Analyzing high-dimensional cytometry data using FlowSOM

The dimensionality of cytometry data has strongly increased in the last decade, and in many situations the traditional manual downstream analysis becomes insufficient. The field is therefore slowly moving toward more automated approaches, and in this paper we describe the protocol for analyzing high...

Full description

Saved in:
Bibliographic Details
Published inNature protocols Vol. 16; no. 8; pp. 3775 - 3801
Main Authors Quintelier, Katrien, Couckuyt, Artuur, Emmaneel, Annelies, Aerts, Joachim, Saeys, Yvan, Van Gassen, Sofie
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.08.2021
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN1754-2189
1750-2799
1750-2799
DOI10.1038/s41596-021-00550-0

Cover

Abstract The dimensionality of cytometry data has strongly increased in the last decade, and in many situations the traditional manual downstream analysis becomes insufficient. The field is therefore slowly moving toward more automated approaches, and in this paper we describe the protocol for analyzing high-dimensional cytometry data using FlowSOM, a clustering and visualization algorithm based on a self-organizing map. FlowSOM is used to distinguish cell populations from cytometry data in an unsupervised way and can help to gain deeper insights in fields such as immunology and oncology. Since the original FlowSOM publication (2015), we have validated the tool on a wide variety of datasets, and to write this protocol, we made use of this experience to improve the user-friendliness of the package (e.g., comprehensive functions replacing commonly required scripts). Where the original paper focused mainly on the algorithm description, this protocol offers user guidelines on how to implement the procedure, detailed parameter descriptions and troubleshooting recommendations. The protocol provides clearly annotated R code, and is therefore relevant for all scientists interested in computational high-dimensional analyses without requiring a strong bioinformatics background. We demonstrate the complete workflow, starting from data preparation (such as compensation, transformation and quality control), including detailed discussion of the different FlowSOM parameters and visualization options, and concluding with how the results can be further used to answer biological questions, such as statistical comparison between groups of interest. An average FlowSOM analysis takes 1–3 h to complete, though quality issues can increase this time considerably. This protocol describes FlowSOM, a clustering and visualization algorithm for unsupervised analysis of high-dimensional cytometry data. The protocol provides clearly annotated R code and an example dataset for inexperienced users.
AbstractList The dimensionality of cytometry data has strongly increased in the last decade, and in many situations the traditional manual downstream analysis becomes insufficient. The field is therefore slowly moving toward more automated approaches, and in this paper we describe the protocol for analyzing high-dimensional cytometry data using FlowSOM, a clustering and visualization algorithm based on a self-organizing map. FlowSOM is used to distinguish cell populations from cytometry data in an unsupervised way and can help to gain deeper insights in fields such as immunology and oncology. Since the original FlowSOM publication (2015), we have validated the tool on a wide variety of datasets, and to write this protocol, we made use of this experience to improve the user-friendliness of the package (e.g., comprehensive functions replacing commonly required scripts). Where the original paper focused mainly on the algorithm description, this protocol offers user guidelines on how to implement the procedure, detailed parameter descriptions and troubleshooting recommendations. The protocol provides clearly annotated R code, and is therefore relevant for all scientists interested in computational high-dimensional analyses without requiring a strong bioinformatics background. We demonstrate the complete workflow, starting from data preparation (such as compensation, transformation and quality control), including detailed discussion of the different FlowSOM parameters and visualization options, and concluding with how the results can be further used to answer biological questions, such as statistical comparison between groups of interest. An average FlowSOM analysis takes 1-3 h to complete, though quality issues can increase this time considerably.
The dimensionality of cytometry data has strongly increased in the last decade, and in many situations the traditional manual downstream analysis becomes insufficient. The field is therefore slowly moving toward more automated approaches, and in this paper we describe the protocol for analyzing high-dimensional cytometry data using FlowSOM, a clustering and visualization algorithm based on a self-organizing map. FlowSOM is used to distinguish cell populations from cytometry data in an unsupervised way and can help to gain deeper insights in fields such as immunology and oncology. Since the original FlowSOM publication (2015), we have validated the tool on a wide variety of datasets, and to write this protocol, we made use of this experience to improve the user-friendliness of the package (e.g., comprehensive functions replacing commonly required scripts). Where the original paper focused mainly on the algorithm description, this protocol offers user guidelines on how to implement the procedure, detailed parameter descriptions and troubleshooting recommendations. The protocol provides clearly annotated R code, and is therefore relevant for all scientists interested in computational high-dimensional analyses without requiring a strong bioinformatics background. We demonstrate the complete workflow, starting from data preparation (such as compensation, transformation and quality control), including detailed discussion of the different FlowSOM parameters and visualization options, and concluding with how the results can be further used to answer biological questions, such as statistical comparison between groups of interest. An average FlowSOM analysis takes 1-3 h to complete, though quality issues can increase this time considerably.The dimensionality of cytometry data has strongly increased in the last decade, and in many situations the traditional manual downstream analysis becomes insufficient. The field is therefore slowly moving toward more automated approaches, and in this paper we describe the protocol for analyzing high-dimensional cytometry data using FlowSOM, a clustering and visualization algorithm based on a self-organizing map. FlowSOM is used to distinguish cell populations from cytometry data in an unsupervised way and can help to gain deeper insights in fields such as immunology and oncology. Since the original FlowSOM publication (2015), we have validated the tool on a wide variety of datasets, and to write this protocol, we made use of this experience to improve the user-friendliness of the package (e.g., comprehensive functions replacing commonly required scripts). Where the original paper focused mainly on the algorithm description, this protocol offers user guidelines on how to implement the procedure, detailed parameter descriptions and troubleshooting recommendations. The protocol provides clearly annotated R code, and is therefore relevant for all scientists interested in computational high-dimensional analyses without requiring a strong bioinformatics background. We demonstrate the complete workflow, starting from data preparation (such as compensation, transformation and quality control), including detailed discussion of the different FlowSOM parameters and visualization options, and concluding with how the results can be further used to answer biological questions, such as statistical comparison between groups of interest. An average FlowSOM analysis takes 1-3 h to complete, though quality issues can increase this time considerably.
The dimensionality of cytometry data has strongly increased in the last decade, and in many situations the traditional manual downstream analysis becomes insufficient. The field is therefore slowly moving toward more automated approaches, and in this paper we describe the protocol for analyzing high-dimensional cytometry data using FlowSOM, a clustering and visualization algorithm based on a self-organizing map. FlowSOM is used to distinguish cell populations from cytometry data in an unsupervised way and can help to gain deeper insights in fields such as immunology and oncology. Since the original FlowSOM publication (2015), we have validated the tool on a wide variety of datasets, and to write this protocol, we made use of this experience to improve the user-friendliness of the package (e.g., comprehensive functions replacing commonly required scripts). Where the original paper focused mainly on the algorithm description, this protocol offers user guidelines on how to implement the procedure, detailed parameter descriptions and troubleshooting recommendations. The protocol provides clearly annotated R code, and is therefore relevant for all scientists interested in computational high-dimensional analyses without requiring a strong bioinformatics background. We demonstrate the complete workflow, starting from data preparation (such as compensation, transformation and quality control), including detailed discussion of the different FlowSOM parameters and visualization options, and concluding with how the results can be further used to answer biological questions, such as statistical comparison between groups of interest. An average FlowSOM analysis takes 1-3 h to complete, though quality issues can increase this time considerably. This protocol describes FlowSOM, a clustering and visualization algorithm for unsupervised analysis of high-dimensional cytometry data. The protocol provides clearly annotated R code and an example dataset for inexperienced users.
