Review: Metabolic engineering of unusual lipids in the synthetic biology era
•Transgenic oilseeds can be engineered to synthesize unusual lipids.•Enhanced production of unusual lipids requires the expression of multiple enzymes.•The interaction between endogenous and introduced pathways needs to be considered.•Eliminating competing endogenous enzymes can increase unusual lip...
Saved in:
Published in | Plant science (Limerick) Vol. 263; no. C; pp. 126 - 131 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Ireland
Elsevier B.V
01.10.2017
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0168-9452 1873-2259 1873-2259 |
DOI | 10.1016/j.plantsci.2017.07.007 |
Cover
Abstract | •Transgenic oilseeds can be engineered to synthesize unusual lipids.•Enhanced production of unusual lipids requires the expression of multiple enzymes.•The interaction between endogenous and introduced pathways needs to be considered.•Eliminating competing endogenous enzymes can increase unusual lipid accumulation.•Pathway segregation represents a strategy to enhance unusual lipid synthesis.
The plant kingdom produces a variety of fatty acid structures, many of which possess functional groups useful for industrial applications. The species that produce these unusual fatty acids are often not suitable for large scale commercial production. The ability to create genetically modified plants, together with emerging synthetic biology approaches, offers the potential to develop alternative oil seed crops capable of producing high levels of modified lipids. In some cases, by combining genes from different species, non-natural lipids with a targeted structure can be conceived. However, the expression of the biosynthetic enzymes responsible for the synthesis of unusual fatty acids typically results in poor accumulation of the desired product. An improved understanding of fatty acid flux from synthesis to storage revealed that specialized enzymes are needed to traffic unusual fatty acids. Co-expression of some of these additional enzymes has incrementally increased the levels of unusual fatty acids in transgenic seeds. Understanding how the introduced pathways interact with the endogenous pathways will be important for further enhancing the levels of unusual fatty acids in transgenic plants. Eliminating endogenous activities, as well as segregating the different pathways, represent strategies to further increase accumulation of unusual lipids. |
---|---|
AbstractList | The plant kingdom produces a variety of fatty acid structures, many of which possess functional groups useful for industrial applications. The species that produce these unusual fatty acids are often not suitable for large scale commercial production. The ability to create genetically modified plants, together with emerging synthetic biology approaches, offers the potential to develop alternative oil seed crops capable of producing high levels of modified lipids. In some cases, by combining genes from different species, non-natural lipids with a targeted structure can be conceived. However, the expression of the biosynthetic enzymes responsible for the synthesis of unusual fatty acids typically results in poor accumulation of the desired product. An improved understanding of fatty acid flux from synthesis to storage revealed that specialized enzymes are needed to traffic unusual fatty acids. Co-expression of some of these additional enzymes has incrementally increased the levels of unusual fatty acids in transgenic seeds. Understanding how the introduced pathways interact with the endogenous pathways will be important for further enhancing the levels of unusual fatty acids in transgenic plants. Eliminating endogenous activities, as well as segregating the different pathways, represent strategies to further increase accumulation of unusual lipids. Not provided. •Transgenic oilseeds can be engineered to synthesize unusual lipids.•Enhanced production of unusual lipids requires the expression of multiple enzymes.•The interaction between endogenous and introduced pathways needs to be considered.•Eliminating competing endogenous enzymes can increase unusual lipid accumulation.•Pathway segregation represents a strategy to enhance unusual lipid synthesis. The plant kingdom produces a variety of fatty acid structures, many of which possess functional groups useful for industrial applications. The species that produce these unusual fatty acids are often not suitable for large scale commercial production. The ability to create genetically modified plants, together with emerging synthetic biology approaches, offers the potential to develop alternative oil seed crops capable of producing high levels of modified lipids. In some cases, by combining genes from different species, non-natural lipids with a targeted structure can be conceived. However, the expression of the biosynthetic enzymes responsible for the synthesis of unusual fatty acids typically results in poor accumulation of the desired product. An improved understanding of fatty acid flux from synthesis to storage revealed that specialized enzymes are needed to traffic unusual fatty acids. Co-expression of some of these additional enzymes has incrementally increased the levels of unusual fatty acids in transgenic seeds. Understanding how the introduced pathways interact with the endogenous pathways will be important for further enhancing the levels of unusual fatty acids in transgenic plants. Eliminating endogenous activities, as well as segregating the different pathways, represent strategies to further increase accumulation of unusual lipids. The plant kingdom produces a variety of fatty acid structures, many of which possess functional groups useful for industrial applications. The species that produce these unusual fatty acids are often not suitable for large scale commercial production. The ability to create genetically modified plants, together with emerging synthetic biology approaches, offers the potential to develop alternative oil seed crops capable of producing high levels of modified lipids. In some cases, by combining genes from different species, non-natural lipids with a targeted structure can be conceived. However, the expression of the biosynthetic enzymes responsible for the synthesis of unusual fatty acids typically results in poor accumulation of the desired product. An improved understanding of fatty acid flux from synthesis to storage revealed that specialized enzymes are needed to traffic unusual fatty acids. Co-expression of some of these additional enzymes has incrementally increased the levels of unusual fatty acids in transgenic seeds. Understanding how the introduced pathways interact with the endogenous