Natural Mutagenesis of Human Genomes by Endogenous Retrotransposons
Two abundant classes of mobile elements, namely Alu and L1 elements, continue to generate new retrotransposon insertions in human genomes. Estimates suggest that these elements have generated millions of new germline insertions in individual human genomes worldwide. Unfortunately, current technologi...
Saved in:
Published in | Cell Vol. 141; no. 7; pp. 1253 - 1261 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
25.06.2010
|
Subjects | |
Online Access | Get full text |
ISSN | 0092-8674 1097-4172 1097-4172 |
DOI | 10.1016/j.cell.2010.05.020 |
Cover
Abstract | Two abundant classes of mobile elements, namely Alu and L1 elements, continue to generate new retrotransposon insertions in human genomes. Estimates suggest that these elements have generated millions of new germline insertions in individual human genomes worldwide. Unfortunately, current technologies are not capable of detecting most of these young insertions, and the true extent of germline mutagenesis by endogenous human retrotransposons has been difficult to examine. Here, we describe technologies for detecting these young retrotransposon insertions and demonstrate that such insertions indeed are abundant in human populations. We also found that new somatic L1 insertions occur at high frequencies in human lung cancer genomes. Genome-wide analysis suggests that altered DNA methylation may be responsible for the high levels of L1 mobilization observed in these tumors. Our data indicate that transposon-mediated mutagenesis is extensive in human genomes and is likely to have a major impact on human biology and diseases.
[Display omitted]
► “Transposon-seq” methods were developed to find mobile element insertions in humans ► New germline retrotransposon insertions were identified in personal human genomes ► Tumor-specific somatic L1 insertions were uncovered in human lung cancer genomes ► Transposon mutagenesis is likely to have a major impact on human traits and diseases |
---|---|
AbstractList | Two abundant classes of mobile elements, namely Alu and L1 elements, continue to generate new retrotransposon insertions in human genomes. Estimates suggest that these elements have generated millions of new germline insertions in individual human genomes worldwide. Unfortunately, current technologies are not capable of detecting most of these young insertions, and the true extent of germline mutagenesis by endogenous human retrotransposons has been difficult to examine. Here, we describe technologies for detecting these young retrotransposon insertions and demonstrate that such insertions indeed are abundant in human populations. We also found that new somatic L1 insertions occur at high frequencies in human lung cancer genomes. Genome-wide analysis suggests that altered DNA methylation may be responsible for the high levels of L1 mobilization observed in these tumors. Our data indicate that transposon-mediated mutagenesis is extensive in human genomes and is likely to have a major impact on human biology and diseases.Two abundant classes of mobile elements, namely Alu and L1 elements, continue to generate new retrotransposon insertions in human genomes. Estimates suggest that these elements have generated millions of new germline insertions in individual human genomes worldwide. Unfortunately, current technologies are not capable of detecting most of these young insertions, and the true extent of germline mutagenesis by endogenous human retrotransposons has been difficult to examine. Here, we describe technologies for detecting these young retrotransposon insertions and demonstrate that such insertions indeed are abundant in human populations. We also found that new somatic L1 insertions occur at high frequencies in human lung cancer genomes. Genome-wide analysis suggests that altered DNA methylation may be responsible for the high levels of L1 mobilization observed in these tumors. Our data indicate that transposon-mediated mutagenesis is extensive in human genomes and is likely to have a major impact on human biology and diseases. Two abundant classes of mobile elements, namely Alu and L1 elements, continue to generate new retrotransposon insertions in human genomes. Estimates suggest that these elements have generated millions of new germline insertions in individual human genomes worldwide. Unfortunately, current technologies are not capable of detecting most of these young insertions, and the true extent of germline mutagenesis by endogenous human retrotransposons has been difficult to examine. Here, we describe technologies for detecting these young retrotransposon insertions and demonstrate that such insertions indeed are abundant in human populations. We also found that new somatic L1 insertions occur at high frequencies in human lung cancer genomes. Genome-wide analysis suggests that altered DNA methylation may be responsible for the high levels of L1 mobilization observed in these tumors. Our data indicate that transposon-mediated mutagenesis is extensive in human genomes and is likely to have a major impact on human biology and diseases. Two abundant classes of mobile elements, namely Alu and L1 elements, continue to generate new retrotransposon insertions in human genomes. Estimates suggest that these elements have generated millions of new germline insertions in individual human genomes worldwide. Unfortunately, current technologies are not capable of detecting most of these young insertions, and the true extent of germline mutagenesis by endogenous human retrotransposons has been difficult to examine. Here, we describe technologies for detecting these young retrotransposon insertions and demonstrate that such insertions indeed are abundant in human populations. We also found that new somatic L1 insertions occur at high frequencies in human lung cancer genomes. Genome-wide analysis suggests that altered DNA methylation may be responsible for the high levels of L1 mobilization observed in these tumors. Our data indicate that transposon-mediated mutagenesis is extensive in human genomes and is likely to have a major impact on human biology and diseases. [Display omitted] ► “Transposon-seq” methods were developed to find mobile element insertions in humans ► New germline retrotransposon insertions were identified in personal human genomes ► Tumor-specific somatic L1 insertions were uncovered in human lung cancer genomes ► Transposon mutagenesis is likely to have a major impact on human traits and diseases Two abundant classes of mobile elements, namely Alu and L1 elements, continue to generate new retrotransposon insertions in human genomes. Estimates suggest that these elements have generated millions of new germline insertions in individual human genomes worldwide. Unfortunately, current technologies are not capable of detecting most of these young insertions, and the true extent of germline mutagenesis by endogenous human retrotransposons has been difficult to examine. Here, we describe new technologies for detecting these young retrotransposon insertions and demonstrate that such insertions indeed are abundant in human populations. We also found that new somatic L1 insertions occur at high frequencies in human lung cancer genomes. Genome-wide analysis suggests that altered DNA methylation may be responsible for the high levels of L1 mobilization observed in these tumors. Our data indicate that transposon-mediated mutagenesis is extensive in human genomes, and is likely to have a major impact on human biology and diseases. |