The dimensionality of cytometry data has strongly increased in the last decade, and in many situations the traditional manual downstream analysis becomes insufficient. The field is therefore slowly moving toward more automated approaches, and in this paper we describe the protocol for analyzing high-dimensional cytometry data using FlowSOM, a clustering and visualization algorithm based on a self-organizing map. FlowSOM is used to distinguish cell populations from cytometry data in an unsupervised way and can help to gain deeper insights in fields such as immunology and oncology. Since the original FlowSOM publication (2015), we have validated the tool on a wide variety of datasets, and to write this protocol, we made use of this experience to improve the user-friendliness of the package (e.g., comprehensive functions replacing commonly required scripts). Where the original paper focused mainly on the algorithm description, this protocol offers user guidelines on how to implement the procedure, detailed parameter descriptions and troubleshooting recommendations. The protocol provides clearly annotated R code, and is therefore relevant for all scientists interested in computational high-dimensional analyses without requiring a strong bioinformatics background. We demonstrate the complete workflow, starting from data preparation (such as compensation, transformation and quality control), including detailed discussion of the different FlowSOM parameters and visualization options, and concluding with how the results can be further used to answer biological questions, such as statistical comparison between groups of interest. An average FlowSOM analysis takes 1–3 h to complete, though quality issues can increase this time considerably. This protocol describes FlowSOM, a clustering and visualization algorithm for unsupervised analysis of high-dimensional cytometry data. The protocol provides clearly annotated R code and an example dataset for inexperienced users.
Audience Academic
Author Couckuyt, Artuur
Saeys, Yvan
Van Gassen, Sofie
Aerts, Joachim
Quintelier, Katrien
Emmaneel, Annelies
Author_xml – sequence: 1
  givenname: Katrien
  surname: Quintelier
  fullname: Quintelier, Katrien
  organization: Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Data Mining and Modeling for Biomedicine Group, VIB Center for Inflammation Research, Department of Pulmonary Medicine, Erasmus University Medical Center
– sequence: 2
  givenname: Artuur
  orcidid: 0000-0001-7858-6521
  surname: Couckuyt
  fullname: Couckuyt, Artuur
  organization: Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Data Mining and Modeling for Biomedicine Group, VIB Center for Inflammation Research
– sequence: 3
  givenname: Annelies
  surname: Emmaneel
  fullname: Emmaneel, Annelies
  organization: Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Data Mining and Modeling for Biomedicine Group, VIB Center for Inflammation Research
– sequence: 4
  givenname: Joachim
  surname: Aerts
  fullname: Aerts, Joachim
  organization: Department of Pulmonary Medicine, Erasmus University Medical Center
– sequence: 5
  givenname: Yvan
  orcidid: 0000-0002-0415-1506
  surname: Saeys
  fullname: Saeys, Yvan
  organization: Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Data Mining and Modeling for Biomedicine Group, VIB Center for Inflammation Research
– sequence: 6
  givenname: Sofie
  orcidid: 0000-0002-7119-5330
  surname: Van Gassen
  fullname: Van Gassen, Sofie
  email: sofie.vangassen@ugent.be
  organization: Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Data Mining and Modeling for Biomedicine Group, VIB Center for Inflammation Research
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34172973$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1P3DAQhq2KqnyUP8ABrcSFHkL97fi4QtAigZBKOVtexw5GSQy2I1h-PQ5LQYsq7INHo-edGc-7DTaGMFgA9hA8QpDUPxNFTPIKYlRByBis4BewhUQJsJBy4yWmFUa13ATbKd1CSAXh4hvYJBQJLAXZAmI-6G755Id2duPbm6rxvR2SDyU7M8scepvjctborGdjmqjTLjxcXV58B1-d7pLdfX13wPXpyd_j39X55a-z4_l5ZajguRLEIYqttEYvKHeGN9hRZwhzztULKRdEGEwaJLnFrKaOY2mgk9powxhrJNkBh6u6dzHcjzZl1ftkbNfpwYYxKcwoK0sop6AHH9DbMMbykYliQiJKuXinWt1Z5QcXctRmKqrmXEAuMJQTdfQfqtzG9t4UG5wv-TXBjzVBYbJ9zK0eU1JnV3_W2f3XQcdFbxt1F32v41L9c6UAeAWYGFKK1r0hCKrJerWyXhXr1Yv1ChZR_UFkfNa5WFlG993nUrKSptJnaG1839wnqmdWG76u
CitedBy_id crossref_primary_10_1038_s41596_022_00716_4
crossref_primary_10_1002_art_42478
crossref_primary_10_1016_j_celrep_2022_111013
crossref_primary_10_1186_s12906_023_04208_0
crossref_primary_10_1002_adma_202304049
crossref_primary_10_1038_s41596_023_00881_0
crossref_primary_10_3390_cancers14082011
crossref_primary_10_3389_fimmu_2022_815828
crossref_primary_10_1126_sciadv_adj1397
crossref_primary_10_1111_tpj_15905
crossref_primary_10_1016_j_bioorg_2022_105660
crossref_primary_10_1002_cyto_a_24910
crossref_primary_10_2139_ssrn_4090935
crossref_primary_10_3389_fimmu_2022_853572
crossref_primary_10_1002_cyto_b_22106
crossref_primary_10_1016_j_ajog_2024_08_041
crossref_primary_10_1038_s41467_023_43504_8
crossref_primary_10_1093_nar_gkad1018
crossref_primary_10_3389_fimmu_2023_1167241
crossref_primary_10_3390_curroncol30050387
crossref_primary_10_1136_jitc_2023_007070
crossref_primary_10_1002_cyto_b_22108
crossref_primary_10_1038_s41598_024_81060_3
crossref_primary_10_3389_fimmu_2023_1263458
crossref_primary_10_1002_cyto_b_22230
crossref_primary_10_1038_s41598_022_12775_4
crossref_primary_10_1016_j_crmeth_2023_100690
crossref_primary_10_1084_jem_20241148
crossref_primary_10_1038_s41467_025_57668_y
crossref_primary_10_1093_bib_bbae633
crossref_primary_10_15252_emmm_202318028
crossref_primary_10_1126_sciimmunol_add5976
crossref_primary_10_1016_j_jri_2024_104239
crossref_primary_10_3390_cells11203330
crossref_primary_10_1136_jitc_2023_008056
crossref_primary_10_1016_j_jaut_2023_103152
crossref_primary_10_1002_cyto_b_22116
crossref_primary_10_3389_fimmu_2024_1414400
crossref_primary_10_4049_immunohorizons_2300008
crossref_primary_10_1016_j_crmeth_2022_100390
crossref_primary_10_1016_j_jcmgh_2025_101475
crossref_primary_10_1016_j_dci_2022_104590
crossref_primary_10_1093_bib_bbae421