pathways will be important for further enhancing the levels of unusual fatty acids in transgenic plants. Eliminating endogenous activities, as well as segregating the different pathways, represent strategies to further increase accumulation of unusual lipids.The plant kingdom produces a variety of fatty acid structures, many of which possess functional groups useful for industrial applications. The species that produce these unusual fatty acids are often not suitable for large scale commercial production. The ability to create genetically modified plants, together with emerging synthetic biology approaches, offers the potential to develop alternative oil seed crops capable of producing high levels of modified lipids. In some cases, by combining genes from different species, non-natural lipids with a targeted structure can be conceived. However, the expression of the biosynthetic enzymes responsible for the synthesis of unusual fatty acids typically results in poor accumulation of the desired product. An improved understanding of fatty acid flux from synthesis to storage revealed that specialized enzymes are needed to traffic unusual fatty acids. Co-expression of some of these additional enzymes has incrementally increased the levels of unusual fatty acids in transgenic seeds. Understanding how the introduced pathways interact with the endogenous pathways will be important for further enhancing the levels of unusual fatty acids in transgenic plants. Eliminating endogenous activities, as well as segregating the different pathways, represent strategies to further increase accumulation of unusual lipids. |
Author | Aznar-Moreno, Jose A. Durrett, Timothy P. |
Author_xml | – sequence: 1 givenname: Jose A. surname: Aznar-Moreno fullname: Aznar-Moreno, Jose A. – sequence: 2 givenname: Timothy P. surname: Durrett fullname: Durrett, Timothy P. email: tdurrett@ksu.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28818368$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1538745$$D View this record in Osti.gov |
BookMark | eNqFkUuLFDEUhYOMOD2jf2EoXLmpNklVKilx4TD4ghZBdB3yuOlJU520SUrpf2-Knt64abhwN9-593DODboKMQBCdwSvCSbD2936MKlQsvFriglf4zqYP0MrInjXUsrGK7SqoGjHntFrdJPzDmNMGeMv0DUVgohuECu0-QF_PPx913yDonScvGkgbH0ASD5sm-iaOcx5VlMz-YO3ufGhKY_Q5GOoq1Rc-zjF7bGBpF6i505NGV497Vv069PHnw9f2s33z18f7jet6flQWksVZ666IcwYofFoHO-JVo4L0qmBOY1Z1w-Oa-AdYyCw5VZZa5zTQgvb3aLXp7sxFy9rBgXMo4khgCmSsE7wnlXozQk6pPh7hlzk3mcDU40N4pwlrQZYz0U_XkTJ2OFe9BQv6N0TOus9WHlIfq_SUZ4TrcD7E2BSzDmBk9WeKj6GkpSfJMFyKVDu5LlAuRQocR3Mq3z4T37-cFH44SSEGnytNC25QDBgfVpisdFfOvEPT365Sg |
CitedBy_id | crossref_primary_10_1007_s11101_021_09770_4 crossref_primary_10_1016_j_jchromb_2018_10_012 crossref_primary_10_3389_fpls_2019_01442 crossref_primary_10_1093_jxb_erab533 crossref_primary_10_1111_pbi_13014 crossref_primary_10_1002_pld3_67 crossref_primary_10_1007_s00709_020_01562_5 crossref_primary_10_1186_s12870_020_02441_0 crossref_primary_10_1016_j_jbc_2021_101396 crossref_primary_10_3389_fpls_2022_1079146 crossref_primary_10_1016_j_pbi_2020_03_007 crossref_primary_10_1016_j_indcrop_2020_112870 crossref_primary_10_1186_s13068_022_02120_2 crossref_primary_10_1007_s00497_018_0325_6 crossref_primary_10_1093_pcp_pcx177 |
Cites_doi | 10.2307/3393073 10.1007/BF02533174 10.1111/pbi.12663 10.1042/bj2800507 10.1111/j.1467-7652.2008.00361.x 10.1016/j.plantsci.2012.09.015 10.1016/0163-7827(80)90002-8 10.1104/pp.111.192153 10.1105/tpc.104.030403 10.1104/pp.114.254110 10.1007/s11745-998-0326-3 10.1093/pcp/pcx058 10.4137/LPI.S40233 10.1371/journal.pone.0030100 10.1073/pnas.92.15.6743 10.3732/ajb.92.1.53 10.1007/s00425-003-1015-6 10.1139/y63-214 10.1016/0005-2760(83)90076-0 10.1073/pnas.0908848106 10.1007/s11745-010-3385-4 10.1111/j.1365-313X.2008.03430.x 10.1074/jbc.M705447200 10.1111/j.1365-313X.2005.02636.x 10.1111/j.1365-313X.2011.04693.x 10.1105/tpc.112.104604 10.1046/j.1365-313X.1998.00023.x 10.1111/pbi.12325 10.1104/pp.113.3.933 10.1105/tpc.106.043695 10.1074/jbc.M113.521815 10.3390/ijms17040507 10.1074/jbc.M114.572883 10.1111/tpj.12278 10.1007/BF02638857 10.1104/pp.102.010835 10.1073/pnas.1318511111 10.1104/pp.16.01865 10.1016/j.indcrop.2014.11.019 10.1016/j.pbi.2013.02.015 10.1186/s12864-015-1413-8 10.1104/pp.112.204438 10.2134/agronj2011.0210 10.1073/pnas.1001707107 10.1111/pbi.12671 10.1199/tab.0161 10.1081/JLC-120018421 10.1111/tpj.13163 10.1016/j.pbi.2016.01.007 10.1016/0005-2760(67)90128-2 10.1104/pp.109.137737 10.1186/s13068-017-0751-y 10.1074/jbc.M110.204412 10.1104/pp.110.167239 10.1105/tpc.109.071795 10.1016/j.phytochem.2006.09.020 10.1016/j.phytochem.2006.04.013 10.1073/pnas.96.22.12935 10.1016/j.gene.2014.09.051 10.1126/science.282.5392.1315 |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. Copyright © 2017 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2017 Elsevier B.V. – notice: Copyright © 2017 Elsevier B.V. All rights reserved. |
CorporateAuthor | Colorado State Univ., Fort Collins, CO (United States) |
CorporateAuthor_xml | – name: Colorado State Univ., Fort Collins, CO (United States) |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 OTOTI |
DOI | 10.1016/j.plantsci.2017.07.007 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic OSTI.GOV |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1873-2259 |
EndPage | 131 |
ExternalDocumentID | 1538745 28818368 10_1016_j_plantsci_2017_07_007 S0168945217303606 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M .~1 0R~ 123 1B1 1RT 1~. 29O 4.4 457 5VS 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFRF ABGRD ABGSF ABJNI ABLJU ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADQTV ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HLW HVGLF HZ~ IHE J1W K-O KOM LW9 LX3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SBG SCC SCU SDF SDG SDP SES SEW SPCBC SSA SSU SSZ T5K TN5 WH7 WUQ ZCG ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EFKBS EIF NPM 7X8 ACLOT ~HD 7S9 L.6 AALMO AAPBV ABPIF ABPTK ABQIS OTOTI |
ID | FETCH-LOGICAL-c476t-d2a75f00015cc8b09cf741baf7813a65fb05346f7be7355e80d7daddcffb8b8d3 |
IEDL.DBID | AIKHN |
ISSN | 0168-9452 1873-2259 |
IngestDate | Fri May 19 02:19:07 EDT 2023 Sat Sep 27 19:38:46 EDT 2025 Thu Sep 25 08:44:45 EDT 2025 Mon Jul 21 05:55:53 EDT 2025 Tue Jul 01 00:25:25 EDT 2025 Thu Apr 24 22:56:20 EDT 2025 Fri Feb 23 02:28:50 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | C |
Keywords | Acetyl-TAG Synthetic biology Unusual fatty acid Hydroxy fatty acid Transgenic oilseed crop |
Language | English |
License | Copyright © 2017 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c476t-d2a75f00015cc8b09cf741baf7813a65fb05346f7be7355e80d7daddcffb8b8d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 USDOE Office of Science (SC) SC0012459 |
