Analyzing high-dimensional cytometry data using FlowSOM
The dimensionality of cytometry data has strongly increased in the last decade, and in many situations the traditional manual downstream analysis becomes insufficient. The field is therefore slowly moving toward more automated approaches, and in this paper we describe the protocol for analyzing high...
Saved in:
| Published in | Nature protocols Vol. 16; no. 8; pp. 3775 - 3801 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Nature Publishing Group UK
01.08.2021
Nature Publishing Group |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1754-2189 1750-2799 1750-2799 |
| DOI | 10.1038/s41596-021-00550-0 |
Cover
| Abstract | The dimensionality of cytometry data has strongly increased in the last decade, and in many situations the traditional manual downstream analysis becomes insufficient. The field is therefore slowly moving toward more automated approaches, and in this paper we describe the protocol for analyzing high-dimensional cytometry data using FlowSOM, a clustering and visualization algorithm based on a self-organizing map. FlowSOM is used to distinguish cell populations from cytometry data in an unsupervised way and can help to gain deeper insights in fields such as immunology and oncology. Since the original FlowSOM publication (2015), we have validated the tool on a wide variety of datasets, and to write this protocol, we made use of this experience to improve the user-friendliness of the package (e.g., comprehensive functions replacing commonly required scripts). Where the original paper focused mainly on the algorithm description, this protocol offers user guidelines on how to implement the procedure, detailed parameter descriptions and troubleshooting recommendations. The protocol provides clearly annotated R code, and is therefore relevant for all scientists interested in computational high-dimensional analyses without requiring a strong bioinformatics background. We demonstrate the complete workflow, starting from data preparation (such as compensation, transformation and quality control), including detailed discussion of the different FlowSOM parameters and visualization options, and concluding with how the results can be further used to answer biological questions, such as statistical comparison between groups of interest. An average FlowSOM analysis takes 1–3 h to complete, though quality issues can increase this time considerably.
This protocol describes FlowSOM, a clustering and visualization algorithm for unsupervised analysis of high-dimensional cytometry data. The protocol provides clearly annotated R code and an example dataset for inexperienced users. |
|---|---|
| AbstractList | The dimensionality of cytometry data has strongly increased in the last decade, and in many situations the traditional manual downstream analysis becomes insufficient. The field is therefore slowly moving toward more automated approaches, and in this paper we describe the protocol for analyzing high-dimensional cytometry data using FlowSOM, a clustering and visualization algorithm based on a self-organizing map. FlowSOM is used to distinguish cell populations from cytometry data in an unsupervised way and can help to gain deeper insights in fields such as immunology and oncology. Since the original FlowSOM publication (2015), we have validated the tool on a wide variety of datasets, and to write this protocol, we made use of this experience to improve the user-friendliness of the package (e.g., comprehensive functions replacing commonly required scripts). Where the original paper focused mainly on the algorithm description, this protocol offers user guidelines on how to implement the procedure, detailed parameter descriptions and troubleshooting recommendations. The protocol provides clearly annotated R code, and is therefore relevant for all scientists interested in computational high-dimensional analyses without requiring a strong bioinformatics background. We demonstrate the complete workflow, starting from data preparation (such as compensation, transformation and quality control), including detailed discussion of the different FlowSOM parameters and visualization options, and concluding with how the results can be further used to answer