crossref_primary_10_1038_s41467_024_46989_z
crossref_primary_10_1016_j_envres_2024_119221
crossref_primary_10_1016_j_compbiomed_2023_106939
crossref_primary_10_1007_s00262_023_03515_2
crossref_primary_10_1016_j_scitotenv_2024_169988
crossref_primary_10_1093_bioinformatics_btae179
crossref_primary_10_1681_ASN_2022030378
crossref_primary_10_1002_ctm2_70175
crossref_primary_10_1016_j_jaut_2024_103167
crossref_primary_10_1002_cyto_a_24811
crossref_primary_10_1038_s41698_024_00604_y
crossref_primary_10_1111_imcb_12604
crossref_primary_10_1016_j_celrep_2024_114062
crossref_primary_10_1016_j_crmeth_2023_100619
crossref_primary_10_1053_j_semdp_2023_02_004
crossref_primary_10_3390_cells11193142
crossref_primary_10_3390_cells12141875
crossref_primary_10_1167_iovs_64_13_6
crossref_primary_10_1016_j_ymthe_2022_05_003
crossref_primary_10_1016_j_chom_2023_08_006
crossref_primary_10_2139_ssrn_4189024
crossref_primary_10_1007_s43657_022_00056_z
crossref_primary_10_1002_cyto_b_22098
crossref_primary_10_1186_s12979_022_00269_w
crossref_primary_10_1002_cyto_b_22177
crossref_primary_10_1016_j_anireprosci_2024_107619
crossref_primary_10_1186_s12859_024_05691_z
crossref_primary_10_1182_bloodadvances_2022008666
crossref_primary_10_1093_bib_bbad514
crossref_primary_10_1093_braincomms_fcad206
crossref_primary_10_1002_cyto_a_24801
crossref_primary_10_1016_j_xcrm_2023_100955
crossref_primary_10_3389_fimmu_2022_878029
crossref_primary_10_1016_j_cell_2024_01_035
crossref_primary_10_1016_j_isci_2024_110947
crossref_primary_10_3389_fcell_2022_911966
crossref_primary_10_1186_s12931_024_02790_6
crossref_primary_10_1155_2023_6517963
crossref_primary_10_1016_j_trac_2022_116794
Cites_doi 10.1186/s13059-019-1917-7
10.1002/cyto.a.23689
10.1172/jci.insight.132286
10.1038/s41467-020-14919-4
10.1016/j.cell.2020.04.055
10.1016/j.immuni.2016.08.015
10.1038/s43018-020-0026-6
10.1007/s12035-020-02004-2
10.1093/bioinformatics/btw191
10.1038/s41467-020-17704-5
10.1016/j.cell.2016.04.019
10.3109/07388551.2015.1128876
10.3389/fcell.2020.00234
10.1172/jci.insight.136417
10.1002/cyto.a.23917
10.1161/ATVBAHA.118.311022
10.1002/cyto.a.23960
10.1038/s41598-020-69358-4
10.1038/s42003-019-0415-5
10.1038/s41467-020-17292-4
10.1002/cyto.a.22106
10.1002/cyto.a.23897
10.4049/jimmunol.1901439
10.3389/fimmu.2020.00829
10.12688/f1000research.11622.3
10.4049/jimmunol.1900866
10.1016/j.imu.2020.100328
10.1073/pnas.1321405111
10.1002/cyto.a.22837
10.1053/j.gastro.2020.04.074
10.1038/nri.2016.56
10.1038/sdata.2018.15
10.1186/1471-2105-10-145
10.1016/j.celrep.2019.12.027
10.1002/cyto.a.23030
10.1038/s41467-020-17569-8
10.1126/scitranslmed.aay4860
10.1002/cyto.a.21007
10.1002/cyto.a.22433
10.7554/eLife.56879
10.1002/eji.201948370
10.1016/j.cell.2020.03.021
10.1002/cyto.a.22725
10.3389/fimmu.2019.02009
10.1371/journal.pcbi.1003806
10.1182/blood.2019004537
10.1002/cyto.a.24032
10.1002/cyto.a.23663
10.1096/fj.201902467R
10.1002/eji.202048531
10.1097/CCO.0000000000000607
10.1186/s12918-019-0690-2
10.3389/fimmu.2020.01481
10.1126/sciadv.aay5352
10.3389/fimmu.2019.01315
10.1038/s41467-019-14134-w
10.1126/science.abc8511
10.1093/bioinformatics/btu677
10.1002/cyto.a.22625
10.3389/fphar.2019.01695
10.3389/fimmu.2020.00714
10.1038/s43018-020-0066-y
10.1371/journal.pone.0234778
10.1084/jem.20182164
10.1038/s41467-020-15315-8
10.1016/j.csbj.2020.03.024
10.1038/s42003-020-0842-3
10.1136/jitc-2019-000394
10.1016/j.cell.2020.05.039
10.1109/5.58325
10.1002/cyto.a.23904
10.18632/oncotarget.27604
10.7554/eLife.55487
10.1093/infdis/jiaa269
10.1007/978-3-319-24277-4
10.1093/bioinformatics/btaa091
10.1002/cyto.a.20823
10.1101/2020.06.29.177196
10.1002/cyto.a.24501
10.18129/B9.bioc.flowCore
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2021
2021. The Author(s), under exclusive licence to Springer Nature Limited.
COPYRIGHT 2021 Nature Publishing Group
The Author(s), under exclusive licence to Springer Nature Limited 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021
– notice: 2021. The Author(s), under exclusive licence to Springer Nature Limited.
– notice: COPYRIGHT 2021 Nature Publishing Group
– notice: The Author(s), under exclusive licence to Springer Nature Limited 2021.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QG
7T5
7T7
7TM
7X7
7XB
88E
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7N
M7P
P64
PATMY
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
RC3
7X8
DOI 10.1038/s41596-021-00550-0
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
ProQuest Medical Library
Animal Behavior Abstracts
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic




ProQuest Central Student
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1750-2799
EndPage 3801
ExternalDocumentID A670672097
34172973
10_1038_s41596_021_00550_0
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GeographicLocations Belgium
GeographicLocations_xml – name: Belgium
GrantInformation_xml – fundername: Fonds Wetenschappelijk Onderzoek (Research Foundation Flanders)
  grantid: 12W9119N
  funderid: https://doi.org/10.13039/501100003130
– fundername: AI Research Program of the Flemish Government.
– fundername: PID Grand Challenges Program of VIB. This VIB Program received support from the Flemish Government under the Management Agreement 2017–2021 (VR 2016 2312 Doc.1521/4).
GroupedDBID ---
0R~
123
29M
39C
3TQ
3V.
4.4
53G
5BI
5M7
70F
7X7
7XC
88E
8FE
8FH
8FI
8FJ
AAEEF
AARCD
AAWYQ
AAYZH
AAZLF
ABAWZ
ABJNI
ABLJU
ABUWG
ACGFO
ACGFS
ACMJI
ACPRK
ADBBV
ADFRT
AENEX
AEUYN
AFBBN
AFKRA
AFRAH
AFSHS
AGAYW
AHBCP
AHMBA
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
CAG
CCPQU
COF
DB5
DU5
EBS
EE.
EJD
EMOBN
F5P
FEDTE
FSGXE
FYUFA
FZEXT
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IGS
IHR
INH
INR
ISR
ITC
LGEZI
LK8
LOTEE
M1P
M7P
NADUK
NNMJJ
NXXTH
O9-
ODYON
P2P
PATMY
PQQKQ
PROAC
PSQYO
PYCSY
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
UKHRP
AAYXX
AFANA
ATHPR
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
AGSTI
7QG
7T5
7T7
7TM
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
ID FETCH-LOGICAL-c476t-73f142e9ecab46fc6d2f4fc35fff8b99b37c23d196e2584f629c0f9acac555d93
IEDL.DBID BENPR
ISSN 1754-2189
1750-2799
