulum enzyme essential for triacylglycerol biosynthesis
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.204412
– volume: 8
  year: 2017
  ident: 10.1016/j.plantsci.2017.07.007_bib0060
  article-title: Investigation of plant species with identified seed oil fatty acids in chinese literature and analysis of five unsurveyed chinese endemic species
  publication-title: Front. Plant Sci.
– volume: 155
  start-page: 683
  year: 2011
  ident: 10.1016/j.plantsci.2017.07.007_bib0260
  article-title: Castor phospholipid: diacylglycerol acyltransferase facilitates efficient metabolism of hydroxy fatty acids in transgenic Arabidopsis
  publication-title: Plant Physiol.
  doi: 10.1104/pp.110.167239
– volume: 21
  start-page: 3885
  year: 2009
  ident: 10.1016/j.plantsci.2017.07.007_bib0180
  article-title: DGAT1 and PDAT1 acyltransferases have overlapping functions in Arabidopsis triacylglycerol biosynthesis and are essential for normal pollen and seed development
  publication-title: Plant Cell
  doi: 10.1105/tpc.109.071795
– volume: 67
  start-page: 2541
  year: 2006
  ident: 10.1016/j.plantsci.2017.07.007_bib0200
  article-title: Identification and functional expression of a type 2 acyl-CoA:diacylglycerol acyltransferase (DGAT2) in developing castor bean seeds which has high homology to the major triglyceride biosynthetic enzyme of fungi and animals
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2006.09.020
– volume: 67
  start-page: 1166
  year: 2006
  ident: 10.1016/j.plantsci.2017.07.007_bib0140
  article-title: Conjugated fatty acids accumulate to high levels in phospholipids of metabolically engineered soybean and Arabidopsis seeds
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2006.04.013
– volume: 96
  start-page: 12935
  year: 1999
  ident: 10.1016/j.plantsci.2017.07.007_bib0210
  article-title: Biosynthetic origin of conjugated double bonds: production of fatty acid components of high-value drying oils in transgenic soybean embryos
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.96.22.12935
– volume: 553
  start-page: 17
  year: 2014
  ident: 10.1016/j.plantsci.2017.07.007_bib0305
  article-title: Seed-specific expression of seven Arabidopsis promoters
  publication-title: Gene
  doi: 10.1016/j.gene.2014.09.051
– volume: 282
  start-page: 1315
  year: 1998
  ident: 10.1016/j.plantsci.2017.07.007_bib0135
  article-title: Catalytic plasticity of fatty acid modification enzymes underlying chemical diversity of plant lipids
  publication-title: Science
  doi: 10.1126/science.282.5392.1315
SSID ssj0002557
Score 2.3308735
SecondaryResourceType review_article
Snippet •Transgenic oilseeds can be engineered to synthesize unusual lipids.•Enhanced production of unusual lipids requires the expression of multiple enzymes.•The...
The plant kingdom produces a variety of fatty acid structures, many of which possess functional groups useful for industrial applications. The species that...
Not provided.
SourceID osti
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 126
SubjectTerms Acetyl-TAG
Biochemistry & Molecular Biology
Crops, Agricultural
enzymes
fatty acids
Fatty Acids - metabolism
genes
Hydroxy fatty acid
industrial applications
Lipid Metabolism
Metabolic Engineering
oilseed crops
Plant Oils - metabolism
Plant Sciences
Plants, Genetically Modified
seeds
Seeds - genetics
Seeds - metabolism
Synthetic Biology
Transgenic oilseed crop
transgenic plants
Triglycerides - metabolism
Unusual fatty acid
Title Review: Metabolic engineering of unusual lipids in the synthetic biology era
URI https://dx.doi.org/10.1016/j.plantsci.2017.07.007
https://www.ncbi.nlm.nih.gov/pubmed/28818368
https://www.proquest.com/docview/1930484209
https://www.proquest.com/docview/2000547849
https://www.osti.gov/biblio/1538745
Volume 263
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7RhUMvFVBalgXkSlzDhsSJHW4LKlqelxaJm2U7thS0Slbs5sClv52ZPLZUKuLAKUrksZyx55tP9swY4IhzF2ubuMBobQNupEabkz7Q6J219klkDZ3o3t6l03t-9ZA8rMF5nwtDYZUd9reY3qB192XcaXM8L4rxLyQrMuPofgTBMJXdXo_Q28sBrE8ur6d3K0BG1txmTado2yjwKlH48Xg-o3gTW1CUl2jqeNLNsv_3UYMKze5tKtq4pItN-NJxSTZph7sFa67cho2zCvne81e4abf9T9mtW-JMzwrL3N_ig6zyrC7rRY0dzIp5kS9YUTJkg2zxXOIDu2RdgSbmnvQO3F_8_H0-Dbq7EwLLRboM8kiLxDeZ0tZKE2bWI3cw2gt5Eus08Qatj6deGCeQcjgZ5iJHrLPeG2lkHn-DQVmVbheYFmEuM2QKCW0Y2UxiPwaJgeA-NiLPhpD02lK2KyxO91vMVB9B9qh6LSvSsgrpzFsMYbySm7elNd6VyPrJUP8sEoX4_67siGaP5Kg6rqUwIhQkwBc8GcKPflIV2hcdmujSVfVCIcFFkONRmL3dJmqYr5Ac23xvV8TqjyKJlChO5d4Hxj6Cz_TWxhDuw2D5VLsD5EJLcwifjv-cHHYr_gWlfgmN
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6hBYleUHmVLVCM1GvYNHFipzeKihbY3UtB4mbZji0FrZIVuznw7zuTx9JKRRx6ipR4LMf2fPPJngfAV85drG3iAqO1DbiRGnVO-kCjddbaJ5E1dKM7naXjB377mDxuwFUfC0NulR32t5jeoHX3ZtTN5mhRFKNfSFZkxtH8CIJhSru9yamo9QA2L2_uxrM1ICNrbqOmU9RtFPgjUPjpYjEnfxNbkJeXaPJ4UmXZf9uoQYVq9zYVbUzS9UfY6bgku2yHuwsbrtyDrR8V8r2XfZi0x_7f2dStcKXnhWXuNfkgqzyry3pZYwfzYlHkS1aUDNkgW76U-MAuWZegiblnfQAP1z_vr8ZBVzshsFykqyCPtEh8EyltrTRhZj1yB6O9kN9inSbeoPbx1AvjBFIOJ8Nc5Ih11nsjjczjQxiUVemOgGkR5jJDppDQgZHNJPZjkBgI7mMj8mwIST9bynaJxam-xVz1HmRPqp9lRbOsQrrzFkMYreUWbWqNdyWyfjHUX5tEIf6_K3tMq0dylB3XkhsRChLgC54M4bxfVIX6RZcmunRVvVRIcBHkeBRmb7eJGuYrJMc2n9odsf6jSCIlilP5-T_Gfgbb4_vpRE1uZnfH8IG-tP6EJzBYPdfuFHnRynzp9v1v5cwLcw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review%3A+Metabolic+engineering+of+unusual+lipids+in+the+synthetic+biology+era&rft.jtitle=Plant+science+%28Limerick%29&rft.au=Aznar-Moreno%2C+Jose+A&rft.au=Durrett%2C+Timothy+P&rft.date=2017-10-01&rft.eissn=1873-2259&rft.volume=263&rft.spage=126&rft_id=info:doi/10.1016%2Fj.plantsci.2017.07.007&rft_id=info%3Apmid%2F28818368&rft.externalDocID=28818368
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-9452&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-9452&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-9452&client=summon