Author | Pittard, W. Stephen Mills, Ryan E. Iskow, Rebecca C. Torene, Spencer Neuwald, Andrew F. Devine, Scott E. McCabe, Michael T. Van Meir, Erwin G. Vertino, Paula M. |
AuthorAffiliation | 9 Bimcore, Emory University, Atlanta, GA 30322 10 Institute for Genome SciencesBiology, University of Maryland School of Medicine, Baltimore, MD 20201 12 Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 20201 7 Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322 2 Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 8 Winship Cancer Institute, Emory University, Atlanta, GA 30322 4 Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322 11 Department of Biochemistry and Molecular, University of Maryland School of Medicine, Baltimore, MD 20201 1 Genetics and Molecular Biology Graduate Program, Emory University, Atlanta, GA 30322 6 Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA 30322 13 Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 20201 |
AuthorAffiliation_xml | – name: 6 Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA 30322 – name: 1 Genetics and Molecular Biology Graduate Program, Emory University, Atlanta, GA 30322 – name: 2 Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 – name: 4 Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322 – name: 9 Bimcore, Emory University, Atlanta, GA 30322 – name: 11 Department of Biochemistry and Molecular, University of Maryland School of Medicine, Baltimore, MD 20201 – name: 13 Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 20201 – name: 10 Institute for Genome SciencesBiology, University of Maryland School of Medicine, Baltimore, MD 20201 – name: 12 Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 20201 – name: 7 Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322 – name: 8 Winship Cancer Institute, Emory University, Atlanta, GA 30322 |
Author_xml | – sequence: 1 givenname: Rebecca C. surname: Iskow fullname: Iskow, Rebecca C. organization: Genetics and Molecular Biology Graduate Program, Emory University, Atlanta, GA 30322, USA – sequence: 2 givenname: Michael T. surname: McCabe fullname: McCabe, Michael T. organization: Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA – sequence: 3 givenname: Ryan E. surname: Mills fullname: Mills, Ryan E. organization: Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA – sequence: 4 givenname: Spencer surname: Torene fullname: Torene, Spencer organization: Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA – sequence: 5 givenname: W. Stephen surname: Pittard fullname: Pittard, W. Stephen organization: Bimcore, Emory University, Atlanta, GA 30322, USA – sequence: 6 givenname: Andrew F. surname: Neuwald fullname: Neuwald, Andrew F. organization: Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 20201, USA – sequence: 7 givenname: Erwin G. surname: Van Meir fullname: Van Meir, Erwin G. organization: Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA 30322, USA – sequence: 8 givenname: Paula M. surname: Vertino fullname: Vertino, Paula M. organization: Genetics and Molecular Biology Graduate Program, Emory University, Atlanta, GA 30322, USA – sequence: 9 givenname: Scott E. surname: Devine fullname: Devine, Scott E. email: sdevine@som.umaryland.edu organization: Genetics and Molecular Biology Graduate Program, Emory University, Atlanta, GA 30322, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20603005$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtr3DAUhUVJaSaT_oEuinddeXL1sGVDKZQhTQJpC6VZC1m-TjXY0lSSA_n3kZk0NFlkJdA937mPc0KOnHdIyAcKGwq0PtttDI7jhkH-gGoDDN6QFYVWloJKdkRWAC0rm1qKY3IS4w4Amqqq3pFjBjVwgGpFtj90moMei-9z0rfoMNpY-KG4nCftigt0fsJYdPfFuet9rvs5Fr8wBZ-CdnHvo3fxlLwd9Bjx_eO7Jjffzn9vL8vrnxdX26_XpRGyTmU3MMHFUNUD5S0bsDcdbYEKw3XbskYwyijquulZN7ScVp3mfTfUmmraSVELviZfDr77uZsyji4PMap9sJMO98prq55XnP2jbv2dYq3gMm-8Jp8eDYL_O2NMarJxuaF2mBdTkvNagJQsKz_-3-qpx7_DZQE7CEzwMQYcniQU1JKO2qnFWS3pKKhUTidDzQvI2KST9cu4dnwd_XxAMR_4zmJQ0Vh0Bnsb0CTVe_sa_gD286uM |
CitedBy_id | crossref_primary_10_1158_2159_8290_CD_17_0368 crossref_primary_10_1186_s12977_015_0162_8 crossref_primary_10_1667_RR13394_1 crossref_primary_10_1016_j_cell_2019_02_050 crossref_primary_10_1093_hmg_ddq400 crossref_primary_10_1266_ggs_22_00038 crossref_primary_10_1631_jzus_B1000422 crossref_primary_10_1371_journal_pgen_1003234 crossref_primary_10_1146_annurev_pathmechdis_012419_032633 crossref_primary_10_1016_j_trsl_2012_12_005 crossref_primary_10_3892_br_2018_1096 crossref_primary_10_1038_nrg2883 crossref_primary_10_1080_2159256X_2015_1119927 crossref_primary_10_1101_gr_114777_110 crossref_primary_10_1158_0008_5472_CAN_15_3421 crossref_primary_10_1186_s13100_019_0191_2 crossref_primary_10_1038_ncomms10286 crossref_primary_10_3390_ijms18010036 crossref_primary_10_1093_nar_gkw1067 crossref_primary_10_1186_s12929_017_0374_4 crossref_primary_10_1101_gr_110528_110 crossref_primary_10_4161_nucl_28005 crossref_primary_10_1002_cne_24046 crossref_primary_10_1186_s12915_022_01441_w crossref_primary_10_3389_fchem_2016_00043 crossref_primary_10_1371_journal_pgen_1002371 crossref_primary_10_4161_mge_26693 crossref_primary_10_1016_j_arr_2020_101153 crossref_primary_10_1073_pnas_1401532111 crossref_primary_10_1038_nrn3730 crossref_primary_10_15252_embj_2020106388 crossref_primary_10_1101_gr_196238_115 crossref_primary_10_1186_s13100_017_0089_9 crossref_primary_10_1038_nsmb_2658 crossref_primary_10_1093_nar_gkac802 crossref_primary_10_1080_03079457_2013_809694 crossref_primary_10_1038_s41467_021_23918_y crossref_primary_10_1038_s41586_023_06046_z crossref_primary_10_3390_ijms21093201 crossref_primary_10_1007_s00595_013_0763_6 crossref_primary_10_1016_j_molcel_2019_05_024 crossref_primary_10_1186_s12864_018_4485_4 crossref_primary_10_4161_mge_1_2_16730 crossref_primary_10_18632_oncotarget_2504 crossref_primary_10_1016_j_neubiorev_2021_03_019 crossref_primary_10_1667_RR15027_1 crossref_primary_10_1158_2159_8290_CD_23_1063 crossref_primary_10_1186_1742_4690_10_83 crossref_primary_10_1016_j_cancergen_2019_11_004 crossref_primary_10_1111_febs_14053 crossref_primary_10_1002_humu_22327 crossref_primary_10_1093_carcin_bgu099 crossref_primary_10_1126_science_1222077 crossref_primary_10_3389_fchem_2016_00028 crossref_primary_10_1093_nar_gkr728 crossref_primary_10_1098_rsob_180074 crossref_primary_10_1371_journal_pgen_1002236 crossref_primary_10_1016_j_cmet_2019_02_014 crossref_primary_10_1186_s13100_019_0148_5 crossref_primary_10_1016_j_ajpath_2014_01_007 crossref_primary_10_3389_fchem_2016_00021 crossref_primary_10_1093_nar_gkt1308 crossref_primary_10_1038_nmeth0810_579 crossref_primary_10_1128_JVI_00919_14 crossref_primary_10_1371_journal_pgen_1006837 crossref_primary_10_1093_molbev_msae269 crossref_primary_10_1101_gr_275323_121 crossref_primary_10_1016_j_cell_2012_04_019 crossref_primary_10_1186_s13100_018_0136_1 crossref_primary_10_3390_ijms17091552 crossref_primary_10_1126_science_1251343 crossref_primary_10_1016_j_conb_2012_03_004 crossref_primary_10_1016_j_canlet_2014_05_021 crossref_primary_10_1534_genetics_113_159483 crossref_primary_10_3390_cancers3011141 