Detecting and Extracting Brain Hemorrhages from CT Images Using Generative Convolutional Imaging Scheme
Purpose. The need for computerized medical assistance for accurate detection of brain hemorrhage from Computer Tomography (CT) images is more mandatory than conventional clinical tests. Recent technologies and advanced computerized algorithms follow Artificial Intelligence (AI), Machine Learning (ML...
Saved in:
| Published in | Computational intelligence and neuroscience Vol. 2022; pp. 1 - 10 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Hindawi
06.05.2022
John Wiley & Sons, Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1687-5265 1687-5273 1687-5273 |
| DOI | 10.1155/2022/6671234 |
Cover
| Abstract | Purpose. The need for computerized medical assistance for accurate detection of brain hemorrhage from Computer Tomography (CT) images is more mandatory than conventional clinical tests. Recent technologies and advanced computerized algorithms follow Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) techniques to improve medical diagnosis platforms. This technology is making the diagnosis practice of brain issues easier for medical practitioners to analyze and identify diseases with an assured degree of precision and performance. Methods. As the existing CT image analysis models use standard procedures to detect hemorrhages, the need for DL-based data analysis is essential to provide more accurate results. Generally, the existing techniques are limited with image training efficiency, image filtering procedures, and runtime system tuning modules. On the scope, this work develops a DL-based automated analysis of CT scan slices to find various levels of brain hemorrhages. Notably, this proposed system integrates Convolutional Neural Network (CNN) and Generative Adversarial Network (GAN) architectures as Integrated Generative Adversarial-Convolutional Imaging Model (IGACM) for extracting the CT image features for detecting brain hemorrhages. Results. This system produces good results and takes lesser training time than existing techniques. This proposed system effectively works over CT images and classifies the abnormalities with more accuracy than current techniques. The experiments and results deliver the optimal detection of hemorrhages with better accuracy. It shows that the proposed system works with 5% to 10% of the better performance compared to other diagnostic techniques. Conclusion. The complex nature of CT images leads to noncorrelated feature complexities in diagnosis models. Considering the issue, the proposed system used GAN-based effective sampling techniques for enriching complex image samples into CNN training phases. This concludes the effective contribution of the proposed IGACM technique for detecting brain hemorrhages than the existing diagnosis models. |
|---|---|
| AbstractList | Purpose. The need for computerized medical assistance for accurate detection of brain hemorrhage from Computer Tomography (CT) images is more mandatory than conventional clinical tests. Recent technologies and advanced computerized algorithms follow Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) techniques to improve medical diagnosis platforms. This technology is making the diagnosis practice of brain issues easier for medical practitioners to analyze and identify diseases with an assured degree of precision and performance. Methods. As the existing CT image analysis models use standard procedures to detect hemorrhages, the need for DL-based data analysis is essential to provide more accurate results. Generally, the existing techniques are limited with image training efficiency, image filtering procedures, and runtime system tuning modules. On the scope, this work develops a DL-based automated analysis of CT scan slices to find various levels of brain hemorrhages. Notably, this proposed system integrates Convolutional Neural Network (CNN) and Generative Adversarial Network (GAN) architectures as Integrated Generative Adversarial-Convolutional Imaging Model (IGACM) for extracting the CT image features for detecting brain hemorrhages. Results. This system produces good results and takes lesser training time than existing techniques. This proposed system effectively