OpenAccessLink | https://www.osti.gov/biblio/1549582 |
PMID | 28818368 |
PQID | 1930484209 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | osti_scitechconnect_1538745 proquest_miscellaneous_2000547849 proquest_miscellaneous_1930484209 pubmed_primary_28818368 crossref_citationtrail_10_1016_j_plantsci_2017_07_007 crossref_primary_10_1016_j_plantsci_2017_07_007 elsevier_sciencedirect_doi_10_1016_j_plantsci_2017_07_007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2017 2017-10-00 2017-Oct 20171001 2017-10-01 |
PublicationDateYYYYMMDD | 2017-10-01 |
PublicationDate_xml | – month: 10 year: 2017 text: October 2017 |
PublicationDecade | 2010 |
PublicationPlace | Ireland |
PublicationPlace_xml | – name: Ireland – name: United States |
PublicationTitle | Plant science (Limerick) |
PublicationTitleAlternate | Plant Sci |
PublicationYear | 2017 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | van de Loo, Broun, Turner, Somerville (bib0150) 1995; 92 Badami, Patil (bib0030) 1980; 19 Liu (bib0080) 2015; 13 Durrett (bib0005) 2010; 107 Brown (bib0015) 2012; 7 Li (bib0060) 2017; 8 Arroyo-Caro (bib0245) 2013; 199-200 Lou, Schwender, Shanklin (bib0310) 2014; 289 Lin, Turner, Liao, McKeon (bib0050) 2003; 26 Salywon, Dierig, Rebman, de Rodriguez (bib0070) 2005; 92 Bates (bib0230) 2014; 111 Cahoon (bib0210) 1999; 96 Jiang (bib0275) 2017; 15 Canvin (bib0045) 1963; 41 Chen (bib0250) 2016; 17 Liu, Siloto, Snyder, Weselake (bib0185) 2011; 286 Dyer (bib0215) 2002; 130 Hu, Ren, Lu (bib0255) 2012; 158 Horn (bib0295) 2013; 76 Li, Yu, Hildebrand (bib0195) 2010; 45 Horn (bib0010) 2016; 86 Shockey (bib0190) 2006; 18 Kleiman, Miller, Earle, Wolff (bib0095) 1967; 2 Bates, Stymne, Ohlrogge (bib0110) 2013; 16 Liu, Hu, Palla, Tuskan, Yang (bib0025) 2016; 30 Al-Shehbaz, O'Kane (bib0065) 2002; 12 Broun, Somerville (bib0205) 1997; 113 Li-Beisson (bib0115) 2013; 11 Broun, Shanklin, Whittle, Somerville (bib0135) 1998; 282 Bates, Durrett, Ohlrogge, Pollard (bib0120) 2009; 150 Lu, Xin, Ren, Miquel, Browse (bib0170) 2009; 106 Hayes, Kleiman, Phillips (bib0075) 1995; 72 Bates, Ohlrogge, Pollard (bib0125) 2007; 282 Burgal (bib0235) 2008; 6 Bates (bib0155) 2012; 160 Broun, Boddupalli, Somerville (bib0290) 1998; 13 Wang (bib0165) 2012; 24 Jeong, Choi, Shin, Bae, Shin (bib0305) 2014; 553 Bafor, Smith, Jonsson, Stobart, Stymne (bib0130) 1991; 280 Lu, Fulda, Wallis, Browse (bib0220) 2006; 45 Smith, Moon, Chowrira, Kunst (bib0225) 2003; 217 Bagby, Smith (bib0090) 1967; 137 Aznar Moreno, Durrett (bib0285) 2017; 58 Zhang, Fan, Taylor, Ohlrogge (bib0180) 2009; 21 Marmon (bib0300) 2017; 173 Kim, Chen (bib0020) 2015; 16 van Erp, Bates, Burgal, Shockey, Browse (bib0260) 2011; 155 Lager (bib0160) 2013; 288 Morineau (bib0280) 2016; 15 Cahoon (bib0140) 2006; 67 Liu, Hammond, Nikolau (bib0145) 1998; 33 Patel, Dumancas, Kasi Viswanath, Maples, Subong (bib0040) 2016; 9 Niedzielski (bib0105) 1976; 15 Bates, Browse (bib0240) 2011; 68 van Erp, Shockey, Zhang, Adhikari, Browse (bib0265) 2015; 168 Liu (bib0085) 2015; 65 Dyer, Stymne, Green, Carlsson (bib0035) 2008; 54 Severino (bib0055) 2012; 104 Kroon, Wei, Simon, Slabas (bib0200) 2006; 67 Tran (bib0100) 2017; 10 Slack, Campbell, Browse, Roughan (bib0175) 1983; 754 Kim, Li, Huang (bib0270) 2005; 17 Niedzielski (10.1016/j.plantsci.2017.07.007_bib0105) 1976; 15 Broun (10.1016/j.plantsci.2017.07.007_bib0135) 1998; 282 Bates (10.1016/j.plantsci.2017.07.007_bib0155) 2012; 160 Hu (10.1016/j.plantsci.2017.07.007_bib0255) 2012; 158 Cahoon (10.1016/j.plantsci.2017.07.007_bib0140) 2006; 67 Morineau (10.1016/j.plantsci.2017.07.007_bib0280) 2016; 15 Li (10.1016/j.plantsci.2017.07.007_bib0195) 2010; 45 Chen (10.1016/j.plantsci.2017.07.007_bib0250) 2016; 17 Burgal (10.1016/j.plantsci.2017.07.007_bib0235) 2008; 6 Kim (10.1016/j.plantsci.2017.07.007_bib0270) 2005; 17 Li (10.1016/j.plantsci.2017.07.007_bib0060) 2017; 8 Smith (10.1016/j.plantsci.2017.07.007_bib0225) 2003; 217 Aznar Moreno (10.1016/j.plantsci.2017.07.007_bib0285) 2017; 58 Broun (10.1016/j.plantsci.2017.07.007_bib0290) 1998; 13 Kim (10.1016/j.plantsci.2017.07.007_bib0020) 2015; 16 Liu (10.1016/j.plantsci.2017.07.007_bib0080) 2015; 13 Jeong (10.1016/j.plantsci.2017.07.007_bib0305) 2014; 553 Severino (10.1016/j.plantsci.2017.07.007_bib0055) 2012; 104 Tran (10.1016/j.plantsci.2017.07.007_bib0100) 2017; 10 Al-Shehbaz (10.1016/j.plantsci.2017.07.007_bib0065) 2002; 12 Lou (10.1016/j.plantsci.2017.07.007_bib0310) 2014; 289 van Erp (10.1016/j.plantsci.2017.07.007_bib0265) 2015; 168 Badami (10.1016/j.plantsci.2017.07.007_bib0030) 1980; 19 Horn (10.1016/j.plantsci.2017.07.007_bib0010) 2016; 86 Horn (10.1016/j.plantsci.2017.07.007_bib0295) 2013; 76 Cahoon (10.1016/j.plantsci.2017.07.007_bib0210) 1999; 96 Hayes (10.1016/j.plantsci.2017.07.007_bib0075) 1995; 72 Liu (10.1016/j.plantsci.2017.07.007_bib0185) 2011; 286 Lin (10.1016/j.plantsci.2017.07.007_bib0050) 2003; 26 Bagby (10.1016/j.plantsci.2017.07.007_bib0090) 1967; 137 Bafor (10.1016/j.plantsci.2017.07.007_bib0130) 1991; 280 Dyer (10.1016/j.plantsci.2017.07.007_bib0215) 2002; 130 Liu (10.1016/j.plantsci.2017.07.007_bib0085) 2015; 65 Brown (10.1016/j.plantsci.2017.07.007_bib0015) 2012; 7 Salywon (10.1016/j.plantsci.2017.07.007_bib0070) 2005; 92 Li-Beisson (10.1016/j.plantsci.2017.07.007_bib0115) 2013; 11 Broun (10.1016/j.plantsci.2017.07.007_bib0205) 1997; 113 Bates (10.1016/j.plantsci.2017.07.007_bib0125) 2007; 282 Jiang (10.1016/j.plantsci.2017.07.007_bib0275) 2017; 15 Arroyo-Caro (10.1016/j.plantsci.2017.07.007_bib0245) 2013; 199-200 Wang (10.1016/j.plantsci.2017.07.007_bib0165) 2012; 24 Lu (10.1016/j.plantsci.2017.07.007_bib0220) 2006; 45 Marmon (10.1016/j.plantsci.2017.07.007_bib0300) 2017; 173 Shockey (10.1016/j.plantsci.2017.07.007_bib0190) 2006; 18 Bates (10.1016/j.plantsci.2017.07.007_bib0110) 2013; 16 Canvin (10.1016/j.plantsci.2017.07.007_bib0045) 1963; 41 van de Loo (10.1016/j.plantsci.2017.07.007_bib0150) 1995; 92 Durrett (10.1016/j.plantsci.2017.07.007_bib0005) 2010; 107 Slack (10.1016/j.plantsci.2017.07.007_bib0175) 1983; 754 Dyer (10.1016/j.plantsci.2017.07.007_bib0035) 2008; 54 Bates (10.1016/j.plantsci.2017.07.007_bib0230) 2014; 111 Kroon (10.1016/j.plantsci.2017.07.007_bib0200) 2006; 67 Patel (10.1016/j.plantsci.2017.07.007_bib0040) 2016; 9 Bates (10.1016/j.plantsci.2017.07.007_bib0240) 2011; 68 Kleiman (10.1016/j.plantsci.2017.07.007_bib0095) 1967; 2 Liu (10.1016/j.plantsci.2017.07.007_bib0145) 1998; 33 Lager (10.1016/j.plantsci.2017.07.007_bib0160) 2013; 288 Liu (10.1016/j.plantsci.2017.07.007_bib0025) 2016; 30 Bates (10.1016/j.plantsci.2017.07.007_bib0120) 2009; 150 Lu (10.1016/j.plantsci.2017.07.007_bib0170) 2009; 106 van Erp (10.1016/j.plantsci.2017.07.007_bib0260) 2011; 155 Zhang (10.1016/j.plantsci.2017.07.007_bib0180) 2009; 21 |