crossref_primary_10_3390_cells9092017 crossref_primary_10_1016_j_pharmthera_2016_03_004 crossref_primary_10_1002_bies_201100075 crossref_primary_10_1186_s13100_016_0076_6 crossref_primary_10_1016_j_celrep_2018_05_090 crossref_primary_10_1016_j_celrep_2020_02_048 crossref_primary_10_3389_fgene_2014_00338 crossref_primary_10_1093_nar_gkr668 crossref_primary_10_1134_S0006297917010084 crossref_primary_10_3389_fchem_2016_00006 crossref_primary_10_1158_2767_9764_CRC_22_0057 crossref_primary_10_1101_gr_218032_116 crossref_primary_10_1007_s00335_022_09970_z crossref_primary_10_1038_s41556_021_00806_7 crossref_primary_10_1038_s41576_019_0165_8 crossref_primary_10_1007_s00441_018_2843_9 crossref_primary_10_1038_nrg2832 crossref_primary_10_1093_jhered_est088 crossref_primary_10_1101_gr_130740_111 crossref_primary_10_3390_genes4040573 crossref_primary_10_1371_journal_pone_0108682 crossref_primary_10_1101_gr_221366_117 crossref_primary_10_1371_journal_pone_0030008 crossref_primary_10_1146_annurev_genet_120213_092412 crossref_primary_10_1080_19420889_2015_1035847 crossref_primary_10_1111_cdev_12051 crossref_primary_10_1371_journal_pgen_1003499 crossref_primary_10_4161_epi_20706 crossref_primary_10_1016_j_jhep_2013_05_001 crossref_primary_10_3390_genes15020143 crossref_primary_10_1093_nar_gku1250 crossref_primary_10_1186_s13100_016_0077_5 crossref_primary_10_1056_NEJMra1510092 crossref_primary_10_1093_nar_gks859 crossref_primary_10_1186_1750_9378_6_14 crossref_primary_10_1051_medsci_20143006016 crossref_primary_10_1111_cei_12115 crossref_primary_10_1073_pnas_1013653107 crossref_primary_10_1016_j_tig_2012_12_002 crossref_primary_10_1038_srep37530 crossref_primary_10_1371_journal_pone_0116072 crossref_primary_10_3390_computation2040221 crossref_primary_10_1007_s13148_011_0032_8 crossref_primary_10_1111_1348_0421_12266 crossref_primary_10_1016_j_bbcan_2012_09_001 crossref_primary_10_1134_S1022795416120152 crossref_primary_10_1101_gr_163659_113 crossref_primary_10_1073_pnas_1405507111 crossref_primary_10_1038_s41588_018_0073_4 crossref_primary_10_1093_dnares_dsy022 crossref_primary_10_3389_fmolb_2016_00076 crossref_primary_10_1146_annurev_genet_110711_155616 crossref_primary_10_1080_15287394_2016_1231644 crossref_primary_10_1371_journal_pgen_1003877 crossref_primary_10_1186_gb_2014_15_6_r80 crossref_primary_10_1093_nar_gkt512 crossref_primary_10_1186_s13059_018_1577_z crossref_primary_10_1186_gb_2011_12_12_236 crossref_primary_10_1098_rstb_2019_0335 crossref_primary_10_1016_j_cell_2010_05_021 crossref_primary_10_1007_s00411_017_0683_8 crossref_primary_10_1016_j_arr_2023_102132 crossref_primary_10_1016_j_mrrev_2018_09_003 crossref_primary_10_1186_s12864_015_1700_4 crossref_primary_10_1016_j_cell_2010_05_026 crossref_primary_10_1007_s13258_019_00794_x crossref_primary_10_1016_j_bbagrm_2012_02_013 crossref_primary_10_1371_journal_pgen_1003504 crossref_primary_10_3389_fpls_2021_745526 crossref_primary_10_1038_nmeth_3454 crossref_primary_10_1007_s10522_023_10028_z crossref_primary_10_1111_febs_12601 crossref_primary_10_1101_gr_154625_113 crossref_primary_10_1016_j_cell_2012_09_035 crossref_primary_10_1016_j_canlet_2020_02_029 crossref_primary_10_1002_bies_201700189 crossref_primary_10_1186_s13100_023_00300_x crossref_primary_10_4236_jct_2022_136031 crossref_primary_10_1093_nar_gkq1076 crossref_primary_10_1155_2014_784706 crossref_primary_10_1186_1759_8753_5_11 crossref_primary_10_1073_pnas_2019450117 crossref_primary_10_1186_s13100_016_0072_x crossref_primary_10_1186_s13059_014_0488_x crossref_primary_10_1038_ng_768 crossref_primary_10_1186_gb_2013_14_3_r22 crossref_primary_10_1128_MCB_00499_18 crossref_primary_10_3390_cancers15174340 crossref_primary_10_1007_s00018_024_05195_2 crossref_primary_10_1002_bies_201300181 crossref_primary_10_1007_s10549_012_2246_7 crossref_primary_10_1084_jem_20170997 crossref_primary_10_1073_pnas_1100275108 crossref_primary_10_1002_jcb_24496 crossref_primary_10_3390_ijms222212246 crossref_primary_10_1016_j_cpb_2014_09_001 crossref_primary_10_1017_S0003055413000099 crossref_primary_10_1586_erm_10_83 crossref_primary_10_18632_oncotarget_1822 crossref_primary_10_1016_j_gde_2013_02_007 crossref_primary_10_1007_s43032_021_00461_1 crossref_primary_10_1016_j_ygeno_2019_02_009 crossref_primary_10_1002_humu_22953 crossref_primary_10_1016_j_bbcan_2014_09_003 crossref_primary_10_1093_nar_gkt438 crossref_primary_10_1371_journal_pone_0048831 crossref_primary_10_2217_epi_2020_0127 crossref_primary_10_1093_bioinformatics_btaa279 crossref_primary_10_1016_j_ab_2020_113779 crossref_primary_10_1093_nar_gkv1342 crossref_primary_10_1146_annurev_pathol_012615_044446 crossref_primary_10_3389_fgene_2022_902541 crossref_primary_10_1002_humu_21533 crossref_primary_10_1139_gen_2014_0031 crossref_primary_10_1371_journal_pcbi_1007293 crossref_primary_10_1186_1471_2105_11_593 crossref_primary_10_18632_oncotarget_21953 crossref_primary_10_1016_j_gde_2012_02_006 crossref_primary_10_1016_j_febslet_2011_03_061 crossref_primary_10_1007_s00439_012_1216_9 crossref_primary_10_1093_gbe_evv043 crossref_primary_10_1158_1541_7786_MCR_12_0351 crossref_primary_10_19159_tutad_310507 crossref_primary_10_1016_j_gde_2018_02_006 crossref_primary_10_1016_j_ncrna_2020_04_003 crossref_primary_10_1002_bdra_20788 crossref_primary_10_1128_MCB_00561_10 crossref_primary_10_1586_erm_11_18 crossref_primary_10_1093_nar_gku503 crossref_primary_10_1016_j_celrep_2014_10_059 crossref_primary_10_1214_16_AOAS1016 crossref_primary_10_1371_journal_pone_0211898 crossref_primary_10_1016_j_toxlet_2014_05_025 crossref_primary_10_1002_humu_21557 crossref_primary_10_3389_fmicb_2017_02537 crossref_primary_10_3390_genes14101923 crossref_primary_10_1002_mrd_22003 crossref_primary_10_1371_journal_pgen_1003402 crossref_primary_10_1093_nar_gkt786 crossref_primary_10_1038_nn_4388 crossref_primary_10_1007_s12041_013_0262_y crossref_primary_10_1038_ncomms4644 crossref_primary_10_1002_humu_23608 crossref_primary_10_1371_journal_pone_0169196 crossref_primary_10_1186_gm402 crossref_primary_10_1371_journal_pone_0071971 crossref_primary_10_1101_gr_148973_112 crossref_primary_10_1093_nar_gkab010 crossref_primary_10_4161_epi_21094 crossref_primary_10_3389_fchem_2015_00068 crossref_primary_10_1016_j_bbagrm_2014_07_007 crossref_primary_10_15252_embr_201642743 crossref_primary_10_1016_j_tics_2012_08_007 crossref_primary_10_1007_s12094_012_0966_0 crossref_primary_10_1038_ni_2872 crossref_primary_10_1101_gr_231837_117 crossref_primary_10_1016_j_coviro_2013_09_002 crossref_primary_10_1186_1471_2156_12_29 crossref_primary_10_1093_nar_gku687 crossref_primary_10_1038_nsmb_2097 crossref_primary_10_3389_fgene_2015_00358 crossref_primary_10_1016_j_ccr_2013_08_022 crossref_primary_10_1111_febs_15722 crossref_primary_10_1002_pro_651 crossref_primary_10_1016_j_ceb_2014_09_002 crossref_primary_10_1016_j_molcel_2016_11_035 crossref_primary_10_1186_s13100_020_0201_4 crossref_primary_10_1038_s41576_019_0106_6 crossref_primary_10_1093_hmg_ddt225 crossref_primary_10_1093_nar_gkz1173 crossref_primary_10_1186_s13045_015_0133_5 crossref_primary_10_3390_cancers14112613 crossref_primary_10_1371_journal_pone_0117854 crossref_primary_10_1242_dev_175786 crossref_primary_10_1093_hmg_ddr073 crossref_primary_10_1016_j_cell_2013_02_032 crossref_primary_10_1038_s44318_023_00007_y crossref_primary_10_1186_gm311 