works over CT images and classifies the abnormalities with more accuracy than current techniques. The experiments and results deliver the optimal detection of hemorrhages with better accuracy. It shows that the proposed system works with 5% to 10% of the better performance compared to other diagnostic techniques. Conclusion. The complex nature of CT images leads to noncorrelated feature complexities in diagnosis models. Considering the issue, the proposed system used GAN-based effective sampling techniques for enriching complex image samples into CNN training phases. This concludes the effective contribution of the proposed IGACM technique for detecting brain hemorrhages than the existing diagnosis models. The need for computerized medical assistance for accurate detection of brain hemorrhage from Computer Tomography (CT) images is more mandatory than conventional clinical tests. Recent technologies and advanced computerized algorithms follow Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) techniques to improve medical diagnosis platforms. This technology is making the diagnosis practice of brain issues easier for medical practitioners to analyze and identify diseases with an assured degree of precision and performance.PurposeThe need for computerized medical assistance for accurate detection of brain hemorrhage from Computer Tomography (CT) images is more mandatory than conventional clinical tests. Recent technologies and advanced computerized algorithms follow Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) techniques to improve medical diagnosis platforms. This technology is making the diagnosis practice of brain issues easier for medical practitioners to analyze and identify diseases with an assured degree of precision and performance.As the existing CT image analysis models use standard procedures to detect hemorrhages, the need for DL-based data analysis is essential to provide more accurate results. Generally, the existing techniques are limited with image training efficiency, image filtering procedures, and runtime system tuning modules. On the scope, this work develops a DL-based automated analysis of CT scan slices to find various levels of brain hemorrhages. Notably, this proposed system integrates Convolutional Neural Network (CNN) and Generative Adversarial Network (GAN) architectures as Integrated Generative Adversarial-Convolutional Imaging Model (IGACM) for extracting the CT image features for detecting brain hemorrhages.MethodsAs the existing CT image analysis models use standard procedures to detect hemorrhages, the need for DL-based data analysis is essential to provide more accurate results. Generally, the existing techniques are limited with image training efficiency, image filtering procedures, and runtime system tuning modules. On the scope, this work develops a DL-based automated analysis of CT scan slices to find various levels of brain hemorrhages. Notably, this proposed system integrates Convolutional Neural Network (CNN) and Generative Adversarial Network (GAN) architectures as Integrated Generative Adversarial-Convolutional Imaging Model (IGACM) for extracting the CT image features for detecting brain hemorrhages.This system produces good results and takes lesser training time than existing techniques. This proposed system effectively works over CT images and classifies the abnormalities with more accuracy than current techniques. The experiments and results deliver the optimal detection of hemorrhages with better accuracy. It shows that the proposed system works with 5% to 10% of the better performance compared to other diagnostic techniques.ResultsThis system produces good results and takes lesser training time than existing techniques. This proposed system effectively works over CT images and classifies the abnormalities with more accuracy than current techniques. The experiments and results deliver the optimal detection of hemorrhages with better accuracy. It shows that the proposed system works with 5% to 10% of the better performance compared to other diagnostic techniques.The complex nature of CT images leads to noncorrelated feature complexities in diagnosis models. Considering the issue, the proposed system used GAN-based