References_xml | – volume: 21 start-page: 3885 year: 2009 end-page: 3901 ident: bib0180 article-title: DGAT1 and PDAT1 acyltransferases have overlapping functions in publication-title: Plant Cell – volume: 282 start-page: 31206 year: 2007 end-page: 31216 ident: bib0125 article-title: Incorporation of newly synthesized fatty acids into cytosolic glycerolipids in pea leaves occurs via acyl editing publication-title: J. Biol. Chem. – volume: 168 start-page: 36 year: 2015 end-page: 46 ident: bib0265 article-title: Reducing isozyme competition increases target fatty acid accumulation in seed triacylglycerols of Transgenic Arabidopsis publication-title: Plant Physiol. – volume: 106 start-page: 18837 year: 2009 end-page: 18842 ident: bib0170 article-title: An enzyme regulating triacylglycerol composition is encoded by the publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 113 start-page: 933 year: 1997 end-page: 942 ident: bib0205 article-title: Accumulation of ricinoleic, lesquerolic, and densipolic acids in seeds of transgenic Arabidopsis plants that express a fatty acyl hydroxylase cDNA from castor bean publication-title: Plant Physiol. – volume: 16 start-page: 358 year: 2013 end-page: 364 ident: bib0110 article-title: Biochemical pathways in seed oil synthesis publication-title: Curr. Opin. Plant Biol. – volume: 76 start-page: 138 year: 2013 end-page: 150 ident: bib0295 article-title: Imaging heterogeneity of membrane and storage lipids in transgenic publication-title: Plant J. – volume: 130 start-page: 2027 year: 2002 end-page: 2038 ident: bib0215 article-title: Molecular analysis of a bifunctional fatty acid conjugase/desaturase from tung. Implications for the evolution of plant fatty acid diversity publication-title: Plant Physiol. – volume: 45 start-page: 847 year: 2006 end-page: 856 ident: bib0220 article-title: A high-throughput screen for genes from castor that boost hydroxy fatty acid accumulation in seed oils of transgenic Arabidopsis publication-title: Plant J. – volume: 158 start-page: 1944 year: 2012 end-page: 1954 ident: bib0255 article-title: The phosphatidylcholine diacylglycerol cholinephosphotransferase is required for efficient hydroxy fatty acid accumulation in transgenic Arabidopsis publication-title: Plant Physiol. – volume: 19 start-page: 119 year: 1980 end-page: 153 ident: bib0030 article-title: Structure and occurrence of unusual fatty acids in minor seed oils publication-title: Prog. Lipid Res. – volume: 15 start-page: 729 year: 2016 end-page: 739 ident: bib0280 article-title: Selective gene dosage by CRISPR-Cas9 genome editing in hexaploid publication-title: Plant Biotechnol. J. – volume: 6 start-page: 819 year: 2008 end-page: 831 ident: bib0235 article-title: Metabolic engineering of hydroxy fatty acid production in plants: rcDGAT2 drives dramatic increases in ricinoleate levels in seed oil publication-title: Plant Biotechnol. J. – volume: 58 start-page: 1260 year: 2017 end-page: 1267 ident: bib0285 article-title: Simultaneous targeting of multiple gene homeologues to alter seed oil production in publication-title: Plant Cell Physiol. – volume: 24 start-page: 4652 year: 2012 end-page: 4669 ident: bib0165 article-title: Metabolic interactions between the lands cycle and the Kennedy pathway of glycerolipid synthesis in arabidopsis developing seeds publication-title: Plant Cell – volume: 137 start-page: 475 year: 1967 end-page: 477 ident: bib0090 article-title: Asymmetric triglycerides from publication-title: Biochim. Biophys. Acta – volume: 45 start-page: 145 year: 2010 end-page: 157 ident: bib0195 article-title: DGAT1, DGAT2 and PDAT expression in seeds and other tissues of epoxy and hydroxy fatty acid accumulating plants publication-title: Lipids – volume: 17 start-page: 507 year: 2016 ident: bib0250 article-title: Expression of castor LPAT2 enhances ricinoleic acid content at the publication-title: Int. J. Mol. Sci. – volume: 65 start-page: 259 year: 2015 end-page: 268 ident: bib0085 article-title: Field production, purification and analysis of high-oleic acetyl-triacylglycerols from transgenic publication-title: Ind. Crop Prod. – volume: 107 start-page: 9464 year: 2010 end-page: 9469 ident: bib0005 article-title: A distinct DGAT with publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 54 start-page: 640 year: 2008 end-page: 655 ident: bib0035 article-title: High-value oils from plants publication-title: Plant J. – volume: 15 start-page: 648 year: 2017 end-page: 657 ident: bib0275 article-title: Significant enhancement of fatty acid composition in seeds of the allohexaploid, publication-title: Plant Biotechnol. J. – volume: 286 start-page: 13115 year: 2011 end-page: 13126 ident: bib0185 article-title: Functional and topological analysis of yeast acyl-CoA: diacylglycerol acyltransferase 2, an endoplasmic reticulum enzyme essential for triacylglycerol biosynthesis publication-title: J. Biol. Chem. – volume: 92 start-page: 53 year: 2005 end-page: 62 ident: bib0070 article-title: Evaluation of new publication-title: Am. J. Bot. – volume: 68 start-page: 387 year: 2011 end-page: 399 ident: bib0240 article-title: The pathway of triacylglycerol synthesis through phosphatidylcholine in Arabidopsis produces a bottleneck for the accumulation of unusual fatty acids in transgenic seeds publication-title: Plant J. – volume: 173 start-page: 2081 year: 2017 end-page: 2095 ident: bib0300 article-title: Two acyltransferases contribute differently to linolenic acid levels in seed oil publication-title: Plant Physiol. – volume: 155 start-page: 683 year: 2011 end-page: 693 ident: bib0260 article-title: Castor phospholipid: diacylglycerol acyltransferase facilitates efficient metabolism of hydroxy fatty acids in transgenic Arabidopsis publication-title: Plant Physiol. – volume: 160 start-page: 1530 year: 2012 end-page: 1539 ident: bib0155 article-title: Acyl editing and headgroup exchange are the major mechanisms that direct polyunsaturated fatty acid flux into triacylglycerols publication-title: Plant Physiol. – volume: 104 start-page: 853 year: 2012 end-page: 880 ident: bib0055 article-title: A review on the challenges for increased production of castor publication-title: Agron. J. – volume: 282 start-page: 1315 year: 1998 end-page: 1317 ident: bib0135 article-title: Catalytic plasticity of fatty acid modification enzymes underlying chemical diversity of plant lipids publication-title: Science – volume: 18 start-page: 2294 year: 2006 end-page: 2313 ident: bib0190 article-title: Tung tree DGAT1 and DGAT2 have nonredundant functions in triacylglycerol biosynthesis and are localized to different subdomains of the endoplasmic reticulum publication-title: Plant