crossref_primary_10_1637_10595_061813_Reg_1 crossref_primary_10_1093_molbev_msv062 crossref_primary_10_1186_1471_2164_12_617 crossref_primary_10_1002_mco2_790 crossref_primary_10_1002_bies_201200133 crossref_primary_10_1016_j_celrep_2024_113749 crossref_primary_10_1038_nrg3030 crossref_primary_10_1159_000484104 crossref_primary_10_1016_j_febslet_2011_05_037 crossref_primary_10_1101_gad_351051_123 crossref_primary_10_1038_nature10531 crossref_primary_10_1038_s41590_021_01027_8 crossref_primary_10_15252_embr_202256512 crossref_primary_10_1101_gr_201814_115 crossref_primary_10_3390_biom14101250 crossref_primary_10_3390_ijms24119380 crossref_primary_10_1038_nrc_2017_35 crossref_primary_10_1002_ajmg_b_32225 crossref_primary_10_3109_17435390_2015_1025115 crossref_primary_10_1186_1759_8753_3_11 crossref_primary_10_1038_s41573_020_0067_7 crossref_primary_10_1007_s13258_014_0256_z crossref_primary_10_1128_MCB_00860_12 crossref_primary_10_3390_cancers13092016 crossref_primary_10_1093_hmg_ddr245 crossref_primary_10_1093_nar_gkad054 crossref_primary_10_1097_CCO_0b013e3283412eb4 crossref_primary_10_1534_g3_112_005348 crossref_primary_10_1073_pnas_1215810109 crossref_primary_10_3389_fcell_2016_00014 crossref_primary_10_1155_2015_131547 crossref_primary_10_1155_2014_164938 crossref_primary_10_1186_s13100_016_0070_z crossref_primary_10_1016_j_mrrev_2015_05_003 crossref_primary_10_1093_carcin_bgr181 crossref_primary_10_1186_1471_2164_14_869 crossref_primary_10_7554_eLife_12966 crossref_primary_10_1016_j_cca_2018_11_018 crossref_primary_10_3390_v9060131 crossref_primary_10_1007_s10555_015_9563_3 crossref_primary_10_1016_j_molcel_2016_10_021 crossref_primary_10_7554_eLife_13926 crossref_primary_10_1128_microbiolspec_MDNA3_0061_2014 crossref_primary_10_1371_journal_pgen_1007051 crossref_primary_10_1016_j_ccr_2013_10_002 crossref_primary_10_1002_ajmg_b_32437 crossref_primary_10_1073_pnas_1704117114 crossref_primary_10_1038_nm_3919 crossref_primary_10_4161_mge_19479 crossref_primary_10_1016_j_ab_2020_113825 crossref_primary_10_5301_JBM_2012_9308 crossref_primary_10_1074_jbc_M111_251058 crossref_primary_10_1186_1759_8753_4_16 crossref_primary_10_1186_s12864_015_1374_y crossref_primary_10_1098_rstb_2012_0504 crossref_primary_10_1093_carcin_bgt253 crossref_primary_10_1186_1471_2164_15_795 crossref_primary_10_1073_pnas_1416869112 crossref_primary_10_1002_humu_22024 crossref_primary_10_1093_hmg_ddr455 crossref_primary_10_1093_hmg_ddr456 crossref_primary_10_1186_1471_2164_13_249 crossref_primary_10_1038_s41594_020_0372_1 crossref_primary_10_1007_s10549_013_2812_7 crossref_primary_10_1186_s12958_020_0564_x crossref_primary_10_17650_2313_805X_2024_11_2_8_28 crossref_primary_10_1128_JVI_05180_11 crossref_primary_10_1016_j_omtn_2020_01_035 crossref_primary_10_1093_mutage_ges025 crossref_primary_10_15407_ubj85_06_151 crossref_primary_10_1186_s13100_016_0078_4 crossref_primary_10_1146_annurev_genom_111620_095614 crossref_primary_10_1080_2159256X_2016_1175537 crossref_primary_10_1017_S0140525X11002226 crossref_primary_10_1093_bioinformatics_bts697 crossref_primary_10_1080_15592294_2019_1585177 crossref_primary_10_1177_1535370219829759 crossref_primary_10_4161_mge_24555 crossref_primary_10_1126_science_1200801 crossref_primary_10_3390_genes7120129 crossref_primary_10_1080_2159256X_2017_1280116 crossref_primary_10_1371_journal_pone_0074629 crossref_primary_10_1186_s12943_022_01618_5 crossref_primary_10_1016_j_semcancer_2010_06_001 crossref_primary_10_1093_nar_gku1043 crossref_primary_10_1093_nar_gky1301 crossref_primary_10_1038_onc_2012_516 crossref_primary_10_1158_2159_8290_CD_11_0181 crossref_primary_10_4161_mge_25674 crossref_primary_10_1371_journal_pgen_1008991 crossref_primary_10_1093_nar_gkae273 crossref_primary_10_1093_nar_gkv1089 crossref_primary_10_1038_s41594_023_01067_8 crossref_primary_10_1007_s12021_010_9091_9 crossref_primary_10_1016_j_cell_2015_03_026 crossref_primary_10_1523_JNEUROSCI_3369_13_2013 crossref_primary_10_1534_g3_119_400613 crossref_primary_10_1101_gr_145235_112 crossref_primary_10_1186_s13100_017_0100_5 crossref_primary_10_1101_gr_111609_110 crossref_primary_10_1074_jbc_M114_559419 crossref_primary_10_1186_s13100_017_0091_2 crossref_primary_10_1016_j_ccell_2017_07_002 crossref_primary_10_1186_s12977_015_0205_1 crossref_primary_10_1038_s41416_023_02154_9 crossref_primary_10_1111_mec_14184 crossref_primary_10_1016_j_cell_2019_09_002 crossref_primary_10_1371_journal_pone_0019672 crossref_primary_10_1073_pnas_1619797114 crossref_primary_10_1186_s12864_015_1685_z crossref_primary_10_1093_carcin_bgr124 crossref_primary_10_1038_onc_2016_180 crossref_primary_10_1186_s13100_014_0030_4 crossref_primary_10_1096_fj_201700502RR crossref_primary_10_1146_annurev_med_051010_162644 crossref_primary_10_1038_ng_2649 crossref_primary_10_1002_humu_23027 crossref_primary_10_1007_s12011_015_0298_3 crossref_primary_10_1093_molbev_mss186 crossref_primary_10_1371_journal_ppat_1009496 crossref_primary_10_18632_oncotarget_1188 crossref_primary_10_1155_2012_767694 crossref_primary_10_1002_humu_24261 crossref_primary_10_1007_s00441_011_1289_0 crossref_primary_10_1038_ncomms6011 crossref_primary_10_1101_gr_226993_117 crossref_primary_10_1016_j_tig_2017_07_004 crossref_primary_10_1016_j_gene_2024_149090 crossref_primary_10_1016_j_semcdb_2018_03_019 crossref_primary_10_2503_hortj_MI_IR02 crossref_primary_10_1038_s41467_020_19430_4 crossref_primary_10_1186_s12864_015_1552_y crossref_primary_10_1016_j_gene_2014_03_008 crossref_primary_10_3109_19396368_2010_527427 crossref_primary_10_1101_gr_115907_110 crossref_primary_10_1111_j_1749_6632_2011_06220_x crossref_primary_10_1002_brb3_678 crossref_primary_10_4161_mge_28907 crossref_primary_10_1038_s41576_018_0050_x crossref_primary_10_18632_oncotarget_6767 crossref_primary_10_1002_dneu_22567 crossref_primary_10_4161_mge_26832 crossref_primary_10_1371_journal_pcbi_1002046 crossref_primary_10_1186_s13100_018_0128_1 crossref_primary_10_1016_j_stem_2011_07_018 crossref_primary_10_1016_j_lssr_2015_08_001 crossref_primary_10_1101_gr_122986_111 crossref_primary_10_1101_gr_115956_110 crossref_primary_10_1038_onc_2011_621 crossref_primary_10_1371_journal_pone_0064884 crossref_primary_10_1016_j_critrevonc_2015_10_012 crossref_primary_10_1146_annurev_genom_082509_141802 crossref_primary_10_1073_pnas_1100271108 crossref_primary_10_1002_bies_201600031 crossref_primary_10_4161_mge_23204 |
Cites_doi | 10.1086/373939 10.1002/ijc.23849 10.1073/pnas.0831042100 10.1101/gr.194701 10.1126/science.1058040 10.1101/gr.8.12.1229 10.1086/341718 10.1002/humu.1134 10.1038/sj.onc.1210631 10.1038/nature06884 10.1101/gr.229102. Article published online before print in May 2002 10.1038/229467a0 10.1038/9638 10.1038/nature03691 10.1093/nar/23.6.1087 10.1002/humu.20307 10.1038/nature02886 10.1101/gr.091827.109 10.1016/j.tig.2007.02.006 10.1146/annurev.me.36.020185.002351 10.1038/35057062 10.1371/journal.pbio.0050254 10.1101/gad.1803909 10.1093/oxfordjournals.molbev.a003893 10.1093/oxfordjournals.molbev.a026372 10.1016/j.cell.2010.05.021 10.1038/nature08248 10.1146/annurev.genet.35.102401.091032 10.1038/nmeth.1184 10.1126/science.1149504 10.1101/gr.4565806 10.1534/genetics.104.031757 10.1101/gr.149400 10.1002/(SICI)1098-2264(199703)18:3<232::AID-GCC10>3.0.CO;2-K 10.1128/MCB.8.4.1385 10.1038/333087a0 10.1016/j.gene.2006.01.019 10.1073/pnas.091062498 10.1038/nature03681 10.1038/nature03663 |