effective sampling techniques for enriching complex image samples into CNN training phases. This concludes the effective contribution of the proposed IGACM technique for detecting brain hemorrhages than the existing diagnosis models.ConclusionThe complex nature of CT images leads to noncorrelated feature complexities in diagnosis models. Considering the issue, the proposed system used GAN-based effective sampling techniques for enriching complex image samples into CNN training phases. This concludes the effective contribution of the proposed IGACM technique for detecting brain hemorrhages than the existing diagnosis models. The need for computerized medical assistance for accurate detection of brain hemorrhage from Computer Tomography (CT) images is more mandatory than conventional clinical tests. Recent technologies and advanced computerized algorithms follow Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) techniques to improve medical diagnosis platforms. This technology is making the diagnosis practice of brain issues easier for medical practitioners to analyze and identify diseases with an assured degree of precision and performance. As the existing CT image analysis models use standard procedures to detect hemorrhages, the need for DL-based data analysis is essential to provide more accurate results. Generally, the existing techniques are limited with image training efficiency, image filtering procedures, and runtime system tuning modules. On the scope, this work develops a DL-based automated analysis of CT scan slices to find various levels of brain hemorrhages. Notably, this proposed system integrates Convolutional Neural Network (CNN) and Generative Adversarial Network (GAN) architectures as Integrated Generative Adversarial-Convolutional Imaging Model (IGACM) for extracting the CT image features for detecting brain hemorrhages. This system produces good results and takes lesser training time than existing techniques. This proposed system effectively works over CT images and classifies the abnormalities with more accuracy than current techniques. The experiments and results deliver the optimal detection of hemorrhages with better accuracy. It shows that the proposed system works with 5% to 10% of the better performance compared to other diagnostic techniques. The complex nature of CT images leads to noncorrelated feature complexities in diagnosis models. Considering the issue, the proposed system used GAN-based effective sampling techniques for enriching complex image samples into CNN training phases. This concludes the effective contribution of the proposed IGACM technique for detecting brain hemorrhages than the existing diagnosis models. |
| Audience | Academic |
| Author | Alharbi, Abdullah Rajasoundaran, S. Routray, Sidheswar Prabu, A. V. Ahmad, Sultan Alyami, Hashem Pandimurugan, V. |
| AuthorAffiliation | 1 School of Computing Science and Engineering, VIT Bhopal University, Madhya Pradesh, India 6 Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia 3 Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Guntur, India 4 Department of Computer Science, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia 5 Department of Information Technology, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia 2 Department of Computer Science and Engineering, School of Engineering, Indrashil University, Rajpur, Mehsana, Gujarat, India |
| AuthorAffiliation_xml | – name: 2 Department of Computer Science and Engineering, School of Engineering, Indrashil University, Rajpur, Mehsana, Gujarat, India – name: 5 Department of Information Technology, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia – name: 6 Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia – name: 3 Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Guntur, India – name: 4 Department of Computer Science, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia – name: 1 School of Computing Science and Engineering, VIT Bhopal University, Madhya Pradesh, India |