IngestDate Sun Sep 28 09:39:32 EDT 2025
Tue Oct 07 06:11:50 EDT 2025
Mon Oct 20 22:28:40 EDT 2025
Mon Oct 20 16:11:30 EDT 2025
Thu Oct 16 14:02:22 EDT 2025
Mon Jul 21 05:39:53 EDT 2025
Wed Oct 01 00:20:07 EDT 2025
Thu Apr 24 23:02:10 EDT 2025
Fri Feb 21 02:37:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License 2021. The Author(s), under exclusive licence to Springer Nature Limited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c476t-73f142e9ecab46fc6d2f4fc35fff8b99b37c23d196e2584f629c0f9acac555d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-7858-6521
0000-0002-0415-1506
0000-0002-7119-5330
PMID 34172973
PQID 2557914467
PQPubID 536306
PageCount 27
ParticipantIDs proquest_miscellaneous_2545596666
proquest_journals_2557914467
gale_infotracmisc_A670672097
gale_infotracacademiconefile_A670672097
gale_incontextgauss_ISR_A670672097
pubmed_primary_34172973
crossref_primary_10_1038_s41596_021_00550_0
crossref_citationtrail_10_1038_s41596_021_00550_0
springer_journals_10_1038_s41596_021_00550_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle Recipes for Researchers
PublicationTitle Nature protocols
PublicationTitleAbbrev Nat Protoc
PublicationTitleAlternate Nat Protoc
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Mathew (CR78) 2020
Ma (CR76) 2020; 9
Finak, Jiang, Gottardo (CR32) 2018; 93
Hahne (CR83) 2009; 77A
CR38
Eccles (CR73) 2020; 30
Pelon (CR39) 2020; 11
Metelli (CR42) 2020; 12
CR79
Kohonen (CR10) 1990; 78
Bhattacharya (CR28) 2018; 5
CR34
CR33
Nowicka (CR37) 2019; 6
CR77
Guilliams (CR8) 2016; 45
CR31
Zhao (CR75) 2020; 11
Neeland (CR66) 2020; 11
Saeys, Van Gassen, Lambrecht (CR5) 2016; 16
Muppidi, Radfar (CR69) 2020; 19
Shaul (CR43) 2020; 34
Ali (CR54) 2020; 1
Mitsialis (CR70) 2020
Jokela (CR64) 2020; 50
Ho (CR45) 2020; 8
Wuggenig (CR59) 2020; 3
CR9
Vetters (CR29) 2019; 216
Brooks (CR71) 2020; 10
Friebel (CR48) 2020; 181
Kverneland (CR50) 2020; 11
Rein, Notø, Bostad, Huse, Stokke (CR63) 2020; 97
Hagert, Bohn, Wittenborn, Degn (CR62) 2020; 97
Weber, Nowicka, Soneson, Robinson (CR22) 2019; 2
Färkkilä (CR51) 2020; 11
Leelatian (CR57) 2020; 9
Shekhar, Brodin, Davis, Chakraborty (CR12) 2014; 111
Amir (CR26) 2019; 10
Pedersen, Olsen (CR18) 2020; 97
Van Gassen, Gaudilliere, Angst, Saeys, Aghaeepour (CR23) 2020; 97
Eichmann (CR68) 2020; 204
Finak (CR82) 2014; 85A
Yarchoan (CR46) 2020; 5
Grandi (CR65) 2020; 6
Futamura (CR4) 2015; 87
Spidlen, Breuer, Rosenberg, Kotecha, Brinkman (CR30) 2012; 81A
Spitzer, Nolan (CR3) 2016; 165
Ho (CR41) 2020; 5
Ranganath (CR55) 2020; 11
Hawke, Mitchell, Ormiston (CR61) 2020; 204
Emmaneel (CR7) 2019; 10
Finak (CR35) 2014; 10
Monaco (CR80) 2016; 32
De Biasi (CR74) 2020; 11
Weber, Robinson (CR16) 2016; 89
Rybakowska, Alarcón-Riquelme, Marañón (CR84) 2020; 18
Lacombe, Lechevalier, Vial, Béné (CR27) 2019; 95
Ye, Ho (CR15) 2019; 13
Khalsa (CR53) 2020; 11
Malek (CR36) 2015; 31
Ghorani (CR47) 2020; 1
Lo, Hahne, Brinkman, Gottardo (CR14) 2009; 10
Fletez‐Brant, Špidlen, Brinkman, Roederer, Chattopadhyay (CR81) 2016; 89
Laban (CR44) 2020; 50
Duetz, Bachas, Westers, van de Loosdrecht (CR40) 2020; 32
Liechti, Roederer (CR2) 2019; 95
Liu (CR17) 2019; 20
Perez (CR49) 2020; 136
Grayson (CR56) 2020; 15
Van Gassen (CR6) 2015; 87
Gudbergsson (CR58) 2020; 57
Hamers (CR20) 2019; 39
CR25
Kotecha, Krutzik, Irish (CR24) 2010; 53
CR21
Stanley (CR85) 2020; 11
Jang (CR67) 2020; 10
van der Maaten, Hinton (CR11) 2008; 9
Liu (CR19) 2020; 8
Aghaeepour, Nikolic, Hoos, Brinkman (CR13) 2011; 79A
Ji (CR52) 2020; 182
Utz (CR60) 2020; 181
Adan, Alizada, Kiraz, Baran, Nalbant (CR1) 2017; 37
Johnson (CR72) 2020; 11
MH Spitzer (550_CR3) 2016; 165
T Kohonen (550_CR10) 1990; 78
X Ye (550_CR15) 2019; 13
T Ma (550_CR76) 2020; 9
LM Weber (550_CR16) 2016; 89
KG Laban (550_CR44) 2020; 50
SG Utz (550_CR60) 2020; 181
A Emmaneel (550_CR7) 2019; 10
K Shekhar (550_CR12) 2014; 111
550_CR9
M Guilliams (550_CR8) 2016; 45
A Metelli (550_CR42) 2020; 12
ME Shaul (550_CR43) 2020; 34
BZ Johnson (550_CR72) 2020; 11
K Futamura (550_CR4) 2015; 87
JM Grayson (550_CR56) 2020; 15
ED Amir (550_CR26) 2019; 10
M Yarchoan (550_CR46) 2020; 5
T Ranganath (550_CR55) 2020; 11
L van der Maaten (550_CR11) 2008; 9
A Färkkilä (550_CR51) 2020; 11
G Monaco (550_CR80) 2016; 32
P Liu (550_CR19) 2020; 8
LG Hawke (550_CR61) 2020; 204
J Spidlen (550_CR30) 2012; 81A
G Finak (550_CR82) 2014; 85A
M Eichmann (550_CR68) 2020; 204
550_CR21
LM Weber (550_CR22) 2019; 2
S Van Gassen (550_CR23) 2020; 97
E Ghorani (550_CR47) 2020; 1
D Mathew (550_CR78) 2020
N Aghaeepour (550_CR13) 2011; 79A
WJ Ho (550_CR45) 2020; 8
K Lo (550_CR14) 2009; 10
S Bhattacharya (550_CR28) 2018; 5
F Hahne (550_CR83) 2009; 77A
G Finak (550_CR32) 2018; 93
H Jokela (550_CR64) 2020; 50
C Duetz (550_CR40) 2020; 32
Y Saeys (550_CR5) 2016; 16
550_CR25
F Lacombe (550_CR27) 2019; 95
MR Neeland (550_CR66) 2020; 11
ID Rein (550_CR63) 2020; 97
JS Jang (550_CR67) 2020; 10
WJ Ho (550_CR41) 2020; 5
E Friebel (550_CR48) 2020; 181
CF Hagert (550_CR62) 2020; 97
550_CR34
JD Eccles (550_CR73) 2020; 30
550_CR33
550_CR77
AAJ Hamers (550_CR20) 2019; 39
550_CR31
M Malek (550_CR36) 2015; 31
JM Gudbergsson (550_CR58) 2020; 57
FC Grandi (550_CR65) 2020; 6
P Wuggenig (550_CR59) 2020; 3
X Liu (550_CR17) 2019; 20
N Leelatian (550_CR57) 2020; 9
A Adan (550_CR1) 2017; 37
A Muppidi (550_CR69) 2020; 19
JK Khalsa (550_CR53) 2020; 11
S Van Gassen (550_CR6) 2015; 87
V Mitsialis (550_CR70) 2020
T Liechti (550_CR2) 2019; 95
J Vetters (550_CR29) 2019; 216
F Pelon (550_CR39) 2020; 11
550_CR38
NQ Zhao (550_CR75) 2020; 11
550_CR79
K Fletez‐Brant (550_CR81) 2016; 89
CB Pedersen (550_CR18) 2020; 97
G Finak (550_CR35) 2014; 10
P Rybakowska (550_CR84) 2020; 18
N Stanley (550_CR85) 2020; 11
AH Kverneland (550_CR50) 2020; 11
AES Brooks (550_CR71) 2020; 10
HR Ali (550_CR54) 2020; 1
S De Biasi (550_CR74) 2020; 11
N Kotecha (550_CR24) 2010; 53
M Nowicka (550_CR37) 2019; 6
C Perez (550_CR49) 2020; 136
AL Ji (550_CR52) 2020; 182
References_xml – volume: 20
  start-page: 297
  year: 2019
  ident: CR17
  article-title: A comparison framework and guideline of clustering methods for mass cytometry data
  publication-title: Genome Biol.