ContentType | Journal Article |
Copyright | 2010 Elsevier Inc. |
Copyright_xml | – notice: 2010 Elsevier Inc. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.cell.2010.05.020 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4172 |
EndPage | 1261 |
ExternalDocumentID | PMC2943760 20603005 10_1016_j_cell_2010_05_020 S0092867410005568 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA086335 – fundername: NCI NIH HHS grantid: 1R01CA132065 – fundername: NCI NIH HHS grantid: P01 CA116676 – fundername: NCI NIH HHS grantid: R01CA086335 – fundername: NHGRI NIH HHS grantid: F32 HG004207 – fundername: NIGMS NIH HHS grantid: T32 GM008490 – fundername: NHGRI NIH HHS grantid: F32HG004207 – fundername: NIGMS NIH HHS grantid: R01GM078541 – fundername: NHGRI NIH HHS grantid: R01HG002898 – fundername: NHGRI NIH HHS grantid: R01 HG002898 |
GroupedDBID | --- --K -DZ -ET -~X .-4 0R~ 0WA 1RT 1~5 29B 2FS 2WC 3EH 4.4 457 4G. 53G 5GY 5RE 62- 6I. 6J9 6TJ 7-5 85S 9M8 AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAIKJ AAKRW AAKUH AAUCE AAVLU AAXJY AAXUO AAYJJ ABCQX ABJNI ABMAC ABMWF ABOCM ABTAH ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFDAS AFTJW AGHFR AGHSJ AGKMS AHHHB AIDAL AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FIRID HH5 HZ~ IH2 IHE IXB J1W JIG K-O KOO KQ8 L7B LX5 M3Z M41 N9A NCXOZ O-L O9- OK1 P2P RCE RIG RNS ROL RPZ SCP SDG SDP SES SSZ TAE TN5 TR2 TWZ UKR UPT VQA WH7 WQ6 YYQ YZZ ZA5 ZCA ZY4 .55 .GJ .HR 1CY 1VV 2KS 3O- 5VS AAHBH AALRI AAMRU AAQFI AAQXK AAYWO AAYXX ABDGV ABDPE ABEFU ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN ADXHL AETEA AEUPX AFPUW AGCQF AGQPQ AI. AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION FEDTE FGOYB G-2 HVGLF H~9 MVM OHT OMK OZT PUQ R2- UBW UHB VH1 X7M YYP ZGI ZHY ZKB CGR CUY CVF ECM EFKBS EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c476t-bf2434f56f1392fedcb19014c3a992842121ea68d2bf9315ba3dbf6a1a1b74643 |
IEDL.DBID | IXB |
ISSN | 0092-8674 1097-4172 |
IngestDate | Thu Aug 21 14:13:34 EDT 2025 Fri Sep 05 05:09:31 EDT 2025 Mon Jul 21 05:16:48 EDT 2025 Tue Jul 01 03:51:57 EDT 2025 Thu Apr 24 23:08:38 EDT 2025 Fri Feb 23 02:28:08 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | DNA HUMDISEASE EVO_ECOL |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c476t-bf2434f56f1392fedcb19014c3a992842121ea68d2bf9315ba3dbf6a1a1b74643 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Present address: Brigham and Women’s Hospital, Boston, MA 02115 Present address: GlaxoSmithKline, Collegeville, PA 19426 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0092867410005568 |
PMID | 20603005 |
PQID | 733640772 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2943760 proquest_miscellaneous_733640772 pubmed_primary_20603005 crossref_primary_10_1016_j_cell_2010_05_020 crossref_citationtrail_10_1016_j_cell_2010_05_020 elsevier_sciencedirect_doi_10_1016_j_cell_2010_05_020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-06-25 |
PublicationDateYYYYMMDD | 2010-06-25 |
PublicationDate_xml | – month: 06 year: 2010 text: 2010-06-25 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell |
PublicationTitleAlternate | Cell |
PublicationYear | 2010 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Beck, Collier, Macfarlane, Malig, Kidd, Eichler, Badge, Moran (bib3) 2010; 141 Xing, Zhang, Han, Salem, Sen, Huff, Zhou, Kirkness, Levy, Batzer (bib44) 2009; 19 Wheeler, Srinivasan, Egholm, Shen, Chen, McGuire, He, Chen, Makhijani, Roth (bib43) 2008; 452 Sheen, Sherry, Risch, Robichaux, Nasidze, Stoneking, Batzer, Swergold (bib36) 2000; 10 Boissinot, Entezam, Furano (bib7) 2001; 18 Howard, Eiges, Gaudet, Jaenisch, Eden (bib17) 2008; 27 Kimura, Ota (bib21) 1971; 229 Korbel, Urban, Affourtit, Godwin, Grubert, Simons, Kim, Palejev, Carriero, Du (bib22) 2007; 318 Siebert, Kellogg, Lukyanov, Lukyanov (bib37) 1995; 23 Borc'his, Bestor (bib8) 2004; 431 Daskalos, Nikolaidis, Xinarianos, Savvardi, Cassidy, Zakopoulou, Kotsinas, Gorgoulis, Field, Liloglou (bib14) 2009; 124 Tusher, Tibshirani, Chu (bib40) 2001; 98 Liu, Nau, Zucman-Rossi, Powell, Allegra, Wright (bib26) 1997; 18 Boissinot, Chevret, Furano (bib6) 2000; 17 Batzer, Deininger (bib2) 2002; 35 Levy, Sutton, Ng, Feuk, Halpern, Walenz, Axelrod, Huang, Kirkness, Denisov (bib24) 2007; 5 Venter, Adams, Myers, Li, Mural, Sutton, Smith, Yandell, Evans, Holt (bib41) 2001; 291 Coufal, Garcia-Perez, Peng, Yeo, Mu, Lovci, Morell, O'Shea, Moran, Gage (bib13) 2009; 460 Mills, Luttig, Larkins, Beauchamp, Tsui, Pittard, Devine (bib28) 2006; 16 Miki, Nishisho, Horii, Miyoshi, Utsunomiya, Kinzler, Vogelstein, Nakamura (bib27) 1992; 52 Hamady, Harris, Gold, Knight (bib16) 2008; 5 Lander, Linton, Birren, Nusbaum, Zody, Baldwin, Devon, Dewar, Doyle, Fitzhugh (bib23) 2001; 409 Morse, Rotherg, South, Spandorder, Astrin (bib30) 1988; 333 Bestor (bib5) 1998; 214 Taylor, Schenck, Blankenberg, Nekrutenko (bib39) 2007 Cordaux, Hedges, Herke, Batzer (bib12) 2006; 373 Kent, Sugnet, Furey, Roskin, Pringle, Zahler, Hausler (bib20) 2002; 12 Ostertag, Kazazian (bib33) 2001; 35 Skowronski, Fanning, Singer (bib38) 1988; 8 Moutri, Marchetto, Deng, Moran, Gage (bib31) 2005; 435 Ovchinnokov, Troxel, Swergold (bib34) 2001; 11 Brouha, Schustak, Badge, Lutz-Prigge, Farley, Moran, Kazazian (bib9) 2003; 100 Dupuy, Akagi, Largaespada, Copeland, Jenkins (bib15) 2005; 436 Kazazian (bib19) 1999; 22 Li, Scaringe, Hill, Roberts, Mengos, Careri, Pinto, Kasper, Sommer (bib25) 2001; 17 Mills, Bennett, Iskow, Devine (bib29) 2007; 23 Bennett, Coleman, Tsui, Pittard, Devine (bib4) 2004; 168 Collins, Brooks, Chakravarti (bib11) 1999; 8 Kano, Godoy, Courtney, Vetter, Gerton, Ostertag, Kazazian (bib18) 2009; 23 Pearson, Rowley (bib35) 1985; 36 Badge, Alisch, Moran (bib1) 2003; 72 Myers, Vincent, Udall, Watkins, Morrish, Kilroy, Swergold, Henke, Henke, Moran (bib32) 2002; 71 Collier, Carlson, Ravimohan, Dupuy, Largaespada (bib10) 2005; 436 Wang, Song, Grover, Azrak, Batzer, Liang (bib42) 2006; 27 Howard (10.1016/j.cell.2010.05.020_bib17) 2008; 27 Collins (10.1016/j.cell.2010.05.020_bib11) 1999; 8 Korbel (10.1016/j.cell.2010.05.020_bib22) 2007; 318 Coufal (10.1016/j.cell.2010.05.020_bib13) 2009; 460 Beck (10.1016/j.cell.2010.05.020_bib3) 2010; 141 Cordaux (10.1016/j.cell.2010.05.020_bib12) 2006; 373 Moutri (10.1016/j.cell.2010.05.020_bib31) 2005; 435 Mills (10.1016/j.cell.2010.05.020_bib28) 2006; 16 Venter (10.1016/j.cell.2010.05.020_bib41) 2001; 291 Lander (10.1016/j.cell.2010.05.020_bib23) 2001; 409 Hamady (10.1016/j.cell.2010.05.020_bib16) 2008; 5 Kano (10.1016/j.cell.2010.05.020_bib18) 2009; 23 Batzer (10.1016/j.cell.2010.05.020_bib2) 2002; 35 Mills (10.1016/j.cell.2010.05.020_bib29) 2007; 23 Pearson (10.1016/j.cell.2010.05.020_bib35) 1985; 36 Miki (10.1016/j.cell.2010.05.020_bib27) 1992; 52 Bennett (10.1016/j.cell.2010.05.020_bib4) 2004; 168 Wang (10.1016/j.cell.2010.05.020_bib42) 2006; 27 Wheeler (10.1016/j.cell.2010.05.020_bib43) 2008; 452 Bestor (10.1016/j.cell.2010.05.020_bib5) 1998; 214 Ostertag (10.1016/j.cell.2010.05.020_bib33) 2001; 35 Li (10.1016/j.cell.2010.05.020_bib25) 2001; 17 Liu (10.1016/j.cell.2010.05.020_bib26) 1997; 18 Kazazian (10.1016/j.cell.2010.05.020_bib19) 1999; 22 Sheen (10.1016/j.cell.2010.05.020_bib36) 2000; 10 Tusher (10.1016/j.cell.2010.05.020_bib40) 2001; 98 Levy (10.1016/j.cell.2010.05.020_bib24) 2007; 5 Boissinot (10.1016/j.cell.2010.05.020_bib7) 2001; 18 Ovchinnokov (10.1016/j.cell.2010.05.020_bib34) 2001; 11 Dupuy (10.1016/j.cell.2010.05.020_bib15) 2005; 436 Collier (10.1016/j.cell.2010.05.020_bib10) 2005; 436 Daskalos (10.1016/j.cell.2010.05.020_bib14) 2009; 124 Badge (10.1016/j.cell.2010.05.020_bib1) 2003; 72 Siebert (10.1016/j.cell.2010.05.020_bib37) 1995; 23 Brouha (10.1016/j.cell.2010.05.020_bib9) 2003; 100 Morse (10.1016/j.cell.2010.05.020_bib30) 1988; 333 Taylor (10.1016/j.cell.2010.05.020_bib39) 2007 Skowronski (10.1016/j.cell.2010.05.020_bib38) 1988; 8 Kent (10.1016/j.cell.2010.05.020_bib20) 2002; 12 Kimura (10.1016/j.cell.2010.05.020_bib21) 1971; 229 Borc'his (10.1016/j.cell.2010.05.020_bib8) 2004; 431 Boissinot (10.1016/j.cell.2010.05.020_bib6) 2000; 17 Myers (10.1016/j.cell.2010.05.020_bib32) 2002; 71 Xing (10.1016/j.cell.2010.05.020_bib44) 2009; 19 20704015 - Nat Methods. 