biological questions, such as statistical comparison between groups of interest. An average FlowSOM analysis takes 1-3 h to complete, though quality issues can increase this time considerably. The dimensionality of cytometry data has strongly increased in the last decade, and in many situations the traditional manual downstream analysis becomes insufficient. The field is therefore slowly moving toward more automated approaches, and in this paper we describe the protocol for analyzing high-dimensional cytometry data using FlowSOM, a clustering and visualization algorithm based on a self-organizing map. FlowSOM is used to distinguish cell populations from cytometry data in an unsupervised way and can help to gain deeper insights in fields such as immunology and oncology. Since the original FlowSOM publication (2015), we have validated the tool on a wide variety of datasets, and to write this protocol, we made use of this experience to improve the user-friendliness of the package (e.g., comprehensive functions replacing commonly required scripts). Where the original paper focused mainly on the algorithm description, this protocol offers user guidelines on how to implement the procedure, detailed parameter descriptions and troubleshooting recommendations. The protocol provides clearly annotated R code, and is therefore relevant for all scientists interested in computational high-dimensional analyses without requiring a strong bioinformatics background. We demonstrate the complete workflow, starting from data preparation (such as compensation, transformation and quality control), including detailed discussion of the different FlowSOM parameters and visualization options, and concluding with how the results can be further used to answer biological questions, such as statistical comparison between groups of interest. An average FlowSOM analysis takes 1-3 h to complete, though quality issues can increase this time considerably.The dimensionality of cytometry data has strongly increased in the last decade, and in many situations the traditional manual downstream analysis becomes insufficient. The field is therefore slowly moving toward more automated approaches, and in this paper we describe the protocol for analyzing high-dimensional cytometry data using FlowSOM, a clustering and visualization algorithm based on a self-organizing map. FlowSOM is used to distinguish cell populations from cytometry data in an unsupervised way and can help to gain deeper insights in fields such as immunology and oncology. Since the original FlowSOM publication (2015), we have validated the tool on a wide variety of datasets, and to write this protocol, we made use of this experience to improve the user-friendliness of the package (e.g., comprehensive functions replacing commonly required scripts). Where the original paper focused mainly on the algorithm description, this protocol offers user guidelines on how to implement the procedure, detailed parameter descriptions and troubleshooting recommendations. The protocol provides clearly annotated R code, and is therefore relevant for all scientists interested in computational high-dimensional analyses without requiring a strong bioinformatics background. We demonstrate the complete workflow, starting from data preparation (such as compensation, transformation and quality control), including detailed discussion of the different FlowSOM parameters and visualization options, and concluding with how the results can be further used to answer biological questions, such as statistical comparison between groups of interest. An average FlowSOM analysis takes 1-3 h to complete, though quality issues can increase this time considerably. The dimensionality of cytometry data has strongly increased in the last decade, and in many situations the traditional manual downstream analysis becomes insufficient. The field is therefore slowly moving toward more automated approaches, and in this paper we describe the protocol for analyzing high-dimensional cytometry data using FlowSOM, a clustering and visualization algorithm based on a self-organizing map. FlowSOM is used to distinguish cell populations from cytometry data in an unsupervised way and can help to gain deeper insights in fields such as immunology and