  doi: 10.1186/s13059-019-1917-7
– volume: 95
  start-page: 150
  year: 2019
  end-page: 155
  ident: CR2
  article-title: OMIP-051 – 28-color flow cytometry panel to characterize B cells and myeloid cells
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.23689
– volume: 5
  start-page: e132286
  year: 2020
  ident: CR41
  article-title: Multipanel mass cytometry reveals anti–PD-1 therapy–mediated B and T cell compartment remodeling in tumor-draining lymph nodes
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.132286
– volume: 11
  year: 2020
  ident: CR66
  article-title: Mass cytometry reveals cellular fingerprint associated with IgE+ peanut tolerance and allergy in early life
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-14919-4
– volume: 181
  start-page: 1626
  year: 2020
  end-page: 1642.e20
  ident: CR48
  article-title: Single-cell mapping of human brain cancer reveals tumor-specific instruction of tissue-invading leukocytes
  publication-title: Cell
  doi: 10.1016/j.cell.2020.04.055
– volume: 45
  start-page: 669
  year: 2016
  end-page: 684
  ident: CR8
  article-title: Unsupervised high-dimensional analysis aligns dendritic cells across tissues and species
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.08.015
– volume: 1
  start-page: 163
  year: 2020
  end-page: 175
  ident: CR54
  article-title: Imaging mass cytometry and multiplatform genomics define the phenogenomic landscape of breast cancer
  publication-title: Nat. Cancer
  doi: 10.1038/s43018-020-0026-6
– volume: 57
  start-page: 3943
  year: 2020
  end-page: 3955
  ident: CR58
  article-title: Conventional treatment of glioblastoma reveals persistent CD44+ subpopulations
  publication-title: Mol. Neurobiol.
  doi: 10.1007/s12035-020-02004-2
– volume: 32
  start-page: 2473
  year: 2016
  end-page: 2480
  ident: CR80
  article-title: flowAI: automatic and interactive anomaly discerning tools for flow cytometry data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw191
– volume: 11
  year: 2020
  ident: CR53
  article-title: Immune phenotyping of diverse syngeneic murine brain tumors identifies immunologically distinct types
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17704-5
– volume: 165
  start-page: 780
  year: 2016
  end-page: 791
  ident: CR3
  article-title: Mass cytometry: single cells, many features
  publication-title: Cell
  doi: 10.1016/j.cell.2016.04.019
– volume: 37
  start-page: 163
  year: 2017
  end-page: 176
  ident: CR1
  article-title: Flow cytometry: basic principles and applications
  publication-title: Crit. Rev. Biotechnol.
  doi: 10.3109/07388551.2015.1128876
– volume: 8
  start-page: 234
  year: 2020
  ident: CR19
  article-title: Recent advances in computer-assisted algorithms for cell subtype identification of cytometry data
  publication-title: Front. Cell Dev. Biol.
  doi: 10.3389/fcell.2020.00234
– volume: 5
  start-page: e136417
  year: 2020
  ident: CR46
  article-title: Effects of B cell–activating factor on tumor immunity
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.136417
– volume: 97
  start-page: 219
  year: 2020
  end-page: 221
  ident: CR18
  article-title: Algorithmic clustering of single-cell cytometry data—how unsupervised are these analyses really?
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.23917
– volume: 39
  start-page: 25
  year: 2019
  end-page: 36
  ident: CR20
  article-title: Human monocyte heterogeneity as revealed by high-dimensional mass cytometry
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.118.311022
– volume: 97
  start-page: 832
  year: 2020
  end-page: 844
  ident: CR63
  article-title: Cell cycle analysis and relevance for single-cell gating in mass cytometry
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.23960
– ident: CR77
– volume: 10
  year: 2020
  ident: CR67
  article-title: Single-cell mass cytometry on peripheral blood identifies immune cell subsets associated with primary biliary cholangitis
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-69358-4
– volume: 2
  start-page: 183
  year: 2019
  ident: CR22
  article-title: diffcyt: differential discovery in high-dimensional cytometry via high-resolution clustering
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-019-0415-5
– ident: CR25
– volume: 11
  year: 2020
  ident: CR74
  article-title: Marked T cell activation, senescence, exhaustion and skewing towards TH17 in patients with COVID-19 pneumonia
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17292-4
– volume: 81A
  start-page: 727
  year: 2012
  end-page: 731
  ident: CR30
  article-title: FlowRepository: a resource of annotated flow cytometry datasets associated with peer-reviewed publications
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.22106
– volume: 95
  start-page: 1191
  year: 2019
  end-page: 1197
  ident: CR27
  article-title: An R-derived FlowSOM process to analyze unsupervised clustering of normal and malignant human bone marrow classical flow cytometry data
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.23897
– ident: CR21
– volume: 204
  start-page: 3129
  year: 2020
  end-page: 3138
  ident: CR68
  article-title: Costimulation blockade disrupts CD4+ T cell memory pathways and uncouples their link to decline in β-cell function in type 1 diabetes
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1901439
– volume: 11
  start-page: 829
  year: 2020
  ident: CR75
  article-title: Treated HIV infection alters phenotype but not HIV-specific function of peripheral blood natural killer cells
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2020.00829
– volume: 6
  start-page: 748
  year: 2019
  ident: CR37
  article-title: CyTOF workflow: differential discovery in high-throughput high-dimensional cytometry datasets
  publication-title: F1000Research
  doi: 10.12688/f1000research.11622.3
– volume: 204
  start-page: 3171
  year: 2020
  end-page: 3181
  ident: CR61
  article-title: TGF-β and IL-15 synergize through MAPK pathways to drive the conversion of human NK cells to an innate lymphoid cell 1–like phenotype
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1900866
– volume: 19
  start-page: 100328
  year: 2020
  ident: CR69
  article-title: Löfgren’s syndrome sarcoidosis and Non-LS sarcoidosis prediction using 1d-Convolutional neural networks
  publication-title: Inform. Med. Unlocked
  doi: 10.1016/j.imu.2020.100328
– volume: 111
  start-page: 202
  year: 2014
  end-page: 207
  ident: CR12
  article-title: Automatic classification of cellular expression by nonlinear stochastic embedding (ACCENSE)
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1321405111
– ident: CR9
– volume: 89
  start-page: 461
  year: 2016
  end-page: 471
  ident: CR81
  article-title: flowClean: automated identification and removal of fluorescence anomalies in flow cytometry data
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.22837
– year: 2020
  ident: CR70
  article-title: Single-cell analyses of colon and blood reveal distinct immune cell signatures of ulcerative colitis and Crohn’s disease
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2020.04.074
– volume: 16
  start-page: 449
  year: 2016
  end-page: 462
  ident: CR5
  article-title: Computational flow cytometry: helping to make sense of high-dimensional immunology data
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri.2016.56
– volume: 5
  start-page: 180015
  year: 2018
  ident: CR28
  article-title: ImmPort, toward repurposing of open access immunological assay data for translational and clinical research
  publication-title: Sci. Data
  doi: 10.1038/sdata.2018.15
– volume: 10
  start-page: 145
  year: 2009
  ident: CR14
  article-title: flowClust: a Bioconductor package for automated gating of flow cytometry data
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-10-145
– volume: 30
  start-page: 351
  year: 2020
  end-page: 366.e7
  ident: CR73
  article-title: T-bet+ memory B cells link to local cross-reactive IgG upon human rhinovirus infection
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2019.12.027
– volume: 89
  start-page: 1084
  year: 2016
  end-page: 1096
  ident: CR16
  article-title: Comparison of clustering methods for high-dimensional single-cell flow and mass cytometry data
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.23030
– volume: 11
  year: 2020
  ident: CR85
  article-title: VoPo leverages cellular heterogeneity for predictive modeling of single-cell data
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17569-8
– volume: 12
  start-page: eaay4860
  year: 2020
  ident: CR42
  article-title: Thrombin contributes to cancer immune evasion via proteolysis of platelet-bound GARP to activate LTGF-β
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aay4860
– volume: 79A
  start-page: 6
  year: 2011
  end-page: 13
  ident: CR13
  article-title: Rapid cell population identification in flow cytometry data
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.21007
– volume: 85A
  start-page: 277
  year: 2014
  end-page: 286
  ident: CR82
  article-title: High-throughput flow cytometry data normalization for clinical trials
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.22433
– volume: 9
  start-page: e56879
  year: 2020
  ident: CR57
  article-title: Unsupervised machine learning reveals risk stratifying glioblastoma tumor cells
  publication-title: eLife
  doi: 10.7554/eLife.56879
– volume: 50
  start-page: 548
  year: 2020
  end-page: 557
  ident: CR44
  article-title: cDC2 and plasmacytoid dendritic cells diminish from tissues of patients with non-Hodgkin orbital lymphoma and idiopathic orbital inflammation
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.201948370
– volume: 181
  start-page: 557
  year: 2020
  end-page: 573.e18
  ident: CR60
  article-title: Early fate defines microglia and non-parenchymal brain macrophage development
  publication-title: Cell
  doi: 10.1016/j.cell.2020.03.021
– volume: 87
  start-page: 830
  year: 2015
  end-page: 842
  ident: CR4
  article-title: Novel full-spectral flow cytometry with multiple spectrally-adjacent fluorescent proteins and fluorochromes and visualization of in vivo cellular movement
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.22725
– volume: 10
  start-page: 2009
  year: 2019
  ident: CR7
  article-title: A computational pipeline for the diagnosis of CVID patients
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2019.02009
– volume: 10
  start-page: e1003806
  year: 2014
  ident: CR35
  article-title: OpenCyto: an open source infrastructure for scalable, robust, reproducible, and automated, end-to-end flow cytometry data analysis
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1003806
– volume: 136
  start-page: 199
  year: 2020
  end-page: 209
  ident: CR49
  article-title: Immunogenomic identification and characterization of granulocytic myeloid-derived suppressor cells in multiple myeloma
  publication-title: Blood
  doi: 10.1182/blood.2019004537
– ident: CR33
– volume: 97
  start-page: 811
  year: 2020
  end-page: 823
  ident: CR62
  article-title: Seeing the confetti colors in a new light utilizing flow cytometry and imaging flow cytometry
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.24032
– volume: 93
  start-page: 1189
  year: 2018
  end-page: 1196
  ident: CR32
  article-title: CytoML for cross-platform cytometry data sharing
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.23663
– volume: 34
  start-page: 4204
  year: 2020
  end-page: 4218
  ident: CR43
  article-title: Circulating neutrophil subsets in advanced lung cancer patients exhibit unique immune signature and relate to prognosis
  publication-title: FASEB J.