2010 Aug;7(8):579. doi: 10.1038/nmeth0810-579. 20602993 - Cell. 2010 Jun 25;141(7):1110-2. doi: 10.1016/j.cell.2010.06.014. 20628350 - Nat Rev Genet. 2010 Aug;11(8):527. doi: 10.1038/nrg2832. |
References_xml | – volume: 435 start-page: 903 year: 2005 end-page: 910 ident: bib31 article-title: Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition publication-title: Nature – volume: 409 start-page: 860 year: 2001 end-page: 921 ident: bib23 article-title: Initial sequencing and analysis of the human genome publication-title: Nature – volume: 17 start-page: 511 year: 2001 end-page: 519 ident: bib25 article-title: Frequency of recent retrotransposition events in the human factor IX gene publication-title: Hum. Mutat. – volume: 168 start-page: 933 year: 2004 end-page: 951 ident: bib4 article-title: Natural genetic variation caused by transposable elements in humans publication-title: Genetics – volume: 8 start-page: 1385 year: 1988 end-page: 1397 ident: bib38 article-title: Unit-length line-1 transcripts in human teratocarcinoma cells publication-title: Mol. Cell. Biol. – volume: 72 start-page: 823 year: 2003 end-page: 838 ident: bib1 article-title: ATLAS: a system to selectively identify human-specific L1 insertions publication-title: Am. J. Hum. Genet. – year: 2007 ident: bib39 article-title: Using galaxy to perform large-scale interactive data analyses publication-title: Current Protocols in Bioinformatics – volume: 27 start-page: 323 year: 2006 end-page: 329 ident: bib42 article-title: dbRIP: A highly integrated database of retrotransposon insertion polymorphisms in humans publication-title: Hum. Mutat. – volume: 460 start-page: 1127 year: 2009 end-page: 1131 ident: bib13 article-title: L1 retrotransposition in human neural progenitor cells publication-title: Nature – volume: 333 start-page: 87 year: 1988 end-page: 90 ident: bib30 article-title: Insertional mutagenesis of the myc locus by a LINE-1 sequence in a human breast carcinoma publication-title: Nature – volume: 18 start-page: 232 year: 1997 end-page: 239 ident: bib26 article-title: LINE-1 element insertion at the t(11:22) translocation breakpoint of a desmoplastic small round cell tumor publication-title: Genes Chromosomes Cancer – volume: 16 start-page: 1182 year: 2006 end-page: 1190 ident: bib28 article-title: An initial map of insertion and deletion (INDEL) variation in the human genome publication-title: Genome Res. – volume: 22 start-page: 130 year: 1999 ident: bib19 article-title: An estimated frequency of endogenous insertional mutations in humans publication-title: Nat. Genet. – volume: 11 start-page: 2050 year: 2001 end-page: 2058 ident: bib34 article-title: Genomic characterization of recent human LINE-1 insertions: evidence supporting random insertion publication-title: Genome Res. – volume: 17 start-page: 915 year: 2000 end-page: 928 ident: bib6 article-title: L1 (LINE-1) retrotransposon evolution and amplification in recent human history publication-title: Mol. Biol. Evol. – volume: 373 start-page: 134 year: 2006 end-page: 137 ident: bib12 article-title: Estimating the retrotransposition rate of human publication-title: Gene – volume: 124 start-page: 81 year: 2009 end-page: 87 ident: bib14 article-title: Hypomethylation of retrotransposable elements correlates with genomic instability in non-small cell lung cancer publication-title: Int. J. Cancer – volume: 19 start-page: 1516 year: 2009 end-page: 1526 ident: bib44 article-title: Mobile elements create structural variation: analysis of a complete human genome publication-title: Genome Res. – volume: 35 start-page: 501 year: 2002 end-page: 538 ident: bib2 article-title: repeats and human genomic diversity publication-title: Nat. Rev. Genet. – volume: 52 start-page: 643 year: 1992 end-page: 645 ident: bib27 article-title: Disruption of the APC gene by a retrotransposal insertion of L1 sequence in a colon cancer publication-title: Cancer Res. – volume: 27 start-page: 404 year: 2008 end-page: 408 ident: bib17 article-title: Activation and transposition of endogenous retroviral elements in hypomethylation induced tumors in mice publication-title: Oncogene – volume: 23 start-page: 183 year: 2007 end-page: 189 ident: bib29 article-title: Which transposable elements are active in the human genome? publication-title: Trends Genet. – volume: 35 start-page: 501 year: 2001 end-page: 538 ident: bib33 article-title: Biology of mammalian L1 retrotransposons publication-title: Annu. Rev. Genet. – volume: 100 start-page: 5280 year: 2003 end-page: 5285 ident: bib9 article-title: Hot L1s account for the bulk of retrotransposition activity in the human population publication-title: Proc. Natl. Acad. Sci. USA – volume: 229 start-page: 467 year: 1971 end-page: 469 ident: bib21 article-title: Protein polymorphism as a phase of molecular evolution publication-title: Nature – volume: 5 start-page: e254 year: 2007 ident: bib24 article-title: The diploid genome sequence of an individual human publication-title: PLoS Biol. – volume: 18 start-page: 926 year: 2001 end-page: 935 ident: bib7 article-title: Selection against deleterious LINE-1-containing loci in the human lineage publication-title: Mol. Biol. Evol. – volume: 141 start-page: 1159 year: 2010 end-page: 1170 ident: bib3 article-title: LINE-1 retrotransposition activity in human genomes publication-title: Cell – volume: 214 start-page: 187 year: 1998 end-page: 195 ident: bib5 article-title: The host defense function of genomic methylation patterns publication-title: Novartis Found. Symp. – volume: 8 start-page: 1229 year: 1999 end-page: 1231 ident: bib11 article-title: A DNA polymorphism discovery resource for research on human genetic variation publication-title: Genome Res. – volume: 98 start-page: 5116 year: 2001 end-page: 5121 ident: bib40 article-title: Significance analysis of microarrays applied to the ionizing radiation response publication-title: Proc. Natl. Acad. Sci. USA – volume: 71 start-page: 312 year: 2002 end-page: 326 ident: bib32 article-title: A comprehensive analysis of recently integrated human Ta L1 elements publication-title: Am. J. Hum. Genet. – volume: 318 start-page: 420 year: 2007 end-page: 426 ident: bib22 article-title: Paired-end mapping reveals extensive structural variation in the human genome publication-title: Science – volume: 36 start-page: 