| Author_xml | – sequence: 1 givenname: V. orcidid: 0000-0003-4766-996X surname: Pandimurugan fullname: Pandimurugan, V. organization: School of Computing Science and EngineeringVIT Bhopal UniversityMadhya PradeshIndiavitbhopal.ac.in – sequence: 2 givenname: S. orcidid: 0000-0003-1747-9639 surname: Rajasoundaran fullname: Rajasoundaran, S. organization: School of Computing Science and EngineeringVIT Bhopal UniversityMadhya PradeshIndiavitbhopal.ac.in – sequence: 3 givenname: Sidheswar orcidid: 0000-0002-3658-3514 surname: Routray fullname: Routray, Sidheswar organization: Department of Computer Science and EngineeringSchool of EngineeringIndrashil UniversityRajpur, MehsanaGujaratIndia – sequence: 4 givenname: A. V. surname: Prabu fullname: Prabu, A. V. organization: Department of Electronics and Communication EngineeringKoneru Lakshmaiah Education FoundationGunturIndiakluniversity.in – sequence: 5 givenname: Hashem surname: Alyami fullname: Alyami, Hashem organization: Department of Computer ScienceCollege of Computers and Information TechnologyTaif UniversityP.O. Box 11099Taif 21944Saudi Arabiatu.edu.sa – sequence: 6 givenname: Abdullah surname: Alharbi fullname: Alharbi, Abdullah organization: Department of Information TechnologyCollege of Computers and Information TechnologyTaif UniversityP.O. Box 11099Taif 21944Saudi Arabiatu.edu.sa – sequence: 7 givenname: Sultan orcidid: 0000-0002-3198-7974 surname: Ahmad fullname: Ahmad, Sultan organization: Department of Computer ScienceCollege of Computer Engineering and SciencesPrince Sattam Bin Abdulaziz UniversityAlkharj 11942Saudi Arabiapsau.edu.sa |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35571726$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkU1v1DAURS1URD9gxxpFYoMEQ20ntuNNpTKUtlIlFrRr68WxM64Se7CTKf33JJOhhUrAyrZ83tXVeYdozwdvEHpN8EdCGDummNJjzgWhefEMHRBeigWjIt97uHO2jw5TusWYCYbpC7SfMyaIoPwANZ9Nb3TvfJOBr7OzH32E-fkpgvPZhelCjCtoTMpsDF22vM4uu-3zJk3YufEmQu82JlsGvwnt0Lvgod1SE_BNr0xnXqLnFtpkXu3OI3Tz5ex6ebG4-np-uTy9WuhC8H4hCilqQqUAaqm1tMSFlmA4wVVtayGZLnOQtR3LayihKstKCouZqUCXhYX8CC3m3MGv4f4O2lato-sg3iuC1SRMTcLUTtjIn8z8eqg6U2vjRwGPMwGc-vPHu5VqwkZJgnkhyBjwbhcQw_fBpF51LmnTtuBNGJKinDOCpZR4RN8-QW_DEEdXW6rgYzlZPFINtEY5b8O0kilUnQqcl2xiR-rN770fCv_a7AjQGdAxpBSNVdr1MO1mjHPt32x8eDL0H3nvZ3zlfA137t_0T7FUz_Q |
| CitedBy_id | crossref_primary_10_1155_2023_9763965 crossref_primary_10_1002_ima_22806 crossref_primary_10_1016_j_engappai_2024_108192 crossref_primary_10_3390_diagnostics13182987 crossref_primary_10_35377_saucis___1259584 crossref_primary_10_1155_2022_7218113 |
| Cites_doi | 10.1136/postgradmedj-2014-133211 10.1016/j.compbiomed.2021.104304 10.1117/12.710307 10.1038/s41598-021-87762-2 10.3390/jimaging7040066 10.3390/s20195611 10.3390/app10217577 10.1016/j.jacr.2020.01.026 10.1016/j.neuropharm.2021.108561 10.15585/mmwr.ss6609a1 10.1176/appi.ajp.2020.19101091 10.1089/neu.2008.0566 10.1016/j.jbi.2009.07.003 10.1016/j.media.2020.101857 10.1016/j.compmedimag.2007.02.010 10.1016/j.media.2020.101871 10.1016/j.media.2021.101996 10.1111/exsy.12876 10.1016/s1474-4422(20)30181-2 10.1016/j.media.2016.10.004 10.1109/tsmc.1973.4309314 10.1016/s1474-4422(09)70340-0 10.1007/978-3-642-25191-7_26 10.1186/s12880-021-00551-1 10.1016/j.ejmp.2021.04.016 10.1067/j.cpradiol.2020.05.006 10.3390/s21248219 10.1590/1678-4324-2020190736 10.1016/j.patcog.2006.04.045 10.1109/access.2021.3055806 10.1109/jbhi.2021.3067798 10.1016/s0140-6736(74)91639-0 10.1007/978-981-33-4866-0_43 10.1155/2020/3047869 10.1016/j.ijleo.2020.164903 10.1007/s11760-019-01489-2 |
| ContentType | Journal Article |
| Copyright | Copyright © 2022 V. Pandimurugan et al. COPYRIGHT 2022 John Wiley & Sons, Inc. Copyright © 2022 V. Pandimurugan et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 Copyright © 2022 V. Pandimurugan et al. 2022 |
| Copyright_xml | – notice: Copyright © 2022 V. Pandimurugan et al. – notice: COPYRIGHT 2022 John Wiley & Sons, Inc. – notice: Copyright © 2022 V. Pandimurugan et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 – notice: Copyright © 2022 V. Pandimurugan et al. 2022 |
| DBID | RHU RHW RHX AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QF 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7X7 7XB 8AL 8BQ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU COVID CWDGH DWQXO F28 FR3 FYUFA GHDGH GNUQQ H8D H8G HCIFZ JG9 JQ2 K7- K9. KR7 L6V L7M LK8 L~C L~D M0N M0S M1P M7P M7S P5Z P62 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS Q9U 7X8 5PM ADTOC UNPAY |