  doi: 10.1096/fj.201902467R
– volume: 50
  start-page: 1500
  year: 2020
  end-page: 1514
  ident: CR64
  article-title: Fetal-derived macrophages persist and sequentially maturate in ovaries after birth in mice
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.202048531
– volume: 32
  start-page: 162
  year: 2020
  end-page: 169
  ident: CR40
  article-title: Computational analysis of flow cytometry data in hematological malignancies: future clinical practice?
  publication-title: Curr. Opin. Oncol.
  doi: 10.1097/CCO.0000000000000607
– volume: 13
  year: 2019
  ident: CR15
  article-title: Ultrafast clustering of single-cell flow cytometry data using FlowGrid
  publication-title: BMC Syst. Biol.
  doi: 10.1186/s12918-019-0690-2
– ident: CR79
– volume: 11
  start-page: 1481
  year: 2020
  ident: CR72
  article-title: Pediatric burn survivors have long-term immune dysfunction with diminished vaccine response
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2020.01481
– volume: 6
  start-page: eaay5352
  year: 2020
  ident: CR65
  article-title: Single-cell mass cytometry reveals cross-talk between inflammation-dampening and inflammation-amplifying cells in osteoarthritic cartilage
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aay5352
– volume: 10
  start-page: 1315
  year: 2019
  ident: CR26
  article-title: Development of a comprehensive antibody staining database using a standardized analytics pipeline
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2019.01315
– volume: 11
  year: 2020
  ident: CR39
  article-title: Cancer-associated fibroblast heterogeneity in axillary lymph nodes drives metastases in breast cancer through complementary mechanisms
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-14134-w
– year: 2020
  ident: CR78
  article-title: Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications
  publication-title: Science
  doi: 10.1126/science.abc8511
– volume: 31
  start-page: 606
  year: 2015
  end-page: 607
  ident: CR36
  article-title: flowDensity: reproducing manual gating of flow cytometry data by automated density-based cell population identification
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu677
– volume: 87
  start-page: 636
  year: 2015
  end-page: 645
  ident: CR6
  article-title: FlowSOM: using self-organizing maps for visualization and interpretation of cytometry data
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.22625
– volume: 10
  start-page: 1695
  year: 2020
  ident: CR71
  article-title: Ex vivo human adipose tissue derived mesenchymal stromal cells (ASC) are a heterogeneous population that demonstrate rapid culture-induced changes
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2019.01695
– volume: 77A
  start-page: 121
  year: 2009
  end-page: 131
  ident: CR83
  article-title: Per-channel basis normalization methods for flow cytometry data
  publication-title: Cytometry A
– volume: 11
  start-page: 714
  year: 2020
  ident: CR55
  article-title: Characterization of the impact of daclizumab beta on circulating natural killer cells by mass cytometry
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2020.00714
– ident: CR38
– volume: 1
  start-page: 546
  year: 2020
  end-page: 561
  ident: CR47
  article-title: The T cell differentiation landscape is shaped by tumour mutations in lung cancer
  publication-title: Nat. Cancer
  doi: 10.1038/s43018-020-0066-y
– volume: 15
  start-page: e0234778
  year: 2020
  ident: CR56
  article-title: Photodepletion with 2-Se-Cl prevents lethal graft-versus-host disease while preserving antitumor immunity
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0234778
– volume: 216
  start-page: 2010
  year: 2019
  end-page: 2023
  ident: CR29
  article-title: The ubiquitin-editing enzyme A20 controls NK cell homeostasis through regulation of mTOR activity and TNF
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20182164
– ident: CR31
– volume: 11
  year: 2020
  ident: CR51
  article-title: Immunogenomic profiling determines responses to combined PARP and PD-1 inhibition in ovarian cancer
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15315-8
– volume: 18
  start-page: 874
  year: 2020
  end-page: 886
  ident: CR84
  article-title: Key steps and methods in the experimental design and data analysis of highly multi-parametric flow and mass cytometry
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2020.03.024
– ident: CR34
– volume: 3
  start-page: 130
  year: 2020
  ident: CR59
  article-title: Loss of the branched-chain amino acid transporter CD98hc alters the development of colonic macrophages in mice
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-020-0842-3
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  ident: CR11
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 53
  start-page: 10.17.1
  year: 2010
  end-page: 10.17.24
  ident: CR24
  article-title: Web-based analysis and publication of flow cytometry experiments
  publication-title: Curr. Protoc. Cytom.
– volume: 8
  start-page: e000394
  year: 2020
  ident: CR45
  article-title: Viral status, immune microenvironment and immunological response to checkpoint inhibitors in hepatocellular carcinoma
  publication-title: J. Immunother. Cancer
  doi: 10.1136/jitc-2019-000394
– volume: 182
  start-page: 497
  year: 2020
  end-page: 514.e22
  ident: CR52
  article-title: Multimodal analysis of composition and spatial architecture in human squamous cell carcinoma
  publication-title: Cell
  doi: 10.1016/j.cell.2020.05.039
– volume: 78
  start-page: 1464
  year: 1990
  end-page: 1480
  ident: CR10
  article-title: The self-organizing map
  publication-title: Proc. IEEE
  doi: 10.1109/5.58325
– volume: 97
  start-page: 268
  year: 2020
  end-page: 278
  ident: CR23
  article-title: CytoNorm: a normalization algorithm for cytometry data
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.23904
– volume: 11
  start-page: 2092
  year: 2020
  end-page: 2105
  ident: CR50
  article-title: Adoptive cell therapy in combination with checkpoint inhibitors in ovarian cancer
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.27604
– volume: 9
  start-page: e55487
  year: 2020
  ident: CR76
  article-title: HIV efficiently infects T cells from the endometrium and remodels them to promote systemic viral spread
  publication-title: eLife
  doi: 10.7554/eLife.55487
– volume: 10
  start-page: 145
  year: 2009
  ident: 550_CR14
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-10-145
– volume: 32
  start-page: 2473
  year: 2016
  ident: 550_CR80
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw191
– volume: 39
  start-page: 25
  year: 2019
  ident: 550_CR20
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.118.311022
– year: 2020
  ident: 550_CR70
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2020.04.074
– volume: 81A
  start-page: 727
  year: 2012
  ident: 550_CR30
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.22106
– volume: 11
  start-page: 1481
  year: 2020
  ident: 550_CR72
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2020.01481
– volume: 97
  start-page: 268
  year: 2020
  ident: 550_CR23
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.23904
– volume: 5
  start-page: e136417
  year: 2020
  ident: 550_CR46
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.136417
– ident: 550_CR25
– volume: 37
  start-page: 163
  year: 2017
  ident: 550_CR1
  publication-title: Crit. Rev. Biotechnol.
