Natural Mutagenesis of Human Genomes by Endogenous Retrotransposons

Two abundant classes of mobile elements, namely Alu and L1 elements, continue to generate new retrotransposon insertions in human genomes. Estimates suggest that these elements have generated millions of new germline insertions in individual human genomes worldwide. Unfortunately, current technologi...

Full description

Saved in:
Bibliographic Details
Published inCell Vol. 141; no. 7; pp. 1253 - 1261
Main Authors Iskow, Rebecca C., McCabe, Michael T., Mills, Ryan E., Torene, Spencer, Pittard, W. Stephen, Neuwald, Andrew F., Van Meir, Erwin G., Vertino, Paula M., Devine, Scott E.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 25.06.2010
Subjects
Online AccessGet full text
ISSN0092-8674
1097-4172
1097-4172
DOI10.1016/j.cell.2010.05.020

Cover

Abstract Two abundant classes of mobile elements, namely Alu and L1 elements, continue to generate new retrotransposon insertions in human genomes. Estimates suggest that these elements have generated millions of new germline insertions in individual human genomes worldwide. Unfortunately, current technologies are not capable of detecting most of these young insertions, and the true extent of germline mutagenesis by endogenous human retrotransposons has been difficult to examine. Here, we describe technologies for detecting these young retrotransposon insertions and demonstrate that such insertions indeed are abundant in human populations. We also found that new somatic L1 insertions occur at high frequencies in human lung cancer genomes. Genome-wide analysis suggests that altered DNA methylation may be responsible for the high levels of L1 mobilization observed in these tumors. Our data indicate that transposon-mediated mutagenesis is extensive in human genomes and is likely to have a major impact on human biology and diseases. [Display omitted] ► “Transposon-seq” methods were developed to find mobile element insertions in humans ► New germline retrotransposon insertions were identified in personal human genomes ► Tumor-specific somatic L1 insertions were uncovered in human lung cancer genomes ► Transposon mutagenesis is likely to have a major impact on human traits and diseases
AbstractList Two abundant classes of mobile elements, namely Alu and L1 elements, continue to generate new retrotransposon insertions in human genomes. Estimates suggest that these elements have generated millions of new germline insertions in individual human genomes worldwide. Unfortunately, current technologies are not capable of detecting most of these young insertions, and the true extent of germline mutagenesis by endogenous human retrotransposons has been difficult to examine. Here, we describe technologies for detecting these young retrotransposon insertions and demonstrate that such insertions indeed are abundant in human populations. We also found that new somatic L1 insertions occur at high frequencies in human lung cancer genomes. Genome-wide analysis suggests that altered DNA methylation may be responsible for the high levels of L1 mobilization observed in these tumors. Our data indicate that transposon-mediated mutagenesis is extensive in human genomes and is likely to have a major impact on human biology and diseases.Two abundant classes of mobile elements, namely Alu and L1 elements, continue to generate new retrotransposon insertions in human genomes. Estimates suggest that these elements have generated millions of new germline insertions in individual human genomes worldwide. Unfortunately, current technologies are not capable of detecting most of these young insertions, and the true extent of germline mutagenesis by endogenous human retrotransposons has been difficult to examine. Here, we describe technologies for detecting these young retrotransposon insertions and demonstrate that such insertions indeed are abundant in human populations. We also found that new somatic L1 insertions occur at high frequencies in human lung cancer genomes. Genome-wide analysis suggests that altered DNA methylation may be responsible for the high levels of L1 mobilization observed in these tumors. Our data indicate that transposon-mediated mutagenesis is extensive in human genomes and is likely to have a major impact on human biology and diseases.
Two abundant classes of mobile elements, namely Alu and L1 elements, continue to generate new retrotransposon insertions in human genomes. Estimates suggest that these elements have generated millions of new germline insertions in individual human genomes worldwide. Unfortunately, current technologies are not capable of detecting most of these young insertions, and the true extent of germline mutagenesis by endogenous human retrotransposons has been difficult to examine. Here, we describe technologies for detecting these young retrotransposon insertions and demonstrate that such insertions indeed are abundant in human populations. We also found that new somatic L1 insertions occur at high frequencies in human lung cancer genomes. Genome-wide analysis suggests that altered DNA methylation may be responsible for the high levels of L1 mobilization observed in these tumors. Our data indicate that transposon-mediated mutagenesis is extensive in human genomes and is likely to have a major impact on human biology and diseases.
Two abundant classes of mobile elements, namely Alu and L1 elements, continue to generate new retrotransposon insertions in human genomes. Estimates suggest that these elements have generated millions of new germline insertions in individual human genomes worldwide. Unfortunately, current technologies are not capable of detecting most of these young insertions, and the true extent of germline mutagenesis by endogenous human retrotransposons has been difficult to examine. Here, we describe technologies for detecting these young retrotransposon insertions and demonstrate that such insertions indeed are abundant in human populations. We also found that new somatic L1 insertions occur at high frequencies in human lung cancer genomes. Genome-wide analysis suggests that altered DNA methylation may be responsible for the high levels of L1 mobilization observed in these tumors. Our data indicate that transposon-mediated mutagenesis is extensive in human genomes and is likely to have a major impact on human biology and diseases. [Display omitted] ► “Transposon-seq” methods were developed to find mobile element insertions in humans ► New germline retrotransposon insertions were identified in personal human genomes ► Tumor-specific somatic L1 insertions were uncovered in human lung cancer genomes ► Transposon mutagenesis is likely to have a major impact on human traits and diseases
Two abundant classes of mobile elements, namely Alu and L1 elements, continue to generate new retrotransposon insertions in human genomes. Estimates suggest that these elements have generated millions of new germline insertions in individual human genomes worldwide. Unfortunately, current technologies are not capable of detecting most of these young insertions, and the true extent of germline mutagenesis by endogenous human retrotransposons has been difficult to examine. Here, we describe new technologies for detecting these young retrotransposon insertions and demonstrate that such insertions indeed are abundant in human populations. We also found that new somatic L1 insertions occur at high frequencies in human lung cancer genomes. Genome-wide analysis suggests that altered DNA methylation may be responsible for the high levels of L1 mobilization observed in these tumors. Our data indicate that transposon-mediated mutagenesis is extensive in human genomes, and is likely to have a major impact on human biology and diseases.
Author Pittard, W. Stephen
Mills, Ryan E.
Iskow, Rebecca C.
Torene, Spencer
Neuwald, Andrew F.
Devine, Scott E.
McCabe, Michael T.
Van Meir, Erwin G.
Vertino, Paula M.
AuthorAffiliation 9 Bimcore, Emory University, Atlanta, GA 30322
10 Institute for Genome SciencesBiology, University of Maryland School of Medicine, Baltimore, MD 20201
12 Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 20201
7 Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322
2 Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
8 Winship Cancer Institute, Emory University, Atlanta, GA 30322
4 Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322
11 Department of Biochemistry and Molecular, University of Maryland School of Medicine, Baltimore, MD 20201
1 Genetics and Molecular Biology Graduate Program, Emory University, Atlanta, GA 30322
6 Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA 30322
13 Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 20201
AuthorAffiliation_xml – name: 6 Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA 30322
– name: 1 Genetics and Molecular Biology Graduate Program, Emory University, Atlanta, GA 30322
– name: 2 Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
– name: 4 Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322
– name: 9 Bimcore, Emory University, Atlanta, GA 30322
– name: 11 Department of Biochemistry and Molecular, University of Maryland School of Medicine, Baltimore, MD 20201
– name: 13 Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 20201
– name: 10 Institute for Genome SciencesBiology, University of Maryland School of Medicine, Baltimore, MD 20201
– name: 12 Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 20201
– name: 7 Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322
– name: 8 Winship Cancer Institute, Emory University, Atlanta, GA 30322
Author_xml – sequence: 1
  givenname: Rebecca C.
  surname: Iskow
  fullname: Iskow, Rebecca C.
  organization: Genetics and Molecular Biology Graduate Program, Emory University, Atlanta, GA 30322, USA
– sequence: 2
  givenname: Michael T.
  surname: McCabe
  fullname: McCabe, Michael T.
  organization: Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
– sequence: 3
  givenname: Ryan E.
  surname: Mills
  fullname: Mills, Ryan E.
  organization: Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
– sequence: 4
  givenname: Spencer
  surname: Torene
  fullname: Torene, Spencer
  organization: Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
– sequence: 5
  givenname: W. Stephen
  surname: Pittard
  fullname: Pittard, W. Stephen
  organization: Bimcore, Emory University, Atlanta, GA 30322, USA
– sequence: 6
  givenname: Andrew F.
  surname: Neuwald
  fullname: Neuwald, Andrew F.
  organization: Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 20201, USA
– sequence: 7
  givenname: Erwin G.
  surname: Van Meir
  fullname: Van Meir, Erwin G.
  organization: Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA 30322, USA
– sequence: 8
  givenname: Paula M.
  surname: Vertino
  fullname: Vertino, Paula M.
  organization: Genetics and Molecular Biology Graduate Program, Emory University, Atlanta, GA 30322, USA
– sequence: 9
  givenname: Scott E.
  surname: Devine
  fullname: Devine, Scott E.
  email: sdevine@som.umaryland.edu
  organization: Genetics and Molecular Biology Graduate Program, Emory University, Atlanta, GA 30322, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20603005$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtr3DAUhUVJaSaT_oEuinddeXL1sGVDKZQhTQJpC6VZC1m-TjXY0lSSA_n3kZk0NFlkJdA937mPc0KOnHdIyAcKGwq0PtttDI7jhkH-gGoDDN6QFYVWloJKdkRWAC0rm1qKY3IS4w4Amqqq3pFjBjVwgGpFtj90moMei-9z0rfoMNpY-KG4nCftigt0fsJYdPfFuet9rvs5Fr8wBZ-CdnHvo3fxlLwd9Bjx_eO7Jjffzn9vL8vrnxdX26_XpRGyTmU3MMHFUNUD5S0bsDcdbYEKw3XbskYwyijquulZN7ScVp3mfTfUmmraSVELviZfDr77uZsyji4PMap9sJMO98prq55XnP2jbv2dYq3gMm-8Jp8eDYL_O2NMarJxuaF2mBdTkvNagJQsKz_-3-qpx7_DZQE7CEzwMQYcniQU1JKO2qnFWS3pKKhUTidDzQvI2KST9cu4dnwd_XxAMR_4zmJQ0Vh0Bnsb0CTVe_sa_gD286uM
CitedBy_id crossref_primary_10_1158_2159_8290_CD_17_0368
crossref_primary_10_1186_s12977_015_0162_8
crossref_primary_10_1667_RR13394_1
crossref_primary_10_1016_j_cell_2019_02_050
crossref_primary_10_1093_hmg_ddq400
crossref_primary_10_1266_ggs_22_00038
crossref_primary_10_1631_jzus_B1000422
crossref_primary_10_1371_journal_pgen_1003234
crossref_primary_10_1146_annurev_pathmechdis_012419_032633
crossref_primary_10_1016_j_trsl_2012_12_005
crossref_primary_10_3892_br_2018_1096
crossref_primary_10_1038_nrg2883
crossref_primary_10_1080_2159256X_2015_1119927
crossref_primary_10_1101_gr_114777_110
crossref_primary_10_1158_0008_5472_CAN_15_3421
crossref_primary_10_1186_s13100_019_0191_2
crossref_primary_10_1038_ncomms10286
crossref_primary_10_3390_ijms18010036
crossref_primary_10_1093_nar_gkw1067
crossref_primary_10_1186_s12929_017_0374_4
crossref_primary_10_1101_gr_110528_110
crossref_primary_10_4161_nucl_28005
crossref_primary_10_1002_cne_24046
crossref_primary_10_1186_s12915_022_01441_w
crossref_primary_10_3389_fchem_2016_00043
crossref_primary_10_1371_journal_pgen_1002371
crossref_primary_10_4161_mge_26693
crossref_primary_10_1016_j_arr_2020_101153
crossref_primary_10_1073_pnas_1401532111
crossref_primary_10_1038_nrn3730
crossref_primary_10_15252_embj_2020106388
crossref_primary_10_1101_gr_196238_115
crossref_primary_10_1186_s13100_017_0089_9
crossref_primary_10_1038_nsmb_2658
crossref_primary_10_1093_nar_gkac802
crossref_primary_10_1080_03079457_2013_809694
crossref_primary_10_1038_s41467_021_23918_y
crossref_primary_10_1038_s41586_023_06046_z
crossref_primary_10_3390_ijms21093201
crossref_primary_10_1007_s00595_013_0763_6
crossref_primary_10_1016_j_molcel_2019_05_024
crossref_primary_10_1186_s12864_018_4485_4
crossref_primary_10_4161_mge_1_2_16730
crossref_primary_10_18632_oncotarget_2504
crossref_primary_10_1016_j_neubiorev_2021_03_019
crossref_primary_10_1667_RR15027_1
crossref_primary_10_1158_2159_8290_CD_23_1063
crossref_primary_10_1186_1742_4690_10_83
crossref_primary_10_1016_j_cancergen_2019_11_004
crossref_primary_10_1111_febs_14053
crossref_primary_10_1002_humu_22327
crossref_primary_10_1093_carcin_bgu099
crossref_primary_10_1126_science_1222077
crossref_primary_10_3389_fchem_2016_00028
crossref_primary_10_1093_nar_gkr728
crossref_primary_10_1098_rsob_180074
crossref_primary_10_1371_journal_pgen_1002236
crossref_primary_10_1016_j_cmet_2019_02_014
crossref_primary_10_1186_s13100_019_0148_5
crossref_primary_10_1016_j_ajpath_2014_01_007
crossref_primary_10_3389_fchem_2016_00021
crossref_primary_10_1093_nar_gkt1308
crossref_primary_10_1038_nmeth0810_579
crossref_primary_10_1128_JVI_00919_14
crossref_primary_10_1371_journal_pgen_1006837
crossref_primary_10_1093_molbev_msae269
crossref_primary_10_1101_gr_275323_121
crossref_primary_10_1016_j_cell_2012_04_019
crossref_primary_10_1186_s13100_018_0136_1
crossref_primary_10_3390_ijms17091552
crossref_primary_10_1126_science_1251343
crossref_primary_10_1016_j_conb_2012_03_004
crossref_primary_10_1016_j_canlet_2014_05_021
crossref_primary_10_1534_genetics_113_159483
crossref_primary_10_3390_cancers3011141
crossref_primary_10_3390_cells9092017
crossref_primary_10_1016_j_pharmthera_2016_03_004
crossref_primary_10_1002_bies_201100075
crossref_primary_10_1186_s13100_016_0076_6
crossref_primary_10_1016_j_celrep_2018_05_090
crossref_primary_10_1016_j_celrep_2020_02_048
crossref_primary_10_3389_fgene_2014_00338
crossref_primary_10_1093_nar_gkr668
crossref_primary_10_1134_S0006297917010084
crossref_primary_10_3389_fchem_2016_00006
crossref_primary_10_1158_2767_9764_CRC_22_0057
crossref_primary_10_1101_gr_218032_116
crossref_primary_10_1007_s00335_022_09970_z
crossref_primary_10_1038_s41556_021_00806_7
crossref_primary_10_1038_s41576_019_0165_8
crossref_primary_10_1007_s00441_018_2843_9
crossref_primary_10_1038_nrg2832
crossref_primary_10_1093_jhered_est088
crossref_primary_10_1101_gr_130740_111
crossref_primary_10_3390_genes4040573
crossref_primary_10_1371_journal_pone_0108682
crossref_primary_10_1101_gr_221366_117
crossref_primary_10_1371_journal_pone_0030008
crossref_primary_10_1146_annurev_genet_120213_092412
crossref_primary_10_1080_19420889_2015_1035847
crossref_primary_10_1111_cdev_12051
crossref_primary_10_1371_journal_pgen_1003499
crossref_primary_10_4161_epi_20706
crossref_primary_10_1016_j_jhep_2013_05_001
crossref_primary_10_3390_genes15020143
crossref_primary_10_1093_nar_gku1250
crossref_primary_10_1186_s13100_016_0077_5
crossref_primary_10_1056_NEJMra1510092
crossref_primary_10_1093_nar_gks859
crossref_primary_10_1186_1750_9378_6_14
crossref_primary_10_1051_medsci_20143006016
crossref_primary_10_1111_cei_12115
crossref_primary_10_1073_pnas_1013653107
crossref_primary_10_1016_j_tig_2012_12_002
crossref_primary_10_1038_srep37530
crossref_primary_10_1371_journal_pone_0116072
crossref_primary_10_3390_computation2040221
crossref_primary_10_1007_s13148_011_0032_8
crossref_primary_10_1111_1348_0421_12266
crossref_primary_10_1016_j_bbcan_2012_09_001
crossref_primary_10_1134_S1022795416120152
crossref_primary_10_1101_gr_163659_113
crossref_primary_10_1073_pnas_1405507111
crossref_primary_10_1038_s41588_018_0073_4
crossref_primary_10_1093_dnares_dsy022
crossref_primary_10_3389_fmolb_2016_00076
crossref_primary_10_1146_annurev_genet_110711_155616
crossref_primary_10_1080_15287394_2016_1231644
crossref_primary_10_1371_journal_pgen_1003877
crossref_primary_10_1186_gb_2014_15_6_r80
crossref_primary_10_1093_nar_gkt512
crossref_primary_10_1186_s13059_018_1577_z
crossref_primary_10_1186_gb_2011_12_12_236
crossref_primary_10_1098_rstb_2019_0335
crossref_primary_10_1016_j_cell_2010_05_021
crossref_primary_10_1007_s00411_017_0683_8
crossref_primary_10_1016_j_arr_2023_102132
crossref_primary_10_1016_j_mrrev_2018_09_003
crossref_primary_10_1186_s12864_015_1700_4
crossref_primary_10_1016_j_cell_2010_05_026
crossref_primary_10_1007_s13258_019_00794_x
crossref_primary_10_1016_j_bbagrm_2012_02_013
crossref_primary_10_1371_journal_pgen_1003504
crossref_primary_10_3389_fpls_2021_745526
crossref_primary_10_1038_nmeth_3454
crossref_primary_10_1007_s10522_023_10028_z
crossref_primary_10_1111_febs_12601
crossref_primary_10_1101_gr_154625_113
crossref_primary_10_1016_j_cell_2012_09_035
crossref_primary_10_1016_j_canlet_2020_02_029
crossref_primary_10_1002_bies_201700189
crossref_primary_10_1186_s13100_023_00300_x
crossref_primary_10_4236_jct_2022_136031
crossref_primary_10_1093_nar_gkq1076
crossref_primary_10_1155_2014_784706
crossref_primary_10_1186_1759_8753_5_11
crossref_primary_10_1073_pnas_2019450117
crossref_primary_10_1186_s13100_016_0072_x
crossref_primary_10_1186_s13059_014_0488_x
crossref_primary_10_1038_ng_768
crossref_primary_10_1186_gb_2013_14_3_r22
crossref_primary_10_1128_MCB_00499_18
crossref_primary_10_3390_cancers15174340
crossref_primary_10_1007_s00018_024_05195_2
crossref_primary_10_1002_bies_201300181
crossref_primary_10_1007_s10549_012_2246_7
crossref_primary_10_1084_jem_20170997
crossref_primary_10_1073_pnas_1100275108
crossref_primary_10_1002_jcb_24496
crossref_primary_10_3390_ijms222212246
crossref_primary_10_1016_j_cpb_2014_09_001
crossref_primary_10_1017_S0003055413000099
crossref_primary_10_1586_erm_10_83
crossref_primary_10_18632_oncotarget_1822
crossref_primary_10_1016_j_gde_2013_02_007
crossref_primary_10_1007_s43032_021_00461_1
crossref_primary_10_1016_j_ygeno_2019_02_009
crossref_primary_10_1002_humu_22953
crossref_primary_10_1016_j_bbcan_2014_09_003
crossref_primary_10_1093_nar_gkt438
crossref_primary_10_1371_journal_pone_0048831
crossref_primary_10_2217_epi_2020_0127
crossref_primary_10_1093_bioinformatics_btaa279
crossref_primary_10_1016_j_ab_2020_113779
crossref_primary_10_1093_nar_gkv1342
crossref_primary_10_1146_annurev_pathol_012615_044446
crossref_primary_10_3389_fgene_2022_902541
crossref_primary_10_1002_humu_21533
crossref_primary_10_1139_gen_2014_0031
crossref_primary_10_1371_journal_pcbi_1007293
crossref_primary_10_1186_1471_2105_11_593
crossref_primary_10_18632_oncotarget_21953
crossref_primary_10_1016_j_gde_2012_02_006
crossref_primary_10_1016_j_febslet_2011_03_061
crossref_primary_10_1007_s00439_012_1216_9
crossref_primary_10_1093_gbe_evv043
crossref_primary_10_1158_1541_7786_MCR_12_0351
crossref_primary_10_19159_tutad_310507
crossref_primary_10_1016_j_gde_2018_02_006
crossref_primary_10_1016_j_ncrna_2020_04_003
crossref_primary_10_1002_bdra_20788
crossref_primary_10_1128_MCB_00561_10
crossref_primary_10_1586_erm_11_18
crossref_primary_10_1093_nar_gku503
crossref_primary_10_1016_j_celrep_2014_10_059
crossref_primary_10_1214_16_AOAS1016
crossref_primary_10_1371_journal_pone_0211898
crossref_primary_10_1016_j_toxlet_2014_05_025
crossref_primary_10_1002_humu_21557
crossref_primary_10_3389_fmicb_2017_02537
crossref_primary_10_3390_genes14101923
crossref_primary_10_1002_mrd_22003
crossref_primary_10_1371_journal_pgen_1003402
crossref_primary_10_1093_nar_gkt786
crossref_primary_10_1038_nn_4388
crossref_primary_10_1007_s12041_013_0262_y
crossref_primary_10_1038_ncomms4644
crossref_primary_10_1002_humu_23608
crossref_primary_10_1371_journal_pone_0169196
crossref_primary_10_1186_gm402
crossref_primary_10_1371_journal_pone_0071971
crossref_primary_10_1101_gr_148973_112
crossref_primary_10_1093_nar_gkab010
crossref_primary_10_4161_epi_21094
crossref_primary_10_3389_fchem_2015_00068
crossref_primary_10_1016_j_bbagrm_2014_07_007
crossref_primary_10_15252_embr_201642743
crossref_primary_10_1016_j_tics_2012_08_007
crossref_primary_10_1007_s12094_012_0966_0
crossref_primary_10_1038_ni_2872
crossref_primary_10_1101_gr_231837_117
crossref_primary_10_1016_j_coviro_2013_09_002
crossref_primary_10_1186_1471_2156_12_29
crossref_primary_10_1093_nar_gku687
crossref_primary_10_1038_nsmb_2097
crossref_primary_10_3389_fgene_2015_00358
crossref_primary_10_1016_j_ccr_2013_08_022
crossref_primary_10_1111_febs_15722
crossref_primary_10_1002_pro_651
crossref_primary_10_1016_j_ceb_2014_09_002
crossref_primary_10_1016_j_molcel_2016_11_035
crossref_primary_10_1186_s13100_020_0201_4
crossref_primary_10_1038_s41576_019_0106_6
crossref_primary_10_1093_hmg_ddt225
crossref_primary_10_1093_nar_gkz1173
crossref_primary_10_1186_s13045_015_0133_5
crossref_primary_10_3390_cancers14112613
crossref_primary_10_1371_journal_pone_0117854
crossref_primary_10_1242_dev_175786
crossref_primary_10_1093_hmg_ddr073
crossref_primary_10_1016_j_cell_2013_02_032
crossref_primary_10_1038_s44318_023_00007_y
crossref_primary_10_1186_gm311
crossref_primary_10_1637_10595_061813_Reg_1
crossref_primary_10_1093_molbev_msv062
crossref_primary_10_1186_1471_2164_12_617
crossref_primary_10_1002_mco2_790
crossref_primary_10_1002_bies_201200133
crossref_primary_10_1016_j_celrep_2024_113749
crossref_primary_10_1038_nrg3030
crossref_primary_10_1159_000484104
crossref_primary_10_1016_j_febslet_2011_05_037
crossref_primary_10_1101_gad_351051_123
crossref_primary_10_1038_nature10531
crossref_primary_10_1038_s41590_021_01027_8
crossref_primary_10_15252_embr_202256512
crossref_primary_10_1101_gr_201814_115
crossref_primary_10_3390_biom14101250
crossref_primary_10_3390_ijms24119380
crossref_primary_10_1038_nrc_2017_35
crossref_primary_10_1002_ajmg_b_32225
crossref_primary_10_3109_17435390_2015_1025115
crossref_primary_10_1186_1759_8753_3_11
crossref_primary_10_1038_s41573_020_0067_7
crossref_primary_10_1007_s13258_014_0256_z
crossref_primary_10_1128_MCB_00860_12
crossref_primary_10_3390_cancers13092016
crossref_primary_10_1093_hmg_ddr245
crossref_primary_10_1093_nar_gkad054
crossref_primary_10_1097_CCO_0b013e3283412eb4
crossref_primary_10_1534_g3_112_005348
crossref_primary_10_1073_pnas_1215810109
crossref_primary_10_3389_fcell_2016_00014
crossref_primary_10_1155_2015_131547
crossref_primary_10_1155_2014_164938
crossref_primary_10_1186_s13100_016_0070_z
crossref_primary_10_1016_j_mrrev_2015_05_003
crossref_primary_10_1093_carcin_bgr181
crossref_primary_10_1186_1471_2164_14_869
crossref_primary_10_7554_eLife_12966
crossref_primary_10_1016_j_cca_2018_11_018
crossref_primary_10_3390_v9060131
crossref_primary_10_1007_s10555_015_9563_3
crossref_primary_10_1016_j_molcel_2016_10_021
crossref_primary_10_7554_eLife_13926
crossref_primary_10_1128_microbiolspec_MDNA3_0061_2014
crossref_primary_10_1371_journal_pgen_1007051
crossref_primary_10_1016_j_ccr_2013_10_002
crossref_primary_10_1002_ajmg_b_32437
crossref_primary_10_1073_pnas_1704117114
crossref_primary_10_1038_nm_3919
crossref_primary_10_4161_mge_19479
crossref_primary_10_1016_j_ab_2020_113825
crossref_primary_10_5301_JBM_2012_9308
crossref_primary_10_1074_jbc_M111_251058
crossref_primary_10_1186_1759_8753_4_16
crossref_primary_10_1186_s12864_015_1374_y
crossref_primary_10_1098_rstb_2012_0504
crossref_primary_10_1093_carcin_bgt253
crossref_primary_10_1186_1471_2164_15_795
crossref_primary_10_1073_pnas_1416869112
crossref_primary_10_1002_humu_22024
crossref_primary_10_1093_hmg_ddr455
crossref_primary_10_1093_hmg_ddr456
crossref_primary_10_1186_1471_2164_13_249
crossref_primary_10_1038_s41594_020_0372_1
crossref_primary_10_1007_s10549_013_2812_7
crossref_primary_10_1186_s12958_020_0564_x
crossref_primary_10_17650_2313_805X_2024_11_2_8_28
crossref_primary_10_1128_JVI_05180_11
crossref_primary_10_1016_j_omtn_2020_01_035
crossref_primary_10_1093_mutage_ges025
crossref_primary_10_15407_ubj85_06_151
crossref_primary_10_1186_s13100_016_0078_4
crossref_primary_10_1146_annurev_genom_111620_095614
crossref_primary_10_1080_2159256X_2016_1175537
crossref_primary_10_1017_S0140525X11002226
crossref_primary_10_1093_bioinformatics_bts697
crossref_primary_10_1080_15592294_2019_1585177
crossref_primary_10_1177_1535370219829759
crossref_primary_10_4161_mge_24555
crossref_primary_10_1126_science_1200801
crossref_primary_10_3390_genes7120129
crossref_primary_10_1080_2159256X_2017_1280116
crossref_primary_10_1371_journal_pone_0074629
crossref_primary_10_1186_s12943_022_01618_5
crossref_primary_10_1016_j_semcancer_2010_06_001
crossref_primary_10_1093_nar_gku1043
crossref_primary_10_1093_nar_gky1301
crossref_primary_10_1038_onc_2012_516
crossref_primary_10_1158_2159_8290_CD_11_0181
crossref_primary_10_4161_mge_25674
crossref_primary_10_1371_journal_pgen_1008991
crossref_primary_10_1093_nar_gkae273
crossref_primary_10_1093_nar_gkv1089
crossref_primary_10_1038_s41594_023_01067_8
crossref_primary_10_1007_s12021_010_9091_9
crossref_primary_10_1016_j_cell_2015_03_026
crossref_primary_10_1523_JNEUROSCI_3369_13_2013
crossref_primary_10_1534_g3_119_400613
crossref_primary_10_1101_gr_145235_112
crossref_primary_10_1186_s13100_017_0100_5
crossref_primary_10_1101_gr_111609_110
crossref_primary_10_1074_jbc_M114_559419
crossref_primary_10_1186_s13100_017_0091_2
crossref_primary_10_1016_j_ccell_2017_07_002
crossref_primary_10_1186_s12977_015_0205_1
crossref_primary_10_1038_s41416_023_02154_9
crossref_primary_10_1111_mec_14184
crossref_primary_10_1016_j_cell_2019_09_002
crossref_primary_10_1371_journal_pone_0019672
crossref_primary_10_1073_pnas_1619797114
crossref_primary_10_1186_s12864_015_1685_z
crossref_primary_10_1093_carcin_bgr124
crossref_primary_10_1038_onc_2016_180
crossref_primary_10_1186_s13100_014_0030_4
crossref_primary_10_1096_fj_201700502RR
crossref_primary_10_1146_annurev_med_051010_162644
crossref_primary_10_1038_ng_2649
crossref_primary_10_1002_humu_23027
crossref_primary_10_1007_s12011_015_0298_3
crossref_primary_10_1093_molbev_mss186
crossref_primary_10_1371_journal_ppat_1009496
crossref_primary_10_18632_oncotarget_1188
crossref_primary_10_1155_2012_767694
crossref_primary_10_1002_humu_24261
crossref_primary_10_1007_s00441_011_1289_0
crossref_primary_10_1038_ncomms6011
crossref_primary_10_1101_gr_226993_117
crossref_primary_10_1016_j_tig_2017_07_004
crossref_primary_10_1016_j_gene_2024_149090
crossref_primary_10_1016_j_semcdb_2018_03_019
crossref_primary_10_2503_hortj_MI_IR02
crossref_primary_10_1038_s41467_020_19430_4
crossref_primary_10_1186_s12864_015_1552_y
crossref_primary_10_1016_j_gene_2014_03_008
crossref_primary_10_3109_19396368_2010_527427
crossref_primary_10_1101_gr_115907_110
crossref_primary_10_1111_j_1749_6632_2011_06220_x
crossref_primary_10_1002_brb3_678
crossref_primary_10_4161_mge_28907
crossref_primary_10_1038_s41576_018_0050_x
crossref_primary_10_18632_oncotarget_6767
crossref_primary_10_1002_dneu_22567
crossref_primary_10_4161_mge_26832
crossref_primary_10_1371_journal_pcbi_1002046
crossref_primary_10_1186_s13100_018_0128_1
crossref_primary_10_1016_j_stem_2011_07_018
crossref_primary_10_1016_j_lssr_2015_08_001
crossref_primary_10_1101_gr_122986_111
crossref_primary_10_1101_gr_115956_110
crossref_primary_10_1038_onc_2011_621
crossref_primary_10_1371_journal_pone_0064884
crossref_primary_10_1016_j_critrevonc_2015_10_012
crossref_primary_10_1146_annurev_genom_082509_141802
crossref_primary_10_1073_pnas_1100271108
crossref_primary_10_1002_bies_201600031
crossref_primary_10_4161_mge_23204
Cites_doi 10.1086/373939
10.1002/ijc.23849
10.1073/pnas.0831042100
10.1101/gr.194701
10.1126/science.1058040
10.1101/gr.8.12.1229
10.1086/341718
10.1002/humu.1134
10.1038/sj.onc.1210631
10.1038/nature06884
10.1101/gr.229102. Article published online before print in May 2002
10.1038/229467a0
10.1038/9638
10.1038/nature03691
10.1093/nar/23.6.1087
10.1002/humu.20307
10.1038/nature02886
10.1101/gr.091827.109
10.1016/j.tig.2007.02.006
10.1146/annurev.me.36.020185.002351
10.1038/35057062
10.1371/journal.pbio.0050254
10.1101/gad.1803909
10.1093/oxfordjournals.molbev.a003893
10.1093/oxfordjournals.molbev.a026372
10.1016/j.cell.2010.05.021
10.1038/nature08248
10.1146/annurev.genet.35.102401.091032
10.1038/nmeth.1184
10.1126/science.1149504
10.1101/gr.4565806
10.1534/genetics.104.031757
10.1101/gr.149400
10.1002/(SICI)1098-2264(199703)18:3<232::AID-GCC10>3.0.CO;2-K
10.1128/MCB.8.4.1385
10.1038/333087a0
10.1016/j.gene.2006.01.019
10.1073/pnas.091062498
10.1038/nature03681
10.1038/nature03663
ContentType Journal Article
Copyright 2010 Elsevier Inc.
Copyright_xml – notice: 2010 Elsevier Inc.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.cell.2010.05.020
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4172
EndPage 1261
ExternalDocumentID PMC2943760
20603005
10_1016_j_cell_2010_05_020
S0092867410005568
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA086335
– fundername: NCI NIH HHS
  grantid: 1R01CA132065
– fundername: NCI NIH HHS
  grantid: P01 CA116676
– fundername: NCI NIH HHS
  grantid: R01CA086335
– fundername: NHGRI NIH HHS
  grantid: F32 HG004207
– fundername: NIGMS NIH HHS
  grantid: T32 GM008490
– fundername: NHGRI NIH HHS
  grantid: F32HG004207
– fundername: NIGMS NIH HHS
  grantid: R01GM078541
– fundername: NHGRI NIH HHS
  grantid: R01HG002898
– fundername: NHGRI NIH HHS
  grantid: R01 HG002898
GroupedDBID ---
--K
-DZ
-ET
-~X
.-4
0R~
0WA
1RT
1~5
29B
2FS
2WC
3EH
4.4
457
4G.
53G
5GY
5RE
62-
6I.
6J9
6TJ
7-5
85S
9M8
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKRW
AAKUH
AAUCE
AAVLU
AAXJY
AAXUO
AAYJJ
ABCQX
ABJNI
ABMAC
ABMWF
ABOCM
ABTAH
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFDAS
AFTJW
AGHFR
AGHSJ
AGKMS
AHHHB
AIDAL
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FIRID
HH5
HZ~
IH2
IHE
IXB
J1W
JIG
K-O
KOO
KQ8
L7B
LX5
M3Z
M41
N9A
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
RNS
ROL
RPZ
SCP
SDG
SDP
SES
SSZ
TAE
TN5
TR2
TWZ
UKR
UPT
VQA
WH7
WQ6
YYQ
YZZ
ZA5
ZCA
ZY4
.55
.GJ
.HR
1CY
1VV
2KS
3O-
5VS
AAHBH
AALRI
AAMRU
AAQFI
AAQXK
AAYWO
AAYXX
ABDGV
ABDPE
ABEFU
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
ADXHL
AETEA
AEUPX
AFPUW
AGCQF
AGQPQ
AI.
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
FEDTE
FGOYB
G-2
HVGLF
H~9
MVM
OHT
OMK
OZT
PUQ
R2-
UBW
UHB
VH1
X7M
YYP
ZGI
ZHY
ZKB
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c476t-bf2434f56f1392fedcb19014c3a992842121ea68d2bf9315ba3dbf6a1a1b74643
IEDL.DBID IXB
ISSN 0092-8674
1097-4172
IngestDate Thu Aug 21 14:13:34 EDT 2025
Fri Sep 05 05:09:31 EDT 2025
Mon Jul 21 05:16:48 EDT 2025
Tue Jul 01 03:51:57 EDT 2025
Thu Apr 24 23:08:38 EDT 2025
Fri Feb 23 02:28:08 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords DNA
HUMDISEASE
EVO_ECOL
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c476t-bf2434f56f1392fedcb19014c3a992842121ea68d2bf9315ba3dbf6a1a1b74643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Present address: Brigham and Women’s Hospital, Boston, MA 02115
Present address: GlaxoSmithKline, Collegeville, PA 19426
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0092867410005568
PMID 20603005
PQID 733640772
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2943760
proquest_miscellaneous_733640772
pubmed_primary_20603005
crossref_primary_10_1016_j_cell_2010_05_020
crossref_citationtrail_10_1016_j_cell_2010_05_020
elsevier_sciencedirect_doi_10_1016_j_cell_2010_05_020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-06-25
PublicationDateYYYYMMDD 2010-06-25
PublicationDate_xml – month: 06
  year: 2010
  text: 2010-06-25
  day: 25
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell
PublicationTitleAlternate Cell
PublicationYear 2010
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Beck, Collier, Macfarlane, Malig, Kidd, Eichler, Badge, Moran (bib3) 2010; 141
Xing, Zhang, Han, Salem, Sen, Huff, Zhou, Kirkness, Levy, Batzer (bib44) 2009; 19
Wheeler, Srinivasan, Egholm, Shen, Chen, McGuire, He, Chen, Makhijani, Roth (bib43) 2008; 452
Sheen, Sherry, Risch, Robichaux, Nasidze, Stoneking, Batzer, Swergold (bib36) 2000; 10
Boissinot, Entezam, Furano (bib7) 2001; 18
Howard, Eiges, Gaudet, Jaenisch, Eden (bib17) 2008; 27
Kimura, Ota (bib21) 1971; 229
Korbel, Urban, Affourtit, Godwin, Grubert, Simons, Kim, Palejev, Carriero, Du (bib22) 2007; 318
Siebert, Kellogg, Lukyanov, Lukyanov (bib37) 1995; 23
Borc'his, Bestor (bib8) 2004; 431
Daskalos, Nikolaidis, Xinarianos, Savvardi, Cassidy, Zakopoulou, Kotsinas, Gorgoulis, Field, Liloglou (bib14) 2009; 124
Tusher, Tibshirani, Chu (bib40) 2001; 98
Liu, Nau, Zucman-Rossi, Powell, Allegra, Wright (bib26) 1997; 18
Boissinot, Chevret, Furano (bib6) 2000; 17
Batzer, Deininger (bib2) 2002; 35
Levy, Sutton, Ng, Feuk, Halpern, Walenz, Axelrod, Huang, Kirkness, Denisov (bib24) 2007; 5
Venter, Adams, Myers, Li, Mural, Sutton, Smith, Yandell, Evans, Holt (bib41) 2001; 291
Coufal, Garcia-Perez, Peng, Yeo, Mu, Lovci, Morell, O'Shea, Moran, Gage (bib13) 2009; 460
Mills, Luttig, Larkins, Beauchamp, Tsui, Pittard, Devine (bib28) 2006; 16
Miki, Nishisho, Horii, Miyoshi, Utsunomiya, Kinzler, Vogelstein, Nakamura (bib27) 1992; 52
Hamady, Harris, Gold, Knight (bib16) 2008; 5
Lander, Linton, Birren, Nusbaum, Zody, Baldwin, Devon, Dewar, Doyle, Fitzhugh (bib23) 2001; 409
Morse, Rotherg, South, Spandorder, Astrin (bib30) 1988; 333
Bestor (bib5) 1998; 214
Taylor, Schenck, Blankenberg, Nekrutenko (bib39) 2007
Cordaux, Hedges, Herke, Batzer (bib12) 2006; 373
Kent, Sugnet, Furey, Roskin, Pringle, Zahler, Hausler (bib20) 2002; 12
Ostertag, Kazazian (bib33) 2001; 35
Skowronski, Fanning, Singer (bib38) 1988; 8
Moutri, Marchetto, Deng, Moran, Gage (bib31) 2005; 435
Ovchinnokov, Troxel, Swergold (bib34) 2001; 11
Brouha, Schustak, Badge, Lutz-Prigge, Farley, Moran, Kazazian (bib9) 2003; 100
Dupuy, Akagi, Largaespada, Copeland, Jenkins (bib15) 2005; 436
Kazazian (bib19) 1999; 22
Li, Scaringe, Hill, Roberts, Mengos, Careri, Pinto, Kasper, Sommer (bib25) 2001; 17
Mills, Bennett, Iskow, Devine (bib29) 2007; 23
Bennett, Coleman, Tsui, Pittard, Devine (bib4) 2004; 168
Collins, Brooks, Chakravarti (bib11) 1999; 8
Kano, Godoy, Courtney, Vetter, Gerton, Ostertag, Kazazian (bib18) 2009; 23
Pearson, Rowley (bib35) 1985; 36
Badge, Alisch, Moran (bib1) 2003; 72
Myers, Vincent, Udall, Watkins, Morrish, Kilroy, Swergold, Henke, Henke, Moran (bib32) 2002; 71
Collier, Carlson, Ravimohan, Dupuy, Largaespada (bib10) 2005; 436
Wang, Song, Grover, Azrak, Batzer, Liang (bib42) 2006; 27
Howard (10.1016/j.cell.2010.05.020_bib17) 2008; 27
Collins (10.1016/j.cell.2010.05.020_bib11) 1999; 8
Korbel (10.1016/j.cell.2010.05.020_bib22) 2007; 318
Coufal (10.1016/j.cell.2010.05.020_bib13) 2009; 460
Beck (10.1016/j.cell.2010.05.020_bib3) 2010; 141
Cordaux (10.1016/j.cell.2010.05.020_bib12) 2006; 373
Moutri (10.1016/j.cell.2010.05.020_bib31) 2005; 435
Mills (10.1016/j.cell.2010.05.020_bib28) 2006; 16
Venter (10.1016/j.cell.2010.05.020_bib41) 2001; 291
Lander (10.1016/j.cell.2010.05.020_bib23) 2001; 409
Hamady (10.1016/j.cell.2010.05.020_bib16) 2008; 5
Kano (10.1016/j.cell.2010.05.020_bib18) 2009; 23
Batzer (10.1016/j.cell.2010.05.020_bib2) 2002; 35
Mills (10.1016/j.cell.2010.05.020_bib29) 2007; 23
Pearson (10.1016/j.cell.2010.05.020_bib35) 1985; 36
Miki (10.1016/j.cell.2010.05.020_bib27) 1992; 52
Bennett (10.1016/j.cell.2010.05.020_bib4) 2004; 168
Wang (10.1016/j.cell.2010.05.020_bib42) 2006; 27
Wheeler (10.1016/j.cell.2010.05.020_bib43) 2008; 452
Bestor (10.1016/j.cell.2010.05.020_bib5) 1998; 214
Ostertag (10.1016/j.cell.2010.05.020_bib33) 2001; 35
Li (10.1016/j.cell.2010.05.020_bib25) 2001; 17
Liu (10.1016/j.cell.2010.05.020_bib26) 1997; 18
Kazazian (10.1016/j.cell.2010.05.020_bib19) 1999; 22
Sheen (10.1016/j.cell.2010.05.020_bib36) 2000; 10
Tusher (10.1016/j.cell.2010.05.020_bib40) 2001; 98
Levy (10.1016/j.cell.2010.05.020_bib24) 2007; 5
Boissinot (10.1016/j.cell.2010.05.020_bib7) 2001; 18
Ovchinnokov (10.1016/j.cell.2010.05.020_bib34) 2001; 11
Dupuy (10.1016/j.cell.2010.05.020_bib15) 2005; 436
Collier (10.1016/j.cell.2010.05.020_bib10) 2005; 436
Daskalos (10.1016/j.cell.2010.05.020_bib14) 2009; 124
Badge (10.1016/j.cell.2010.05.020_bib1) 2003; 72
Siebert (10.1016/j.cell.2010.05.020_bib37) 1995; 23
Brouha (10.1016/j.cell.2010.05.020_bib9) 2003; 100
Morse (10.1016/j.cell.2010.05.020_bib30) 1988; 333
Taylor (10.1016/j.cell.2010.05.020_bib39) 2007
Skowronski (10.1016/j.cell.2010.05.020_bib38) 1988; 8
Kent (10.1016/j.cell.2010.05.020_bib20) 2002; 12
Kimura (10.1016/j.cell.2010.05.020_bib21) 1971; 229
Borc'his (10.1016/j.cell.2010.05.020_bib8) 2004; 431
Boissinot (10.1016/j.cell.2010.05.020_bib6) 2000; 17
Myers (10.1016/j.cell.2010.05.020_bib32) 2002; 71
Xing (10.1016/j.cell.2010.05.020_bib44) 2009; 19
20704015 - Nat Methods. 2010 Aug;7(8):579. doi: 10.1038/nmeth0810-579.
20602993 - Cell. 2010 Jun 25;141(7):1110-2. doi: 10.1016/j.cell.2010.06.014.
20628350 - Nat Rev Genet. 2010 Aug;11(8):527. doi: 10.1038/nrg2832.
References_xml – volume: 435
  start-page: 903
  year: 2005
  end-page: 910
  ident: bib31
  article-title: Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition
  publication-title: Nature
– volume: 409
  start-page: 860
  year: 2001
  end-page: 921
  ident: bib23
  article-title: Initial sequencing and analysis of the human genome
  publication-title: Nature
– volume: 17
  start-page: 511
  year: 2001
  end-page: 519
  ident: bib25
  article-title: Frequency of recent retrotransposition events in the human factor IX gene
  publication-title: Hum. Mutat.
– volume: 168
  start-page: 933
  year: 2004
  end-page: 951
  ident: bib4
  article-title: Natural genetic variation caused by transposable elements in humans
  publication-title: Genetics
– volume: 8
  start-page: 1385
  year: 1988
  end-page: 1397
  ident: bib38
  article-title: Unit-length line-1 transcripts in human teratocarcinoma cells
  publication-title: Mol. Cell. Biol.
– volume: 72
  start-page: 823
  year: 2003
  end-page: 838
  ident: bib1
  article-title: ATLAS: a system to selectively identify human-specific L1 insertions
  publication-title: Am. J. Hum. Genet.
– year: 2007
  ident: bib39
  article-title: Using galaxy to perform large-scale interactive data analyses
  publication-title: Current Protocols in Bioinformatics
– volume: 27
  start-page: 323
  year: 2006
  end-page: 329
  ident: bib42
  article-title: dbRIP: A highly integrated database of retrotransposon insertion polymorphisms in humans
  publication-title: Hum. Mutat.
– volume: 460
  start-page: 1127
  year: 2009
  end-page: 1131
  ident: bib13
  article-title: L1 retrotransposition in human neural progenitor cells
  publication-title: Nature
– volume: 333
  start-page: 87
  year: 1988
  end-page: 90
  ident: bib30
  article-title: Insertional mutagenesis of the myc locus by a LINE-1 sequence in a human breast carcinoma
  publication-title: Nature
– volume: 18
  start-page: 232
  year: 1997
  end-page: 239
  ident: bib26
  article-title: LINE-1 element insertion at the t(11:22) translocation breakpoint of a desmoplastic small round cell tumor
  publication-title: Genes Chromosomes Cancer
– volume: 16
  start-page: 1182
  year: 2006
  end-page: 1190
  ident: bib28
  article-title: An initial map of insertion and deletion (INDEL) variation in the human genome
  publication-title: Genome Res.
– volume: 22
  start-page: 130
  year: 1999
  ident: bib19
  article-title: An estimated frequency of endogenous insertional mutations in humans
  publication-title: Nat. Genet.
– volume: 11
  start-page: 2050
  year: 2001
  end-page: 2058
  ident: bib34
  article-title: Genomic characterization of recent human LINE-1 insertions: evidence supporting random insertion
  publication-title: Genome Res.
– volume: 17
  start-page: 915
  year: 2000
  end-page: 928
  ident: bib6
  article-title: L1 (LINE-1) retrotransposon evolution and amplification in recent human history
  publication-title: Mol. Biol. Evol.
– volume: 373
  start-page: 134
  year: 2006
  end-page: 137
  ident: bib12
  article-title: Estimating the retrotransposition rate of human
  publication-title: Gene
– volume: 124
  start-page: 81
  year: 2009
  end-page: 87
  ident: bib14
  article-title: Hypomethylation of retrotransposable elements correlates with genomic instability in non-small cell lung cancer
  publication-title: Int. J. Cancer
– volume: 19
  start-page: 1516
  year: 2009
  end-page: 1526
  ident: bib44
  article-title: Mobile elements create structural variation: analysis of a complete human genome
  publication-title: Genome Res.
– volume: 35
  start-page: 501
  year: 2002
  end-page: 538
  ident: bib2
  article-title: repeats and human genomic diversity
  publication-title: Nat. Rev. Genet.
– volume: 52
  start-page: 643
  year: 1992
  end-page: 645
  ident: bib27
  article-title: Disruption of the APC gene by a retrotransposal insertion of L1 sequence in a colon cancer
  publication-title: Cancer Res.
– volume: 27
  start-page: 404
  year: 2008
  end-page: 408
  ident: bib17
  article-title: Activation and transposition of endogenous retroviral elements in hypomethylation induced tumors in mice
  publication-title: Oncogene
– volume: 23
  start-page: 183
  year: 2007
  end-page: 189
  ident: bib29
  article-title: Which transposable elements are active in the human genome?
  publication-title: Trends Genet.
– volume: 35
  start-page: 501
  year: 2001
  end-page: 538
  ident: bib33
  article-title: Biology of mammalian L1 retrotransposons
  publication-title: Annu. Rev. Genet.
– volume: 100
  start-page: 5280
  year: 2003
  end-page: 5285
  ident: bib9
  article-title: Hot L1s account for the bulk of retrotransposition activity in the human population
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 229
  start-page: 467
  year: 1971
  end-page: 469
  ident: bib21
  article-title: Protein polymorphism as a phase of molecular evolution
  publication-title: Nature
– volume: 5
  start-page: e254
  year: 2007
  ident: bib24
  article-title: The diploid genome sequence of an individual human
  publication-title: PLoS Biol.
– volume: 18
  start-page: 926
  year: 2001
  end-page: 935
  ident: bib7
  article-title: Selection against deleterious LINE-1-containing loci in the human lineage
  publication-title: Mol. Biol. Evol.
– volume: 141
  start-page: 1159
  year: 2010
  end-page: 1170
  ident: bib3
  article-title: LINE-1 retrotransposition activity in human genomes
  publication-title: Cell
– volume: 214
  start-page: 187
  year: 1998
  end-page: 195
  ident: bib5
  article-title: The host defense function of genomic methylation patterns
  publication-title: Novartis Found. Symp.
– volume: 8
  start-page: 1229
  year: 1999
  end-page: 1231
  ident: bib11
  article-title: A DNA polymorphism discovery resource for research on human genetic variation
  publication-title: Genome Res.
– volume: 98
  start-page: 5116
  year: 2001
  end-page: 5121
  ident: bib40
  article-title: Significance analysis of microarrays applied to the ionizing radiation response
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 71
  start-page: 312
  year: 2002
  end-page: 326
  ident: bib32
  article-title: A comprehensive analysis of recently integrated human Ta L1 elements
  publication-title: Am. J. Hum. Genet.
– volume: 318
  start-page: 420
  year: 2007
  end-page: 426
  ident: bib22
  article-title: Paired-end mapping reveals extensive structural variation in the human genome
  publication-title: Science
– volume: 36
  start-page: 471
  year: 1985
  end-page: 483
  ident: bib35
  article-title: The relation of oncogenesis and cytogenetics in leukemia and lymphoma
  publication-title: Annu. Rev. Med.
– volume: 291
  start-page: 1304
  year: 2001
  end-page: 1351
  ident: bib41
  article-title: The sequence of the human genome
  publication-title: Science
– volume: 436
  start-page: 272
  year: 2005
  end-page: 276
  ident: bib10
  article-title: Cancer gene discovery in solid tumors using transposon-based somatic mutagenesis in the mouse
  publication-title: Nature
– volume: 431
  start-page: 96
  year: 2004
  end-page: 99
  ident: bib8
  article-title: Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L
  publication-title: Nature
– volume: 5
  start-page: 235
  year: 2008
  end-page: 237
  ident: bib16
  article-title: Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex
  publication-title: Nat. Methods
– volume: 23
  start-page: 1303
  year: 2009
  end-page: 1312
  ident: bib18
  article-title: L1 retrotransposition occurs mainly in embryogenesis and creates somatic mosaicism
  publication-title: Genes Dev.
– volume: 436
  start-page: 221
  year: 2005
  end-page: 226
  ident: bib15
  article-title: Mammalian mutagenesis using a highly mobile somatic Sleeping Beauty transposon system
  publication-title: Nature
– volume: 12
  start-page: 996
  year: 2002
  end-page: 1006
  ident: bib20
  article-title: The human genome browser at UCSC
  publication-title: Genome Res.
– volume: 10
  start-page: 1496
  year: 2000
  end-page: 1508
  ident: bib36
  article-title: Reading between the LINEs: human genomic variation induced by LINE-1 retrotransposition
  publication-title: Genome Res.
– volume: 23
  start-page: 1087
  year: 1995
  end-page: 1088
  ident: bib37
  article-title: An improved PCR method for walking in uncloned genomic DNA
  publication-title: Nucleic Acids Res.
– volume: 452
  start-page: 872
  year: 2008
  end-page: 876
  ident: bib43
  article-title: The complete genome of an individual by massively parallel DNA sequencing
  publication-title: Nature
– volume: 72
  start-page: 823
  year: 2003
  ident: 10.1016/j.cell.2010.05.020_bib1
  article-title: ATLAS: a system to selectively identify human-specific L1 insertions
  publication-title: Am. J. Hum. Genet.
  doi: 10.1086/373939
– volume: 124
  start-page: 81
  year: 2009
  ident: 10.1016/j.cell.2010.05.020_bib14
  article-title: Hypomethylation of retrotransposable elements correlates with genomic instability in non-small cell lung cancer
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.23849
– volume: 100
  start-page: 5280
  year: 2003
  ident: 10.1016/j.cell.2010.05.020_bib9
  article-title: Hot L1s account for the bulk of retrotransposition activity in the human population
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0831042100
– volume: 11
  start-page: 2050
  year: 2001
  ident: 10.1016/j.cell.2010.05.020_bib34
  article-title: Genomic characterization of recent human LINE-1 insertions: evidence supporting random insertion
  publication-title: Genome Res.
  doi: 10.1101/gr.194701
– volume: 291
  start-page: 1304
  year: 2001
  ident: 10.1016/j.cell.2010.05.020_bib41
  article-title: The sequence of the human genome
  publication-title: Science
  doi: 10.1126/science.1058040
– volume: 8
  start-page: 1229
  year: 1999
  ident: 10.1016/j.cell.2010.05.020_bib11
  article-title: A DNA polymorphism discovery resource for research on human genetic variation
  publication-title: Genome Res.
  doi: 10.1101/gr.8.12.1229
– volume: 71
  start-page: 312
  year: 2002
  ident: 10.1016/j.cell.2010.05.020_bib32
  article-title: A comprehensive analysis of recently integrated human Ta L1 elements
  publication-title: Am. J. Hum. Genet.
  doi: 10.1086/341718
– volume: 17
  start-page: 511
  year: 2001
  ident: 10.1016/j.cell.2010.05.020_bib25
  article-title: Frequency of recent retrotransposition events in the human factor IX gene
  publication-title: Hum. Mutat.
  doi: 10.1002/humu.1134
– volume: 27
  start-page: 404
  year: 2008
  ident: 10.1016/j.cell.2010.05.020_bib17
  article-title: Activation and transposition of endogenous retroviral elements in hypomethylation induced tumors in mice
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1210631
– volume: 452
  start-page: 872
  year: 2008
  ident: 10.1016/j.cell.2010.05.020_bib43
  article-title: The complete genome of an individual by massively parallel DNA sequencing
  publication-title: Nature
  doi: 10.1038/nature06884
– volume: 12
  start-page: 996
  year: 2002
  ident: 10.1016/j.cell.2010.05.020_bib20
  article-title: The human genome browser at UCSC
  publication-title: Genome Res.
  doi: 10.1101/gr.229102. Article published online before print in May 2002
– volume: 229
  start-page: 467
  year: 1971
  ident: 10.1016/j.cell.2010.05.020_bib21
  article-title: Protein polymorphism as a phase of molecular evolution
  publication-title: Nature
  doi: 10.1038/229467a0
– volume: 22
  start-page: 130
  year: 1999
  ident: 10.1016/j.cell.2010.05.020_bib19
  article-title: An estimated frequency of endogenous insertional mutations in humans
  publication-title: Nat. Genet.
  doi: 10.1038/9638
– volume: 436
  start-page: 221
  year: 2005
  ident: 10.1016/j.cell.2010.05.020_bib15
  article-title: Mammalian mutagenesis using a highly mobile somatic Sleeping Beauty transposon system
  publication-title: Nature
  doi: 10.1038/nature03691
– volume: 23
  start-page: 1087
  year: 1995
  ident: 10.1016/j.cell.2010.05.020_bib37
  article-title: An improved PCR method for walking in uncloned genomic DNA
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/23.6.1087
– volume: 27
  start-page: 323
  year: 2006
  ident: 10.1016/j.cell.2010.05.020_bib42
  article-title: dbRIP: A highly integrated database of retrotransposon insertion polymorphisms in humans
  publication-title: Hum. Mutat.
  doi: 10.1002/humu.20307
– volume: 431
  start-page: 96
  year: 2004
  ident: 10.1016/j.cell.2010.05.020_bib8
  article-title: Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L
  publication-title: Nature
  doi: 10.1038/nature02886
– volume: 19
  start-page: 1516
  year: 2009
  ident: 10.1016/j.cell.2010.05.020_bib44
  article-title: Mobile elements create structural variation: analysis of a complete human genome
  publication-title: Genome Res.
  doi: 10.1101/gr.091827.109
– volume: 23
  start-page: 183
  year: 2007
  ident: 10.1016/j.cell.2010.05.020_bib29
  article-title: Which transposable elements are active in the human genome?
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2007.02.006
– volume: 36
  start-page: 471
  year: 1985
  ident: 10.1016/j.cell.2010.05.020_bib35
  article-title: The relation of oncogenesis and cytogenetics in leukemia and lymphoma
  publication-title: Annu. Rev. Med.
  doi: 10.1146/annurev.me.36.020185.002351
– volume: 409
  start-page: 860
  year: 2001
  ident: 10.1016/j.cell.2010.05.020_bib23
  article-title: Initial sequencing and analysis of the human genome
  publication-title: Nature
  doi: 10.1038/35057062
– volume: 5
  start-page: e254
  year: 2007
  ident: 10.1016/j.cell.2010.05.020_bib24
  article-title: The diploid genome sequence of an individual human
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0050254
– volume: 23
  start-page: 1303
  year: 2009
  ident: 10.1016/j.cell.2010.05.020_bib18
  article-title: L1 retrotransposition occurs mainly in embryogenesis and creates somatic mosaicism
  publication-title: Genes Dev.
  doi: 10.1101/gad.1803909
– volume: 18
  start-page: 926
  year: 2001
  ident: 10.1016/j.cell.2010.05.020_bib7
  article-title: Selection against deleterious LINE-1-containing loci in the human lineage
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/oxfordjournals.molbev.a003893
– volume: 17
  start-page: 915
  year: 2000
  ident: 10.1016/j.cell.2010.05.020_bib6
  article-title: L1 (LINE-1) retrotransposon evolution and amplification in recent human history
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/oxfordjournals.molbev.a026372
– volume: 141
  start-page: 1159
  year: 2010
  ident: 10.1016/j.cell.2010.05.020_bib3
  article-title: LINE-1 retrotransposition activity in human genomes
  publication-title: Cell
  doi: 10.1016/j.cell.2010.05.021
– volume: 460
  start-page: 1127
  year: 2009
  ident: 10.1016/j.cell.2010.05.020_bib13
  article-title: L1 retrotransposition in human neural progenitor cells
  publication-title: Nature
  doi: 10.1038/nature08248
– volume: 35
  start-page: 501
  year: 2001
  ident: 10.1016/j.cell.2010.05.020_bib33
  article-title: Biology of mammalian L1 retrotransposons
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev.genet.35.102401.091032
– volume: 5
  start-page: 235
  year: 2008
  ident: 10.1016/j.cell.2010.05.020_bib16
  article-title: Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1184
– volume: 318
  start-page: 420
  year: 2007
  ident: 10.1016/j.cell.2010.05.020_bib22
  article-title: Paired-end mapping reveals extensive structural variation in the human genome
  publication-title: Science
  doi: 10.1126/science.1149504
– volume: 16
  start-page: 1182
  year: 2006
  ident: 10.1016/j.cell.2010.05.020_bib28
  article-title: An initial map of insertion and deletion (INDEL) variation in the human genome
  publication-title: Genome Res.
  doi: 10.1101/gr.4565806
– year: 2007
  ident: 10.1016/j.cell.2010.05.020_bib39
  article-title: Using galaxy to perform large-scale interactive data analyses
– volume: 168
  start-page: 933
  year: 2004
  ident: 10.1016/j.cell.2010.05.020_bib4
  article-title: Natural genetic variation caused by transposable elements in humans
  publication-title: Genetics
  doi: 10.1534/genetics.104.031757
– volume: 35
  start-page: 501
  year: 2002
  ident: 10.1016/j.cell.2010.05.020_bib2
  article-title: Alu repeats and human genomic diversity
  publication-title: Nat. Rev. Genet.
– volume: 10
  start-page: 1496
  year: 2000
  ident: 10.1016/j.cell.2010.05.020_bib36
  article-title: Reading between the LINEs: human genomic variation induced by LINE-1 retrotransposition
  publication-title: Genome Res.
  doi: 10.1101/gr.149400
– volume: 18
  start-page: 232
  year: 1997
  ident: 10.1016/j.cell.2010.05.020_bib26
  article-title: LINE-1 element insertion at the t(11:22) translocation breakpoint of a desmoplastic small round cell tumor
  publication-title: Genes Chromosomes Cancer
  doi: 10.1002/(SICI)1098-2264(199703)18:3<232::AID-GCC10>3.0.CO;2-K
– volume: 8
  start-page: 1385
  year: 1988
  ident: 10.1016/j.cell.2010.05.020_bib38
  article-title: Unit-length line-1 transcripts in human teratocarcinoma cells
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.8.4.1385
– volume: 214
  start-page: 187
  year: 1998
  ident: 10.1016/j.cell.2010.05.020_bib5
  article-title: The host defense function of genomic methylation patterns
  publication-title: Novartis Found. Symp.
– volume: 333
  start-page: 87
  year: 1988
  ident: 10.1016/j.cell.2010.05.020_bib30
  article-title: Insertional mutagenesis of the myc locus by a LINE-1 sequence in a human breast carcinoma
  publication-title: Nature
  doi: 10.1038/333087a0
– volume: 373
  start-page: 134
  year: 2006
  ident: 10.1016/j.cell.2010.05.020_bib12
  article-title: Estimating the retrotransposition rate of human Alu elements
  publication-title: Gene
  doi: 10.1016/j.gene.2006.01.019
– volume: 98
  start-page: 5116
  year: 2001
  ident: 10.1016/j.cell.2010.05.020_bib40
  article-title: Significance analysis of microarrays applied to the ionizing radiation response
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.091062498
– volume: 52
  start-page: 643
  year: 1992
  ident: 10.1016/j.cell.2010.05.020_bib27
  article-title: Disruption of the APC gene by a retrotransposal insertion of L1 sequence in a colon cancer
  publication-title: Cancer Res.
– volume: 436
  start-page: 272
  year: 2005
  ident: 10.1016/j.cell.2010.05.020_bib10
  article-title: Cancer gene discovery in solid tumors using transposon-based somatic mutagenesis in the mouse
  publication-title: Nature
  doi: 10.1038/nature03681
– volume: 435
  start-page: 903
  year: 2005
  ident: 10.1016/j.cell.2010.05.020_bib31
  article-title: Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition
  publication-title: Nature
  doi: 10.1038/nature03663
– reference: 20704015 - Nat Methods. 2010 Aug;7(8):579. doi: 10.1038/nmeth0810-579.
– reference: 20602993 - Cell. 2010 Jun 25;141(7):1110-2. doi: 10.1016/j.cell.2010.06.014.
– reference: 20628350 - Nat Rev Genet. 2010 Aug;11(8):527. doi: 10.1038/nrg2832.
SSID ssj0008555
Score 2.5275507
Snippet Two abundant classes of mobile elements, namely Alu and L1 elements, continue to generate new retrotransposon insertions in human genomes. Estimates suggest...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1253
SubjectTerms Alu Elements
Brain Neoplasms - genetics
DNA
EVO_ECOL
Genome, Human
Humans
HUMDISEASE
Long Interspersed Nucleotide Elements
Lung Neoplasms - genetics
Methylation
Mutagenesis
Sequence Analysis, DNA - methods
Title Natural Mutagenesis of Human Genomes by Endogenous Retrotransposons
URI https://dx.doi.org/10.1016/j.cell.2010.05.020
https://www.ncbi.nlm.nih.gov/pubmed/20603005
https://www.proquest.com/docview/733640772
https://pubmed.ncbi.nlm.nih.gov/PMC2943760
Volume 141
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4iCF7Et-uLHLxJtc2r7VGX1VXRgyjsLSRtiivaLm49-O-dadrFVfHgtUlgmElmvqQz3xByBLctBahVBA3brYhDF6SSySARuTRGqdhmTYLsnRo-iuuRHC2QflcLg2mVre_3Pr3x1u2X01abp5PxGGt8U5YoiIiIO6TCgl-sKsUivtH5zBsnUvouBimcfJjdFs74HC98HG_Tu-RJiD2_fw9OP8Hn9xzKL0HpYpWstGiSnnmB18iCK9fJku8v-bFB-nemodWgt-81-A3wauMprQravNzTS1dWr25K7QcdlHnl2VrpvavfqtpTngMWn26Sx4vBQ38YtF0TgkzEqg5swQQXhVQFgDtWgIQWg77IuElBYfgHOHJGJTmzRcojaQ3PbaFMZCIbCwAoW2SxrEq3Q6i0nEdM8dDwFDuVpfjqBAgnEwnjeRb2SNSpS2ctpTh2tnjRXe7Ys0YVa1SxDqUGFffI8WzNxBNq_DlbdlbQc9tCg8f_cx3tTKbhvOCwKR1oUSP9I1xiY9Yj296CMzFYqEJk7--ReM62swlIxT0_Uo6fGkpulgrMLtr9p7h7ZNlnJaiAyX2yWL-9uwMAO7U9BJh_dXPY7OlPcfX75w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RKlQuqA8oC3340FsVSPxKcoQVdGlhDxVIe7PsxBFbQYLYcODfMxMnq25bceg1tqXR2J757Hz-BuALnrY0olYZdWq3Mo19lCuuokyWylqtU1d0BNmpnlzJ7zM1W4Px8BaGaJV97A8xvYvW_ZfD3puHd_M5vfHNeaYxIxLuUDp7AS8RDcS0tM9mx8twnCkVyhjkuPWxe_9yJpC86Ha853epg5iKfv87O_2NPv8kUf6WlU5fw1YPJ9lRsPgNrPn6LWyEApOP72A8tZ2uBrt4aDFwYFibL1hTse7qnn3zdXPrF8w9spO6bIJcK_vp2_umDZrnCMYX23B1enI5nkR92YSokKluI1dxKWSldIXojldooaOsLwthc_QY_QJOvNVZyV2Vi0Q5K0pXaZvYxKUSEcoOrNdN7XeBKSdEwrWIrcipVFlO104IcQqZcVEW8QiSwV2m6DXFqbTFjRnIY78MudiQi02sDLp4BF-XY-6CosazvdUwC2ZlXRgM-c-OY8OUGdww1Gxrj140pP-Ip9iUj-B9mMGlGTzWMcn3jyBdmdtlB9LiXm2p59edJjfPJdGL9v7T3M_wanJ5cW7Oz6Y_9mEzUBR0xNUHWG_vH_xHRD6t-9St7Cc5U_4R
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Natural+Mutagenesis+of+Human+Genomes+by+Endogenous+Retrotransposons&rft.jtitle=Cell&rft.au=Iskow%2C+Rebecca+C.&rft.au=McCabe%2C+Michael+T.&rft.au=Mills%2C+Ryan+E.&rft.au=Torene%2C+Spencer&rft.date=2010-06-25&rft.pub=Elsevier+Inc&rft.issn=0092-8674&rft.eissn=1097-4172&rft.volume=141&rft.issue=7&rft.spage=1253&rft.epage=1261&rft_id=info:doi/10.1016%2Fj.cell.2010.05.020&rft.externalDocID=S0092867410005568
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon