Detecting and Extracting Brain Hemorrhages from CT Images Using Generative Convolutional Imaging Scheme

Purpose. The need for computerized medical assistance for accurate detection of brain hemorrhage from Computer Tomography (CT) images is more mandatory than conventional clinical tests. Recent technologies and advanced computerized algorithms follow Artificial Intelligence (AI), Machine Learning (ML...

Full description

Saved in:
Bibliographic Details
Published inComputational intelligence and neuroscience Vol. 2022; pp. 1 - 10
Main Authors Pandimurugan, V., Rajasoundaran, S., Routray, Sidheswar, Prabu, A. V., Alyami, Hashem, Alharbi, Abdullah, Ahmad, Sultan
Format Journal Article
LanguageEnglish
Published United States Hindawi 06.05.2022
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN1687-5265
1687-5273
1687-5273
DOI10.1155/2022/6671234

Cover

Abstract Purpose. The need for computerized medical assistance for accurate detection of brain hemorrhage from Computer Tomography (CT) images is more mandatory than conventional clinical tests. Recent technologies and advanced computerized algorithms follow Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) techniques to improve medical diagnosis platforms. This technology is making the diagnosis practice of brain issues easier for medical practitioners to analyze and identify diseases with an assured degree of precision and performance. Methods. As the existing CT image analysis models use standard procedures to detect hemorrhages, the need for DL-based data analysis is essential to provide more accurate results. Generally, the existing techniques are limited with image training efficiency, image filtering procedures, and runtime system tuning modules. On the scope, this work develops a DL-based automated analysis of CT scan slices to find various levels of brain hemorrhages. Notably, this proposed system integrates Convolutional Neural Network (CNN) and Generative Adversarial Network (GAN) architectures as Integrated Generative Adversarial-Convolutional Imaging Model (IGACM) for extracting the CT image features for detecting brain hemorrhages. Results. This system produces good results and takes lesser training time than existing techniques. This proposed system effectively works over CT images and classifies the abnormalities with more accuracy than current techniques. The experiments and results deliver the optimal detection of hemorrhages with better accuracy. It shows that the proposed system works with 5% to 10% of the better performance compared to other diagnostic techniques. Conclusion. The complex nature of CT images leads to noncorrelated feature complexities in diagnosis models. Considering the issue, the proposed system used GAN-based effective sampling techniques for enriching complex image samples into CNN training phases. This concludes the effective contribution of the proposed IGACM technique for detecting brain hemorrhages than the existing diagnosis models.
AbstractList Purpose. The need for computerized medical assistance for accurate detection of brain hemorrhage from Computer Tomography (CT) images is more mandatory than conventional clinical tests. Recent technologies and advanced computerized algorithms follow Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) techniques to improve medical diagnosis platforms. This technology is making the diagnosis practice of brain issues easier for medical practitioners to analyze and identify diseases with an assured degree of precision and performance. Methods. As the existing CT image analysis models use standard procedures to detect hemorrhages, the need for DL-based data analysis is essential to provide more accurate results. Generally, the existing techniques are limited with image training efficiency, image filtering procedures, and runtime system tuning modules. On the scope, this work develops a DL-based automated analysis of CT scan slices to find various levels of brain hemorrhages. Notably, this proposed system integrates Convolutional Neural Network (CNN) and Generative Adversarial Network (GAN) architectures as Integrated Generative Adversarial-Convolutional Imaging Model (IGACM) for extracting the CT image features for detecting brain hemorrhages. Results. This system produces good results and takes lesser training time than existing techniques. This proposed system effectively works over CT images and classifies the abnormalities with more accuracy than current techniques. The experiments and results deliver the optimal detection of hemorrhages with better accuracy. It shows that the proposed system works with 5% to 10% of the better performance compared to other diagnostic techniques. Conclusion. The complex nature of CT images leads to noncorrelated feature complexities in diagnosis models. Considering the issue, the proposed system used GAN-based effective sampling techniques for enriching complex image samples into CNN training phases. This concludes the effective contribution of the proposed IGACM technique for detecting brain hemorrhages than the existing diagnosis models.
The need for computerized medical assistance for accurate detection of brain hemorrhage from Computer Tomography (CT) images is more mandatory than conventional clinical tests. Recent technologies and advanced computerized algorithms follow Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) techniques to improve medical diagnosis platforms. This technology is making the diagnosis practice of brain issues easier for medical practitioners to analyze and identify diseases with an assured degree of precision and performance.PurposeThe need for computerized medical assistance for accurate detection of brain hemorrhage from Computer Tomography (CT) images is more mandatory than conventional clinical tests. Recent technologies and advanced computerized algorithms follow Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) techniques to improve medical diagnosis platforms. This technology is making the diagnosis practice of brain issues easier for medical practitioners to analyze and identify diseases with an assured degree of precision and performance.As the existing CT image analysis models use standard procedures to detect hemorrhages, the need for DL-based data analysis is essential to provide more accurate results. Generally, the existing techniques are limited with image training efficiency, image filtering procedures, and runtime system tuning modules. On the scope, this work develops a DL-based automated analysis of CT scan slices to find various levels of brain hemorrhages. Notably, this proposed system integrates Convolutional Neural Network (CNN) and Generative Adversarial Network (GAN) architectures as Integrated Generative Adversarial-Convolutional Imaging Model (IGACM) for extracting the CT image features for detecting brain hemorrhages.MethodsAs the existing CT image analysis models use standard procedures to detect hemorrhages, the need for DL-based data analysis is essential to provide more accurate results. Generally, the existing techniques are limited with image training efficiency, image filtering procedures, and runtime system tuning modules. On the scope, this work develops a DL-based automated analysis of CT scan slices to find various levels of brain hemorrhages. Notably, this proposed system integrates Convolutional Neural Network (CNN) and Generative Adversarial Network (GAN) architectures as Integrated Generative Adversarial-Convolutional Imaging Model (IGACM) for extracting the CT image features for detecting brain hemorrhages.This system produces good results and takes lesser training time than existing techniques. This proposed system effectively works over CT images and classifies the abnormalities with more accuracy than current techniques. The experiments and results deliver the optimal detection of hemorrhages with better accuracy. It shows that the proposed system works with 5% to 10% of the better performance compared to other diagnostic techniques.ResultsThis system produces good results and takes lesser training time than existing techniques. This proposed system effectively works over CT images and classifies the abnormalities with more accuracy than current techniques. The experiments and results deliver the optimal detection of hemorrhages with better accuracy. It shows that the proposed system works with 5% to 10% of the better performance compared to other diagnostic techniques.The complex nature of CT images leads to noncorrelated feature complexities in diagnosis models. Considering the issue, the proposed system used GAN-based effective sampling techniques for enriching complex image samples into CNN training phases. This concludes the effective contribution of the proposed IGACM technique for detecting brain hemorrhages than the existing diagnosis models.ConclusionThe complex nature of CT images leads to noncorrelated feature complexities in diagnosis models. Considering the issue, the proposed system used GAN-based effective sampling techniques for enriching complex image samples into CNN training phases. This concludes the effective contribution of the proposed IGACM technique for detecting brain hemorrhages than the existing diagnosis models.
The need for computerized medical assistance for accurate detection of brain hemorrhage from Computer Tomography (CT) images is more mandatory than conventional clinical tests. Recent technologies and advanced computerized algorithms follow Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) techniques to improve medical diagnosis platforms. This technology is making the diagnosis practice of brain issues easier for medical practitioners to analyze and identify diseases with an assured degree of precision and performance. As the existing CT image analysis models use standard procedures to detect hemorrhages, the need for DL-based data analysis is essential to provide more accurate results. Generally, the existing techniques are limited with image training efficiency, image filtering procedures, and runtime system tuning modules. On the scope, this work develops a DL-based automated analysis of CT scan slices to find various levels of brain hemorrhages. Notably, this proposed system integrates Convolutional Neural Network (CNN) and Generative Adversarial Network (GAN) architectures as Integrated Generative Adversarial-Convolutional Imaging Model (IGACM) for extracting the CT image features for detecting brain hemorrhages. This system produces good results and takes lesser training time than existing techniques. This proposed system effectively works over CT images and classifies the abnormalities with more accuracy than current techniques. The experiments and results deliver the optimal detection of hemorrhages with better accuracy. It shows that the proposed system works with 5% to 10% of the better performance compared to other diagnostic techniques. The complex nature of CT images leads to noncorrelated feature complexities in diagnosis models. Considering the issue, the proposed system used GAN-based effective sampling techniques for enriching complex image samples into CNN training phases. This concludes the effective contribution of the proposed IGACM technique for detecting brain hemorrhages than the existing diagnosis models.
Audience Academic
Author Alharbi, Abdullah
Rajasoundaran, S.
Routray, Sidheswar
Prabu, A. V.
Ahmad, Sultan
Alyami, Hashem
Pandimurugan, V.
AuthorAffiliation 1 School of Computing Science and Engineering, VIT Bhopal University, Madhya Pradesh, India
6 Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
3 Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Guntur, India
4 Department of Computer Science, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
5 Department of Information Technology, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
2 Department of Computer Science and Engineering, School of Engineering, Indrashil University, Rajpur, Mehsana, Gujarat, India
AuthorAffiliation_xml – name: 2 Department of Computer Science and Engineering, School of Engineering, Indrashil University, Rajpur, Mehsana, Gujarat, India
– name: 5 Department of Information Technology, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
– name: 6 Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
– name: 3 Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Guntur, India
– name: 4 Department of Computer Science, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
– name: 1 School of Computing Science and Engineering, VIT Bhopal University, Madhya Pradesh, India
Author_xml – sequence: 1
  givenname: V.
  orcidid: 0000-0003-4766-996X
  surname: Pandimurugan
  fullname: Pandimurugan, V.
  organization: School of Computing Science and EngineeringVIT Bhopal UniversityMadhya PradeshIndiavitbhopal.ac.in
– sequence: 2
  givenname: S.
  orcidid: 0000-0003-1747-9639
  surname: Rajasoundaran
  fullname: Rajasoundaran, S.
  organization: School of Computing Science and EngineeringVIT Bhopal UniversityMadhya PradeshIndiavitbhopal.ac.in
– sequence: 3
  givenname: Sidheswar
  orcidid: 0000-0002-3658-3514
  surname: Routray
  fullname: Routray, Sidheswar
  organization: Department of Computer Science and EngineeringSchool of EngineeringIndrashil UniversityRajpur, MehsanaGujaratIndia
– sequence: 4
  givenname: A. V.
  surname: Prabu
  fullname: Prabu, A. V.
  organization: Department of Electronics and Communication EngineeringKoneru Lakshmaiah Education FoundationGunturIndiakluniversity.in
– sequence: 5
  givenname: Hashem
  surname: Alyami
  fullname: Alyami, Hashem
  organization: Department of Computer ScienceCollege of Computers and Information TechnologyTaif UniversityP.O. Box 11099Taif 21944Saudi Arabiatu.edu.sa
– sequence: 6
  givenname: Abdullah
  surname: Alharbi
  fullname: Alharbi, Abdullah
  organization: Department of Information TechnologyCollege of Computers and Information TechnologyTaif UniversityP.O. Box 11099Taif 21944Saudi Arabiatu.edu.sa
– sequence: 7
  givenname: Sultan
  orcidid: 0000-0002-3198-7974
  surname: Ahmad
  fullname: Ahmad, Sultan
  organization: Department of Computer ScienceCollege of Computer Engineering and SciencesPrince Sattam Bin Abdulaziz UniversityAlkharj 11942Saudi Arabiapsau.edu.sa
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35571726$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAURS1URD9gxxpFYoMEQ20ntuNNpTKUtlIlFrRr68WxM64Se7CTKf33JJOhhUrAyrZ83tXVeYdozwdvEHpN8EdCGDummNJjzgWhefEMHRBeigWjIt97uHO2jw5TusWYCYbpC7SfMyaIoPwANZ9Nb3TvfJOBr7OzH32E-fkpgvPZhelCjCtoTMpsDF22vM4uu-3zJk3YufEmQu82JlsGvwnt0Lvgod1SE_BNr0xnXqLnFtpkXu3OI3Tz5ex6ebG4-np-uTy9WuhC8H4hCilqQqUAaqm1tMSFlmA4wVVtayGZLnOQtR3LayihKstKCouZqUCXhYX8CC3m3MGv4f4O2lato-sg3iuC1SRMTcLUTtjIn8z8eqg6U2vjRwGPMwGc-vPHu5VqwkZJgnkhyBjwbhcQw_fBpF51LmnTtuBNGJKinDOCpZR4RN8-QW_DEEdXW6rgYzlZPFINtEY5b8O0kilUnQqcl2xiR-rN770fCv_a7AjQGdAxpBSNVdr1MO1mjHPt32x8eDL0H3nvZ3zlfA137t_0T7FUz_Q
CitedBy_id crossref_primary_10_1155_2023_9763965
crossref_primary_10_1002_ima_22806
crossref_primary_10_1016_j_engappai_2024_108192
crossref_primary_10_3390_diagnostics13182987
crossref_primary_10_35377_saucis___1259584
crossref_primary_10_1155_2022_7218113
Cites_doi 10.1136/postgradmedj-2014-133211
10.1016/j.compbiomed.2021.104304
10.1117/12.710307
10.1038/s41598-021-87762-2
10.3390/jimaging7040066
10.3390/s20195611
10.3390/app10217577
10.1016/j.jacr.2020.01.026
10.1016/j.neuropharm.2021.108561
10.15585/mmwr.ss6609a1
10.1176/appi.ajp.2020.19101091
10.1089/neu.2008.0566
10.1016/j.jbi.2009.07.003
10.1016/j.media.2020.101857
10.1016/j.compmedimag.2007.02.010
10.1016/j.media.2020.101871
10.1016/j.media.2021.101996
10.1111/exsy.12876
10.1016/s1474-4422(20)30181-2
10.1016/j.media.2016.10.004
10.1109/tsmc.1973.4309314
10.1016/s1474-4422(09)70340-0
10.1007/978-3-642-25191-7_26
10.1186/s12880-021-00551-1
10.1016/j.ejmp.2021.04.016
10.1067/j.cpradiol.2020.05.006
10.3390/s21248219
10.1590/1678-4324-2020190736
10.1016/j.patcog.2006.04.045
10.1109/access.2021.3055806
10.1109/jbhi.2021.3067798
10.1016/s0140-6736(74)91639-0
10.1007/978-981-33-4866-0_43
10.1155/2020/3047869
10.1016/j.ijleo.2020.164903
10.1007/s11760-019-01489-2
ContentType Journal Article
Copyright Copyright © 2022 V. Pandimurugan et al.