  doi: 10.3109/07388551.2015.1128876
– volume: 3
  start-page: 130
  year: 2020
  ident: 550_CR59
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-020-0842-3
– volume: 6
  start-page: eaay5352
  year: 2020
  ident: 550_CR65
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aay5352
– volume: 89
  start-page: 461
  year: 2016
  ident: 550_CR81
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.22837
– volume: 216
  start-page: 2010
  year: 2019
  ident: 550_CR29
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20182164
– volume: 182
  start-page: 497
  year: 2020
  ident: 550_CR52
  publication-title: Cell
  doi: 10.1016/j.cell.2020.05.039
– volume: 32
  start-page: 162
  year: 2020
  ident: 550_CR40
  publication-title: Curr. Opin. Oncol.
  doi: 10.1097/CCO.0000000000000607
– volume: 16
  start-page: 449
  year: 2016
  ident: 550_CR5
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri.2016.56
– volume: 8
  start-page: e000394
  year: 2020
  ident: 550_CR45
  publication-title: J. Immunother. Cancer
  doi: 10.1136/jitc-2019-000394
– volume: 9
  start-page: 2579
  year: 2008
  ident: 550_CR11
  publication-title: J. Mach. Learn. Res.
– volume: 11
  year: 2020
  ident: 550_CR39
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-14134-w
– volume: 9
  start-page: e56879
  year: 2020
  ident: 550_CR57
  publication-title: eLife
  doi: 10.7554/eLife.56879
– volume: 204
  start-page: 3171
  year: 2020
  ident: 550_CR61
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1900866
– volume: 89
  start-page: 1084
  year: 2016
  ident: 550_CR16
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.23030
– volume: 95
  start-page: 1191
  year: 2019
  ident: 550_CR27
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.23897
– volume: 11
  year: 2020
  ident: 550_CR74
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17292-4
– volume: 87
  start-page: 830
  year: 2015
  ident: 550_CR4
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.22725
– volume: 10
  start-page: 1695
  year: 2020
  ident: 550_CR71
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2019.01695
– volume: 5
  start-page: e132286
  year: 2020
  ident: 550_CR41
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.132286
– volume: 19
  start-page: 100328
  year: 2020
  ident: 550_CR69
  publication-title: Inform. Med. Unlocked
  doi: 10.1016/j.imu.2020.100328
– volume: 18
  start-page: 874
  year: 2020
  ident: 550_CR84
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2020.03.024
– volume: 15
  start-page: e0234778
  year: 2020
  ident: 550_CR56
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0234778
– ident: 550_CR77
  doi: 10.1093/infdis/jiaa269
– volume: 136
  start-page: 199
  year: 2020
  ident: 550_CR49
  publication-title: Blood
  doi: 10.1182/blood.2019004537
– volume: 181
  start-page: 557
  year: 2020
  ident: 550_CR60
  publication-title: Cell
  doi: 10.1016/j.cell.2020.03.021
– volume: 20
  start-page: 297
  year: 2019
  ident: 550_CR17
  publication-title: Genome Biol.
  doi: 10.1186/s13059-019-1917-7
– volume: 97
  start-page: 811
  year: 2020
  ident: 550_CR62
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.24032
– volume: 181
  start-page: 1626
  year: 2020
  ident: 550_CR48
  publication-title: Cell
  doi: 10.1016/j.cell.2020.04.055
– volume: 111
  start-page: 202
  year: 2014
  ident: 550_CR12
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1321405111
– volume: 5
  start-page: 180015
  year: 2018
  ident: 550_CR28
  publication-title: Sci. Data
  doi: 10.1038/sdata.2018.15
– volume: 9
  start-page: e55487
  year: 2020
  ident: 550_CR76
  publication-title: eLife
  doi: 10.7554/eLife.55487
– volume: 11
  start-page: 829
  year: 2020
  ident: 550_CR75
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2020.00829
– volume: 10
  start-page: 1315
  year: 2019
  ident: 550_CR26
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2019.01315
– volume: 11
  year: 2020
  ident: 550_CR66
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-14919-4
– volume: 11
  year: 2020
  ident: 550_CR53
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17704-5
– volume: 97
  start-page: 832
  year: 2020
  ident: 550_CR63
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.23960
– volume: 30
  start-page: 351
  year: 2020
  ident: 550_CR73
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2019.12.027
– volume: 6
  start-page: 748
  year: 2019
  ident: 550_CR37
  publication-title: F1000Research
  doi: 10.12688/f1000research.11622.3
– ident: 550_CR79
– ident: 550_CR38
  doi: 10.1007/978-3-319-24277-4
– volume: 204
  start-page: 3129
  year: 2020
  ident: 550_CR68
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1901439
– volume: 31
  start-page: 606
  year: 2015
  ident: 550_CR36
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu677
– volume: 11
  year: 2020
  ident: 550_CR85
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17569-8
– volume: 85A
  start-page: 277
  year: 2014
  ident: 550_CR82
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.22433
– volume: 11
  start-page: 714
  year: 2020
  ident: 550_CR55
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2020.00714
– volume: 8
  start-page: 234
  year: 2020
  ident: 550_CR19
  publication-title: Front. Cell Dev. Biol.
  doi: 10.3389/fcell.2020.00234
– volume: 78
  start-page: 1464
  year: 1990
  ident: 550_CR10
  publication-title: Proc. IEEE
  doi: 10.1109/5.58325
– volume: 93
  start-page: 1189
  year: 2018
  ident: 550_CR32
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.23663
– volume: 12
  start-page: eaay4860
  year: 2020
  ident: 550_CR42
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aay4860
– ident: 550_CR21
  doi: 10.1093/bioinformatics/btaa091
– volume: 1
  start-page: 163
  year: 2020
  ident: 550_CR54
  publication-title: Nat. Cancer
  doi: 10.1038/s43018-020-0026-6
– volume: 77A
  start-page: 121
  year: 2009
  ident: 550_CR83
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.20823
– ident: 550_CR31
  doi: 10.1101/2020.06.29.177196
– volume: 11
  year: 2020
  ident: 550_CR51
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15315-8
– volume: 79A
  start-page: 6
  year: 2011
  ident: 550_CR13
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.21007
– ident: 550_CR33
– year: 2020
  ident: 550_CR78
  publication-title: Science
  doi: 10.1126/science.abc8511
– volume: 2
  start-page: 183
  year: 2019
  ident: 550_CR22
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-019-0415-5
– volume: 10
  start-page: 2009
  year: 2019
  ident: 550_CR7
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2019.02009
– volume: 10
  year: 2020
  ident: 550_CR67
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-69358-4
– volume: 97
  start-page: 219
  year: 2020
  ident: 550_CR18
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.23917
– volume: 87
  start-page: 636
  year: 2015
  ident: 550_CR6
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.22625
– ident: 550_CR34
  doi: 10.1002/cyto.a.24501
– volume: 45
  start-page: 669
  year: 2016
  ident: 550_CR8
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.08.015
– volume: 53
  start-page: 10.17.1
  year: 2010
  ident: 550_CR24
  publication-title: Curr. Protoc. Cytom.
– volume: 1
  start-page: 546
  year: 2020
  ident: 550_CR47
  publication-title: Nat. Cancer
  doi: 10.1038/s43018-020-0066-y
– volume: 11
  start-page: 2092
  year: 2020
  ident: 550_CR50
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.27604
– ident: 550_CR9
  doi: 10.18129/B9.bioc.flowCore
– volume: 13
  year: 2019
  ident: 550_CR15
  publication-title: BMC Syst. Biol.
  doi: 10.1186/s12918-019-0690-2
– volume: 95
  start-page: 150
  year: 2019
  ident: 550_CR2
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.23689
– volume: 165
  start-page: 780
  year: 2016
  ident: 550_CR3
  publication-title: Cell
  doi: 10.1016/j.cell.2016.04.019
– volume: 50
  start-page: 548
  year: 2020
  ident: 550_CR44
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.201948370
– volume: 50
  start-page: 1500
  year: 2020
  ident: 550_CR64
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.202048531
– volume: 34
  start-page: 4204
  year: 2020
  ident: 550_CR43
  publication-title: FASEB J.
  doi: 10.1096/fj.201902467R
– volume: 57
  start-page: 3943
  year: 2020
  ident: 550_CR58
  publication-title: Mol. Neurobiol.
  doi: 10.1007/s12035-020-02004-2
– volume: 10
  start-page: e1003806
  year: 2014
  ident: 550_CR35
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1003806
SSID ssj0047367
Score 2.6274598
SecondaryResourceType review_article
Snippet The dimensionality of cytometry data has strongly increased in the last decade, and in many situations the traditional manual downstream analysis becomes...
SourceID proquest
gale
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3775
SubjectTerms 631/114/1314
631/1647/1407/1492
631/1647/794
Algorithms
Analytical Chemistry
Bioinformatics
Biological Techniques
Biomedical and Life Sciences
Cluster Analysis
Clustering
Computational Biology - methods
Computational Biology/Bioinformatics
Computer applications
Cytometry
Data Analysis
Datasets
Dimensional analysis
Electronic data processing
Flow cytometry
Flow Cytometry - methods
Flow mapping
Immunology
Life Sciences
Methods
Microarrays
Organic Chemistry
Parameters
Protocol
Quality control
Self organizing maps
Software
Troubleshooting
Visualization
Visualization (Computers)
Workflow
Title Analyzing high-dimensional cytometry data using FlowSOM
URI https://link.springer.com/article/10.1038/s41596-021-00550-0
https://www.ncbi.nlm.nih.gov/pubmed/34172973
https://www.proquest.com/docview/2557914467
https://www.proquest.com/docview/2545596666
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1750-2799
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0047367
  issn: 1754-2189
  databaseCode: AFBBN
  dateStart: 20190101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1750-2799
  dateEnd: 20211231
  omitProxy: true
  ssIdentifier: ssj0047367
  issn: 1754-2189
  databaseCode: 7X7
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1750-2799
  dateEnd: 20211231
  omitProxy: true
  ssIdentifier: ssj0047367
  issn: 1754-2189
  databaseCode: BENPR
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9QwDLe2m5B4mfimMKaCkHiAaG2SNpcHhAbaaSDtQBuT7i1q0mYvo912PaHbXz87bW_cJPZcu21cxx-18zPA-8RniXOVYKn3GZPSFkxzL5jjGoOTIk1VgGs6muaHp_LHLJttwHQ4C0NtlYNNDIa6bBz9I9_D0FdpSl7Ul4tLRlOjqLo6jNAo-tEK5ecAMbYJW5yQsUaw9fVg-ut4sM1SiTBTFn2mZOjcdH-MJhHjvTm6stCQi-l1gnE7S9Zc1V2D_Y_HulNCDZ5p8gi2-5Ay3u904DFsVPUTeNANmVw-BRVwR66RNSZsYlYSnn-HxRG7Zdv8qdqrZUydojE1wZ_Fk_Pm78nPo2dwOjn4_e2Q9eMSmJMqb5kSPpW80pUrrMy9y0vupXci896PrdZWKMdFiVuu4hh2-Jxrl3hduMJlWVZq8RxGdVNXLyG2wivvrbBOl5JYrcXwNvfWioKXRRJBOkjGuB5LnEZanJtQ0xZj00nToDRNkKZBno8rnosOSeNe6nckcEMQFTX1wJwVi_ncfD85Nvu5ovpxolUEH3oi3-DjcSHdkQJcBKFarVHurFHiHnLrl4fvavo9PDe3GhfB29Vl4qS-tLpqFkQjMSXDFDCP4EWnD6vFYXygaDJYBJ8GBbm9-f9X_ur-d3kND3nQUepB3IFRe7Wo3mBc1Npd2FQztdur_A19kAby
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqVgguiDeBAgGBOIDVxHbi9aFCBbrapd0F9SH15sZO3EtJSpNVtfw4fhszTrJlK9Fbz5lJ4vHE30w8_oaQt5FLImsLTmPnEiqEyahijlPLFAQnWRxLT9c0maajQ_HtKDlaIX_6szBYVtmviX6hziuL_8g3IPSVCpMX-ensF8WuUbi72rfQyLrWCvmmpxjrDnbsFPMLSOHqzfFXmO93jA23D76MaNdlgFoh04ZK7mLBClXYzIjU2TRnTjjLE-fcwChluLSM5-CpBQO0dilTNnIqs5lNkiRHMiaAgDXBhYLkb-3z9vTHXo8FQnLfwxYwWlAAU9Ud24n4YKMG6PQFwJDOR5An0GgJGq8CxD8IeWXL1iPh8B6524Ww4Vbrc_fJSlE-ILfappbzh0R6npPfoBoiFzLNsX9Ay_0R2nlT_Sya83mIlakhFt2fhMPT6mL_--QRObwRwz0mq2VVFk9JaLiTzhlurMoFqhoD4XTqjOEZy7MoIHFvGW077nJsoXGq_R46H-jWmhqsqb01Neh8WOictcwd10q_QYNrpMQosebmJJvVtR7v7-mtVOJ-daRkQN53Qq6Cx8NA2iMMMAhk0VqSXF-ShG_WLl_u51V3a0atLz08IK8Xl1ET6-DKopqhjIAUEFLONCBPWn9YDA7iEYmdyALysXeQy5v_f-TPrn-XV-T26GCyq3fH053n5A7z_or1j-tktTmfFS8gJmvMy87xQ3J809_aXzEiRJM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWqIhAXxDeBAgGBOIC1ie3E6wNCFWXVpbQgSqW9ubFj91KS0mRVLT-NX8eMk2zZSvTWc2aSePLsmYnHbwh5lfgssdZxmnqfUSFMQRXznFqmIDgp0lQGuqbdvXz7QHyeZbM18mc4C4NllcOaGBbqsrb4j3wEoa9UmLzIke_LIr5tTT6c_KLYQQp3Wod2Gh1EdtziDNK35v10C771a8Ymn3583KZ9hwFqhcxbKrlPBXPK2cKI3Nu8ZF54yzPv_dgoZbi0jJeAUsfAU_ucKZt4VdjCZllWIhETLP_XJOcKywnlbJnsCclD91rwzoKCG1X9gZ2Ej0cNOM1Q-guJfAIZAk1WnOJF1_CPb7ywWRt84OQ2udUHr_Fmh7Y7ZM1Vd8n1rp3l4h6RgeHkN6jGyIJMS-wc0LF-xHbR1j9de7qIsSY1xnL7o3hyXJ_tf929Tw6uxGwPyHpVV-4RiQ330nvDjVWlQFVjIJDOvTG8YGWRRCQdLKNtz1qOzTOOddg952PdWVODNXWwpgadt0udk46z41Lpl2hwjWQYFcLqqJg3jZ7uf9ebucSd6kTJiLzphXwNj4eBdIcXYBDIn7UiubEiCbPVrl4evqvuV4tGn2M7Ii-Wl1ETK-AqV89RRkDyB8lmHpGHHR6Wg4NIRGIPsoi8GwByfvP_j_zx5e_ynNyAGaa_TPd2npCbLMAVCx83yHp7OndPIRhrzbOA-pgcXvU0-ws9rEIt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analyzing+high-dimensional+cytometry+data+using+FlowSOM&rft.jtitle=Nature+protocols&rft.au=Quintelier+Katrien&rft.au=Couckuyt+Artuur&rft.au=Emmaneel+Annelies&rft.au=Aerts+Joachim&rft.date=2021-08-01&rft.pub=Nature+Publishing+Group&rft.issn=1754-2189&rft.eissn=1750-2799&rft.volume=16&rft.issue=8&rft.spage=3775&rft.epage=3801&rft_id=info:doi/10.1038%2Fs41596-021-00550-0&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-2189&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-2189&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-2189&client=summon