Cell – volume: 7 start-page: e30100 year: 2012 ident: bib0015 article-title: Tissue-specific whole transcriptome sequencing in castor, directed at understanding triacylglycerol lipid biosynthetic pathways publication-title: PLoS One – volume: 9 start-page: 1 year: 2016 end-page: 12 ident: bib0040 article-title: Castor oil: properties, uses, and optimization of processing parameters in commercial production publication-title: Lipid Insights – volume: 67 start-page: 1166 year: 2006 end-page: 1176 ident: bib0140 article-title: Conjugated fatty acids accumulate to high levels in phospholipids of metabolically engineered soybean and Arabidopsis seeds publication-title: Phytochemistry – volume: 16 start-page: 230 year: 2015 ident: bib0020 article-title: Identification of hydroxy fatty acid and triacylglycerol metabolism-related genes in lesquerella through seed transcriptome analysis publication-title: BMC Genomics – volume: 199-200 start-page: 29 year: 2013 end-page: 40 ident: bib0245 article-title: The multigene family of lysophosphatidate acyltransferase (LPAT)-related enzymes in publication-title: Plant Sci. – volume: 17 start-page: 1073 year: 2005 end-page: 1089 ident: bib0270 article-title: Ubiquitous and endoplasmic reticulum-located lysophosphatidyl acyltransferase LPAT2, is essential for female but not male gametophyte development in Arabidopsis publication-title: Plant Cell – volume: 72 start-page: 559 year: 1995 end-page: 569 ident: bib0075 article-title: The triglyceride composition, structure, and presence of estolides in the oils of Lesquerella and related species publication-title: J. Am. Oil Chem. Soc. – volume: 33 start-page: 1217 year: 1998 end-page: 1221 ident: bib0145 article-title: In vivo studies of the biosynthesis of vernolic acid in the seed of publication-title: Lipids – volume: 96 start-page: 12935 year: 1999 end-page: 12940 ident: bib0210 article-title: Biosynthetic origin of conjugated double bonds: production of fatty acid components of high-value drying oils in transgenic soybean embryos publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 217 start-page: 507 year: 2003 end-page: 516 ident: bib0225 article-title: Heterologous expression of a fatty acid hydroxylase gene in developing seeds of publication-title: Planta – volume: 15 start-page: 54 year: 1976 end-page: 58 ident: bib0105 article-title: Neopentyl polyol ester lubricants − bulk property optimization publication-title: Ind. Eng. Chem. Prod. Res. Dev. – volume: 553 start-page: 17 year: 2014 end-page: 23 ident: bib0305 article-title: Seed-specific expression of seven Arabidopsis promoters publication-title: Gene – volume: 289 start-page: 17996 year: 2014 end-page: 18007 ident: bib0310 article-title: FAD2 and FAD3 desaturases form heterodimers that facilitate metabolic channeling in vivo publication-title: J. Biol. Chem. – volume: 86 start-page: 322 year: 2016 end-page: 348 ident: bib0010 article-title: Identification of multiple lipid genes with modifications in expression and sequence associated with the evolution of hydroxy fatty acid accumulation in publication-title: Plant J. – volume: 26 start-page: 773 year: 2003 end-page: 780 ident: bib0050 article-title: Identification and quantification of the molecular species of acylglycerols in castor oil by HPLC using ELSD publication-title: J. Liq. Chromatogr. Relat. Technol. – volume: 288 start-page: 36902 year: 2013 end-page: 36914 ident: bib0160 article-title: Plant acyl-CoA: lysophosphatidylcholine acyltransferases (LPCATs) have different specificities in their forward and reverse reactions publication-title: J. Biol. Chem. – volume: 10 start-page: 69 year: 2017 ident: bib0100 article-title: Metabolic engineering of publication-title: Biotechnol. Biofuels – volume: 150 start-page: 55 year: 2009 end-page: 72 ident: bib0120 article-title: Analysis of acyl fluxes through multiple pathways of triacylglycerol synthesis in developing soybean embryos publication-title: Plant Physiol. – volume: 8 year: 2017 ident: bib0060 article-title: Investigation of plant species with identified seed oil fatty acids in chinese literature and analysis of five unsurveyed chinese endemic species publication-title: Front. Plant Sci. – volume: 754 start-page: 10 year: 1983 end-page: 20 ident: bib0175 article-title: Some evidence for the reversibility of the cholinephosphotransferase-catalyzed reaction in developing linseed cotyledons in vivo publication-title: Biochim. Biophys. Acta – volume: 111 start-page: 1204 year: 2014 end-page: 1209 ident: bib0230 article-title: Fatty acid synthesis is inhibited by inefficient utilization of unusual fatty acids for glycerolipid assembly publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 30 start-page: 70 year: 2016 end-page: 77 ident: bib0025 article-title: Advances and perspectives on the use of CRISPR/Cas9 systems in plant genomics research publication-title: Curr. Opin. Plant Biol. – volume: 11 start-page: e0161 year: 2013 ident: bib0115 article-title: Acyl-lipid metabolism publication-title: Arabidopsis Book – volume: 41 start-page: 1879 year: 1963 ident: bib0045 article-title: Formation of oil in seed of publication-title: Can. J. Biochem. Phys. – volume: 280 start-page: 507 year: 1991 end-page: 514 ident: bib0130 article-title: Ricinoleic acid biosynthesis and triacylglycerol assembly in microsomal preparations from developing castor-bean ( publication-title: Biochem. J. – volume: 92 start-page: 6743 year: 1995 end-page: 6747 ident: bib0150 article-title: An oleate 12-hydroxylase from publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 12 start-page: 319 year: 2002 end-page: 329 ident: bib0065 article-title: is united with publication-title: Novon – volume: 2 start-page: 473 year: 1967 end-page: 478 ident: bib0095 article-title: ( publication-title: Lipids – volume: 13 start-page: 858 year: 2015 end-page: 865 ident: bib0080 article-title: Metabolic engineering of oilseed crops top produce high levels of novel acetyl glyceride oils with reduced viscosity, freezing point and calorific value publication-title: Plant Biotechnol. J. – volume: 67 start-page: 2541 year: 2006 end-page: 2549 ident: bib0200 article-title: Identification and functional expression of a type 2 acyl-CoA:diacylglycerol acyltransferase (DGAT2) in developing castor bean seeds which has high homology to the major triglyceride biosynthetic enzyme of fungi and animals publication-title: Phytochemistry – volume: 13 start-page: 201 year: 1998 end-page: 210 ident: bib0290 article-title: A bifunctional oleate 12-hydroxylase: desaturase from publication-title: Plant J. – volume: 12 start-page: 319 year: 2002 ident: 10.1016/j.plantsci.2017.07.007_bib0065 article-title: Lesquerella