oncology. Since the original FlowSOM publication (2015), we have validated the tool on a wide variety of datasets, and to write this protocol, we made use of this experience to improve the user-friendliness of the package (e.g., comprehensive functions replacing commonly required scripts). Where the original paper focused mainly on the algorithm description, this protocol offers user guidelines on how to implement the procedure, detailed parameter descriptions and troubleshooting recommendations. The protocol provides clearly annotated R code, and is therefore relevant for all scientists interested in computational high-dimensional analyses without requiring a strong bioinformatics background. We demonstrate the complete workflow, starting from data preparation (such as compensation, transformation and quality control), including detailed discussion of the different FlowSOM parameters and visualization options, and concluding with how the results can be further used to answer biological questions, such as statistical comparison between groups of interest. An average FlowSOM analysis takes 1-3 h to complete, though quality issues can increase this time considerably. This protocol describes FlowSOM, a clustering and visualization algorithm for unsupervised analysis of high-dimensional cytometry data. The protocol provides clearly annotated R code and an example dataset for inexperienced users. The dimensionality of cytometry data has strongly increased in the last decade, and in many situations the traditional manual downstream analysis becomes insufficient. The field is therefore slowly moving toward more automated approaches, and in this paper we describe the protocol for analyzing high-dimensional cytometry data using FlowSOM, a clustering and visualization algorithm based on a self-organizing map. FlowSOM is used to distinguish cell populations from cytometry data in an unsupervised way and can help to gain deeper insights in fields such as immunology and oncology. Since the original FlowSOM publication (2015), we have validated the tool on a wide variety of datasets, and to write this protocol, we made use of this experience to improve the user-friendliness of the package (e.g., comprehensive functions replacing commonly required scripts). Where the original paper focused mainly on the algorithm description, this protocol offers user guidelines on how to implement the procedure, detailed parameter descriptions and troubleshooting recommendations. The protocol provides clearly annotated R code, and is therefore relevant for all scientists interested in computational high-dimensional analyses without requiring a strong bioinformatics background. We demonstrate the complete workflow, starting from data preparation (such as compensation, transformation and quality control), including detailed discussion of the different FlowSOM parameters and visualization options, and concluding with how the results can be further used to answer biological questions, such as statistical comparison between groups of interest. An average FlowSOM analysis takes 1–3 h to complete, though quality issues can increase this time considerably. This protocol describes FlowSOM, a clustering and visualization algorithm for unsupervised analysis of high-dimensional cytometry data. The protocol provides clearly annotated R code and an example dataset for inexperienced users. |
| Audience | Academic |
| Author | Couckuyt, Artuur Saeys, Yvan Van Gassen, Sofie Aerts, Joachim Quintelier, Katrien Emmaneel, Annelies |
| Author_xml | – sequence: 1 givenname: Katrien surname: Quintelier fullname: Quintelier, Katrien organization: Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Data Mining and Modeling for Biomedicine Group, VIB Center for Inflammation Research, Department of Pulmonary Medicine, Erasmus University Medical Center – sequence: 2 givenname: Artuur orcidid: 0000-0001-7858-6521 surname: Couckuyt fullname: Couckuyt, Artuur organization: Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Data Mining and Modeling for Biomedicine Group, VIB Center for Inflammation Research – sequence: 3 givenname: Annelies surname: Emmaneel fullname: Emmaneel, Annelies organization: Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Data Mining and