COPYRIGHT 2022 John Wiley & Sons, Inc.
Copyright © 2022 V. Pandimurugan et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright © 2022 V. Pandimurugan et al. 2022
Copyright_xml – notice: Copyright © 2022 V. Pandimurugan et al.
– notice: COPYRIGHT 2022 John Wiley & Sons, Inc.
– notice: Copyright © 2022 V. Pandimurugan et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
– notice: Copyright © 2022 V. Pandimurugan et al. 2022
DBID RHU
RHW
RHX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QF
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7X7
7XB
8AL
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
COVID
CWDGH
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
K7-
K9.
KR7
L6V
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
Q9U
7X8
5PM
ADTOC
UNPAY
DOI 10.1155/2022/6671234
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
Coronavirus Research Database
Middle East & Africa Database
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering collection
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Materials Research Database
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Coronavirus Research Database
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Middle East & Africa Database
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
Corrosion Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

Publicly Available Content Database
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1687-5273
Editor Asghar, Muhammad Zubair
Editor_xml – sequence: 1
  givenname: Muhammad Zubair
  surname: Asghar
  fullname: Asghar, Muhammad Zubair
EndPage 10
ExternalDocumentID 10.1155/2022/6671234
PMC9106471
A703852664
35571726
10_1155_2022_6671234
Genre Retracted Publication
Journal Article
GeographicLocations Saudi Arabia
GeographicLocations_xml – name: Saudi Arabia
GrantInformation_xml – fundername: Taif University
  grantid: TURSP-2020/306
GroupedDBID ---
188
29F
2WC
3V.
4.4
53G
5GY
5VS
6J9
7X7
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAFWJ
AAJEY
AAKPC
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIWK
ACM
ACPRK
ADBBV
ADRAZ
AENEX
AFKRA
AHMBA
AINHJ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
CCPQU
CS3
CWDGH
DIK
DWQXO
E3Z
EBD
EBS
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
I-F
IAO
ICD
INH
INR
IPY
ITC
K6V
K7-
KQ8
L6V
LK8
M0N
M1P
M48
M7P
M7S
MK~
O5R
O5S
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
Q2X
RHU
RHW
RHX
RNS
RPM
SV3
TR2
TUS
UKHRP
XH6
~8M
0R~
24P
AAMMB
AAYXX
ACCMX
ACUHS
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
H13
IHR
OVT
PGMZT
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
2UF
C1A
CGR
CUY
CVF
ECM
EIF
EJD
IL9
NPM
UZ4
7QF
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7XB
8AL
8BQ
8FD
8FK
COVID
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c476t-7497d1297a2f2ff2804c9ae610bdfd795c83a9df172ca8ab88b97f05ebac84fa3
IEDL.DBID M48
ISSN 1687-5265
1687-5273
IngestDate Sun Oct 26 01:59:36 EDT 2025
Tue Sep 30 17:04:31 EDT 2025
Thu Oct 02 11:25:33 EDT 2025
Tue Oct 07 05:50:05 EDT 2025
Mon Oct 20 22:49:07 EDT 2025
Mon Jul 21 06:04:42 EDT 2025
Wed Oct 01 02:22:20 EDT 2025
Thu Apr 24 23:03:28 EDT 2025
Sun Jun 02 18:51:22 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
Copyright © 2022 V. Pandimurugan et al.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c476t-7497d1297a2f2ff2804c9ae610bdfd795c83a9df172ca8ab88b97f05ebac84fa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Correction/Retraction-3
Academic Editor: Muhammad Zubair Asghar
ORCID 0000-0003-1747-9639
0000-0002-3198-7974
0000-0003-4766-996X
0000-0002-3658-3514
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1155/2022/6671234
PMID 35571726
PQID 2664615594
PQPubID 237303
PageCount 10
ParticipantIDs unpaywall_primary_10_1155_2022_6671234
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9106471
proquest_miscellaneous_2665109990
proquest_journals_2664615594
gale_infotracmisc_A703852664
pubmed_primary_35571726
crossref_citationtrail_10_1155_2022_6671234
crossref_primary_10_1155_2022_6671234
hindawi_primary_10_1155_2022_6671234
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-06
PublicationDateYYYYMMDD 2022-05-06
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-06
  day: 06
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Computational intelligence and neuroscience
PublicationTitleAlternate Comput Intell Neurosci
PublicationYear 2022
Publisher Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
References S. Saini (15) 2013; 2
24
25
27
28
29
P. L. Chithra (18) 2019; 5
M. Raja Suguna (16) 2020; 29
30
31
10
32
11
P. P. Malla (26)
33
12
34
13
35
14
37
38
17
39
19
A. Barragán-Montero (23) 2021; 83
1
2
3
4
5
6
7
Y. Liu (36)
8
9
40
41
20
42
21
B. C. Pang (22) 2007; 12
43
38074381 - Comput Intell Neurosci. 2023 Nov 29;2023:9763965
References_xml – ident: 28
  doi: 10.1136/postgradmedj-2014-133211
– ident: 31
  doi: 10.1016/j.compbiomed.2021.104304
– ident: 32
  doi: 10.1117/12.710307
– ident: 34
  doi: 10.1038/s41598-021-87762-2
– ident: 35
  doi: 10.3390/jimaging7040066
– ident: 12
  doi: 10.3390/s20195611
– volume: 29
  start-page: 104569
  issue: 7
  year: 2020
  ident: 16
  article-title: A review of intracranial hemorrhage detection by deep learning techniques
  publication-title: International Journal of Advanced Science and Technology
– volume: 2
  start-page: 2022
  issue: 10
  year: 2013
  ident: 15
  article-title: A review: haemorrhage intracranial segmentation in ct brain images
  publication-title: International Journal of Engineering Research and Technology
– ident: 17
  doi: 10.3390/app10217577
– ident: 25
  doi: 10.1016/j.jacr.2020.01.026
– ident: 3
  doi: 10.1016/j.neuropharm.2021.108561
– ident: 8
  doi: 10.15585/mmwr.ss6609a1
– ident: 37
  doi: 10.1176/appi.ajp.2020.19101091
– ident: 42
  article-title: Pinterest dataset
– ident: 6
  doi: 10.1089/neu.2008.0566
– ident: 10
  doi: 10.1016/j.jbi.2009.07.003
– ident: 4
  doi: 10.1016/j.media.2020.101857
– ident: 11
  doi: 10.1016/j.compmedimag.2007.02.010
– ident: 21
  doi: 10.1016/j.media.2020.101871
– ident: 20
  doi: 10.1016/j.media.2021.101996
– ident: 39
  doi: 10.1111/exsy.12876
– ident: 43
  doi: 10.1016/s1474-4422(20)30181-2
– ident: 19
  doi: 10.1016/j.media.2016.10.004
– ident: 27
  doi: 10.1109/tsmc.1973.4309314
– ident: 1
  doi: 10.1016/s1474-4422(09)70340-0
– ident: 14
  doi: 10.1007/978-3-642-25191-7_26
– volume-title: Semantic-based Biomedical Image Indexing and Retrieval
  ident: 36
– ident: 9
  doi: 10.1186/s12880-021-00551-1
– volume: 5
  start-page: 316
  issue: 5
  year: 2019
  ident: 18
  article-title: A study on various image processing techniques
  publication-title: International Journal of Emerging Technology and Innovative Engineering
– volume: 83
  start-page: 242
  year: 2021
  ident: 23
  article-title: Artificial intelligence and machine learning for medical imaging: a technology review
  publication-title: Physica Medica
  doi: 10.1016/j.ejmp.2021.04.016
– volume: 12
  year: 2007
  ident: 22
  article-title: Analysis of clinical criterion for“talk and deteriorate” following minor head injury using different data mining tools
  publication-title: Journal of Neurotrauma
– ident: 30
  doi: 10.1067/j.cpradiol.2020.05.006
– start-page: 1
  ident: 26
  article-title: Investigation of breast tumor detection using microwave imaging technique
– ident: 33
  doi: 10.3390/s21248219
– ident: 38
  doi: 10.1590/1678-4324-2020190736
– ident: 40
  doi: 10.1016/j.patcog.2006.04.045
– ident: 24
  doi: 10.1109/access.2021.3055806
– ident: 7
  doi: 10.1109/jbhi.2021.3067798
– ident: 5
  doi: 10.1016/s0140-6736(74)91639-0
– ident: 2
  doi: 10.1007/978-981-33-4866-0_43
– ident: 13
  doi: 10.1155/2020/3047869
– ident: 29
  doi: 10.1016/j.ijleo.2020.164903
– ident: 41
  doi: 10.1007/s11760-019-01489-2
– reference: 38074381 - Comput Intell Neurosci. 2023 Nov 29;2023:9763965
SSID ssj0057502
Score 2.3581226
SecondaryResourceType retracted_publication
Snippet Purpose. The need for computerized medical assistance for accurate detection of brain hemorrhage from Computer Tomography (CT) images is more mandatory than...
The need for computerized medical assistance for accurate detection of brain hemorrhage from Computer Tomography (CT) images is more mandatory than...