is united with Physaria (Brassicaceae) publication-title: Novon doi: 10.2307/3393073 – volume: 2 start-page: 473 year: 1967 ident: 10.1016/j.plantsci.2017.07.007_bib0095 article-title: (S)-1,2-diacyl-3-acetins: optically active triglycerides from Euonymus verrucosus seed oil publication-title: Lipids doi: 10.1007/BF02533174 – volume: 15 start-page: 648 year: 2017 ident: 10.1016/j.plantsci.2017.07.007_bib0275 article-title: Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.12663 – volume: 280 start-page: 507 year: 1991 ident: 10.1016/j.plantsci.2017.07.007_bib0130 article-title: Ricinoleic acid biosynthesis and triacylglycerol assembly in microsomal preparations from developing castor-bean (Ricinus communis) endosperm publication-title: Biochem. J. doi: 10.1042/bj2800507 – volume: 6 start-page: 819 year: 2008 ident: 10.1016/j.plantsci.2017.07.007_bib0235 article-title: Metabolic engineering of hydroxy fatty acid production in plants: rcDGAT2 drives dramatic increases in ricinoleate levels in seed oil publication-title: Plant Biotechnol. J. doi: 10.1111/j.1467-7652.2008.00361.x – volume: 199-200 start-page: 29 year: 2013 ident: 10.1016/j.plantsci.2017.07.007_bib0245 article-title: The multigene family of lysophosphatidate acyltransferase (LPAT)-related enzymes in Ricinus communis: cloning and molecular characterization of two LPAT genes that are expressed in castor seeds publication-title: Plant Sci. doi: 10.1016/j.plantsci.2012.09.015 – volume: 19 start-page: 119 year: 1980 ident: 10.1016/j.plantsci.2017.07.007_bib0030 article-title: Structure and occurrence of unusual fatty acids in minor seed oils publication-title: Prog. Lipid Res. doi: 10.1016/0163-7827(80)90002-8 – volume: 158 start-page: 1944 year: 2012 ident: 10.1016/j.plantsci.2017.07.007_bib0255 article-title: The phosphatidylcholine diacylglycerol cholinephosphotransferase is required for efficient hydroxy fatty acid accumulation in transgenic Arabidopsis publication-title: Plant Physiol. doi: 10.1104/pp.111.192153 – volume: 17 start-page: 1073 year: 2005 ident: 10.1016/j.plantsci.2017.07.007_bib0270 article-title: Ubiquitous and endoplasmic reticulum-located lysophosphatidyl acyltransferase LPAT2, is essential for female but not male gametophyte development in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.104.030403 – volume: 168 start-page: 36 year: 2015 ident: 10.1016/j.plantsci.2017.07.007_bib0265 article-title: Reducing isozyme competition increases target fatty acid accumulation in seed triacylglycerols of Transgenic Arabidopsis publication-title: Plant Physiol. doi: 10.1104/pp.114.254110 – volume: 33 start-page: 1217 year: 1998 ident: 10.1016/j.plantsci.2017.07.007_bib0145 article-title: In vivo studies of the biosynthesis of vernolic acid in the seed of Vernonia galamensis publication-title: Lipids doi: 10.1007/s11745-998-0326-3 – volume: 58 start-page: 1260 year: 2017 ident: 10.1016/j.plantsci.2017.07.007_bib0285 article-title: Simultaneous targeting of multiple gene homeologues to alter seed oil production in Camelina sativa publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcx058 – volume: 9 start-page: 1 year: 2016 ident: 10.1016/j.plantsci.2017.07.007_bib0040 article-title: Castor oil: properties, uses, and optimization of processing parameters in commercial production publication-title: Lipid Insights doi: 10.4137/LPI.S40233 – volume: 7 start-page: e30100 year: 2012 ident: 10.1016/j.plantsci.2017.07.007_bib0015 article-title: Tissue-specific whole transcriptome sequencing in castor, directed at understanding triacylglycerol lipid biosynthetic pathways publication-title: PLoS One doi: 10.1371/journal.pone.0030100 – volume: 92 start-page: 6743 year: 1995 ident: 10.1016/j.plantsci.2017.07.007_bib0150 article-title: An oleate 12-hydroxylase from Ricinus communis L. is a fatty acyl desaturase homolog publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.92.15.6743 – volume: 92 start-page: 53 year: 2005 ident: 10.1016/j.plantsci.2017.07.007_bib0070 article-title: Evaluation of new Lesquerella and Physaria (Brassicaceae) oilseed germplasm publication-title: Am. J. Bot. doi: 10.3732/ajb.92.1.53 – volume: 217 start-page: 507 year: 2003 ident: 10.1016/j.plantsci.2017.07.007_bib0225 article-title: Heterologous expression of a fatty acid hydroxylase gene in developing seeds of Arabidopsis thaliana publication-title: Planta doi: 10.1007/s00425-003-1015-6 – volume: 41 start-page: 1879 year: 1963 ident: 10.1016/j.plantsci.2017.07.007_bib0045 article-title: Formation of oil in seed of Ricinus communis L publication-title: Can. J. Biochem. Phys. doi: 10.1139/y63-214 – volume: 754 start-page: 10 year: 1983 ident: 10.1016/j.plantsci.2017.07.007_bib0175 article-title: Some evidence for the reversibility of the cholinephosphotransferase-catalyzed reaction in developing linseed cotyledons in vivo publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2760(83)90076-0 – volume: 106 start-page: 18837 year: 2009 ident: 10.1016/j.plantsci.2017.07.007_bib0170 article-title: An enzyme regulating triacylglycerol composition is encoded by the ROD1 gene of Arabidopsis publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0908848106 – volume: 45 start-page: 145 year: 2010 ident: 10.1016/j.plantsci.2017.07.007_bib0195 article-title: DGAT1, DGAT2 and PDAT expression in seeds and other tissues of epoxy and hydroxy fatty acid accumulating plants publication-title: Lipids doi: 10.1007/s11745-010-3385-4 – volume: 54 start-page: 640 year: 2008 ident: 10.1016/j.plantsci.2017.07.007_bib0035 article-title: High-value oils from plants publication-title: Plant J. doi: 10.1111/j.1365-313X.2008.03430.x – volume: 282 start-page: 31206 year: 2007 ident: 10.1016/j.plantsci.2017.07.007_bib0125 article-title: Incorporation of newly synthesized fatty acids into cytosolic glycerolipids in pea leaves occurs via acyl editing publication-title: J. Biol. Chem. doi: 10.1074/jbc.M705447200 – volume: 45 start-page: 847 year: 2006 ident: 10.1016/j.plantsci.2017.07.007_bib0220 article-title: A high-throughput screen for genes from castor that boost hydroxy fatty acid accumulation in seed oils of transgenic Arabidopsis publication-title: Plant J. doi: 10.1111/j.1365-313X.2005.02636.x – volume: 68 start-page: 387 year: 2011 ident: 10.1016/j.plantsci.2017.07.007_bib0240 article-title: The pathway of triacylglycerol synthesis through phosphatidylcholine in Arabidopsis produces a bottleneck for the accumulation of unusual fatty acids in transgenic seeds publication-title: Plant J. doi: 10.1111/j.1365-313X.2011.04693.x – volume: 24 start-page: 4652 year: 2012 ident: 10.1016/j.plantsci.2017.07.007_bib0165 article-title: Metabolic interactions between the lands cycle and the Kennedy pathway of glycerolipid synthesis in arabidopsis developing seeds publication-title: Plant Cell doi: 10.1105/tpc.112.104604 – volume: 13 start-page: 201 year: 1998 ident: 10.1016/j.plantsci.2017.07.007_bib0290 article-title: A bifunctional oleate 12-hydroxylase: desaturase from Lesquerella fendleri publication-title: Plant J. doi: 10.1046/j.1365-313X.1998.00023.x – volume: 13 start-page: 858 year: 2015 ident: 10.1016/j.plantsci.2017.07.007_bib0080 article-title: Metabolic engineering of oilseed crops top produce high levels of novel acetyl glyceride oils with reduced viscosity, freezing point and calorific value publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.12325 – volume: 113 start-page: 933 year: 1997 ident: 10.1016/j.plantsci.2017.07.007_bib0205 article-title: Accumulation of ricinoleic, lesquerolic, and densipolic acids in seeds of transgenic Arabidopsis plants that express a fatty acyl hydroxylase cDNA from castor bean publication-title: Plant Physiol. doi: 10.1104/pp.113.3.933 – volume: 18 start-page: 2294 year: 2006 ident: 10.1016/j.plantsci.2017.07.007_bib0190 article-title: Tung tree DGAT1 and DGAT2 have nonredundant functions in triacylglycerol biosynthesis and are localized to different subdomains of the endoplasmic reticulum publication-title: Plant Cell doi: 10.1105/tpc.106.043695 – volume: 288 start-page: 36902 year: 2013 ident: 10.1016/j.plantsci.2017.07.007_bib0160 article-title: Plant acyl-CoA: lysophosphatidylcholine acyltransferases (LPCATs) have different specificities in their forward and reverse reactions publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.521815 – volume: 17 start-page: 507 year: 2016 ident: 10.1016/j.plantsci.2017.07.007_bib0250 article-title: Expression of castor LPAT2 enhances ricinoleic acid content at the sn-2 position of triacylglycerols in Lesquerella seed publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms17040507 – volume: 289 start-page: 17996 year: 2014 ident: 10.1016/j.plantsci.2017.07.007_bib0310 article-title: FAD2 and FAD3 desaturases form heterodimers that facilitate metabolic channeling in vivo publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.572883 – volume: 76 start-page: 138 year: 2013 ident: 10.1016/j.plantsci.2017.07.007_bib0295 article-title: Imaging heterogeneity of membrane and storage lipids in transgenic Camelina sativa seeds with altered fatty acid profiles publication-title: Plant J. doi: 10.1111/tpj.12278 – volume: 72 start-page: 559 year: 1995 ident: 10.1016/j.plantsci.2017.07.007_bib0075 article-title: The triglyceride composition, structure, and presence of estolides in the oils of Lesquerella and related species publication-title: J. Am. Oil Chem. Soc. doi: 10.1007/BF02638857 – volume: 130 start-page: 2027 year: 2002 ident: 10.1016/j.plantsci.2017.07.007_bib0215 article-title: Molecular analysis of a bifunctional fatty acid conjugase/desaturase from tung. Implications for the evolution of plant fatty acid diversity publication-title: Plant Physiol. doi: 10.1104/pp.102.010835 – volume: 111 start-page: 1204 year: 2014 ident: 10.1016/j.plantsci.2017.07.007_bib0230 article-title: Fatty acid synthesis is inhibited by inefficient utilization of unusual fatty acids for glycerolipid assembly publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1318511111 – volume: 173 start-page: 2081 year: 2017 ident: 10.1016/j.plantsci.2017.07.007_bib0300 article-title: Two acyltransferases contribute differently to linolenic acid levels in seed oil publication-title: Plant Physiol. doi: 10.1104/pp.16.01865 – volume: 65 start-page: 259 year: 2015 ident: 10.1016/j.plantsci.2017.07.007_bib0085 article-title: Field production, purification and analysis of high-oleic acetyl-triacylglycerols from transgenic Camelina sativa publication-title: Ind. Crop Prod. doi: 10.1016/j.indcrop.2014.11.019 – volume: 16 start-page: 358 year: 2013 ident: 10.1016/j.plantsci.2017.07.007_bib0110 article-title: Biochemical pathways in seed oil synthesis publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2013.02.015 – volume: 16 start-page: 230 year: 2015 ident: 10.1016/j.plantsci.2017.07.007_bib0020 article-title: Identification of hydroxy fatty acid and triacylglycerol metabolism-related genes in lesquerella through seed transcriptome analysis publication-title: BMC Genomics doi: 10.1186/s12864-015-1413-8 – volume: 160 start-page: 1530 year: 2012 ident: 10.1016/j.plantsci.2017.07.007_bib0155 article-title: Acyl editing and headgroup exchange are the major mechanisms that direct polyunsaturated fatty acid flux into triacylglycerols publication-title: Plant Physiol. doi: 10.1104/pp.112.204438 – volume: 104 start-page: 853 year: 2012 ident: 10.1016/j.plantsci.2017.07.007_bib0055 article-title: A review on the challenges for increased production of castor publication-title: Agron. J. doi: 10.2134/agronj2011.0210 – volume: 107 start-page: 9464 year: 2010 ident: 10.1016/j.plantsci.2017.07.007_bib0005 article-title: A distinct DGAT with sn-3 acetyltransferase activity that synthesizes unusual, reduced-viscosity oils in Euonymus and transgenic seeds publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1001707107 – volume: 15 start-page: 729 year: 2016 ident: 10.1016/j.plantsci.2017.07.007_bib0280 article-title: Selective gene dosage by CRISPR-Cas9 genome editing in hexaploid Camelina sativa publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.12671 – volume: 11 start-page: e0161 year: 2013 ident: 10.1016/j.plantsci.2017.07.007_bib0115 article-title: Acyl-lipid metabolism publication-title: Arabidopsis Book doi: 10.1199/tab.0161 – volume: 26 start-page: 773 year: 2003 ident: 10.1016/j.plantsci.2017.07.007_bib0050 article-title: Identification and quantification of the molecular species of acylglycerols in castor oil by HPLC using ELSD publication-title: J. Liq. Chromatogr. Relat. Technol. doi: 10.1081/JLC-120018421 – volume: 86 start-page: 322 year: 2016 ident: 10.1016/j.plantsci.2017.07.007_bib0010 article-title: Identification of multiple lipid genes with modifications in expression and sequence associated with the evolution of hydroxy fatty acid accumulation in Physaria fendleri publication-title: Plant J. doi: 10.1111/tpj.13163 – volume: 30 start-page: 70 year: 2016 ident: 10.1016/j.plantsci.2017.07.007_bib0025 article-title: Advances and perspectives on the use of CRISPR/Cas9 systems in plant genomics research publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2016.01.007 – volume: 15 start-page: 54 year: 1976 ident: 10.1016/j.plantsci.2017.07.007_bib0105 article-title: Neopentyl polyol ester lubricants − bulk property optimization publication-title: Ind. Eng. Chem. Prod. Res. Dev. – volume: 137 start-page: 475 year: 