Clinical Data Analysis for Prediction of Cardiovascular Disease Using Machine Learning Techniques

Cardiovascular disease is difficult to detect due to several risk factors, including high blood pressure, cholesterol, and an abnormal pulse rate. Accurate decision-making and optimal treatment are required to address cardiac risk. As machine learning technology advances, the healthcare industry’s c...

Full description

Saved in:
Bibliographic Details
Published inComputational intelligence and neuroscience Vol. 2022; pp. 1 - 13
Main Authors Nadakinamani, Rajkumar Gangappa, Reyana, A., Kautish, Sandeep, Vibith, A. S., Gupta, Yogita, Abdelwahab, Sayed F., Mohamed, Ali Wagdy
Format Journal Article
LanguageEnglish
Published United States Hindawi 11.01.2022
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN1687-5265
1687-5273
1687-5273
DOI10.1155/2022/2973324

Cover

Abstract Cardiovascular disease is difficult to detect due to several risk factors, including high blood pressure, cholesterol, and an abnormal pulse rate. Accurate decision-making and optimal treatment are required to address cardiac risk. As machine learning technology advances, the healthcare industry’s clinical practice is likely to change. As a result, researchers and clinicians must recognize the importance of machine learning techniques. The main objective of this research is to recommend a machine learning-based cardiovascular disease prediction system that is highly accurate. In contrast, modern machine learning algorithms such as REP Tree, M5P Tree, Random Tree, Linear Regression, Naive Bayes, J48, and JRIP are used to classify popular cardiovascular datasets. The proposed CDPS’s performance was evaluated using a variety of metrics to identify the best suitable machine learning model. When it came to predicting cardiovascular disease patients, the Random Tree model performed admirably, with the highest accuracy of 100%, the lowest MAE of 0.0011, the lowest RMSE of 0.0231, and the fastest prediction time of 0.01 seconds.
AbstractList Cardiovascular disease is difficult to detect due to several risk factors, including high blood pressure, cholesterol, and an abnormal pulse rate. Accurate decision-making and optimal treatment are required to address cardiac risk. As machine learning technology advances, the healthcare industry's clinical practice is likely to change. As a result, researchers and clinicians must recognize the importance of machine learning techniques. The main objective of this research is to recommend a machine learning-based cardiovascular disease prediction system that is highly accurate. In contrast, modern machine learning algorithms such as REP Tree, M5P Tree, Random Tree, Linear Regression, Naive Bayes, J48, and JRIP are used to classify popular cardiovascular datasets. The proposed CDPS's performance was evaluated using a variety of metrics to identify the best suitable machine learning model. When it came to predicting cardiovascular disease patients, the Random Tree model performed admirably, with the highest accuracy of 100%, the lowest MAE of 0.0011, the lowest RMSE of 0.0231, and the fastest prediction time of 0.01 seconds.
Cardiovascular disease is difficult to detect due to several risk factors, including high blood pressure, cholesterol, and an abnormal pulse rate. Accurate decision-making and optimal treatment are required to address cardiac risk. As machine learning technology advances, the healthcare industry's clinical practice is likely to change. As a result, researchers and clinicians must recognize the importance of machine learning techniques. The main objective of this research is to recommend a machine learning-based cardiovascular disease prediction system that is highly accurate. In contrast, modern machine learning algorithms such as REP Tree, M5P Tree, Random Tree, Linear Regression, Naive Bayes, J48, and JRIP are used to classify popular cardiovascular datasets. The proposed CDPS's performance was evaluated using a variety of metrics to identify the best suitable machine learning model. When it came to predicting cardiovascular disease patients, the Random Tree model performed admirably, with the highest accuracy of 100%, the lowest MAE of 0.0011, the lowest RMSE of 0.0231, and the fastest prediction time of 0.01 seconds.Cardiovascular disease is difficult to detect due to several risk factors, including high blood pressure, cholesterol, and an abnormal pulse rate. Accurate decision-making and optimal treatment are required to address cardiac risk. As machine learning technology advances, the healthcare industry's clinical practice is likely to change. As a result, researchers and clinicians must recognize the importance of machine learning techniques. The main objective of this research is to recommend a machine learning-based cardiovascular disease prediction system that is highly accurate. In contrast, modern machine learning algorithms such as REP Tree, M5P Tree, Random Tree, Linear Regression, Naive Bayes, J48, and JRIP are used to classify popular cardiovascular datasets. The proposed CDPS's performance was evaluated using a variety of metrics to identify the best suitable machine learning model. When it came to predicting cardiovascular disease patients, the Random Tree model performed admirably, with the highest accuracy of 100%, the lowest MAE of 0.0011, the lowest RMSE of 0.0231, and the fastest prediction time of 0.01 seconds.
Audience Academic
Author Nadakinamani, Rajkumar Gangappa
Kautish, Sandeep
Mohamed, Ali Wagdy
Gupta, Yogita
Abdelwahab, Sayed F.
Vibith, A. S.
Reyana, A.
AuthorAffiliation 2 Department of Computer Science and Engineering, Hindusthan College of Engineering and Technology, Coimbatore, Tamil Nadu, India
3 Department of Computer Science and Engineering, LBEF Campus, Kathmandu, Nepal, India
5 Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
1 Badr Al Samaa Hospital, Muscat, Oman
7 Operations Research Department, Faculty of Graduate Studies for Statistical Research, Cairo University, Giza 12613, Egypt
6 Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, PO Box 11099, Taif 21944, Saudi Arabia
4 Department of Computer Science and Engineering, RMK College of Engineering and Technology, Tiruvallur, Tamil Nadu, India
8 Department of Mathematics and Actuarial Science, School of Science and Engineering, The American University in Cairo, New Cairo, Egypt
AuthorAffiliation_xml – name: 4 Department of Computer Science and Engineering, RMK College of Engineering and Technology, Tiruvallur, Tamil Nadu, India
– name: 3 Department of Computer Science and Engineering, LBEF Campus, Kathmandu, Nepal, India
– name: 7 Operations Research Department, Faculty of Graduate Studies for Statistical Research, Cairo University, Giza 12613, Egypt
– name: 2 Department of Computer Science and Engineering, Hindusthan College of Engineering and Technology, Coimbatore, Tamil Nadu, India
– name: 8 Department of Mathematics and Actuarial Science, School of Science and Engineering, The American University in Cairo, New Cairo, Egypt
– name: 1 Badr Al Samaa Hospital, Muscat, Oman
– name: 5 Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
– name: 6 Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, PO Box 11099, Taif 21944, Saudi Arabia
Author_xml – sequence: 1
  givenname: Rajkumar Gangappa
  surname: Nadakinamani
  fullname: Nadakinamani, Rajkumar Gangappa
  organization: Badr Al Samaa HospitalMuscatOman
– sequence: 2
  givenname: A.
  orcidid: 0000-0001-8429-4242
  surname: Reyana
  fullname: Reyana, A.
  organization: Department of Computer Science and EngineeringHindusthan College of Engineering and TechnologyCoimbatoreTamil NaduIndiahindusthan.net
– sequence: 3
  givenname: Sandeep
  orcidid: 0000-0001-5120-5741
  surname: Kautish
  fullname: Kautish, Sandeep
  organization: Department of Computer Science and EngineeringLBEF CampusKathmanduNepalIndia
– sequence: 4
  givenname: A. S.
  surname: Vibith
  fullname: Vibith, A. S.
  organization: Department of Computer Science and EngineeringRMK College of Engineering and TechnologyTiruvallurTamil NaduIndia
– sequence: 5
  givenname: Yogita
  surname: Gupta
  fullname: Gupta, Yogita
  organization: Department of BiotechnologyThapar Institute of Engineering & TechnologyPatialaIndiathapar.edu
– sequence: 6
  givenname: Sayed F.
  orcidid: 0000-0002-9636-7485
  surname: Abdelwahab
  fullname: Abdelwahab, Sayed F.
  organization: Department of Pharmaceutics and Industrial PharmacyCollege of PharmacyTaif UniversityPO Box 11099Taif 21944Saudi Arabiatu.edu.sa
– sequence: 7
  givenname: Ali Wagdy
  orcidid: 0000-0002-5895-2632
  surname: Mohamed
  fullname: Mohamed, Ali Wagdy
  organization: Operations Research DepartmentFaculty of Graduate Studies for Statistical ResearchCairo UniversityGiza 12613Egyptcu.edu.eg
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35069715$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1v1DAQxSNURD_gxhlF4oIEobYT28ml0mrLl7QIDu3ZmjiTXVdee7GTVvvf4yhLC5WAky37N29m3jvNjpx3mGUvKXlPKefnjDB2zhpZlqx6kp1QUcuCM1ke3d8FP85OY7whhEtO2LPsuORENJLykwyW1jijweaXMEC-cGD30cS89yH_HrAzejDe5b7PlxA6428h6tFCyC9NRIiYX0fj1vlX0BvjMF8hBDc9XKHeOPNjxPg8e9qDjfjicJ5l1x8_XC0_F6tvn74sF6tCV1IMRVNR0TCGZaN7XgLluksLMZQt0xUpKSEt71tgPUGma8lA6LphGiliK5q2Ls-yYtYd3Q72d2Ct2gWzhbBXlKjJKjVZpQ5WJf5i5ndju8VOoxsCPNR4MOrPH2c2au1vVS2FrAhPAm8OAsFPiw5qa6JGa8GhH6NigrGqFqVkCX39CL3xY0hezxSpJRHigVqDRWVc71NfPYmqRYorEbyZtF79Pvf9wL8yTcC7GdDBxxiw_58P7BGuzQBT6qm7sX8rejsXpdQ7uDP_bvETmCTNAA
CitedBy_id crossref_primary_10_1155_2023_9815067
crossref_primary_10_1186_s42492_023_00143_6
crossref_primary_10_1016_j_jbi_2023_104577
crossref_primary_10_20473_jisebi_9_2_119_135
crossref_primary_10_29121_shodhkosh_v5_i3_2024_3336
crossref_primary_10_1109_ACCESS_2024_3373646
crossref_primary_10_1371_journal_pone_0293759
crossref_primary_10_1007_s00704_023_04589_9
crossref_primary_10_3390_diagnostics13122071
crossref_primary_10_3390_app122110787
crossref_primary_10_1038_s41598_024_53410_8
crossref_primary_10_31642_JoKMC_2018_100104
crossref_primary_10_1016_j_drudis_2024_104280
crossref_primary_10_1038_s41598_023_40717_1
crossref_primary_10_3390_pr11030734
crossref_primary_10_1142_S0219519423300016
crossref_primary_10_1155_2023_1406060
crossref_primary_10_3390_s22197227
crossref_primary_10_1007_s11042_022_14305_w
crossref_primary_10_1002_ece3_70736
crossref_primary_10_3390_math11030707
crossref_primary_10_35940_ijeat_C3984_0212323
crossref_primary_10_33317_ssurj_649
crossref_primary_10_32604_csse_2023_042294
crossref_primary_10_1109_ACCESS_2023_3322943
crossref_primary_10_1016_j_mtbio_2025_101663
Cites_doi 10.1007/s40815-018-0559-3
10.1177/2047487320916823
10.1186/s12911-019-0918-5
10.1155/2018/3860146
10.1093/eurheartj/ehy404
10.1371/journal.pone.0174944
10.1016/j.imu.2019.100203
10.1016/j.jare.2020.04.006
10.1002/acs.2967
10.1007/s00395-020-0792-4
10.1016/j.eij.2011.04.003
10.1038/s41598-020-72685-1
10.1007/s12553-020-00438-1
10.1038/s41597-019-0206-3
10.1088/1742-6596/1817/1/012009
10.1136/bmj.m3919
10.22266/ijies2019.0228.24
10.1007/s13755-019-0095-z
10.1186/s12968-019-0575-y
10.1109/access.2020.3015757
10.1016/j.envpol.2020.114630
10.1371/journal.pone.0213653
10.1161/JAHA.119.013958
10.1111/ijcp.13389
10.1007/s42979-020-00365-y
10.1161/hypertensionaha.120.15885
10.1109/access.2019.2923707
ContentType Journal Article
Copyright Copyright © 2022 Rajkumar Gangappa Nadakinamani et al.
COPYRIGHT 2022 John Wiley & Sons, Inc.
Copyright © 2022 Rajkumar Gangappa Nadakinamani et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright © 2022 Rajkumar Gangappa Nadakinamani et al. 2022
Copyright_xml – notice: Copyright © 2022 Rajkumar Gangappa Nadakinamani et al.
– notice: COPYRIGHT 2022 John Wiley & Sons, Inc.
– notice: Copyright © 2022 Rajkumar Gangappa Nadakinamani et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
– notice: Copyright © 2022 Rajkumar Gangappa Nadakinamani et al. 2022
DBID RHU
RHW
RHX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QF
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7X7
7XB
8AL
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
COVID
CWDGH
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
K7-
K9.
KR7
L6V
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
Q9U
7X8
5PM
ADTOC
UNPAY
DOI 10.1155/2022/2973324
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
Coronavirus Research Database
Middle East & Africa Database
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Medical Database
Biological Science Database (Proquest)
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Materials Research Database
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Coronavirus Research Database
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Middle East & Africa Database
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
Corrosion Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Publicly Available Content Database
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1687-5273
Editor Khalil, Ahmed Mostafa
Editor_xml – sequence: 1
  givenname: Ahmed Mostafa
  surname: Khalil
  fullname: Khalil, Ahmed Mostafa
EndPage 13
ExternalDocumentID 10.1155/2022/2973324
PMC8767405
A697663592
35069715
10_1155_2022_2973324
Genre Journal Article
GeographicLocations Hungary
India
GeographicLocations_xml – name: Hungary
– name: India
GrantInformation_xml – fundername: Taif University
  grantid: TURSP-2020/51
GroupedDBID ---
188
29F
2WC
3V.
4.4
53G
5GY
5VS
6J9
7X7
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAFWJ
AAJEY
AAKPC
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIWK
ACM
ACPRK
ADBBV
ADRAZ
AENEX
AFKRA
AHMBA
AINHJ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
CCPQU
CS3
CWDGH
DIK
DWQXO
E3Z
EBD
EBS
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
I-F
IAO
ICD
INH
INR
IPY
ITC
K6V
K7-
KQ8
L6V
LK8
M0N
M1P
M48
M7P
M7S
MK~
O5R
O5S
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
Q2X
RHU
RHW
RHX
RNS
RPM
SV3
TR2
TUS
UKHRP
XH6
~8M
0R~
24P
AAMMB
AAYXX
ACCMX
ACUHS
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
H13
IHR
OVT
PGMZT
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
2UF
C1A
CGR
CNMHZ
CUY
CVCKV
CVF
ECM
EIF
EJD
IL9
NPM
UZ4
7QF
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7XB
8AL
8BQ
8FD
8FK
COVID
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c476t-9416922e39cf53a15cd3242e7b2c403100b5fba2f0e2c872a6c892ce1eeb69b83
IEDL.DBID M48
ISSN 1687-5265
1687-5273
IngestDate Sun Oct 26 02:38:09 EDT 2025
Tue Sep 30 16:52:30 EDT 2025
Sun Sep 28 02:07:19 EDT 2025
Tue Oct 07 05:39:27 EDT 2025
Mon Oct 20 22:49:01 EDT 2025
Wed Feb 19 02:27:28 EST 2025
Thu Apr 24 22:58:28 EDT 2025
Wed Oct 01 02:22:16 EDT 2025
Sun Jun 02 18:51:21 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
Copyright © 2022 Rajkumar Gangappa Nadakinamani et al.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c476t-9416922e39cf53a15cd3242e7b2c403100b5fba2f0e2c872a6c892ce1eeb69b83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Correction/Retraction-3
Academic Editor: Ahmed Mostafa Khalil
ORCID 0000-0001-8429-4242
0000-0001-5120-5741
0000-0002-9636-7485
0000-0002-5895-2632
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1155/2022/2973324
PMID 35069715
PQID 2622087066
PQPubID 237303
PageCount 13
ParticipantIDs unpaywall_primary_10_1155_2022_2973324
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8767405
proquest_miscellaneous_2622486372
proquest_journals_2622087066
gale_infotracmisc_A697663592
pubmed_primary_35069715
crossref_primary_10_1155_2022_2973324
crossref_citationtrail_10_1155_2022_2973324
hindawi_primary_10_1155_2022_2973324
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-11
PublicationDateYYYYMMDD 2022-01-11
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-11
  day: 11
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Computational intelligence and neuroscience
PublicationTitleAlternate Comput Intell Neurosci
PublicationYear 2022
Publisher Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
References 23
24
28
29
D. Imamovic (25)
S. Kalmegh (26) 2015; 2
A. Gavhane (30)
31
10
32
11
12
13
14
15
16
17
H. A. Esfahani (33)
18
19
S. J. Al’Aref (2) 2019; 40
1
3
4
5
K. G. Dinesh (22)
6
7
8
9
S. C. Kumar (27)
20
21
References_xml – ident: 32
  doi: 10.1007/s40815-018-0559-3
– ident: 15
  doi: 10.1177/2047487320916823
– ident: 6
  doi: 10.1186/s12911-019-0918-5
– ident: 9
  doi: 10.1155/2018/3860146
– volume: 40
  start-page: 1975
  issue: 24
  year: 2019
  ident: 2
  article-title: Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging
  publication-title: European Heart Journal
  doi: 10.1093/eurheartj/ehy404
– ident: 21
  doi: 10.1371/journal.pone.0174944
– start-page: 1
  ident: 22
  article-title: Prediction of cardiovascular disease using machine learning algorithms
– ident: 19
  doi: 10.1016/j.imu.2019.100203
– ident: 23
  doi: 10.1016/j.jare.2020.04.006
– ident: 24
  doi: 10.1002/acs.2967
– start-page: 1011
  ident: 33
  article-title: Cardiovascular disease detection using a new ensemble classifier
– ident: 12
  doi: 10.1007/s00395-020-0792-4
– ident: 1
  doi: 10.1016/j.eij.2011.04.003
– ident: 13
  doi: 10.1038/s41598-020-72685-1
– ident: 28
  doi: 10.1007/s12553-020-00438-1
– ident: 4
  doi: 10.1038/s41597-019-0206-3
– ident: 20
  doi: 10.1088/1742-6596/1817/1/012009
– ident: 31
  doi: 10.1136/bmj.m3919
– start-page: 1103
  ident: 27
  article-title: M5P model tree in predicting student performance: a case study
– ident: 11
  doi: 10.22266/ijies2019.0228.24
– ident: 29
  doi: 10.1007/s13755-019-0095-z
– ident: 7
  doi: 10.1186/s12968-019-0575-y
– volume: 2
  start-page: 438
  issue: 2
  year: 2015
  ident: 26
  article-title: Analysis of weka data mining algorithm reptree, simple cart and randomtree for classification of indian news
  publication-title: International Journal of Innovative Science, Engineering & Technology
– start-page: 1275
  ident: 30
  article-title: Prediction of heart disease using machine learning
– ident: 18
  doi: 10.1109/access.2020.3015757
– ident: 14
  doi: 10.1016/j.envpol.2020.114630
– ident: 8
  doi: 10.1371/journal.pone.0213653
– ident: 17
  doi: 10.1161/JAHA.119.013958
– start-page: 1
  ident: 25
  article-title: Prediction of mortality in patients with cardiovascular disease using data mining methods
– ident: 5
  doi: 10.1111/ijcp.13389
– ident: 10
  doi: 10.1007/s42979-020-00365-y
– ident: 16
  doi: 10.1161/hypertensionaha.120.15885
– ident: 3
  doi: 10.1109/access.2019.2923707
SSID ssj0057502
Score 2.5204215
Snippet Cardiovascular disease is difficult to detect due to several risk factors, including high blood pressure, cholesterol, and an abnormal pulse rate. Accurate...
SourceID unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
hindawi
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Algorithms
Bayes Theorem
Bayesian analysis
Blood pressure
Cardiovascular disease
Cardiovascular diseases
Cardiovascular Diseases - diagnosis
Cholesterol
COVID-19
Data Analysis
Data mining
Datasets
Decision making
Decision trees
Health care industry
Heart rate
Humans
Hypertension
Learning algorithms
Machine Learning
Medical research
Medicine, Experimental
Methods
Mortality
Predictions
Risk analysis
Risk factors
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS9xAEB6qUPSlWG1tqpUVrC8lmGyyu8nj4Q8OQRFRuLewu9mocObEu0P87zuTbEKv2upj2F9JZmfnm92PbwH20pLu0XY2NFFqwjS2ZZhZbkNEyhidKqViQ_sdZ-dyeJ2ejsTIiyRNXx7hY7Sj9Jwf0BVLGPuXYCmTxNy6HI66BRcBR0stlOgvpPbe8dv_arsQefz6-_GWMt-nu9fw5Uua5Mq8ftDPT3o8_iMGnazBJw8e2aC19mf44Op12BjUmDjfP7N91tA5m33yDdBe8XPMjvRMs058hCFIZRePdDxDJmGTih0uUFLZUXtkwxoyATtryJaOeR3WG3bVib5Ov8D1yfHV4TD09ymENlVyFuYIvnLOXZLbSiQ6FrYkOOWU4TYlidDIiMpoXkWO20xxLW2Wc-ti54zMTZZ8heV6UrtvwMpcaWed0QYTMl65LCblP5GkyuIyYcoAfnX_urBebJzuvBgXTdIhREGWKbxlAvjZ135oRTb-UW-bzFaQ72FvFj3BFgOJiAphU84D2PPmfKuXztaFd9hpwSXnEZ35ygB2-2IagEhotZvM2zppJhOFI222U6MfKBERvkcsAlALk6avQDLeiyX13W0j552RnlKELff76fXf9__-vs_cglV6pO2iON6G5dnj3P1AADUzO437_AblVRAM
  priority: 102
  providerName: Hindawi Publishing
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwEB7RRVW5VLS0JS0gV6JcqojE8SM5VNXyEqrEClUgcYtsxylIS3aBXSH-fT2JHbpqoedMbCvz8Ofx5BuAbVZhH21rYp0wHbPUVHFuqIkdUna7Uy1lqjHfcTISx-fsxwW_WIJR-BcGyypDTGwDdTUxmCPfpYLSBC_lxPfpTYxdo_B2NbTQUL61QvWtpRh7AcsUmbEGsLx3ODr9GWKzwyZdFaJwroXE8KEUnnPMAtBd7OSUUbawSflQ_fISD8n3V_-Con9XVL6aN1P1cK_G4z-2q6NVeO1xJhl2hvEGlmzzFtaGjTtjXz-QHdJWfrYp9TVQnhx0TA7UTJHAU0IcniWnt3iTg9ojk5rsL1SvkoPudoe0dQfkpK3LtMRTtv4iZ4Ef9u4dnB8dnu0fx771QmyYFLO4cDitoNRmhal5plJuKkReVmpqGLKJJprXWtE6sdTkkiph8oIam1qrRaHz7D0Mmklj14FUhVTWWK20O7vR2uYpkgTyjEnjIoquIvgavnVpPC85tscYl-35hPMSNVN6zUTwpZeednwcT8htoNpKdFM3mnFOY8qhcODLIayCRrDt1fm_UYKuS-_bd-WjJUbwuX-ME2C9WmMn806G5SKTbqYPnWn0E2U8cetIeQRywWh6AWT8XnzSXF22zN85Ui8l7s2d3ryeXf_H59f_CVZQGjNKaboBg9nt3G46jDXTW95xfgNcGiDO
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SDaW59JU-3KZFhTSX4o0tW5ZNT0vSEAoJOWQhhYKRZLkJ3XiXrJeQ_vrO2LJb901vNhrrOSN9I40_AWzHBd2jbY2vg1j7cWgKPzXc-IiUcXUqpQw17XccHSeH0_j9mThbg7fdvzAFUcTPVbEcn5NPen3RzNauX5e7Br1FdNf5Ll25hFhgvCjKW7CeCATiI1ifHp9MPpCLlaDpEPH7t2cZdWHvQgyyGCxIblq-7Qr_Fez8OXryzqpaqJtrNZt9tzQd3IOPXaPaiJTP41Wtx-bLD3yP_9nq-3DXQVY2aXXsAazZ6iFsTip01y9v2A5rgkib3flNUI5ndMb2Va1YR3nCEBqzkys6FCJFYPOS7Q0CYdl-e1DEmhAGdtSEeFrm2F8_sdOOanb5CKYH7073Dn13i4NvYpnUfoaQL-PcRpkpRaRCYQoCcVZqbmIiJg20KLXiZWC5SSVXiUkzbmxorU4ynUaPYVTNK_sUWJFJZY3VSqMbyEubhsQ3KKJYGpycdOHBm24oc-MozummjVneuDpC5NSLuetFD1730ouW2uM3clukFTlZPOZm0P5MPkkQxyFYy7gH227Q_pZLp0p5N7A5TzgP6KQ58eBVn0wFUOhbZeerViZOk0hiSU9azesLikSA9QiFB3Kgk70AkYcPU6qL84ZEPCUWpwC_3Om194_1f_avgs9hg15pmyoMt2BUX63sCwRutX7pDPQrIWE8EA
  priority: 102
  providerName: Unpaywall
Title Clinical Data Analysis for Prediction of Cardiovascular Disease Using Machine Learning Techniques
URI https://dx.doi.org/10.1155/2022/2973324
https://www.ncbi.nlm.nih.gov/pubmed/35069715
https://www.proquest.com/docview/2622087066
https://www.proquest.com/docview/2622486372
https://pubmed.ncbi.nlm.nih.gov/PMC8767405
https://downloads.hindawi.com/journals/cin/2022/2973324.pdf
UnpaywallVersion publishedVersion
Volume 2022
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: KQ8
  dateStart: 20070625
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: KQ8
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1687-5273
  dateEnd: 20230628
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: ABDBF
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: DIK
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: GX1
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: 7X7
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Middle East & Africa Database
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: CWDGH
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/middleeastafrica
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: 8FG
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250430
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: M48
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: 24P
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9swEBf9YGwvY1v34a4LGnR5GV5t2bLshzGytmkYJITSQPZkJFleC66Tpgld_vvd2bJZtq57MQRdJOG7s36nO35HyGGYYR9to13lhcoNfZ25sWbaBaQMp1MuhK_wvmM4igaT8NuUT7dIUz9vX-DtvaEd9pOaLIpPP2_WX8DhP1cOzznG7-wIezABOOjOb1xsKYWpV9tfY5vswrGVYF-HYdimGACm1AWJEXgZcsQ3VfF_TLhxXtmv9qNLjJfvru5DpX8XVz5elXO5vpNF8dvJ1X9GnlrISXu1jTwnW6Z8QfZ6JYTb12vapVURaHW7vkek5Qkt6IlcStpQllCAtnS8wKQOKpLOcnq8UchKT-pED61KEOiwKtE01LK3_qAXDVXs7Usy6Z9eHA9c24XB1aGIlm4CkC1hzASJznkgfa4zBGFGKKZDJBb1FM-VZLlnmI4Fk5GOE6aNb4yKEhUHr8hOOSvNG0KzREijjZIKwjiWm9hHvkAehELDx0VlDvnYvOtUW4py7JRRpFWownmKmkmtZhzyoZWe19Qc_5A7QLWlaEMwmwb_0WkvAhwGYCthDjm06vzfLI2u08ZKUxYx5mGmOHLI-3YYF8DStdLMVrVMGEeBgJVe16bRLhRwD_bhc4eIDaNpBZD8e3OkvLqsSMBjZGHy4J_d1rwe3P_-w_t_S56gNF4u-f4B2VkuVuYdwK2l6pBtMRXwjPtnHbL79XQ0PodfZ1O_UzkUPM8HUxiZjMa9778AjeAqqQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lc9MwEN4p6TDlwqs8DAXETJsL49aWLT8OHDIJJaVNh0M69GYkWaYdgh0aZzLhR_FX-EtobdkQHuXUA2frZXl3tav9_C3Atp9iHW0lbeH4wvZdmdqRpNLWnrI-nbIwdAXed4yOg-GJ_-aUna7B1-ZfGIRVNjaxMtRpIfGOfI8GlDqYlAsMgvJQLRc6Ppu9PBjoj7lD6f6rcX9omxICtvTDoLRj7W_ElCovlhnzuMtkih6ECgWVPrJiOoJlgtPMUVRGIeWBjGIqlauUCGIReXrc7vSzjVWqMJtrSnZcg3W9FJd2YL3_bvB62Nh-7fvUKMdAqy4SzzdQe8bwloHuYaUoj_orh6A5Cq6fYRC-OP-Tq_s7YnNjnk_5csEnk5-Ow_1b8K3ZyBoF83F3Xopd-eUXjsn_Z6dvw03jmZNerUp3YE3ld2Gzl_Oy-LQkXVJhZaskxCZwQ6c6IQNectIwuxAdAZC3F5j7QnknRUb6K3hfMqjzYaRCapBRhWRVxJDcfiDjhlF3dg9OruT970MnL3L1EEgah1xJJbjQ0S7NVOQirSLz_FBqGyxSC1400pNIw-SOBUUmSRXRMZagrCVG1izYaVtPawaTv7TbQkFM0LDp0aQ2MzLpBdpd1T5pTC3YNgL6r1EaoUqMNZwlPyTKguftY5wAEX65KuZ1Gz8KvFDP9KAW9nYijzl6HS6zIFxRg7YBcqSvPsnPzyqu9AjJqhzds9sqzKXrf3T5-p_BxnA8OkqODo4PH8MN7In3ca67BZ3yYq6eaA-1FE-NWSDw_qpV5ju0FZrw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LctMwFL1T2oGy4VUegQJipu2GcWPLlmwvGCaTEFJKO1200-6MJMtth2CHxplM-DR-hZ9B15YD4VFWXbC2LMn2feoenwuwEaTYR1srR7qBdAJPpU6kqHJMpGy8UxaGnsTzjr19PjgK3p2wkyX42vwLg7DKxiZWhjotFJ6Rtymn1MWiHG9nFhZx0Ou_Hn12sIMUVlqbdhq1iOzq2dSkb-NXOz3zrTcp7b857A4c22HAUUHISyc24UhMqfZjlTFfeEylGGDoUFIVIGmmK1kmBc1cTVUUUsFVFFOlPa0lj2Xkm3mvwUrEQ26Mwkr3uPd20PgBEwfViEdu1BhJ6BvYPWN44kDb2DXKp8GCQ7Ru4foZJuTT8z-Fvb-jN1cn-UjMpmI4_Mk19m_Dt-al1oiYj9uTUm6rL7_wTf6fb_0O3LIRO-nUKnYXlnR-D9Y6uSiLTzOyRSoMbVWcWANhaVaHpCdKQRrGF2IyA3JwgTUx1ANSZKS7gAMmvbpORioEB9mrEK6aWPLbU3LYMO2O78PRlTzsA1jOi1w_ApLGodBKSyFNFkwzHXlIt8j8IFTGNsu0BS8bSUqUZXjHRiPDpMr0GEtQ7hIrdy3YnI8e1cwmfxm3jkKZoMEzsyljflTS4SaMNbFqTFuwYYX1X7M0ApZYKzlOfkhXC17ML-MCiPzLdTGpxwQR90Oz0sNa8OcL-cw1-_BYC8IFlZgPQO70xSv5-VnFoR4hiZVr7tyaK8-l-398-f6fww2jF8n7nf3dJ3ATb8RjOs9bh-XyYqKfmsC1lM-shSDw4arV4ztyvaO4
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SDaW59JU-3KZFhTSX4o0tW5ZNT0vSEAoJOWQhhYKRZLkJ3XiXrJeQ_vrO2LJb901vNhrrOSN9I40_AWzHBd2jbY2vg1j7cWgKPzXc-IiUcXUqpQw17XccHSeH0_j9mThbg7fdvzAFUcTPVbEcn5NPen3RzNauX5e7Br1FdNf5Ll25hFhgvCjKW7CeCATiI1ifHp9MPpCLlaDpEPH7t2cZdWHvQgyyGCxIblq-7Qr_Fez8OXryzqpaqJtrNZt9tzQd3IOPXaPaiJTP41Wtx-bLD3yP_9nq-3DXQVY2aXXsAazZ6iFsTip01y9v2A5rgkib3flNUI5ndMb2Va1YR3nCEBqzkys6FCJFYPOS7Q0CYdl-e1DEmhAGdtSEeFrm2F8_sdOOanb5CKYH7073Dn13i4NvYpnUfoaQL-PcRpkpRaRCYQoCcVZqbmIiJg20KLXiZWC5SSVXiUkzbmxorU4ynUaPYVTNK_sUWJFJZY3VSqMbyEubhsQ3KKJYGpycdOHBm24oc-MozummjVneuDpC5NSLuetFD1730ouW2uM3clukFTlZPOZm0P5MPkkQxyFYy7gH227Q_pZLp0p5N7A5TzgP6KQ58eBVn0wFUOhbZeerViZOk0hiSU9azesLikSA9QiFB3Kgk70AkYcPU6qL84ZEPCUWpwC_3Om194_1f_avgs9hg15pmyoMt2BUX63sCwRutX7pDPQrIWE8EA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clinical+Data+Analysis+for+Prediction+of+Cardiovascular+Disease+Using+Machine+Learning+Techniques&rft.jtitle=Computational+intelligence+and+neuroscience&rft.au=Rajkumar+Gangappa+Nadakinamani&rft.au=Reyana%2C+A&rft.au=Kautish%2C+Sandeep&rft.au=Vibith%2C+A+S&rft.date=2022-01-11&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1687-5265&rft.eissn=1687-5273&rft.volume=2022&rft_id=info:doi/10.1155%2F2022%2F2973324&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-5265&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-5265&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-5265&client=summon