SourceID unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
hindawi
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Abnormalities
Accuracy
Algorithms
Artificial Intelligence
Artificial neural networks
Automation
Brain
Brain research
Brain slice preparation
Classification
Computed tomography
Computers
CT imaging
Data analysis
Decision making
Deep learning
Diagnosis
Diagnostic imaging
Feature extraction
Generative adversarial networks
Hemorrhage
Humans
Image analysis
Image filters
Image processing
Image Processing, Computer-Assisted - methods
Information management
Intracranial Hemorrhages - diagnostic imaging
Machine learning
Magnetic resonance imaging
Medical imaging
Medical imaging equipment
Neural networks
Neural Networks, Computer
Neuroimaging
Sampling methods
Support vector machines
Tomography, X-Ray Computed - methods
Training
X-rays
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELa2SRO8INiABQYy0tgLilQS23EeS9nUTYIH2KS-Rf5JJ7XutLaM_ffcOW60Mhh7tHypm5zv7rvclzMhB0w4ySAQ5x-Nsznj1oNJaZMz50tthGFS43vIL1_F8JydjvgoNUma3y3hQ7TD9LzAQ_vAx7JNsikFMre-DUcrhwuAo6UWCrAX7Pa-4rf_ce1a5En-d3uMme_1xd_w5V2a5KNluFQ312oyuRWDjp-SJwk80n6r7Wdkw4UdstsPkDhPb-ghjXTO-J58l_z47LA-AJGJqmDp0a9F_B4Khp_wVAg6RIrt1RjcyZziNyZ0cEZPpnEYaQS0bUiN3pAOZuFn2qKwPEqhwHfQ99Q9J-fHR2eDYZ5OVcgNq8Qir1hdWYjylSp84X0he8zUygGM0tbbquZGlqq2HpCNUVJpKXVd-R53WhnJvCpfkK0wC26PUO55rcCIIWczrNBlrSyzgDCdKbkruM_Ih9UTb0xqOY4nX0yamHpw3qB-mqSfjLzvpC_bVhv_kNtH5TVogfjowB5M06-wxAloA6YPklL_9ysrjTfJbOcNXh8LtTD9rpvGBZCKFtxsGWU4lhPrXkZethukWwjAG6THhchItbZ1OgFs5r0-Ey7Gsak3wDYBQCEjh90mu_f_v3rYbb4mj3EYKZpin2wtrpbuDcCohX4bjeg3LJ4TUA
  priority: 102
  providerName: Hindawi Publishing
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwED-NTgheEDA-AgMZaewFRXSJnY8HhLrSqSBRIdikvUWOP-ik1i1by9h_z53jBCpgPEY-xVHu63e-8x3AHs9MwdERxwfK6JgLbVGlahVzY9NaZYoXNZ1Dfpxk4xP-4VScbsGkvQtDZZWtTfSGWi8UnZG_RkfCfQ6Nv11-i2lqFGVX2xEaMoxW0G98i7EbsJ1QZ6webB-OJp8-t7YZsUlThZihalFj-LYUXgg6BUhoNiCacr7hpIKpvjmlIPny7G9Q9M-Kyltrt5RXl3I2-81dHd2FOwFnskEjGPdgy7j7sDNwGGPPr9g-85Wf_kh9B76-M5RKQCfGpNNs9GPlr07h4yENkGBjqsY9n6LluWB0HYUNj9n7uX_0FQes6V1NhpMNF-57kGbcnqiI4AuKxtw8gJOj0fFwHIcBDLHiebaKc17mGgFBLhObWJsUfa5KaRBx1drqvBSqSGWpLYIgJQtZF0Vd5rYvTC1Vwa1MH0LPLZx5DExYUUrUdwzvFE_qtJSaawSjRqXCJMJG8Kr945UK3clpSMas8lGKEBXxpwr8ieBlR71sunL8g26XmFeRstKvQ9VR1SCnbCjJUwR7gan_e0vL8Spo-EX1Sx4jeNEt0wZUtebMYu1pBGUey34EjxoB6TZCnIeRdJJFkG-ITkdAfb83V9zZ1Pf_RoSXIaaIYL8Tsmu__8n13_8UbhO1r-LMdqG3Ol-bZ4i0VvXzoD4_ATdDJCY
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwED-NToh94TUYgYGMNPYFpZTEzkN8KmVTQWJCYpWGhBT5SSfatFpbxvjruXMeUN7iWyxf4ti-O__OPt8B7PHEZhwX4vCptibkwjgUKaVDbl2sdKJ5pmgf8vVRMhzxVyfiZAOeNXdhDIWIn0mz6I7JJj0_9dq6HtfFE43WIprrESXxQ53Lu3PjLsFmIhCId2BzdPSm_45MrARFhwK_f3tO48btXYi1T6wtSLVavlw3_ivY-bP35JVVOZcX53Iy-W5pOrwG75tOVR4pH7urperqLz_Ee_zPXl-HqzVkZf2Kx27Ahi1vwna_RHN9esH2mXci9bvz2_DhhaVTCVwPmSwNO_i89LewsPicclGwITn2no1RiS0Y3Wxhg2P2cuqL3nmBVWGwSQezwaz8VAsGNk9URPAWuWxqb8Ho8OB4MAzrXA6h5mmyDFOepwaxRSojFzkXZT2uc2kRvCnjTJoLncUyNw7xlJaZVFmm8tT1hFVSZ9zJ-DZ0yllp7wATTuQSVQdaippHKs6l4QZxrdWxsJFwATxuJrTQdaBzyrcxKbzBI0RBY1nUYxnAo5Z6XgX4-A3dLvFGQXJPQ4dSqIt-SgeriHGweq-eur99pWGoopnegt73x8NY_bCtpgbIAa60s5WnEXSImfcC2Kn4r20IISMa5VESQLrGmS0BhRBfrylPxz6UOILFBOFJAPstD__x_-_-K-E92KKidw1NdqGzPFvZ-wjflupBLaZfAbVZP1M
  priority: 102
  providerName: Unpaywall
Title Detecting and Extracting Brain Hemorrhages from CT Images Using Generative Convolutional Imaging Scheme
URI https://dx.doi.org/10.1155/2022/6671234
https://www.ncbi.nlm.nih.gov/pubmed/35571726
https://www.proquest.com/docview/2664615594
https://www.proquest.com/docview/2665109990
https://pubmed.ncbi.nlm.nih.gov/PMC9106471
https://downloads.hindawi.com/journals/cin/2022/6671234.pdf
UnpaywallVersion publishedVersion
Volume 2022
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: KQ8
  dateStart: 20070625
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: KQ8
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1687-5273
  dateEnd: 20230628
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: ABDBF
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals - Free Access to All
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: DIK
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: GX1
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Middle East & Africa Database
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: CWDGH
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/middleeastafrica
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: 7X7
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: 8FG
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250430
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: M48
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: 24P
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3rb9MwED_tIQRfEDAeGaMy0tgXFNQldh4fEOpKu4K0ahqrFD5FjmPTSW26dS1b_3vunIcojMeXSNZd4sh3Z_8ud7kD2OeBjjgexO6h0rnLRW7QpDLlcm38TAWKRxl9hzwZBoMR_5yIZAPqbqPVAl7f6dpRP6nRfPLu9mr1AQ3-vTV4Ich_96irH27CfBO28YyKqYnDCW_iCYhJyuzDAE2KCsLXKfC_3L12OFVb9L0xOcc3F3dB0N8zKe8vi0u5upGTyU_HVP8RPKzwJeuUCvEYNnTxBHY6BfrW0xU7YDbj035K34FvHzWFEPDwYrLIWe92YX-ZwuERNY5gA8rCnY9xx7lm9BsK656zT1M7tJkGrKxZTRsm686K75UW4_TERQxfUCWm-imM-r3z7sCtGi-4iofBwg15HOYIBELpGc8YL2pzFUuNSCvLTR7GQkW-jHOD4EfJSGZRlMWhaQudSRVxI_1nsFXMCv0CmDAilmjn6NYp7mV-LHOeIwjVyhfaE8aBt_WKp6qqSk7NMSap9U6ESEk-aSUfB9403JdlNY4_8O2R8FJSG1o6NBmVdkKKgiIgQfJ-JdR_PaWWeForZkr321gukl83ZJqAstUKPVtaHkERx7jtwPNSQZqJEN-hB-0FDoRrqtMwUL3vdUpxMbZ1vxHZBYglHDholOyv77_7n6v1Eh7Q0KZxBnuwtZgv9SuEWousBZthEuI16h-3YPuoNzw9w9Fxctiy9oXXs0GClNHwtPP1B0U-KF4
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lc9MwEN4p6TDlwqs8DAXETJsL45I6kh8HDiFpSejjQjv0ZmRZIh0SJzQOIfwo_gp_iV1bDoRHOfXA0eO15ZF391tpP-0CbHJfhxyB2N1ROnW5SA2aVKJcrk0zUb7iYUL7kIdHfveEvz4VpyvwtToLQ7TKyicWjjodKdojf45AwoscGrcMyn09n-H6bPKi18GfueV5e7vH7a5rWwi4igd-7gY8ClKEtEB6xjPGCxtcRVJjzJCkJg0iocKmjFKDMK5kKJMwTKLANIROpAq5kU18b3380aUuVZTNtS07rsAq6vmOV4PV9tvOq27l-zH2KVmOPpouFZ6vqPZC0C6DR70HESr4EghaKLjap0X47OxPoe7vjM21aTaW85kcDH6Cw70b8K2ayJIF82F7mifb6ssvNSb_n5m-CddtZM5apSndghWd3Yb1Vibz0XDO6qzgyhZJiHV439GUfEHYZzJL2e7nvDhshpcvqeUG6xJ_-byPvnrC6AAPax-z3rC4LDgarKz2TVDD2qPsk7V_HJ6kSOANGtNQ34GTS5mFu1DLRpm-D0wYEUn0kLggVtxLmpFMeYrhu1ZNoT1hHHhW6VCsbD13aisyiIt1nRAxaVxsNc6BrYX0uKxj8he5DVLHmNwbTR06GxW3Asofk144sGnV9F9vqVQrtj5xEv_QKweeLm7TAMTzy_RoWsgIytVGDQfulSq_GAgj4wDnzXcgWDKGhQBVSl--k531i4rpGBP7GIU5UF-YzYXf_-Di738Ca93jw4P4oHe0_xCu0ZMFB9bfgFp-PtWPME7Nk8fWOTB4d9mG8x1-bKED
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lc9MwEN4p7fC48CoUQwEx0_bCuE0dyY8Dw4SkIaHQYYZ26M3IskQ6JE5oHEL4afwV_gy7sh0Ij3LqgaPHG8tWdvdbaT_tAmxwX4ccgdjdVTp1uUgNmlSiXK5NPVG-4mFC-5CvDvzOEX9xLI6X4Gt1FoZolZVPtI46HSraI99BIOE2h8Z3TEmLeN1qPx19dKmDFGVaq3YahYrs69kUl2_jJ90W_tebntfeO2x23LLDgKt44OduwKMgRcQLpGc8Y7ywxlUkNYYUSWrSIBIqrMsoNYjySoYyCcMkCkxN6ESqkBtZx-degJXQD3x0CivNt63nnQoHMA4qGI8-mjEVoa9o90LQjoNHfQgRNvgCIJawcLFHC_LpyZ_C3t_Zm5cn2UjOprLf_wka29fgWzWpBSPmw_YkT7bVl1_qTf6fs34drpYRO2sUJnYDlnR2E1YbmcyHgxnbYpZDa5MTq_C-pSkpg-EAk1nK9j7n9hAaXj6jVhysQ7zm0x768DGjgz2seci6A3tpuRusqAJOEMSaw-xT6RdweJIigTdoZAN9C47O5ZNvw3I2zPQdYMKISKLnxIWy4l5Sj2TKUwzrtaoL7QnjwONKn2JV1nmndiP92K73hIhJ--JS-xzYnEuPivomf5FbJ9WMye3R1KETUnEjoLwy6YgDG6XK_usplZrFpa8cxz90zIFH89s0APH_Mj2cWBlBOdyo5sBaof7zgTBiDnDefAeCBcOYC1AF9cU72UnPVlLHWNnH6MyBrbkJnfn-d89-_4dwCa0jftk92L8HV-iHlhrrr8NyfjrR9zF8zZMHpZ9g8O68jeQ7Zpupyw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwED-NToh94TUYgYGMNPYFpZTEzkN8KmVTQWJCYpWGhBT5SSfatFpbxvjruXMeUN7iWyxf4ti-O__OPt8B7PHEZhwX4vCptibkwjgUKaVDbl2sdKJ5pmgf8vVRMhzxVyfiZAOeNXdhDIWIn0mz6I7JJj0_9dq6HtfFE43WIprrESXxQ53Lu3PjLsFmIhCId2BzdPSm_45MrARFhwK_f3tO48btXYi1T6wtSLVavlw3_ivY-bP35JVVOZcX53Iy-W5pOrwG75tOVR4pH7urperqLz_Ee_zPXl-HqzVkZf2Kx27Ahi1vwna_RHN9esH2mXci9bvz2_DhhaVTCVwPmSwNO_i89LewsPicclGwITn2no1RiS0Y3Wxhg2P2cuqL3nmBVWGwSQezwaz8VAsGNk9URPAWuWxqb8Ho8OB4MAzrXA6h5mmyDFOepwaxRSojFzkXZT2uc2kRvCnjTJoLncUyNw7xlJaZVFmm8tT1hFVSZ9zJ-DZ0yllp7wATTuQSVQdaippHKs6l4QZxrdWxsJFwATxuJrTQdaBzyrcxKbzBI0RBY1nUYxnAo5Z6XgX4-A3dLvFGQXJPQ4dSqIt-SgeriHGweq-eur99pWGoopnegt73x8NY_bCtpgbIAa60s5WnEXSImfcC2Kn4r20IISMa5VESQLrGmS0BhRBfrylPxz6UOILFBOFJAPstD__x_-_-K-E92KKidw1NdqGzPFvZ-wjflupBLaZfAbVZP1M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+and+Extracting+Brain+Hemorrhages+from+CT+Images+Using+Generative+Convolutional+Imaging+Scheme&rft.jtitle=Computational+intelligence+and+neuroscience&rft.au=Pandimurugan%2C+V.&rft.au=Rajasoundaran%2C+S.&rft.au=Routray%2C+Sidheswar&rft.au=Prabu%2C+A.+V.&rft.date=2022-05-06&rft.issn=1687-5265&rft.eissn=1687-5273&rft.volume=2022&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1155%2F2022%2F6671234&rft.externalDBID=n%2Fa&rft.externalDocID=10_1155_2022_6671234
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-5265&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-5265&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-5265&client=summon