Modeling for Biomedicine Group, VIB Center for Inflammation Research – sequence: 4 givenname: Joachim surname: Aerts fullname: Aerts, Joachim organization: Department of Pulmonary Medicine, Erasmus University Medical Center – sequence: 5 givenname: Yvan orcidid: 0000-0002-0415-1506 surname: Saeys fullname: Saeys, Yvan organization: Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Data Mining and Modeling for Biomedicine Group, VIB Center for Inflammation Research – sequence: 6 givenname: Sofie orcidid: 0000-0002-7119-5330 surname: Van Gassen fullname: Van Gassen, Sofie email: sofie.vangassen@ugent.be organization: Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Data Mining and Modeling for Biomedicine Group, VIB Center for Inflammation Research |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34172973$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU1P3DAQhq2KqnyUP8ABrcSFHkL97fi4QtAigZBKOVtexw5GSQy2I1h-PQ5LQYsq7INHo-edGc-7DTaGMFgA9hA8QpDUPxNFTPIKYlRByBis4BewhUQJsJBy4yWmFUa13ATbKd1CSAXh4hvYJBQJLAXZAmI-6G755Id2duPbm6rxvR2SDyU7M8scepvjctborGdjmqjTLjxcXV58B1-d7pLdfX13wPXpyd_j39X55a-z4_l5ZajguRLEIYqttEYvKHeGN9hRZwhzztULKRdEGEwaJLnFrKaOY2mgk9powxhrJNkBh6u6dzHcjzZl1ftkbNfpwYYxKcwoK0sop6AHH9DbMMbykYliQiJKuXinWt1Z5QcXctRmKqrmXEAuMJQTdfQfqtzG9t4UG5wv-TXBjzVBYbJ9zK0eU1JnV3_W2f3XQcdFbxt1F32v41L9c6UAeAWYGFKK1r0hCKrJerWyXhXr1Yv1ChZR_UFkfNa5WFlG993nUrKSptJnaG1839wnqmdWG76u |
| CitedBy_id | crossref_primary_10_1038_s41596_022_00716_4 crossref_primary_10_1002_art_42478 crossref_primary_10_1016_j_celrep_2022_111013 crossref_primary_10_1186_s12906_023_04208_0 crossref_primary_10_1002_adma_202304049 crossref_primary_10_1038_s41596_023_00881_0 crossref_primary_10_3390_cancers14082011 crossref_primary_10_3389_fimmu_2022_815828 crossref_primary_10_1126_sciadv_adj1397 crossref_primary_10_1111_tpj_15905 crossref_primary_10_1016_j_bioorg_2022_105660 crossref_primary_10_1002_cyto_a_24910 crossref_primary_10_2139_ssrn_4090935 crossref_primary_10_3389_fimmu_2022_853572 crossref_primary_10_1002_cyto_b_22106 crossref_primary_10_1016_j_ajog_2024_08_041 crossref_primary_10_1038_s41467_023_43504_8 crossref_primary_10_1093_nar_gkad1018 crossref_primary_10_3389_fimmu_2023_1167241 crossref_primary_10_3390_curroncol30050387 crossref_primary_10_1136_jitc_2023_007070 crossref_primary_10_1002_cyto_b_22108 crossref_primary_10_1038_s41598_024_81060_3 crossref_primary_10_3389_fimmu_2023_1263458 crossref_primary_10_1002_cyto_b_22230 crossref_primary_10_1038_s41598_022_12775_4 crossref_primary_10_1016_j_crmeth_2023_100690 crossref_primary_10_1084_jem_20241148 crossref_primary_10_1038_s41467_025_57668_y crossref_primary_10_1093_bib_bbae633 crossref_primary_10_15252_emmm_202318028 crossref_primary_10_1126_sciimmunol_add5976 crossref_primary_10_1016_j_jri_2024_104239 crossref_primary_10_3390_cells11203330 crossref_primary_10_1136_jitc_2023_008056 crossref_primary_10_1016_j_jaut_2023_103152 crossref_primary_10_1002_cyto_b_22116 crossref_primary_10_3389_fimmu_2024_1414400 crossref_primary_10_4049_immunohorizons_2300008 crossref_primary_10_1016_j_crmeth_2022_100390 crossref_primary_10_1016_j_jcmgh_2025_101475 crossref_primary_10_1016_j_dci_2022_104590 crossref_primary_10_1093_bib_bbae421 crossref_primary_10_1038_s41467_024_46989_z crossref_primary_10_1016_j_envres_2024_119221 crossref_primary_10_1016_j_compbiomed_2023_106939 crossref_primary_10_1007_s00262_023_03515_2 crossref_primary_10_1016_j_scitotenv_2024_169988 crossref_primary_10_1093_bioinformatics_btae179 crossref_primary_10_1681_ASN_2022030378 crossref_primary_10_1002_ctm2_70175 crossref_primary_10_1016_j_jaut_2024_103167 crossref_primary_10_1002_cyto_a_24811 crossref_primary_10_1038_s41698_024_00604_y crossref_primary_10_1111_imcb_12604 crossref_primary_10_1016_j_celrep_2024_114062 crossref_primary_10_1016_j_crmeth_2023_100619 crossref_primary_10_1053_j_semdp_2023_02_004 crossref_primary_10_3390_cells11193142 crossref_primary_10_3390_cells12141875 crossref_primary_10_1167_iovs_64_13_6 crossref_primary_10_1016_j_ymthe_2022_05_003 crossref_primary_10_1016_j_chom_2023_08_006 crossref_primary_10_2139_ssrn_4189024 crossref_primary_10_1007_s43657_022_00056_z crossref_primary_10_1002_cyto_b_22098 crossref_primary_10_1186_s12979_022_00269_w crossref_primary_10_1002_cyto_b_22177 crossref_primary_10_1016_j_anireprosci_2024_107619 crossref_primary_10_1186_s12859_024_05691_z crossref_primary_10_1182_bloodadvances_2022008666 crossref_primary_10_1093_bib_bbad514 crossref_primary_10_1093_braincomms_fcad206 crossref_primary_10_1002_cyto_a_24801 crossref_primary_10_1016_j_xcrm_2023_100955 crossref_primary_10_3389_fimmu_2022_878029 crossref_primary_10_1016_j_cell_2024_01_035 crossref_primary_10_1016_j_isci_2024_110947 crossref_primary_10_3389_fcell_2022_911966 crossref_primary_10_1186_s12931_024_02790_6 crossref_primary_10_1155_2023_6517963 crossref_primary_10_1016_j_trac_2022_116794 |