| DOI | 10.1155/2022/6671234 |
| DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Aluminium Industry Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College Coronavirus Research Database Middle East & Africa Database ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering collection ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Materials Research Database ProQuest One Psychology Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File ProQuest One Applied & Life Sciences Engineered Materials Abstracts Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Coronavirus Research Database ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Ceramic Abstracts Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Health & Medical Research Collection ProQuest Engineering Collection Middle East & Africa Database Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection Corrosion Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1687-5273 |
| Editor | Asghar, Muhammad Zubair |
| Editor_xml | – sequence: 1 givenname: Muhammad Zubair surname: Asghar fullname: Asghar, Muhammad Zubair |
| EndPage | 10 |
| ExternalDocumentID | 10.1155/2022/6671234 PMC9106471 A703852664 35571726 10_1155_2022_6671234 |
| Genre | Retracted Publication Journal Article |
| GeographicLocations | Saudi Arabia |
| GeographicLocations_xml | – name: Saudi Arabia |
| GrantInformation_xml | – fundername: Taif University grantid: TURSP-2020/306 |
| GroupedDBID | --- 188 29F 2WC 3V. 4.4 53G 5GY 5VS 6J9 7X7 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAFWJ AAJEY AAKPC ABDBF ABIVO ABJCF ABUWG ACGFO ACIWK ACM ACPRK ADBBV ADRAZ AENEX AFKRA AHMBA AINHJ ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI CCPQU CS3 CWDGH DIK DWQXO E3Z EBD EBS EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE I-F IAO ICD INH INR IPY ITC K6V K7- KQ8 L6V LK8 M0N M1P M48 M7P M7S MK~ O5R O5S OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO PSYQQ PTHSS Q2X RHU RHW RHX RNS RPM SV3 TR2 TUS UKHRP XH6 ~8M 0R~ 24P AAMMB AAYXX ACCMX ACUHS AEFGJ AGXDD AIDQK AIDYY CITATION H13 IHR OVT PGMZT PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO 2UF C1A CGR CUY CVF ECM EIF EJD IL9 NPM UZ4 7QF 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7XB 8AL 8BQ 8FD 8FK COVID F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c476t-7497d1297a2f2ff2804c9ae610bdfd795c83a9df172ca8ab88b97f05ebac84fa3 |
| IEDL.DBID | M48 |
| ISSN | 1687-5265 1687-5273 |
| IngestDate | Sun Oct 26 01:59:36 EDT 2025 Tue Sep 30 17:04:31 EDT 2025 Thu Oct 02 11:25:33 EDT 2025 Tue Oct 07 05:50:05 EDT 2025 Mon Oct 20 22:49:07 EDT 2025 Mon Jul 21 06:04:42 EDT 2025 Wed Oct 01 02:22:20 EDT 2025 Thu Apr 24 23:03:28 EDT 2025 Sun Jun 02 18:51:22 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 Copyright © 2022 V. Pandimurugan et al. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c476t-7497d1297a2f2ff2804c9ae610bdfd795c83a9df172ca8ab88b97f05ebac84fa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Correction/Retraction-3 Academic Editor: Muhammad Zubair Asghar |
| ORCID | 0000-0003-1747-9639 0000-0002-3198-7974 0000-0003-4766-996X 0000-0002-3658-3514 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1155/2022/6671234 |
| PMID | 35571726 |
| PQID | 2664615594 |
| PQPubID | 237303 |
| PageCount | 10 |
| ParticipantIDs | unpaywall_primary_10_1155_2022_6671234 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9106471 proquest_miscellaneous_2665109990 proquest_journals_2664615594 gale_infotracmisc_A703852664 pubmed_primary_35571726 crossref_citationtrail_10_1155_2022_6671234 crossref_primary_10_1155_2022_6671234 hindawi_primary_10_1155_2022_6671234 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-05-06 |
| PublicationDateYYYYMMDD | 2022-05-06 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-06 day: 06 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | Computational intelligence and neuroscience |
| PublicationTitleAlternate | Comput Intell Neurosci |
| PublicationYear | 2022 |
| Publisher | Hindawi John Wiley & Sons, Inc |
| Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc |
| References | S. Saini (15) 2013; 2 24 25 27 28 29 P. L. Chithra (18) 2019; 5 M. Raja Suguna (16) 2020; 29 30 31 10 32 11 P. P. Malla (26) 33 12 34 13 35 14 37 38 17 39 19 A. Barragán-Montero (23) 2021; 83 1 2 3 4 5 6 7 Y. Liu (36) 8 9 40 41 20 42 21 B. C. Pang (22) 2007; 12 43 38074381 - Comput Intell Neurosci. 2023 Nov 29;2023:9763965 |
| References_xml | – ident: 28 doi: 10.1136/postgradmedj-2014-133211 – ident: 31 doi: 10.1016/j.compbiomed.2021.104304 – ident: 32 doi: 10.1117/12.710307 – ident: 34 doi: 10.1038/s41598-021-87762-2 – ident: 35 doi: 10.3390/jimaging7040066 – ident: 12 doi: 10.3390/s20195611 – volume: 29 start-page: 104569 issue: 7 year: 2020 ident: 16 article-title: A review of intracranial hemorrhage detection by deep learning techniques publication-title: International Journal of Advanced Science and Technology – volume: 2 start-page: 2022 issue: 10 year: 2013 ident: 15 article-title: A review: haemorrhage intracranial segmentation in ct brain images publication-title: International Journal of Engineering Research and Technology – ident: 17 doi: 10.3390/app10217577 – ident: 25 doi: 10.1016/j.jacr.2020.01.026 – ident: 3 doi: 10.1016/j.neuropharm.2021.108561 – ident: 8 doi: 10.15585/mmwr.ss6609a1 – ident: 37 doi: 10.1176/appi.ajp.2020.19101091 – ident: 42 article-title: Pinterest dataset – ident: 6 doi: 10.1089/neu.2008.0566 – ident: 10 doi: 10.1016/j.jbi.2009.07.003 – ident: 4 doi: 10.1016/j.media.2020.101857 – ident: 11 doi: 10.1016/j.compmedimag.2007.02.010 – ident: 21 doi: 10.1016/j.media.2020.101871 – ident: 20 doi: 10.1016/j.media.2021.101996 – ident: 39 doi: 10.1111/exsy.12876 – ident: 43 doi: 10.1016/s1474-4422(20)30181-2 – ident: 19 doi: 10.1016/j.media.2016.10.004 – ident: 27 doi: 10.1109/tsmc.1973.4309314 – ident: 1 doi: 10.1016/s1474-4422(09)70340-0 – ident: 14 doi: 10.1007/978-3-642-25191-7_26 – volume-title: Semantic-based Biomedical Image Indexing and Retrieval ident: 36 – ident: 9 doi: 10.1186/s12880-021-00551-1 – volume: 5 start-page: 316 issue: 5 year: 2019 ident: 18 article-title: A study on various image processing techniques publication-title: International Journal of Emerging Technology and Innovative Engineering – volume: 83 start-page: 242 year: 2021 ident: 23 article-title: Artificial intelligence and machine learning for medical imaging: a technology review publication-title: Physica Medica doi: 10.1016/j.ejmp.2021.04.016 – volume: 12 year: 2007 ident: 22 article-title: Analysis of clinical criterion for“talk and deteriorate” following minor head injury using different data mining tools publication-title: Journal of Neurotrauma – ident: 30 doi: 10.1067/j.cpradiol.2020.05.006 – start-page: 1 ident: 26 article-title: Investigation of breast tumor detection using microwave imaging technique – ident: 33 doi: 10.3390/s21248219 – ident: 38 doi: 10.1590/1678-4324-2020190736 – ident: 40 doi: 10.1016/j.patcog.2006.04.045 – ident: 24 doi: 10.1109/access.2021.3055806 – ident: 7 doi: 10.1109/jbhi.2021.3067798 – ident: 5 doi: 10.1016/s0140-6736(74)91639-0 – ident: 2 doi: 10.1007/978-981-33-4866-0_43 – ident: 13 doi: 10.1155/2020/3047869 – ident: 29 doi: 10.1016/j.ijleo.2020.164903 – ident: 41 doi: 10.1007/s11760-019-01489-2 – reference: 38074381 - Comput Intell Neurosci. 2023 Nov 29;2023:9763965 |
| SSID | ssj0057502 |
| Score | 2.3581226 |
| SecondaryResourceType | retracted_publication |
| Snippet | Purpose. The need for computerized medical assistance for accurate detection of brain hemorrhage from Computer Tomography (CT) images is more mandatory than... The need for computerized medical assistance for accurate detection of brain hemorrhage from Computer Tomography (CT) images is more mandatory than... |
| SourceID | unpaywall pubmedcentral proquest gale pubmed crossref hindawi |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1 |
| SubjectTerms | Abnormalities Accuracy Algorithms Artificial Intelligence Artificial neural networks Automation Brain Brain research Brain slice preparation Classification Computed tomography Computers CT imaging Data analysis Decision making Deep learning Diagnosis Diagnostic imaging Feature extraction Generative adversarial networks Hemorrhage Humans Image analysis Image filters Image processing Image Processing, Computer-Assisted - methods Information management Intracranial Hemorrhages - diagnostic imaging Machine learning Magnetic resonance imaging Medical imaging Medical imaging equipment Neural networks Neural Networks, Computer Neuroimaging Sampling methods Support vector machines Tomography, X-Ray Computed - methods Training X-rays |
| SummonAdditionalLinks | – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELa2SRO8INiABQYy0tgLilQS23EeS9nUTYIH2KS-Rf5JJ7XutLaM_ffcOW60Mhh7tHypm5zv7rvclzMhB0w4ySAQ5x-Nsznj1oNJaZMz50tthGFS43vIL1_F8JydjvgoNUma3y3hQ7TD9LzAQ_vAx7JNsikFMre-DUcrhwuAo6UWCrAX7Pa-4rf_ce1a5En-d3uMme_1xd_w5V2a5KNluFQ312oyuRWDjp-SJwk80n6r7Wdkw4UdstsPkDhPb-ghjXTO-J58l_z47LA-AJGJqmDp0a9F_B4Khp_wVAg6RIrt1RjcyZziNyZ0cEZPpnEYaQS0bUiN3pAOZuFn2qKwPEqhwHfQ99Q9J-fHR2eDYZ5OVcgNq8Qir1hdWYjylSp84X0he8zUygGM0tbbquZGlqq2HpCNUVJpKXVd-R53WhnJvCpfkK0wC26PUO55rcCIIWczrNBlrSyzgDCdKbkruM_Ih9UTb0xqOY4nX0yamHpw3qB-mqSfjLzvpC_bVhv_kNtH5TVogfjowB5M06-wxAloA6YPklL_9ysrjTfJbOcNXh8LtTD9rpvGBZCKFtxsGWU4lhPrXkZethukWwjAG6THhchItbZ1OgFs5r0-Ey7Gsak3wDYBQCEjh90mu_f_v3rYbb4mj3EYKZpin2wtrpbuDcCohX4bjeg3LJ4TUA priority: 102 providerName: Hindawi Publishing – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwED-NTgheEDA-AgMZaewFRXSJnY8HhLrSqSBRIdikvUWOP-ik1i1by9h_z53jBCpgPEY-xVHu63e-8x3AHs9MwdERxwfK6JgLbVGlahVzY9NaZYoXNZ1Dfpxk4xP-4VScbsGkvQtDZZWtTfSGWi8UnZG_RkfCfQ6Nv11-i2lqFGVX2xEaMoxW0G98i7EbsJ1QZ6webB-OJp8-t7YZsUlThZihalFj-LYUXgg6BUhoNiCacr7hpIKpvjmlIPny7G9Q9M-Kyltrt5RXl3I2-81dHd2FOwFnskEjGPdgy7j7sDNwGGPPr9g-85Wf_kh9B76-M5RKQCfGpNNs9GPlr07h4yENkGBjqsY9n6LluWB0HYUNj9n7uX_0FQes6V1NhpMNF-57kGbcnqiI4AuKxtw8gJOj0fFwHIcBDLHiebaKc17mGgFBLhObWJsUfa5KaRBx1drqvBSqSGWpLYIgJQtZF0Vd5rYvTC1Vwa1MH0LPLZx5DExYUUrUdwzvFE_qtJSaawSjRqXCJMJG8Kr945UK3clpSMas8lGKEBXxpwr8ieBlR71sunL8g26XmFeRstKvQ9VR1SCnbCjJUwR7gan_e0vL8Spo-EX1Sx4jeNEt0wZUtebMYu1pBGUey34EjxoB6TZCnIeRdJJFkG-ITkdAfb83V9zZ1Pf_RoSXIaaIYL8Tsmu__8n13_8UbhO1r-LMdqG3Ol-bZ4i0VvXzoD4_ATdDJCY priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwED-NToh94TUYgYGMNPYFpZTEzkN8KmVTQWJCYpWGhBT5SSfatFpbxvjruXMeUN7iWyxf4ti-O__OPt8B7PHEZhwX4vCptibkwjgUKaVDbl2sdKJ5pmgf8vVRMhzxVyfiZAOeNXdhDIWIn0mz6I7JJj0_9dq6HtfFE43WIprrESXxQ53Lu3PjLsFmIhCId2BzdPSm_45MrARFhwK_f3tO48btXYi1T6wtSLVavlw3_ivY-bP35JVVOZcX53Iy-W5pOrwG75tOVR4pH7urperqLz_Ee_zPXl-HqzVkZf2Kx27Ahi1vwna_RHN9esH2mXci9bvz2_DhhaVTCVwPmSwNO_i89LewsPicclGwITn2no1RiS0Y3Wxhg2P2cuqL3nmBVWGwSQezwaz8VAsGNk9URPAWuWxqb8Ho8OB4MAzrXA6h5mmyDFOepwaxRSojFzkXZT2uc2kRvCnjTJoLncUyNw7xlJaZVFmm8tT1hFVSZ9zJ-DZ0yllp7wATTuQSVQdaippHKs6l4QZxrdWxsJFwATxuJrTQdaBzyrcxKbzBI0RBY1nUYxnAo5Z6XgX4-A3dLvFGQXJPQ4dSqIt-SgeriHGweq-eur99pWGoopnegt73x8NY_bCtpgbIAa60s5WnEXSImfcC2Kn4r20IISMa5VESQLrGmS0BhRBfrylPxz6UOILFBOFJAPstD__x_-_-K-E92KKidw1NdqGzPFvZ-wjflupBLaZfAbVZP1M priority: 102 providerName: Unpaywall |
| Title | Detecting and Extracting Brain Hemorrhages from CT Images Using Generative Convolutional Imaging Scheme |
| URI | https://dx.doi.org/10.1155/2022/6671234 https://www.ncbi.nlm.nih.gov/pubmed/35571726 https://www.proquest.com/docview/2664615594 https://www.proquest.com/docview/2665109990 https://pubmed.ncbi.nlm.nih.gov/PMC9106471 https://downloads.hindawi.com/journals/cin/2022/6671234.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 2022 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: KQ8 dateStart: 20070625 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: KQ8 dateStart: 20070101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1687-5273 dateEnd: 20230628 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: ABDBF dateStart: 20070101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals - Free Access to All customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: DIK dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: GX1 dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: RPM dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Middle East & Africa Database customDbUrl: eissn: 1687-5273 dateEnd: 20250131 omitProxy: false ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: CWDGH dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/middleeastafrica providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1687-5273 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 1687-5273 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: 7X7 dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: 8FG dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1687-5273 