1967 ident: 10.1016/j.plantsci.2017.07.007_bib0090 article-title: Asymmetric triglycerides from Impatiens edgeworthii seed oil publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2760(67)90128-2 – volume: 150 start-page: 55 year: 2009 ident: 10.1016/j.plantsci.2017.07.007_bib0120 article-title: Analysis of acyl fluxes through multiple pathways of triacylglycerol synthesis in developing soybean embryos publication-title: Plant Physiol. doi: 10.1104/pp.109.137737 – volume: 10 start-page: 69 year: 2017 ident: 10.1016/j.plantsci.2017.07.007_bib0100 article-title: Metabolic engineering of Saccharomyces cerevisiae to produce a reduced viscosity oil from lignocellulose publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-017-0751-y – volume: 286 start-page: 13115 year: 2011 ident: 10.1016/j.plantsci.2017.07.007_bib0185 article-title: Functional and topological analysis of yeast acyl-CoA: diacylglycerol acyltransferase 2, an endoplasmic reticulum enzyme essential for triacylglycerol biosynthesis publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.204412 – volume: 8 year: 2017 ident: 10.1016/j.plantsci.2017.07.007_bib0060 article-title: Investigation of plant species with identified seed oil fatty acids in chinese literature and analysis of five unsurveyed chinese endemic species publication-title: Front. Plant Sci. – volume: 155 start-page: 683 year: 2011 ident: 10.1016/j.plantsci.2017.07.007_bib0260 article-title: Castor phospholipid: diacylglycerol acyltransferase facilitates efficient metabolism of hydroxy fatty acids in transgenic Arabidopsis publication-title: Plant Physiol. doi: 10.1104/pp.110.167239 – volume: 21 start-page: 3885 year: 2009 ident: 10.1016/j.plantsci.2017.07.007_bib0180 article-title: DGAT1 and PDAT1 acyltransferases have overlapping functions in Arabidopsis triacylglycerol biosynthesis and are essential for normal pollen and seed development publication-title: Plant Cell doi: 10.1105/tpc.109.071795 – volume: 67 start-page: 2541 year: 2006 ident: 10.1016/j.plantsci.2017.07.007_bib0200 article-title: Identification and functional expression of a type 2 acyl-CoA:diacylglycerol acyltransferase (DGAT2) in developing castor bean seeds which has high homology to the major triglyceride biosynthetic enzyme of fungi and animals publication-title: Phytochemistry doi: 10.1016/j.phytochem.2006.09.020 – volume: 67 start-page: 1166 year: 2006 ident: 10.1016/j.plantsci.2017.07.007_bib0140 article-title: Conjugated fatty acids accumulate to high levels in phospholipids of metabolically engineered soybean and Arabidopsis seeds publication-title: Phytochemistry doi: 10.1016/j.phytochem.2006.04.013 – volume: 96 start-page: 12935 year: 1999 ident: 10.1016/j.plantsci.2017.07.007_bib0210 article-title: Biosynthetic origin of conjugated double bonds: production of fatty acid components of high-value drying oils in transgenic soybean embryos publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.96.22.12935 – volume: 553 start-page: 17 year: 2014 ident: 10.1016/j.plantsci.2017.07.007_bib0305 article-title: Seed-specific expression of seven Arabidopsis promoters publication-title: Gene doi: 10.1016/j.gene.2014.09.051 – volume: 282 start-page: 1315 year: 1998 ident: 10.1016/j.plantsci.2017.07.007_bib0135 article-title: Catalytic plasticity of fatty acid modification enzymes underlying chemical diversity of plant lipids publication-title: Science doi: 10.1126/science.282.5392.1315 |
SSID | ssj0002557 |
Score | 2.3308735 |
SecondaryResourceType | review_article |
Snippet | •Transgenic oilseeds can be engineered to synthesize unusual lipids.•Enhanced production of unusual lipids requires the expression of multiple enzymes.•The... The plant kingdom produces a variety of fatty acid structures, many of which possess functional groups useful for industrial applications. The species that... Not provided. |
SourceID | osti proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 126 |
SubjectTerms | Acetyl-TAG Biochemistry & Molecular Biology Crops, Agricultural enzymes fatty acids Fatty Acids - metabolism genes Hydroxy fatty acid industrial applications Lipid Metabolism Metabolic Engineering oilseed crops Plant Oils - metabolism Plant Sciences Plants, Genetically Modified seeds Seeds - genetics Seeds - metabolism Synthetic Biology Transgenic oilseed crop transgenic plants Triglycerides - metabolism Unusual fatty acid |
Title | Review: Metabolic engineering of unusual lipids in the synthetic biology era |
URI | https://dx.doi.org/10.1016/j.plantsci.2017.07.007 https://www.ncbi.nlm.nih.gov/pubmed/28818368 https://www.proquest.com/docview/1930484209 https://www.proquest.com/docview/2000547849 https://www.osti.gov/biblio/1538745 |
Volume | 263 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7RhUMvFVBalgXkSlzDhsSJHW4LKlqelxaJm2U7thS0Slbs5sClv52ZPLZUKuLAKUrksZyx55tP9swY4IhzF2ubuMBobQNupEabkz7Q6J219klkDZ3o3t6l03t-9ZA8rMF5nwtDYZUd9reY3qB192XcaXM8L4rxLyQrMuPofgTBMJXdXo_Q28sBrE8ur6d3K0BG1txmTado2yjwKlH48Xg-o3gTW1CUl2jqeNLNsv_3UYMKze5tKtq4pItN-NJxSTZph7sFa67cho2zCvne81e4abf9T9mtW-JMzwrL3N_ig6zyrC7rRY0dzIp5kS9YUTJkg2zxXOIDu2RdgSbmnvQO3F_8_H0-Dbq7EwLLRboM8kiLxDeZ0tZKE2bWI3cw2gt5Eus08Qatj6deGCeQcjgZ5iJHrLPeG2lkHn-DQVmVbheYFmEuM2QKCW0Y2UxiPwaJgeA-NiLPhpD02lK2KyxO91vMVB9B9qh6LSvSsgrpzFsMYbySm7elNd6VyPrJUP8sEoX4_67siGaP5Kg6rqUwIhQkwBc8GcKPflIV2hcdmujSVfVCIcFFkONRmL3dJmqYr5Ac23xvV8TqjyKJlChO5d4Hxj6Cz_TWxhDuw2D5VLsD5EJLcwifjv-cHHYr_gWlfgmN |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6hBYleUHmVLVCM1GvYNHFipzeKihbY3UtB4mbZji0FrZIVuznw7zuTx9JKRRx6ipR4LMf2fPPJngfAV85drG3iAqO1DbiRGnVO-kCjddbaJ5E1dKM7naXjB377mDxuwFUfC0NulR32t5jeoHX3ZtTN5mhRFKNfSFZkxtH8CIJhSru9yamo9QA2L2_uxrM1ICNrbqOmU9RtFPgjUPjpYjEnfxNbkJeXaPJ4UmXZf9uoQYVq9zYVbUzS9UfY6bgku2yHuwsbrtyDrR8V8r2XfZi0x_7f2dStcKXnhWXuNfkgqzyry3pZYwfzYlHkS1aUDNkgW76U-MAuWZegiblnfQAP1z_vr8ZBVzshsFykqyCPtEh8EyltrTRhZj1yB6O9kN9inSbeoPbx1AvjBFIOJ8Nc5Ih11nsjjczjQxiUVemOgGkR5jJDppDQgZHNJPZjkBgI7mMj8mwIST9bynaJxam-xVz1HmRPqp9lRbOsQrrzFkMYreUWbWqNdyWyfjHUX5tEIf6_K3tMq0dylB3XkhsRChLgC54M4bxfVIX6RZcmunRVvVRIcBHkeBRmb7eJGuYrJMc2n9odsf6jSCIlilP5-T_Gfgbb4_vpRE1uZnfH8IG-tP6EJzBYPdfuFHnRynzp9v1v5cwLcw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review%3A+Metabolic+engineering+of+unusual+lipids+in+the+synthetic+biology+era&rft.jtitle=Plant+science+%28Limerick%29&rft.au=Aznar-Moreno%2C+Jose+A&rft.au=Durrett%2C+Timothy+P&rft.date=2017-10-01&rft.eissn=1873-2259&rft.volume=263&rft.spage=126&rft_id=info:doi/10.1016%2Fj.plantsci.2017.07.007&rft_id=info%3Apmid%2F28818368&rft.externalDocID=28818368 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-9452&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-9452&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-9452&client=summon |