471 year: 1985 end-page: 483 ident: bib35 article-title: The relation of oncogenesis and cytogenetics in leukemia and lymphoma publication-title: Annu. Rev. Med. – volume: 291 start-page: 1304 year: 2001 end-page: 1351 ident: bib41 article-title: The sequence of the human genome publication-title: Science – volume: 436 start-page: 272 year: 2005 end-page: 276 ident: bib10 article-title: Cancer gene discovery in solid tumors using transposon-based somatic mutagenesis in the mouse publication-title: Nature – volume: 431 start-page: 96 year: 2004 end-page: 99 ident: bib8 article-title: Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L publication-title: Nature – volume: 5 start-page: 235 year: 2008 end-page: 237 ident: bib16 article-title: Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex publication-title: Nat. Methods – volume: 23 start-page: 1303 year: 2009 end-page: 1312 ident: bib18 article-title: L1 retrotransposition occurs mainly in embryogenesis and creates somatic mosaicism publication-title: Genes Dev. – volume: 436 start-page: 221 year: 2005 end-page: 226 ident: bib15 article-title: Mammalian mutagenesis using a highly mobile somatic Sleeping Beauty transposon system publication-title: Nature – volume: 12 start-page: 996 year: 2002 end-page: 1006 ident: bib20 article-title: The human genome browser at UCSC publication-title: Genome Res. – volume: 10 start-page: 1496 year: 2000 end-page: 1508 ident: bib36 article-title: Reading between the LINEs: human genomic variation induced by LINE-1 retrotransposition publication-title: Genome Res. – volume: 23 start-page: 1087 year: 1995 end-page: 1088 ident: bib37 article-title: An improved PCR method for walking in uncloned genomic DNA publication-title: Nucleic Acids Res. – volume: 452 start-page: 872 year: 2008 end-page: 876 ident: bib43 article-title: The complete genome of an individual by massively parallel DNA sequencing publication-title: Nature – volume: 72 start-page: 823 year: 2003 ident: 10.1016/j.cell.2010.05.020_bib1 article-title: ATLAS: a system to selectively identify human-specific L1 insertions publication-title: Am. J. Hum. Genet. doi: 10.1086/373939 – volume: 124 start-page: 81 year: 2009 ident: 10.1016/j.cell.2010.05.020_bib14 article-title: Hypomethylation of retrotransposable elements correlates with genomic instability in non-small cell lung cancer publication-title: Int. J. Cancer doi: 10.1002/ijc.23849 – volume: 100 start-page: 5280 year: 2003 ident: 10.1016/j.cell.2010.05.020_bib9 article-title: Hot L1s account for the bulk of retrotransposition activity in the human population publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0831042100 – volume: 11 start-page: 2050 year: 2001 ident: 10.1016/j.cell.2010.05.020_bib34 article-title: Genomic characterization of recent human LINE-1 insertions: evidence supporting random insertion publication-title: Genome Res. doi: 10.1101/gr.194701 – volume: 291 start-page: 1304 year: 2001 ident: 10.1016/j.cell.2010.05.020_bib41 article-title: The sequence of the human genome publication-title: Science doi: 10.1126/science.1058040 – volume: 8 start-page: 1229 year: 1999 ident: 10.1016/j.cell.2010.05.020_bib11 article-title: A DNA polymorphism discovery resource for research on human genetic variation publication-title: Genome Res. doi: 10.1101/gr.8.12.1229 – volume: 71 start-page: 312 year: 2002 ident: 10.1016/j.cell.2010.05.020_bib32 article-title: A comprehensive analysis of recently integrated human Ta L1 elements publication-title: Am. J. Hum. Genet. doi: 10.1086/341718 – volume: 17 start-page: 511 year: 2001 ident: 10.1016/j.cell.2010.05.020_bib25 article-title: Frequency of recent retrotransposition events in the human factor IX gene publication-title: Hum. Mutat. doi: 10.1002/humu.1134 – volume: 27 start-page: 404 year: 2008 ident: 10.1016/j.cell.2010.05.020_bib17 article-title: Activation and transposition of endogenous retroviral elements in hypomethylation induced tumors in mice publication-title: Oncogene doi: 10.1038/sj.onc.1210631 – volume: 452 start-page: 872 year: 2008 ident: 10.1016/j.cell.2010.05.020_bib43 article-title: The complete genome of an individual by massively parallel DNA sequencing publication-title: Nature doi: 10.1038/nature06884 – volume: 12 start-page: 996 year: 2002 ident: 10.1016/j.cell.2010.05.020_bib20 article-title: The human genome browser at UCSC publication-title: Genome Res. doi: 10.1101/gr.229102. Article published online before print in May 2002 – volume: 229 start-page: 467 year: 1971 ident: 10.1016/j.cell.2010.05.020_bib21 article-title: Protein polymorphism as a phase of molecular evolution publication-title: Nature doi: 10.1038/229467a0 – volume: 22 start-page: 130 year: 1999 ident: 10.1016/j.cell.2010.05.020_bib19 article-title: An estimated frequency of endogenous insertional mutations in humans publication-title: Nat. Genet. doi: 10.1038/9638 – volume: 436 start-page: 221 year: 2005 ident: 10.1016/j.cell.2010.05.020_bib15 article-title: Mammalian mutagenesis using a highly mobile somatic Sleeping Beauty transposon system publication-title: Nature doi: 10.1038/nature03691 – volume: 23 start-page: 1087 year: 1995 ident: 10.1016/j.cell.2010.05.020_bib37 article-title: An improved PCR method for walking in uncloned genomic DNA publication-title: Nucleic Acids Res. doi: 10.1093/nar/23.6.1087 – volume: 27 start-page: 323 year: 2006 ident: 10.1016/j.cell.2010.05.020_bib42 article-title: dbRIP: A highly integrated database of retrotransposon insertion polymorphisms in humans publication-title: Hum. Mutat. doi: 10.1002/humu.20307 – volume: 431 start-page: 96 year: 2004 ident: 10.1016/j.cell.2010.05.020_bib8 article-title: Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L publication-title: Nature doi: 10.1038/nature02886 – volume: 19 start-page: 1516 year: 2009 ident: 10.1016/j.cell.2010.05.020_bib44 article-title: Mobile elements create structural variation: analysis of a complete human genome publication-title: Genome Res. doi: 10.1101/gr.091827.109 – volume: 23 start-page: 183 year: 2007 ident: 10.1016/j.cell.2010.05.020_bib29 article-title: Which transposable elements are active in the human genome? publication-title: Trends Genet. doi: 10.1016/j.tig.2007.02.006 – volume: 36 start-page: 471 year: 1985 ident: 10.1016/j.cell.2010.05.020_bib35 article-title: The relation of oncogenesis and cytogenetics in leukemia and lymphoma publication-title: Annu. Rev. Med. doi: 10.1146/annurev.me.36.020185.002351 – volume: 409 start-page: 860 year: 2001 ident: 10.1016/j.cell.2010.05.020_bib23 article-title: Initial sequencing and analysis of the human genome publication-title: Nature doi: 10.1038/35057062 – volume: 5 start-page: e254 year: 2007 ident: 10.1016/j.cell.2010.05.020_bib24 article-title: The diploid genome sequence of an individual human publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0050254 – volume: 23 start-page: 1303 year: 2009 ident: 10.1016/j.cell.2010.05.020_bib18 article-title: L1 retrotransposition occurs mainly in embryogenesis and creates somatic mosaicism publication-title: Genes Dev. doi: 10.1101/gad.1803909 – volume: 18 start-page: 926 year: 2001 ident: 10.1016/j.cell.2010.05.020_bib7 article-title: Selection against deleterious LINE-1-containing loci in the human lineage publication-title: Mol. Biol. Evol. doi: 10.1093/oxfordjournals.molbev.a003893 – volume: 17 start-page: 915 year: 2000 ident: 10.1016/j.cell.2010.05.020_bib6 article-title: L1 (LINE-1) retrotransposon evolution and amplification in recent human history publication-title: Mol. Biol. Evol. doi: 10.1093/oxfordjournals.molbev.a026372 – volume: 141 start-page: 1159 year: 2010 ident: 10.1016/j.cell.2010.05.020_bib3 article-title: LINE-1 retrotransposition activity in human genomes publication-title: Cell doi: 10.1016/j.cell.2010.05.021 – volume: 460 start-page: 1127 year: 2009 ident: 10.1016/j.cell.2010.05.020_bib13 article-title: L1 retrotransposition in human neural progenitor cells publication-title: Nature doi: 10.1038/nature08248 – volume: 35 start-page: 501 year: 2001 ident: 10.1016/j.cell.2010.05.020_bib33 article-title: Biology of mammalian L1 retrotransposons publication-title: Annu. Rev. Genet. doi: 10.1146/annurev.genet.35.102401.091032 – volume: 5 start-page: 235 year: 2008 ident: 10.1016/j.cell.2010.05.020_bib16 article-title: Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex publication-title: Nat. Methods doi: 10.1038/nmeth.1184 – volume: 318 start-page: 420 year: 2007 ident: 10.1016/j.cell.2010.05.020_bib22 article-title: Paired-end mapping reveals extensive structural variation in the human genome publication-title: Science doi: 10.1126/science.1149504 – volume: 16 start-page: 1182 year: 2006 ident: 10.1016/j.cell.2010.05.020_bib28 article-title: An initial map of insertion and deletion (INDEL) variation in the human genome publication-title: Genome Res. doi: 10.1101/gr.4565806 – year: 2007 ident: 10.1016/j.cell.2010.05.020_bib39 article-title: Using galaxy to perform large-scale interactive data analyses – volume: 168 start-page: 933 year: 2004 ident: 10.1016/j.cell.2010.05.020_bib4 article-title: Natural genetic variation caused by transposable elements in humans publication-title: Genetics doi: 10.1534/genetics.104.031757 – volume: 35 start-page: 501 year: 2002 ident: 10.1016/j.cell.2010.05.020_bib2 article-title: Alu repeats and human genomic diversity publication-title: Nat. Rev. Genet. – volume: 10 start-page: 1496 year: 2000 ident: 10.1016/j.cell.2010.05.020_bib36 article-title: Reading between the LINEs: human genomic variation induced by LINE-1 retrotransposition publication-title: Genome Res. doi: 10.1101/gr.149400 – volume: 18 start-page: 232 year: 1997 ident: 10.1016/j.cell.2010.05.020_bib26 article-title: LINE-1 element insertion at the t(11:22) translocation breakpoint of a desmoplastic small round cell tumor publication-title: Genes Chromosomes Cancer doi: 10.1002/(SICI)1098-2264(199703)18:3<232::AID-GCC10>3.0.CO;2-K – volume: 8 start-page: 1385 year: 1988 ident: 10.1016/j.cell.2010.05.020_bib38 article-title: Unit-length line-1 transcripts in human teratocarcinoma cells publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.8.4.1385 – volume: 214 start-page: 187 year: 1998 ident: 10.1016/j.cell.2010.05.020_bib5 article-title: The host defense function of genomic methylation patterns publication-title: Novartis Found. Symp. – volume: 333 start-page: 87 year: 1988 ident: 10.1016/j.cell.2010.05.020_bib30 article-title: Insertional mutagenesis of the myc locus by a LINE-1 sequence in a human breast carcinoma publication-title: Nature doi: 10.1038/333087a0 – volume: 373 start-page: 134 year: 2006 ident: 10.1016/j.cell.2010.05.020_bib12 article-title: Estimating the retrotransposition rate of human Alu elements publication-title: Gene doi: 10.1016/j.gene.2006.01.019 – volume: 98 start-page: 5116 year: 2001 ident: 10.1016/j.cell.2010.05.020_bib40 article-title: Significance analysis of microarrays applied to the ionizing radiation response publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.091062498 – volume: 52 start-page: 643 year: 1992 ident: 10.1016/j.cell.2010.05.020_bib27 article-title: Disruption of the APC gene by a retrotransposal insertion of L1 sequence in a colon cancer publication-title: Cancer Res. – volume: 436 start-page: 272 year: 2005 ident: 10.1016/j.cell.2010.05.020_bib10 article-title: Cancer gene discovery in solid tumors using transposon-based somatic mutagenesis in the mouse publication-title: Nature doi: 10.1038/nature03681 – volume: 435 start-page: 903 year: 2005 ident: 10.1016/j.cell.2010.05.020_bib31 article-title: Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition publication-title: Nature doi: 10.1038/nature03663 – reference: 20704015 - Nat Methods. 2010 Aug;7(8):579. doi: 10.1038/nmeth0810-579. – reference: 20602993 - Cell. 2010 Jun 25;141(7):1110-2. doi: 10.1016/j.cell.2010.06.014. – reference: 20628350 - Nat Rev Genet. 2010 Aug;11(8):527. doi: 10.1038/nrg2832. |
SSID | ssj0008555 |
Score | 2.5275507 |
Snippet | Two abundant classes of mobile elements, namely Alu and L1 elements, continue to generate new retrotransposon insertions in human genomes. Estimates suggest... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1253 |
SubjectTerms | Alu Elements Brain Neoplasms - genetics DNA EVO_ECOL Genome, Human Humans HUMDISEASE Long Interspersed Nucleotide Elements Lung Neoplasms - genetics Methylation Mutagenesis Sequence Analysis, DNA - methods |
Title | Natural Mutagenesis of Human Genomes by Endogenous Retrotransposons |
URI | https://dx.doi.org/10.1016/j.cell.2010.05.020 https://www.ncbi.nlm.nih.gov/pubmed/20603005 https://www.proquest.com/docview/733640772 https://pubmed.ncbi.nlm.nih.gov/PMC2943760 |
Volume | 141 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4iCF7Et-uLHLxJtc2r7VGX1VXRgyjsLSRtiivaLm49-O-dadrFVfHgtUlgmElmvqQz3xByBLctBahVBA3brYhDF6SSySARuTRGqdhmTYLsnRo-iuuRHC2QflcLg2mVre_3Pr3x1u2X01abp5PxGGt8U5YoiIiIO6TCgl-sKsUivtH5zBsnUvouBimcfJjdFs74HC98HG_Tu-RJiD2_fw9OP8Hn9xzKL0HpYpWstGiSnnmB18iCK9fJku8v-bFB-nemodWgt-81-A3wauMprQravNzTS1dWr25K7QcdlHnl2VrpvavfqtpTngMWn26Sx4vBQ38YtF0TgkzEqg5swQQXhVQFgDtWgIQWg77IuElBYfgHOHJGJTmzRcojaQ3PbaFMZCIbCwAoW2SxrEq3Q6i0nEdM8dDwFDuVpfjqBAgnEwnjeRb2SNSpS2ctpTh2tnjRXe7Ys0YVa1SxDqUGFffI8WzNxBNq_DlbdlbQc9tCg8f_cx3tTKbhvOCwKR1oUSP9I1xiY9Yj296CMzFYqEJk7--ReM62swlIxT0_Uo6fGkpulgrMLtr9p7h7ZNlnJaiAyX2yWL-9uwMAO7U9BJh_dXPY7OlPcfX75w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RKlQuqA8oC3340FsVSPxKcoQVdGlhDxVIe7PsxBFbQYLYcODfMxMnq25bceg1tqXR2J757Hz-BuALnrY0olYZdWq3Mo19lCuuokyWylqtU1d0BNmpnlzJ7zM1W4Px8BaGaJV97A8xvYvW_ZfD3puHd_M5vfHNeaYxIxLuUDp7AS8RDcS0tM9mx8twnCkVyhjkuPWxe_9yJpC86Ha853epg5iKfv87O_2NPv8kUf6WlU5fw1YPJ9lRsPgNrPn6LWyEApOP72A8tZ2uBrt4aDFwYFibL1hTse7qnn3zdXPrF8w9spO6bIJcK_vp2_umDZrnCMYX23B1enI5nkR92YSokKluI1dxKWSldIXojldooaOsLwthc_QY_QJOvNVZyV2Vi0Q5K0pXaZvYxKUSEcoOrNdN7XeBKSdEwrWIrcipVFlO104IcQqZcVEW8QiSwV2m6DXFqbTFjRnIY78MudiQi02sDLp4BF-XY-6CosazvdUwC2ZlXRgM-c-OY8OUGdww1Gxrj140pP-Ip9iUj-B9mMGlGTzWMcn3jyBdmdtlB9LiXm2p59edJjfPJdGL9v7T3M_wanJ5cW7Oz6Y_9mEzUBR0xNUHWG_vH_xHRD6t-9St7Cc5U_4R |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Natural+Mutagenesis+of+Human+Genomes+by+Endogenous+Retrotransposons&rft.jtitle=Cell&rft.au=Iskow%2C+Rebecca+C.&rft.au=McCabe%2C+Michael+T.&rft.au=Mills%2C+Ryan+E.&rft.au=Torene%2C+Spencer&rft.date=2010-06-25&rft.pub=Elsevier+Inc&rft.issn=0092-8674&rft.eissn=1097-4172&rft.volume=141&rft.issue=7&rft.spage=1253&rft.epage=1261&rft_id=info:doi/10.1016%2Fj.cell.2010.05.020&rft.externalDocID=S0092867410005568 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon |