Using network analysis modularity to group health code systems and decrease dimensionality in machine learning models

Machine learning (ML) prediction models in healthcare and pharmacy-related research face challenges with encoding high-dimensional Healthcare Coding Systems (HCSs) such as ICD, ATC, and DRG codes, given the trade-off between reducing model dimensionality and minimizing information loss. To investiga...

Full description

Saved in:
Bibliographic Details
Published inExploratory research in clinical and social pharmacy Vol. 14; p. 100463
Main Authors Askar, Mohsen, Småbrekke, Lars, Holsbø, Einar, Bongo, Lars Ailo, Svendsen, Kristian
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.06.2024
Elsevier
Subjects
Online AccessGet full text
ISSN2667-2766
2667-2766
DOI10.1016/j.rcsop.2024.100463

Cover

Abstract Machine learning (ML) prediction models in healthcare and pharmacy-related research face challenges with encoding high-dimensional Healthcare Coding Systems (HCSs) such as ICD, ATC, and DRG codes, given the trade-off between reducing model dimensionality and minimizing information loss. To investigate using Network Analysis modularity as a method to group HCSs to improve encoding in ML models. The MIMIC-III dataset was utilized to create a multimorbidity network in which ICD-9 codes are the nodes and the edges are the number of patients sharing the same ICD-9 code pairs. A modularity detection algorithm was applied using different resolution thresholds to generate 6 sets of modules. The impact of four grouping strategies on the performance of predicting 90-day Intensive Care Unit readmissions was assessed. The grouping strategies compared: 1) binary encoding of codes, 2) encoding codes grouped by network modules, 3) grouping codes to the highest level of ICD-9 hierarchy, and 4) grouping using the single-level Clinical Classification Software (CCS). The same methodology was also applied to encode DRG codes but limiting the comparison to a single modularity threshold to binary encoding. The performance was assessed using Logistic Regression, Support Vector Machine with a non-linear kernel, and Gradient Boosting Machines algorithms. Accuracy, Precision, Recall, AUC, and F1-score with 95% confidence intervals were reported. Models utilized modularity encoding outperformed ungrouped codes binary encoding models. The accuracy improved across all algorithms ranging from 0.736 to 0.78 for the modularity encoding, to 0.727 to 0.779 for binary encoding. AUC, recall, and precision also improved across almost all algorithms. In comparison with other grouping approaches, modularity encoding generally showed slightly higher performance in AUC, ranging from 0.813 to 0.837, and precision, ranging from 0.752 to 0.782. Modularity encoding enhances the performance of ML models in pharmacy research by effectively reducing dimensionality and retaining necessary information. Across the three algorithms used, models utilizing modularity encoding showed superior or comparable performance to other encoding approaches. Modularity encoding introduces other advantages such as it can be used for both hierarchical and non-hierarchical HCSs, the approach is clinically relevant, and can enhance ML models' clinical interpretation. A Python package has been developed to facilitate the use of the approach for future research. •The paper introduces Modularity Encoding to encode categorical Healthcare Coding Systems in machine learning models.•The approach enhances the clinical interpretation of models by representing how codes co-occur in a individuals.•Modularity encoding showed better or similar performance to other popular encoding approaches.•The approach can be used for hierarchical and non-hierarchical systems.•The study features a developed Python package to simplify applying modularity encoding in future studies.
AbstractList •The paper introduces Modularity Encoding to encode categorical Healthcare Coding Systems in machine learning models.•The approach enhances the clinical interpretation of models by representing how codes co-occur in a individuals.•Modularity encoding showed better or similar performance to other popular encoding approaches.•The approach can be used for hierarchical and non-hierarchical systems.•The study features a developed Python package to simplify applying modularity encoding in future studies.
Machine learning (ML) prediction models in healthcare and pharmacy-related research face challenges with encoding high-dimensional Healthcare Coding Systems (HCSs) such as ICD, ATC, and DRG codes, given the trade-off between reducing model dimensionality and minimizing information loss. To investigate using Network Analysis modularity as a method to group HCSs to improve encoding in ML models. The MIMIC-III dataset was utilized to create a multimorbidity network in which ICD-9 codes are the nodes and the edges are the number of patients sharing the same ICD-9 code pairs. A modularity detection algorithm was applied using different resolution thresholds to generate 6 sets of modules. The impact of four grouping strategies on the performance of predicting 90-day Intensive Care Unit readmissions was assessed. The grouping strategies compared: 1) binary encoding of codes, 2) encoding codes grouped by network modules, 3) grouping codes to the highest level of ICD-9 hierarchy, and 4) grouping using the single-level Clinical Classification Software (CCS). The same methodology was also applied to encode DRG codes but limiting the comparison to a single modularity threshold to binary encoding. The performance was assessed using Logistic Regression, Support Vector Machine with a non-linear kernel, and Gradient Boosting Machines algorithms. Accuracy, Precision, Recall, AUC, and F1-score with 95% confidence intervals were reported. Models utilized modularity encoding outperformed ungrouped codes binary encoding models. The accuracy improved across all algorithms ranging from 0.736 to 0.78 for the modularity encoding, to 0.727 to 0.779 for binary encoding. AUC, recall, and precision also improved across almost all algorithms. In comparison with other grouping approaches, modularity encoding generally showed slightly higher performance in AUC, ranging from 0.813 to 0.837, and precision, ranging from 0.752 to 0.782. Modularity encoding enhances the performance of ML models in pharmacy research by effectively reducing dimensionality and retaining necessary information. Across the three algorithms used, models utilizing modularity encoding showed superior or comparable performance to other encoding approaches. Modularity encoding introduces other advantages such as it can be used for both hierarchical and non-hierarchical HCSs, the approach is clinically relevant, and can enhance ML models' clinical interpretation. A Python package has been developed to facilitate the use of the approach for future research. •The paper introduces Modularity Encoding to encode categorical Healthcare Coding Systems in machine learning models.•The approach enhances the clinical interpretation of models by representing how codes co-occur in a individuals.•Modularity encoding showed better or similar performance to other popular encoding approaches.•The approach can be used for hierarchical and non-hierarchical systems.•The study features a developed Python package to simplify applying modularity encoding in future studies.
Machine learning (ML) prediction models in healthcare and pharmacy-related research face challenges with encoding high-dimensional Healthcare Coding Systems (HCSs) such as ICD, ATC, and DRG codes, given the trade-off between reducing model dimensionality and minimizing information loss.BackgroundMachine learning (ML) prediction models in healthcare and pharmacy-related research face challenges with encoding high-dimensional Healthcare Coding Systems (HCSs) such as ICD, ATC, and DRG codes, given the trade-off between reducing model dimensionality and minimizing information loss.To investigate using Network Analysis modularity as a method to group HCSs to improve encoding in ML models.ObjectivesTo investigate using Network Analysis modularity as a method to group HCSs to improve encoding in ML models.The MIMIC-III dataset was utilized to create a multimorbidity network in which ICD-9 codes are the nodes and the edges are the number of patients sharing the same ICD-9 code pairs. A modularity detection algorithm was applied using different resolution thresholds to generate 6 sets of modules. The impact of four grouping strategies on the performance of predicting 90-day Intensive Care Unit readmissions was assessed. The grouping strategies compared: 1) binary encoding of codes, 2) encoding codes grouped by network modules, 3) grouping codes to the highest level of ICD-9 hierarchy, and 4) grouping using the single-level Clinical Classification Software (CCS). The same methodology was also applied to encode DRG codes but limiting the comparison to a single modularity threshold to binary encoding.The performance was assessed using Logistic Regression, Support Vector Machine with a non-linear kernel, and Gradient Boosting Machines algorithms. Accuracy, Precision, Recall, AUC, and F1-score with 95% confidence intervals were reported.MethodsThe MIMIC-III dataset was utilized to create a multimorbidity network in which ICD-9 codes are the nodes and the edges are the number of patients sharing the same ICD-9 code pairs. A modularity detection algorithm was applied using different resolution thresholds to generate 6 sets of modules. The impact of four grouping strategies on the performance of predicting 90-day Intensive Care Unit readmissions was assessed. The grouping strategies compared: 1) binary encoding of codes, 2) encoding codes grouped by network modules, 3) grouping codes to the highest level of ICD-9 hierarchy, and 4) grouping using the single-level Clinical Classification Software (CCS). The same methodology was also applied to encode DRG codes but limiting the comparison to a single modularity threshold to binary encoding.The performance was assessed using Logistic Regression, Support Vector Machine with a non-linear kernel, and Gradient Boosting Machines algorithms. Accuracy, Precision, Recall, AUC, and F1-score with 95% confidence intervals were reported.Models utilized modularity encoding outperformed ungrouped codes binary encoding models. The accuracy improved across all algorithms ranging from 0.736 to 0.78 for the modularity encoding, to 0.727 to 0.779 for binary encoding. AUC, recall, and precision also improved across almost all algorithms. In comparison with other grouping approaches, modularity encoding generally showed slightly higher performance in AUC, ranging from 0.813 to 0.837, and precision, ranging from 0.752 to 0.782.ResultsModels utilized modularity encoding outperformed ungrouped codes binary encoding models. The accuracy improved across all algorithms ranging from 0.736 to 0.78 for the modularity encoding, to 0.727 to 0.779 for binary encoding. AUC, recall, and precision also improved across almost all algorithms. In comparison with other grouping approaches, modularity encoding generally showed slightly higher performance in AUC, ranging from 0.813 to 0.837, and precision, ranging from 0.752 to 0.782.Modularity encoding enhances the performance of ML models in pharmacy research by effectively reducing dimensionality and retaining necessary information. Across the three algorithms used, models utilizing modularity encoding showed superior or comparable performance to other encoding approaches. Modularity encoding introduces other advantages such as it can be used for both hierarchical and non-hierarchical HCSs, the approach is clinically relevant, and can enhance ML models' clinical interpretation. A Python package has been developed to facilitate the use of the approach for future research.ConclusionsModularity encoding enhances the performance of ML models in pharmacy research by effectively reducing dimensionality and retaining necessary information. Across the three algorithms used, models utilizing modularity encoding showed superior or comparable performance to other encoding approaches. Modularity encoding introduces other advantages such as it can be used for both hierarchical and non-hierarchical HCSs, the approach is clinically relevant, and can enhance ML models' clinical interpretation. A Python package has been developed to facilitate the use of the approach for future research.
Machine learning (ML) prediction models in healthcare and pharmacy-related research face challenges with encoding high-dimensional Healthcare Coding Systems (HCSs) such as ICD, ATC, and DRG codes, given the trade-off between reducing model dimensionality and minimizing information loss. To investigate using Network Analysis modularity as a method to group HCSs to improve encoding in ML models. The MIMIC-III dataset was utilized to create a multimorbidity network in which ICD-9 codes are the nodes and the edges are the number of patients sharing the same ICD-9 code pairs. A modularity detection algorithm was applied using different resolution thresholds to generate 6 sets of modules. The impact of four grouping strategies on the performance of predicting 90-day Intensive Care Unit readmissions was assessed. The grouping strategies compared: 1) binary encoding of codes, 2) encoding codes grouped by network modules, 3) grouping codes to the highest level of ICD-9 hierarchy, and 4) grouping using the single-level Clinical Classification Software (CCS). The same methodology was also applied to encode DRG codes but limiting the comparison to a single modularity threshold to binary encoding.The performance was assessed using Logistic Regression, Support Vector Machine with a non-linear kernel, and Gradient Boosting Machines algorithms. Accuracy, Precision, Recall, AUC, and F1-score with 95% confidence intervals were reported. Models utilized modularity encoding outperformed ungrouped codes binary encoding models. The accuracy improved across all algorithms ranging from 0.736 to 0.78 for the modularity encoding, to 0.727 to 0.779 for binary encoding. AUC, recall, and precision also improved across almost all algorithms. In comparison with other grouping approaches, modularity encoding generally showed slightly higher performance in AUC, ranging from 0.813 to 0.837, and precision, ranging from 0.752 to 0.782. Modularity encoding enhances the performance of ML models in pharmacy research by effectively reducing dimensionality and retaining necessary information. Across the three algorithms used, models utilizing modularity encoding showed superior or comparable performance to other encoding approaches. Modularity encoding introduces other advantages such as it can be used for both hierarchical and non-hierarchical HCSs, the approach is clinically relevant, and can enhance ML models' clinical interpretation. A Python package has been developed to facilitate the use of the approach for future research.
Background: Machine learning (ML) prediction models in healthcare and pharmacy-related research face challenges with encoding high-dimensional Healthcare Coding Systems (HCSs) such as ICD, ATC, and DRG codes, given the trade-off between reducing model dimensionality and minimizing information loss. Objectives: To investigate using Network Analysis modularity as a method to group HCSs to improve encoding in ML models. Methods: The MIMIC-III dataset was utilized to create a multimorbidity network in which ICD-9 codes are the nodes and the edges are the number of patients sharing the same ICD-9 code pairs. A modularity detection algorithm was applied using different resolution thresholds to generate 6 sets of modules. The impact of four grouping strategies on the performance of predicting 90-day Intensive Care Unit readmissions was assessed. The grouping strategies compared: 1) binary encoding of codes, 2) encoding codes grouped by network modules, 3) grouping codes to the highest level of ICD-9 hierarchy, and 4) grouping using the single-level Clinical Classification Software (CCS). The same methodology was also applied to encode DRG codes but limiting the comparison to a single modularity threshold to binary encoding.The performance was assessed using Logistic Regression, Support Vector Machine with a non-linear kernel, and Gradient Boosting Machines algorithms. Accuracy, Precision, Recall, AUC, and F1-score with 95% confidence intervals were reported. Results: Models utilized modularity encoding outperformed ungrouped codes binary encoding models. The accuracy improved across all algorithms ranging from 0.736 to 0.78 for the modularity encoding, to 0.727 to 0.779 for binary encoding. AUC, recall, and precision also improved across almost all algorithms. In comparison with other grouping approaches, modularity encoding generally showed slightly higher performance in AUC, ranging from 0.813 to 0.837, and precision, ranging from 0.752 to 0.782. Conclusions: Modularity encoding enhances the performance of ML models in pharmacy research by effectively reducing dimensionality and retaining necessary information. Across the three algorithms used, models utilizing modularity encoding showed superior or comparable performance to other encoding approaches. Modularity encoding introduces other advantages such as it can be used for both hierarchical and non-hierarchical HCSs, the approach is clinically relevant, and can enhance ML models' clinical interpretation. A Python package has been developed to facilitate the use of the approach for future research.
ArticleNumber 100463
Author Svendsen, Kristian
Holsbø, Einar
Småbrekke, Lars
Bongo, Lars Ailo
Askar, Mohsen
Author_xml – sequence: 1
  givenname: Mohsen
  surname: Askar
  fullname: Askar, Mohsen
  email: mohsen.g.askar@uit.no
  organization: Department of Pharmacy, Faculty of Health Sciences, UiT-The Arctic University of Norway, PO Box 6050, Stakkevollan, N-9037 Tromsø, Norway
– sequence: 2
  givenname: Lars
  surname: Småbrekke
  fullname: Småbrekke, Lars
  email: lars.smabrekke@uit.no
  organization: Department of Pharmacy, Faculty of Health Sciences, UiT-The Arctic University of Norway, PO Box 6050, Stakkevollan, N-9037 Tromsø, Norway
– sequence: 3
  givenname: Einar
  surname: Holsbø
  fullname: Holsbø, Einar
  email: einar.j.holsbo@uit.no
  organization: Department of Computer Science, Faculty of Science and Technology, UiT-The Arctic University of Norway, PO, Box 6050 Stakkevollan, N-9037 Tromsø, Norway
– sequence: 4
  givenname: Lars Ailo
  surname: Bongo
  fullname: Bongo, Lars Ailo
  email: lars.ailo.bongo@uit.no
  organization: Department of Computer Science, Faculty of Science and Technology, UiT-The Arctic University of Norway, PO, Box 6050 Stakkevollan, N-9037 Tromsø, Norway
– sequence: 5
  givenname: Kristian
  surname: Svendsen
  fullname: Svendsen, Kristian
  email: kristian.svendsen@uit.no
  organization: Department of Pharmacy, Faculty of Health Sciences, UiT-The Arctic University of Norway, PO Box 6050, Stakkevollan, N-9037 Tromsø, Norway
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38974056$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1DAUhSNUREvpL0BCXrKZwa_Y8QIhVPGoVIkNXVuOfTPjwbEHO2k1_x5PU6p2g1jZur7fOb73vG5OYorQNG8JXhNMxIfdOtuS9muKKa8VzAV70ZxRIeSKSiFOntxPm4tSdhhjKhXHEr9qTlmnJMetOGvmm-LjBkWY7lL-hUw04VB8QWNyczDZTwc0JbTJad6jLZgwbZFNDlA5lAnGUgGHHNgMpgByfoRYfKoiR9BHNBq79RFQAJPj0ajqQihvmpeDCQUuHs7z5ubrl5-X31fXP75dXX6-XlkuxbRSZOgkbh3vqe0VY5ax1jmKSedsLwYqbGt71nJFSA_OAOulgq7rsFASExjYeXO16Lpkdnqf_WjyQSfj9X0h5Y02efI2gKbK8co55VrOMSdK1SW1arA97nrHeNXii9Yc9-ZwZ0J4FCRYH0PRO30fij6GopdQKvZpwfZzP4KzEKdswrO_PH-Jfqs36VYTQmmd4mj8_kEhp98zlEmPvlgIwURIc9EMS1FjZpLU1ndPzR5d_uZdG9jSYHMqJcPwnzN8XKgaHdx6yLpYD9GC8xnsVJfp_8n_AZNw1_k
Cites_doi 10.1016/j.annemergmed.2021.02.029
10.1016/j.ijmedinf.2021.104510
10.1016/j.ijmedinf.2021.104466
10.1186/s40537-020-00349-y
10.1016/j.jbi.2015.05.016
10.1097/00005650-199801000-00004
10.1109/ACCESS.2021.3104357
10.1007/s10389-021-01685-w
10.1007/s42979-022-01252-4
10.1136/neurintsurg-2014-011156
10.3390/healthcare10010080
10.2196/16306
10.1109/TKDE.2008.239
10.1093/bib/bbx044
10.1016/j.cmpb.2019.02.007
10.1371/journal.pone.0201016
10.3390/ijerph17093108
10.1055/s-0038-1634558
10.1186/2047-2501-2-3
10.1016/j.sapharm.2021.06.021
10.1109/TCBB.2018.2827029
10.1109/TNSE.2015.2391998
10.1038/s41591-020-1041-y
10.3390/bioengineering11040337
10.1007/s00180-022-01207-6
10.1109/TKDE.2020.2992529
10.1088/1742-5468/2008/10/P10008
10.1109/JBHI.2019.2938995
10.1186/s40537-020-00305-w
10.1038/sdata.2016.35
ContentType Journal Article
Copyright 2024 The Authors
2024 The Authors.
2024 The Authors 2024
Copyright_xml – notice: 2024 The Authors
– notice: 2024 The Authors.
– notice: 2024 The Authors 2024
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1016/j.rcsop.2024.100463
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 2667-2766
ExternalDocumentID oai_doaj_org_article_29d4069d9d5440419938959fcb08bd34
10.1016/j.rcsop.2024.100463
PMC11227014
38974056
10_1016_j_rcsop_2024_100463
S266727662400060X
Genre Journal Article
GroupedDBID 0R~
0SF
6I.
AAEDW
AAFTH
AAXUO
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
GROUPED_DOAJ
M~E
OK1
ROL
RPM
AALRI
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
NPM
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c476t-91f8705d4b2cb933c335dd2018dcb6f26c5cb354911bedae3b79e888069701ef3
IEDL.DBID DOA
ISSN 2667-2766
IngestDate Fri Oct 03 12:52:18 EDT 2025
Sun Oct 26 03:51:15 EDT 2025
Tue Sep 30 17:08:22 EDT 2025
Fri Jul 11 12:25:39 EDT 2025
Mon Jul 21 06:00:20 EDT 2025
Tue Jul 01 02:04:53 EDT 2025
Wed Jun 26 17:51:59 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Modularity detection
EDA
CPT
LR
Categorical data encoding
ICD
SVM
AUC
ATC
RUS
CCS
GBM
HCPCS
NA
Healthcare coding systems
Network analysis
Machine learning
DRG
Predictive modeling
HCSs
ICU
ED
ML
Language English
License This is an open access article under the CC BY-NC-ND license.
2024 The Authors.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c476t-91f8705d4b2cb933c335dd2018dcb6f26c5cb354911bedae3b79e888069701ef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/29d4069d9d5440419938959fcb08bd34
PMID 38974056
PQID 3076766371
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_29d4069d9d5440419938959fcb08bd34
unpaywall_primary_10_1016_j_rcsop_2024_100463
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11227014
proquest_miscellaneous_3076766371
pubmed_primary_38974056
crossref_primary_10_1016_j_rcsop_2024_100463
elsevier_sciencedirect_doi_10_1016_j_rcsop_2024_100463
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Exploratory research in clinical and social pharmacy
PublicationTitleAlternate Explor Res Clin Soc Pharm
PublicationYear 2024
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Jones, Cocker, Jose, Charleston, Neil (bb0250) 2023; 31
Pakbin, Rafi, Hurley, Schulz, Harlan Krumholz, Bobak Mortazavi (bb0120) 2018
Singh, Nadkarni, Guttag, Bottinger (bb0125) 2023
W.H. Organization (bb0185) 2023
Cabitza, Campagner (bb0165) 2021; 153
Shameer, Johnson, Yahi (bb0135) 2017; 22
Tanha, Abdi, Samadi, Razzaghi, Asadpour (bb0200) 2020; 7
Maleki Varnosfaderani, Forouzanfar (bb0015) 2024; 11
Guo, Yu, Wen (bb0215) 2019; 12
Zhao, Yoo, Naqvi (bb0145) 2021; 9
Keogh, Mueen (bb0225) 2017
Raghupathi, Raghupathi (bb0020) 2014; 2
W.H. Organization (bb0030) 2023
Zhou, Wang, Ding, Shen, Qiu (bb0240) 2022; 10
Yu, Xie (bb0115) 2020; 24
Kansal, Gao, Balu (bb0100) 2021; 151
Johnson, Pollard, Shen (bb0160) 2016; 3
Hancock, Khoshgoftaar (bb0095) 2020; 7
Hirsch, Leslie-Mazwi, Nicola (bb0045) 2015; 7
Fenn, Davis, Buckland (bb0140) 2021; 78
Cerda, Varoquaux (bb0080) 2020; 34
Panicacci, Donati, Fanucci, Bellini, Profili, Francesconi (bb0150) 2018; 2018
Kulkarni, Smith, Woeltje, Smith, Woeltje (bb0105) 2016; 19
Futoma, Morris, Lucas (bb0110) 2015; 56
Mu, Wang, Jiang, Feng (bb0245) 2020; 17
Jiang, Deng, Yi (bb0230) 2019
Kanter, Veeramachaneni (bb0085) 2015
Deschepper, Eeckloo, Vogelaers, Waegeman (bb0130) 2019; 173
Wang, Cui, Chen, Avidan, Ben Abdallah, Kronzer (bb0065) 2018; 15
He, Garcia (bb0195) 2009; 21
W.H. Organization (bb0190) 2023
Chalasani, Syed, Ramesh, Patil, Pramod Kumar (bb0010) 2023; 12
Askar, Cañadas, Svendsen (bb0170) 2021; 17
Elixhauser, Steiner, Harris, Coffey (bb0235) 1998; 36
Fetter, Shin, Freeman, Averill, Thompson (bb0040) 1980; 18
Miotto, Wang, Wang, Jiang, Dudley (bb0055) 2018; 19
W.H. Organization (bb0035) 2023
(bb0050) 2024
Dahouda, Joe (bb0060) 2021; 9
Johnson, Khoshgoftaar (bb0070) 2022; 3
Lambiotte, Delvenne, Barahona (bb0180) 2009; 1
Hu, Li, Huo, Liang, Gao, Pei (bb0210) 2016
Hong, Haimovich, Taylor (bb0155) 2018; 13
Norgeot, Quer, Beaulieu-Jones (bb0205) 2020; 26
Blondel, Guillaume, Lambiotte, Lefebvre (bb0175) 2008; 2008
Chen, Xu (bb0220) 2014
Khan, Parvez, Kumari, Parvez, Ahmad (bb0005) 2023; 1
Pargent, Pfisterer, Thomas, Bischl (bb0075) 2022; 37
Cimino (bb0025) 1998; 37
Guo, Berkhahn (bb0090) 2016
Lambiotte (10.1016/j.rcsop.2024.100463_bb0180) 2009; 1
Jones (10.1016/j.rcsop.2024.100463_bb0250) 2023; 31
Johnson (10.1016/j.rcsop.2024.100463_bb0070) 2022; 3
Jiang (10.1016/j.rcsop.2024.100463_bb0230) 2019
Kanter (10.1016/j.rcsop.2024.100463_bb0085) 2015
Zhou (10.1016/j.rcsop.2024.100463_bb0240) 2022; 10
Zhao (10.1016/j.rcsop.2024.100463_bb0145) 2021; 9
Pakbin (10.1016/j.rcsop.2024.100463_bb0120) 2018
Cerda (10.1016/j.rcsop.2024.100463_bb0080) 2020; 34
W.H. Organization (10.1016/j.rcsop.2024.100463_bb0030)
Shameer (10.1016/j.rcsop.2024.100463_bb0135) 2017; 22
Guo (10.1016/j.rcsop.2024.100463_bb0090)
Kansal (10.1016/j.rcsop.2024.100463_bb0100) 2021; 151
Keogh (10.1016/j.rcsop.2024.100463_bb0225) 2017
Guo (10.1016/j.rcsop.2024.100463_bb0215) 2019; 12
Hu (10.1016/j.rcsop.2024.100463_bb0210) 2016
Mu (10.1016/j.rcsop.2024.100463_bb0245) 2020; 17
Fetter (10.1016/j.rcsop.2024.100463_bb0040) 1980; 18
Cimino (10.1016/j.rcsop.2024.100463_bb0025) 1998; 37
Johnson (10.1016/j.rcsop.2024.100463_bb0160) 2016; 3
W.H. Organization (10.1016/j.rcsop.2024.100463_bb0190)
Wang (10.1016/j.rcsop.2024.100463_bb0065) 2018; 15
Khan (10.1016/j.rcsop.2024.100463_bb0005) 2023; 1
Cabitza (10.1016/j.rcsop.2024.100463_bb0165) 2021; 153
Hirsch (10.1016/j.rcsop.2024.100463_bb0045) 2015; 7
Miotto (10.1016/j.rcsop.2024.100463_bb0055) 2018; 19
Dahouda (10.1016/j.rcsop.2024.100463_bb0060) 2021; 9
Norgeot (10.1016/j.rcsop.2024.100463_bb0205) 2020; 26
Elixhauser (10.1016/j.rcsop.2024.100463_bb0235) 1998; 36
Futoma (10.1016/j.rcsop.2024.100463_bb0110) 2015; 56
Deschepper (10.1016/j.rcsop.2024.100463_bb0130) 2019; 173
Tanha (10.1016/j.rcsop.2024.100463_bb0200) 2020; 7
Chen (10.1016/j.rcsop.2024.100463_bb0220) 2014
Chalasani (10.1016/j.rcsop.2024.100463_bb0010) 2023; 12
W.H. Organization (10.1016/j.rcsop.2024.100463_bb0185)
Pargent (10.1016/j.rcsop.2024.100463_bb0075) 2022; 37
Askar (10.1016/j.rcsop.2024.100463_bb0170) 2021; 17
Blondel (10.1016/j.rcsop.2024.100463_bb0175) 2008; 2008
Singh (10.1016/j.rcsop.2024.100463_bb0125) 2023
W.H. Organization (10.1016/j.rcsop.2024.100463_bb0035)
Raghupathi (10.1016/j.rcsop.2024.100463_bb0020) 2014; 2
Kulkarni (10.1016/j.rcsop.2024.100463_bb0105) 2016; 19
Yu (10.1016/j.rcsop.2024.100463_bb0115) 2020; 24
Fenn (10.1016/j.rcsop.2024.100463_bb0140) 2021; 78
He (10.1016/j.rcsop.2024.100463_bb0195) 2009; 21
Maleki Varnosfaderani (10.1016/j.rcsop.2024.100463_bb0015) 2024; 11
Panicacci (10.1016/j.rcsop.2024.100463_bb0150) 2018; 2018
Hong (10.1016/j.rcsop.2024.100463_bb0155) 2018; 13
Hancock (10.1016/j.rcsop.2024.100463_bb0095) 2020; 7
References_xml – volume: 1
  start-page: 32
  year: 2023
  end-page: 40
  ident: bb0005
  article-title: The future of pharmacy: how AI is revolutionizing the industry
  publication-title: Intell Pharm
– volume: 18
  start-page: i
  year: 1980
  end-page: 53
  ident: bb0040
  article-title: Case mix definition by diagnosis-related groups
  publication-title: Med Care
– volume: 13
  year: 2018
  ident: bb0155
  article-title: Predicting hospital admission at emergency department triage using machine learning
  publication-title: PLoS One
– volume: 2
  start-page: 3
  year: 2014
  ident: bb0020
  article-title: Big data analytics in healthcare: promise and potential
  publication-title: Heal Inf Sci Syst
– year: 2024
  ident: bb0050
  article-title: U.S.N.L. of Medicine, UMLS Metathesaurus - HCPCS (HCPCS - Healthcare Common Procedure Coding System) - Source Representation
– volume: 1
  start-page: 76
  year: 2009
  end-page: 90
  ident: bb0180
  article-title: Laplacian dynamics and multiscale modular structure in networks
  publication-title: IEEE Trans Netw Sci Eng
– volume: 19
  start-page: 291
  year: 2016
  end-page: 299
  ident: bb0105
  article-title: Assessing risk of hospital readmissions for improving medical practice., health care
  publication-title: Manag Sci
– volume: 7
  start-page: 309
  year: 2015
  end-page: 312
  ident: bb0045
  article-title: Current procedural terminology; a primer
  publication-title: J Neurointerv Surg
– volume: 17
  start-page: 3108
  year: 2020
  ident: bb0245
  article-title: Patterns of comorbidity in hepatocellular carcinoma: a network perspective
  publication-title: Int J Environ Res Public Health
– year: 2023
  ident: bb0185
  article-title: Clinical Classifications Software (CCS) for ICD-9-CM
– volume: 12
  start-page: 177
  year: 2019
  ident: bb0215
  article-title: Analysis of disease comorbidity patterns in a large-scale China population
  publication-title: BMC Med Genet
– volume: 37
  start-page: 394
  year: 1998
  end-page: 403
  ident: bb0025
  article-title: Desiderata for controlled medical vocabularies in the twenty-first century
  publication-title: Methods Inf Med
– year: 2023
  ident: bb0030
  article-title: International Classification of Diseases (ICD)
– volume: 153
  year: 2021
  ident: bb0165
  article-title: The need to separate the wheat from the chaff in medical informatics
  publication-title: Int J Med Inform
– volume: 31
  start-page: 1217
  year: 2023
  end-page: 1223
  ident: bb0250
  article-title: Methods of analysing patterns of multimorbidity using network analysis: a scoping review
  publication-title: J Public Health (Bangkok)
– volume: 11
  start-page: 337
  year: 2024
  ident: bb0015
  article-title: The role of AI in hospitals and clinics: transforming healthcare in the 21st century
  publication-title: Bioengineering
– volume: 78
  start-page: 290
  year: 2021
  end-page: 302
  ident: bb0140
  article-title: Development and validation of machine learning models to predict admission from emergency department to inpatient and intensive care units
  publication-title: Ann Emerg Med
– volume: 37
  start-page: 2671
  year: 2022
  end-page: 2692
  ident: bb0075
  article-title: Regularized target encoding outperforms traditional methods in supervised machine learning with high cardinality features
  publication-title: Comput Stat
– volume: 22
  start-page: 276
  year: 2017
  end-page: 287
  ident: bb0135
  article-title: Predictive modeling of hospital readmission rates using electronic medical record-wide machine learning: a CASE-study using Mount SINAI HEART failure cohort
  publication-title: Pac Symp Biocomput
– volume: 173
  start-page: 177
  year: 2019
  end-page: 183
  ident: bb0130
  article-title: A hospital wide predictive model for unplanned readmission using hierarchical ICD data
  publication-title: Comput Methods Prog Biomed
– year: 2023
  ident: bb0035
  article-title: WHOCC - ATC/DDD Index
– volume: 15
  start-page: 1968
  year: 2018
  end-page: 1978
  ident: bb0065
  article-title: Predicting hospital readmission via cost-sensitive deep learning
  publication-title: IEEE/ACM Trans Comput Biol Bioinforma
– start-page: 1
  year: 2019
  end-page: 9
  ident: bb0230
  article-title: XDL: An industrial deep learning framework for high-dimensional sparse data
  publication-title: Proc. 1st Int. Work. Deep Learn. Pract. High-Dimensional Sparse Data, ACM
– volume: 34
  start-page: 1164
  year: 2020
  end-page: 1176
  ident: bb0080
  article-title: Encoding high-cardinality string categorical variables
  publication-title: IEEE Trans Knowl Data Eng
– volume: 151
  year: 2021
  ident: bb0100
  article-title: Impact of diagnosis code grouping method on clinical prediction model performance: a multi-site retrospective observational study
  publication-title: Int J Med Inform
– volume: 7
  start-page: 1
  year: 2020
  end-page: 41
  ident: bb0095
  article-title: Survey on categorical data for neural networks
  publication-title: J Big Data
– volume: 12
  year: 2023
  ident: bb0010
  article-title: Artificial intelligence in the field of pharmacy practice: a literature review
  publication-title: Explor Res Clin Soc Pharm
– volume: 2018
  start-page: 298
  year: 2018
  end-page: 303
  ident: bb0150
  article-title: Population health management exploiting machine learning algorithms to identify high-risk patients, 2018 31ST
  publication-title: IEEE Int Symp Comput Med Syst (CBMS)
– start-page: 1
  year: 2015
  end-page: 10
  ident: bb0085
  article-title: Deep feature synthesis: Towards automating data science endeavors
  publication-title: 2015 IEEE Int. Conf. Data Sci. Adv. Anal
– start-page: 314
  year: 2017
  end-page: 315
  ident: bb0225
  article-title: Curse of dimensionality
  publication-title: Encycl Mach Learn Data Min
– start-page: 4932
  year: 2018
  end-page: 4935
  ident: bb0120
  article-title: Prediction of ICU readmissions using data at patient discharge
  publication-title: Inst. Electr. Electron. Eng. Inc. Conf. Proc
– volume: 56
  start-page: 229
  year: 2015
  end-page: 238
  ident: bb0110
  article-title: A comparison of models for predicting early hospital readmissions
  publication-title: J Biomed Inform
– volume: 9
  start-page: E16306
  year: 2021
  ident: bb0145
  article-title: Early prediction of unplanned 30-day hospital readmission: model development and retrospective data analysis
  publication-title: JMIR Med Inform
– year: 2023
  ident: bb0125
  article-title: Leveraging Hierarchy in Medical Codes for Predictive Modeling
– year: 2023
  ident: bb0190
  article-title: ICD - ICD-9-CM - International Classification of Diseases, Ninth Revision, Clinical Modification
– volume: 2008
  start-page: P10008
  year: 2008
  ident: bb0175
  article-title: Fast unfolding of communities in large networks
  publication-title: J Stat Mech Theory Exp
– volume: 10
  start-page: 80
  year: 2022
  ident: bb0240
  article-title: Phenotypic disease network analysis to identify comorbidity patterns in hospitalized patients with ischemic Heart disease using large-scale administrative data
  publication-title: Healthcare
– volume: 19
  start-page: 1236
  year: 2018
  end-page: 1246
  ident: bb0055
  article-title: Deep learning for healthcare: review, opportunities and challenges
  publication-title: Brief Bioinform
– volume: 3
  year: 2016
  ident: bb0160
  article-title: MIMIC-III, a freely accessible critical care database
  publication-title: Sci Data
– volume: 7
  start-page: 70
  year: 2020
  ident: bb0200
  article-title: Boosting methods for multi-class imbalanced data classification: an experimental review
  publication-title: J Big Data
– volume: 3
  start-page: 362
  year: 2022
  ident: bb0070
  article-title: Encoding high-dimensional procedure codes for healthcare fraud detection
  publication-title: SN Comput Sci
– year: 2016
  ident: bb0210
  article-title: Improving Louvain algorithm for community detection
  publication-title: Proc. 2016 Int. Conf. Artif. Intell. Eng
– start-page: 243
  year: 2014
  end-page: 254
  ident: bb0220
  article-title: Network Analysis of Human Disease Comorbidity Patterns Based on Large-Scale Data Mining
– volume: 17
  start-page: 2054
  year: 2021
  end-page: 2061
  ident: bb0170
  article-title: An introduction to network analysis for studies of medication use
  publication-title: Res Soc Adm Pharm
– volume: 9
  start-page: 114381
  year: 2021
  end-page: 114391
  ident: bb0060
  article-title: A deep-learned embedding technique for categorical features encoding
  publication-title: IEEE Access
– year: 2016
  ident: bb0090
  article-title: Entity Embeddings of Categorical Variables
– volume: 24
  start-page: 447
  year: 2020
  end-page: 456
  ident: bb0115
  article-title: Predicting hospital readmission: a joint ensemble-learning model
  publication-title: IEEE J Biomed Heal Informat
– volume: 21
  start-page: 1263
  year: 2009
  end-page: 1284
  ident: bb0195
  article-title: Learning from imbalanced data
  publication-title: IEEE Trans Knowl Data Eng
– volume: 26
  start-page: 1320
  year: 2020
  end-page: 1324
  ident: bb0205
  article-title: Minimum information about clinical artificial intelligence modeling: the MI-CLAIM checklist
  publication-title: Nat Med
– volume: 36
  start-page: 8
  year: 1998
  end-page: 27
  ident: bb0235
  article-title: Comorbidity measures for use with administrative data
  publication-title: Med Care
– volume: 78
  start-page: 290
  year: 2021
  ident: 10.1016/j.rcsop.2024.100463_bb0140
  article-title: Development and validation of machine learning models to predict admission from emergency department to inpatient and intensive care units
  publication-title: Ann Emerg Med
  doi: 10.1016/j.annemergmed.2021.02.029
– ident: 10.1016/j.rcsop.2024.100463_bb0090
– volume: 153
  year: 2021
  ident: 10.1016/j.rcsop.2024.100463_bb0165
  article-title: The need to separate the wheat from the chaff in medical informatics
  publication-title: Int J Med Inform
  doi: 10.1016/j.ijmedinf.2021.104510
– volume: 2018
  start-page: 298
  year: 2018
  ident: 10.1016/j.rcsop.2024.100463_bb0150
  article-title: Population health management exploiting machine learning algorithms to identify high-risk patients, 2018 31ST
  publication-title: IEEE Int Symp Comput Med Syst (CBMS)
– volume: 151
  year: 2021
  ident: 10.1016/j.rcsop.2024.100463_bb0100
  article-title: Impact of diagnosis code grouping method on clinical prediction model performance: a multi-site retrospective observational study
  publication-title: Int J Med Inform
  doi: 10.1016/j.ijmedinf.2021.104466
– year: 2016
  ident: 10.1016/j.rcsop.2024.100463_bb0210
  article-title: Improving Louvain algorithm for community detection
– volume: 7
  start-page: 70
  year: 2020
  ident: 10.1016/j.rcsop.2024.100463_bb0200
  article-title: Boosting methods for multi-class imbalanced data classification: an experimental review
  publication-title: J Big Data
  doi: 10.1186/s40537-020-00349-y
– volume: 56
  start-page: 229
  year: 2015
  ident: 10.1016/j.rcsop.2024.100463_bb0110
  article-title: A comparison of models for predicting early hospital readmissions
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2015.05.016
– ident: 10.1016/j.rcsop.2024.100463_bb0190
– volume: 18
  start-page: i
  year: 1980
  ident: 10.1016/j.rcsop.2024.100463_bb0040
  article-title: Case mix definition by diagnosis-related groups
  publication-title: Med Care
– volume: 36
  start-page: 8
  year: 1998
  ident: 10.1016/j.rcsop.2024.100463_bb0235
  article-title: Comorbidity measures for use with administrative data
  publication-title: Med Care
  doi: 10.1097/00005650-199801000-00004
– start-page: 1
  year: 2019
  ident: 10.1016/j.rcsop.2024.100463_bb0230
  article-title: XDL: An industrial deep learning framework for high-dimensional sparse data
– volume: 9
  start-page: 114381
  year: 2021
  ident: 10.1016/j.rcsop.2024.100463_bb0060
  article-title: A deep-learned embedding technique for categorical features encoding
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3104357
– volume: 31
  start-page: 1217
  year: 2023
  ident: 10.1016/j.rcsop.2024.100463_bb0250
  article-title: Methods of analysing patterns of multimorbidity using network analysis: a scoping review
  publication-title: J Public Health (Bangkok)
  doi: 10.1007/s10389-021-01685-w
– ident: 10.1016/j.rcsop.2024.100463_bb0030
– volume: 3
  start-page: 362
  year: 2022
  ident: 10.1016/j.rcsop.2024.100463_bb0070
  article-title: Encoding high-dimensional procedure codes for healthcare fraud detection
  publication-title: SN Comput Sci
  doi: 10.1007/s42979-022-01252-4
– volume: 7
  start-page: 309
  year: 2015
  ident: 10.1016/j.rcsop.2024.100463_bb0045
  article-title: Current procedural terminology; a primer
  publication-title: J Neurointerv Surg
  doi: 10.1136/neurintsurg-2014-011156
– ident: 10.1016/j.rcsop.2024.100463_bb0185
– volume: 19
  start-page: 291
  year: 2016
  ident: 10.1016/j.rcsop.2024.100463_bb0105
  article-title: Assessing risk of hospital readmissions for improving medical practice., health care
  publication-title: Manag Sci
– volume: 10
  start-page: 80
  year: 2022
  ident: 10.1016/j.rcsop.2024.100463_bb0240
  article-title: Phenotypic disease network analysis to identify comorbidity patterns in hospitalized patients with ischemic Heart disease using large-scale administrative data
  publication-title: Healthcare
  doi: 10.3390/healthcare10010080
– volume: 22
  start-page: 276
  year: 2017
  ident: 10.1016/j.rcsop.2024.100463_bb0135
  article-title: Predictive modeling of hospital readmission rates using electronic medical record-wide machine learning: a CASE-study using Mount SINAI HEART failure cohort
  publication-title: Pac Symp Biocomput
– volume: 9
  start-page: E16306
  issue: 3
  year: 2021
  ident: 10.1016/j.rcsop.2024.100463_bb0145
  article-title: Early prediction of unplanned 30-day hospital readmission: model development and retrospective data analysis
  publication-title: JMIR Med Inform
  doi: 10.2196/16306
– ident: 10.1016/j.rcsop.2024.100463_bb0035
– volume: 21
  start-page: 1263
  year: 2009
  ident: 10.1016/j.rcsop.2024.100463_bb0195
  article-title: Learning from imbalanced data
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2008.239
– volume: 19
  start-page: 1236
  year: 2018
  ident: 10.1016/j.rcsop.2024.100463_bb0055
  article-title: Deep learning for healthcare: review, opportunities and challenges
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbx044
– volume: 173
  start-page: 177
  year: 2019
  ident: 10.1016/j.rcsop.2024.100463_bb0130
  article-title: A hospital wide predictive model for unplanned readmission using hierarchical ICD data
  publication-title: Comput Methods Prog Biomed
  doi: 10.1016/j.cmpb.2019.02.007
– year: 2023
  ident: 10.1016/j.rcsop.2024.100463_bb0125
– volume: 13
  year: 2018
  ident: 10.1016/j.rcsop.2024.100463_bb0155
  article-title: Predicting hospital admission at emergency department triage using machine learning
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0201016
– volume: 17
  start-page: 3108
  year: 2020
  ident: 10.1016/j.rcsop.2024.100463_bb0245
  article-title: Patterns of comorbidity in hepatocellular carcinoma: a network perspective
  publication-title: Int J Environ Res Public Health
  doi: 10.3390/ijerph17093108
– start-page: 314
  year: 2017
  ident: 10.1016/j.rcsop.2024.100463_bb0225
  article-title: Curse of dimensionality
  publication-title: Encycl Mach Learn Data Min
– volume: 37
  start-page: 394
  year: 1998
  ident: 10.1016/j.rcsop.2024.100463_bb0025
  article-title: Desiderata for controlled medical vocabularies in the twenty-first century
  publication-title: Methods Inf Med
  doi: 10.1055/s-0038-1634558
– volume: 2
  start-page: 3
  year: 2014
  ident: 10.1016/j.rcsop.2024.100463_bb0020
  article-title: Big data analytics in healthcare: promise and potential
  publication-title: Heal Inf Sci Syst
  doi: 10.1186/2047-2501-2-3
– volume: 17
  start-page: 2054
  year: 2021
  ident: 10.1016/j.rcsop.2024.100463_bb0170
  article-title: An introduction to network analysis for studies of medication use
  publication-title: Res Soc Adm Pharm
  doi: 10.1016/j.sapharm.2021.06.021
– volume: 15
  start-page: 1968
  year: 2018
  ident: 10.1016/j.rcsop.2024.100463_bb0065
  article-title: Predicting hospital readmission via cost-sensitive deep learning
  publication-title: IEEE/ACM Trans Comput Biol Bioinforma
  doi: 10.1109/TCBB.2018.2827029
– volume: 1
  start-page: 76
  year: 2009
  ident: 10.1016/j.rcsop.2024.100463_bb0180
  article-title: Laplacian dynamics and multiscale modular structure in networks
  publication-title: IEEE Trans Netw Sci Eng
  doi: 10.1109/TNSE.2015.2391998
– start-page: 1
  year: 2015
  ident: 10.1016/j.rcsop.2024.100463_bb0085
  article-title: Deep feature synthesis: Towards automating data science endeavors
– volume: 26
  start-page: 1320
  year: 2020
  ident: 10.1016/j.rcsop.2024.100463_bb0205
  article-title: Minimum information about clinical artificial intelligence modeling: the MI-CLAIM checklist
  publication-title: Nat Med
  doi: 10.1038/s41591-020-1041-y
– volume: 12
  start-page: 177
  year: 2019
  ident: 10.1016/j.rcsop.2024.100463_bb0215
  article-title: Analysis of disease comorbidity patterns in a large-scale China population
  publication-title: BMC Med Genet
– start-page: 243
  year: 2014
  ident: 10.1016/j.rcsop.2024.100463_bb0220
– volume: 11
  start-page: 337
  year: 2024
  ident: 10.1016/j.rcsop.2024.100463_bb0015
  article-title: The role of AI in hospitals and clinics: transforming healthcare in the 21st century
  publication-title: Bioengineering
  doi: 10.3390/bioengineering11040337
– volume: 37
  start-page: 2671
  year: 2022
  ident: 10.1016/j.rcsop.2024.100463_bb0075
  article-title: Regularized target encoding outperforms traditional methods in supervised machine learning with high cardinality features
  publication-title: Comput Stat
  doi: 10.1007/s00180-022-01207-6
– volume: 34
  start-page: 1164
  year: 2020
  ident: 10.1016/j.rcsop.2024.100463_bb0080
  article-title: Encoding high-cardinality string categorical variables
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2020.2992529
– volume: 2008
  start-page: P10008
  year: 2008
  ident: 10.1016/j.rcsop.2024.100463_bb0175
  article-title: Fast unfolding of communities in large networks
  publication-title: J Stat Mech Theory Exp
  doi: 10.1088/1742-5468/2008/10/P10008
– volume: 12
  year: 2023
  ident: 10.1016/j.rcsop.2024.100463_bb0010
  article-title: Artificial intelligence in the field of pharmacy practice: a literature review
  publication-title: Explor Res Clin Soc Pharm
– volume: 24
  start-page: 447
  year: 2020
  ident: 10.1016/j.rcsop.2024.100463_bb0115
  article-title: Predicting hospital readmission: a joint ensemble-learning model
  publication-title: IEEE J Biomed Heal Informat
  doi: 10.1109/JBHI.2019.2938995
– start-page: 4932
  year: 2018
  ident: 10.1016/j.rcsop.2024.100463_bb0120
  article-title: Prediction of ICU readmissions using data at patient discharge
– volume: 1
  start-page: 32
  year: 2023
  ident: 10.1016/j.rcsop.2024.100463_bb0005
  article-title: The future of pharmacy: how AI is revolutionizing the industry
  publication-title: Intell Pharm
– volume: 7
  start-page: 1
  year: 2020
  ident: 10.1016/j.rcsop.2024.100463_bb0095
  article-title: Survey on categorical data for neural networks
  publication-title: J Big Data
  doi: 10.1186/s40537-020-00305-w
– volume: 3
  year: 2016
  ident: 10.1016/j.rcsop.2024.100463_bb0160
  article-title: MIMIC-III, a freely accessible critical care database
  publication-title: Sci Data
  doi: 10.1038/sdata.2016.35
SSID ssj0002794070
Score 2.2600987
Snippet Machine learning (ML) prediction models in healthcare and pharmacy-related research face challenges with encoding high-dimensional Healthcare Coding Systems...
•The paper introduces Modularity Encoding to encode categorical Healthcare Coding Systems in machine learning models.•The approach enhances the clinical...
Background: Machine learning (ML) prediction models in healthcare and pharmacy-related research face challenges with encoding high-dimensional Healthcare...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 100463
SubjectTerms Categorical data encoding
Healthcare coding systems
Machine learning
Modularity detection
Network analysis
Predictive modeling
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFLVguoAN70d4yUioq0mViZ2beFkQVYVENYuOVFZW_AhMaZOqSYSGr-faTqaEIlSWmcST5ObaPpbPOZeQd6nBEQ_nqVhVZRXzAnQsqjSPsyzXFvGpsl7H_fkIDlf800l2MvhsOy3MZP_e87Audds4Y8mUux19Duw22YEMgfeM7KyOlvtfXPk4wO6e5gCjr9DfW07mHm_RP5mCrkPM60zJO319UW5-lGdnv01DB_eDvrv17oWOffJ9r-_Unv75h7fjDd_wAbk3wFG6H_LnIbll60dkdxn8rDdzenwlz2rndJcur5yuN49J7wkHtA5UcloOBif0vDGO3YoAn3YN9cIRGgSX1EnoabCPbrGBocbj1tZS4-oMBI8Q13Bd03NP9LR0qGzxlfqyPe0Tsjr4ePzhMB7qOMSa59DheFrhqJAZrlKtBGOascwYRB6F0QqqFHSmFcOF6mKhrCktU7mwuDJPQOTJwlbsKZnVTW2fEwpgGS6wlDaQcC5AAVcIAJ3AWFSMJxGZj19YXgS7Djny2E6lD7R0gZYh0BF577Jge6nz2vY_4AeSQ9eVqTBOHmyEyZyZomM8FiITlVZJoQzjEYExh-QAWwIcwb9a__vub8eMk9ip3U5NWdumbyUOvIDZzPJFRJ6FDNw-I948R5QNESkmuTl5iemZev3NG4cjtk4xovjE8TaNbxKmF_95_Uty1x0FRt0rMusue_sasVun3gx99heBJkFq
  priority: 102
  providerName: Unpaywall
Title Using network analysis modularity to group health code systems and decrease dimensionality in machine learning models
URI https://dx.doi.org/10.1016/j.rcsop.2024.100463
https://www.ncbi.nlm.nih.gov/pubmed/38974056
https://www.proquest.com/docview/3076766371
https://pubmed.ncbi.nlm.nih.gov/PMC11227014
https://doi.org/10.1016/j.rcsop.2024.100463
https://doaj.org/article/29d4069d9d5440419938959fcb08bd34
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2667-2766
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002794070
  issn: 2667-2766
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2667-2766
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002794070
  issn: 2667-2766
  databaseCode: M~E
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2667-2766
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002794070
  issn: 2667-2766
  databaseCode: RPM
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqemgviNIHAbqaShWnjZqNHSc-AipClYr2wEr0ZMWPtIsgQWRX1f77ju1k2QiJcuCalx3P2P4m-eYbQr6mBlc83KdiVZVVzAquY1GleZxlubaIT5X1edw_L_j5jP24yq42Sn05TliQBw4D9y0VxiVnGmEyJ2Xn-GaFyESlVVIoQ70SaFKIjWDq2v9OExipJL3MkCd03eu2cQqVKXPUAMbpYCvyiv2DHekx4nxMnHyzrO_K1d_y5mZjVzrbIdsdnITj8BrvyCtb75KjadCjXo3h8iG9qh3DEUwflKpX78nSEwagDlRwKDuBErhtjGOnIkCHRQM-8QNCwiS4FHgI8s8t3mDAeNzZWjCuTkDQ-HA3zmu49URNC11lit_gy-60H8js7Pvl6Xnc1WGINcv5AtfDCmd1ZphKtRKUakozYxA5FEYrXqVcZ1pRDDQnE2VNaanKhcXIGs2WJxNb0Y9kq25qu0eAc0sxQFLa8IQxwRVnCgGcSxAWFWVJRMa9SeRdkNuQPQ_tWnoLSmdBGSwYkRNntvWlTivbH0APkp0Hyf95UER4b3TZwY4AJ_BR86db_9K7iMRJ6f60lLVtlq3EhZPniOXySUQ-BZdZ9xEbzxEl84gUA2cavMTwTD3_44W_ERunOKLY43jtd88Zpv2XGKYD8tY9MtDkDsnW4n5pPyMgW6iRn3sj_6VsRF7PLqbHv_4Bwdg2_Q
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFLVguoAN70d4yUioq0mViZ2beFkQVYVENYuOVFZW_AhMaZOqSYSGr-faTqaEIlSWmcST5ObaPpbPOZeQd6nBEQ_nqVhVZRXzAnQsqjSPsyzXFvGpsl7H_fkIDlf800l2MvhsOy3MZP_e87Audds4Y8mUux19Duw22YEMgfeM7KyOlvtfXPk4wO6e5gCjr9DfW07mHm_RP5mCrkPM60zJO319UW5-lGdnv01DB_eDvrv17oWOffJ9r-_Unv75h7fjDd_wAbk3wFG6H_LnIbll60dkdxn8rDdzenwlz2rndJcur5yuN49J7wkHtA5UcloOBif0vDGO3YoAn3YN9cIRGgSX1EnoabCPbrGBocbj1tZS4-oMBI8Q13Bd03NP9LR0qGzxlfqyPe0Tsjr4ePzhMB7qOMSa59DheFrhqJAZrlKtBGOascwYRB6F0QqqFHSmFcOF6mKhrCktU7mwuDJPQOTJwlbsKZnVTW2fEwpgGS6wlDaQcC5AAVcIAJ3AWFSMJxGZj19YXgS7Djny2E6lD7R0gZYh0BF577Jge6nz2vY_4AeSQ9eVqTBOHmyEyZyZomM8FiITlVZJoQzjEYExh-QAWwIcwb9a__vub8eMk9ip3U5NWdumbyUOvIDZzPJFRJ6FDNw-I948R5QNESkmuTl5iemZev3NG4cjtk4xovjE8TaNbxKmF_95_Uty1x0FRt0rMusue_sasVun3gx99heBJkFq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%22Using+network+analysis+modularity+to+group+health+code+systems+and+decrease+dimensionality+in+machine+learning+models%22&rft.jtitle=Exploratory+research+in+clinical+and+social+pharmacy&rft.au=Askar%2C+Mohsen&rft.au=Sm%C3%A5brekke%2C+Lars&rft.au=Holsb%C3%B8%2C+Einar&rft.au=Bongo%2C+Lars+Ailo&rft.date=2024-06-01&rft.eissn=2667-2766&rft.volume=14&rft.spage=100463&rft_id=info:doi/10.1016%2Fj.rcsop.2024.100463&rft_id=info%3Apmid%2F38974056&rft.externalDocID=38974056
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2667-2766&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2667-2766&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2667-2766&client=summon