dateEnd: 20250430 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: M48 dateStart: 20070101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: 24P dateStart: 20070101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3rb9MwED_tIQRfEDAeGaMy0tgXFNQldh4fEOpKu4K0ahqrFD5FjmPTSW26dS1b_3vunIcojMeXSNZd4sh3Z_8ud7kD2OeBjjgexO6h0rnLRW7QpDLlcm38TAWKRxl9hzwZBoMR_5yIZAPqbqPVAl7f6dpRP6nRfPLu9mr1AQ3-vTV4Ich_96irH27CfBO28YyKqYnDCW_iCYhJyuzDAE2KCsLXKfC_3L12OFVb9L0xOcc3F3dB0N8zKe8vi0u5upGTyU_HVP8RPKzwJeuUCvEYNnTxBHY6BfrW0xU7YDbj035K34FvHzWFEPDwYrLIWe92YX-ZwuERNY5gA8rCnY9xx7lm9BsK656zT1M7tJkGrKxZTRsm686K75UW4_TERQxfUCWm-imM-r3z7sCtGi-4iofBwg15HOYIBELpGc8YL2pzFUuNSCvLTR7GQkW-jHOD4EfJSGZRlMWhaQudSRVxI_1nsFXMCv0CmDAilmjn6NYp7mV-LHOeIwjVyhfaE8aBt_WKp6qqSk7NMSap9U6ESEk-aSUfB9403JdlNY4_8O2R8FJSG1o6NBmVdkKKgiIgQfJ-JdR_PaWWeForZkr321gukl83ZJqAstUKPVtaHkERx7jtwPNSQZqJEN-hB-0FDoRrqtMwUL3vdUpxMbZ1vxHZBYglHDholOyv77_7n6v1Eh7Q0KZxBnuwtZgv9SuEWousBZthEuI16h-3YPuoNzw9w9Fxctiy9oXXs0GClNHwtPP1B0U-KF4 |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lc9MwEN4p6TDlwqs8DAXETJsL45I6kh8HDiFpSejjQjv0ZmRZIh0SJzQOIfwo_gp_iV1bDoRHOfXA0eO15ZF391tpP-0CbHJfhxyB2N1ROnW5SA2aVKJcrk0zUb7iYUL7kIdHfveEvz4VpyvwtToLQ7TKyicWjjodKdojf45AwoscGrcMyn09n-H6bPKi18GfueV5e7vH7a5rWwi4igd-7gY8ClKEtEB6xjPGCxtcRVJjzJCkJg0iocKmjFKDMK5kKJMwTKLANIROpAq5kU18b3380aUuVZTNtS07rsAq6vmOV4PV9tvOq27l-zH2KVmOPpouFZ6vqPZC0C6DR70HESr4EghaKLjap0X47OxPoe7vjM21aTaW85kcDH6Cw70b8K2ayJIF82F7mifb6ssvNSb_n5m-CddtZM5apSndghWd3Yb1Vibz0XDO6qzgyhZJiHV439GUfEHYZzJL2e7nvDhshpcvqeUG6xJ_-byPvnrC6AAPax-z3rC4LDgarKz2TVDD2qPsk7V_HJ6kSOANGtNQ34GTS5mFu1DLRpm-D0wYEUn0kLggVtxLmpFMeYrhu1ZNoT1hHHhW6VCsbD13aisyiIt1nRAxaVxsNc6BrYX0uKxj8he5DVLHmNwbTR06GxW3Asofk144sGnV9F9vqVQrtj5xEv_QKweeLm7TAMTzy_RoWsgIytVGDQfulSq_GAgj4wDnzXcgWDKGhQBVSl--k531i4rpGBP7GIU5UF-YzYXf_-Di738Ca93jw4P4oHe0_xCu0ZMFB9bfgFp-PtWPME7Nk8fWOTB4d9mG8x1-bKED |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lc9MwEN4p7fC48CoUQwEx0_bCuE0dyY8Dw4SkIaHQYYZ26M3IskQ6JE5oHEL4afwV_gy7sh0Ij3LqgaPHG8tWdvdbaT_tAmxwX4ccgdjdVTp1uUgNmlSiXK5NPVG-4mFC-5CvDvzOEX9xLI6X4Gt1FoZolZVPtI46HSraI99BIOE2h8Z3TEmLeN1qPx19dKmDFGVaq3YahYrs69kUl2_jJ90W_tebntfeO2x23LLDgKt44OduwKMgRcQLpGc8Y7ywxlUkNYYUSWrSIBIqrMsoNYjySoYyCcMkCkxN6ESqkBtZx-degJXQD3x0CivNt63nnQoHMA4qGI8-mjEVoa9o90LQjoNHfQgRNvgCIJawcLFHC_LpyZ_C3t_Zm5cn2UjOprLf_wka29fgWzWpBSPmw_YkT7bVl1_qTf6fs34drpYRO2sUJnYDlnR2E1YbmcyHgxnbYpZDa5MTq_C-pSkpg-EAk1nK9j7n9hAaXj6jVhysQ7zm0x768DGjgz2seci6A3tpuRusqAJOEMSaw-xT6RdweJIigTdoZAN9C47O5ZNvw3I2zPQdYMKISKLnxIWy4l5Sj2TKUwzrtaoL7QnjwONKn2JV1nmndiP92K73hIhJ--JS-xzYnEuPivomf5FbJ9WMye3R1KETUnEjoLwy6YgDG6XK_usplZrFpa8cxz90zIFH89s0APH_Mj2cWBlBOdyo5sBaof7zgTBiDnDefAeCBcOYC1AF9cU72UnPVlLHWNnH6MyBrbkJnfn-d89-_4dwCa0jftk92L8HV-iHlhrrr8NyfjrR9zF8zZMHpZ9g8O68jeQ7Zpupyw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwED-NToh94TUYgYGMNPYFpZTEzkN8KmVTQWJCYpWGhBT5SSfatFpbxvjruXMeUN7iWyxf4ti-O__OPt8B7PHEZhwX4vCptibkwjgUKaVDbl2sdKJ5pmgf8vVRMhzxVyfiZAOeNXdhDIWIn0mz6I7JJj0_9dq6HtfFE43WIprrESXxQ53Lu3PjLsFmIhCId2BzdPSm_45MrARFhwK_f3tO48btXYi1T6wtSLVavlw3_ivY-bP35JVVOZcX53Iy-W5pOrwG75tOVR4pH7urperqLz_Ee_zPXl-HqzVkZf2Kx27Ahi1vwna_RHN9esH2mXci9bvz2_DhhaVTCVwPmSwNO_i89LewsPicclGwITn2no1RiS0Y3Wxhg2P2cuqL3nmBVWGwSQezwaz8VAsGNk9URPAWuWxqb8Ho8OB4MAzrXA6h5mmyDFOepwaxRSojFzkXZT2uc2kRvCnjTJoLncUyNw7xlJaZVFmm8tT1hFVSZ9zJ-DZ0yllp7wATTuQSVQdaippHKs6l4QZxrdWxsJFwATxuJrTQdaBzyrcxKbzBI0RBY1nUYxnAo5Z6XgX4-A3dLvFGQXJPQ4dSqIt-SgeriHGweq-eur99pWGoopnegt73x8NY_bCtpgbIAa60s5WnEXSImfcC2Kn4r20IISMa5VESQLrGmS0BhRBfrylPxz6UOILFBOFJAPstD__x_-_-K-E92KKidw1NdqGzPFvZ-wjflupBLaZfAbVZP1M |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+and+Extracting+Brain+Hemorrhages+from+CT+Images+Using+Generative+Convolutional+Imaging+Scheme&rft.jtitle=Computational+intelligence+and+neuroscience&rft.au=Pandimurugan%2C+V.&rft.au=Rajasoundaran%2C+S.&rft.au=Routray%2C+Sidheswar&rft.au=Prabu%2C+A.+V.&rft.date=2022-05-06&rft.issn=1687-5265&rft.eissn=1687-5273&rft.volume=2022&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1155%2F2022%2F6671234&rft.externalDBID=n%2Fa&rft.externalDocID=10_1155_2022_6671234 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-5265&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-5265&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-5265&client=summon |