| Cites_doi | 10.1186/s13059-019-1917-7 10.1002/cyto.a.23689 10.1172/jci.insight.132286 10.1038/s41467-020-14919-4 10.1016/j.cell.2020.04.055 10.1016/j.immuni.2016.08.015 10.1038/s43018-020-0026-6 10.1007/s12035-020-02004-2 10.1093/bioinformatics/btw191 10.1038/s41467-020-17704-5 10.1016/j.cell.2016.04.019 10.3109/07388551.2015.1128876 10.3389/fcell.2020.00234 10.1172/jci.insight.136417 10.1002/cyto.a.23917 10.1161/ATVBAHA.118.311022 10.1002/cyto.a.23960 10.1038/s41598-020-69358-4 10.1038/s42003-019-0415-5 10.1038/s41467-020-17292-4 10.1002/cyto.a.22106 10.1002/cyto.a.23897 10.4049/jimmunol.1901439 10.3389/fimmu.2020.00829 10.12688/f1000research.11622.3 10.4049/jimmunol.1900866 10.1016/j.imu.2020.100328 10.1073/pnas.1321405111 10.1002/cyto.a.22837 10.1053/j.gastro.2020.04.074 10.1038/nri.2016.56 10.1038/sdata.2018.15 10.1186/1471-2105-10-145 10.1016/j.celrep.2019.12.027 10.1002/cyto.a.23030 10.1038/s41467-020-17569-8 10.1126/scitranslmed.aay4860 10.1002/cyto.a.21007 10.1002/cyto.a.22433 10.7554/eLife.56879 10.1002/eji.201948370 10.1016/j.cell.2020.03.021 10.1002/cyto.a.22725 10.3389/fimmu.2019.02009 10.1371/journal.pcbi.1003806 10.1182/blood.2019004537 10.1002/cyto.a.24032 10.1002/cyto.a.23663 10.1096/fj.201902467R 10.1002/eji.202048531 10.1097/CCO.0000000000000607 10.1186/s12918-019-0690-2 10.3389/fimmu.2020.01481 10.1126/sciadv.aay5352 10.3389/fimmu.2019.01315 10.1038/s41467-019-14134-w 10.1126/science.abc8511 10.1093/bioinformatics/btu677 10.1002/cyto.a.22625 10.3389/fphar.2019.01695 10.3389/fimmu.2020.00714 10.1038/s43018-020-0066-y 10.1371/journal.pone.0234778 10.1084/jem.20182164 10.1038/s41467-020-15315-8 10.1016/j.csbj.2020.03.024 10.1038/s42003-020-0842-3 10.1136/jitc-2019-000394 10.1016/j.cell.2020.05.039 10.1109/5.58325 10.1002/cyto.a.23904 10.18632/oncotarget.27604 10.7554/eLife.55487 10.1093/infdis/jiaa269 10.1007/978-3-319-24277-4 10.1093/bioinformatics/btaa091 10.1002/cyto.a.20823 10.1101/2020.06.29.177196 10.1002/cyto.a.24501 10.18129/B9.bioc.flowCore |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2021 2021. The Author(s), under exclusive licence to Springer Nature Limited. COPYRIGHT 2021 Nature Publishing Group The Author(s), under exclusive licence to Springer Nature Limited 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021 – notice: 2021. The Author(s), under exclusive licence to Springer Nature Limited. – notice: COPYRIGHT 2021 Nature Publishing Group – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QG 7T5 7T7 7TM 7X7 7XB 88E 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7N M7P P64 PATMY PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PYCSY RC3 7X8 |
| DOI | 10.1038/s41596-021-00550-0 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection Genetics Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts ProQuest SciTech Collection ProQuest Medical Library Animal Behavior Abstracts Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest Central Student |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1750-2799 |
| EndPage | 3801 |
| ExternalDocumentID | A670672097 34172973 10_1038_s41596_021_00550_0 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Review |
| GeographicLocations | Belgium |
| GeographicLocations_xml | – name: Belgium |
| GrantInformation_xml | – fundername: Fonds Wetenschappelijk Onderzoek (Research Foundation Flanders) grantid: 12W9119N funderid: https://doi.org/10.13039/501100003130 – fundername: AI Research Program of the Flemish Government. – fundername: PID Grand Challenges Program of VIB. This VIB Program received support from the Flemish Government under the Management Agreement 2017–2021 (VR 2016 2312 Doc.1521/4). |
| GroupedDBID | --- 0R~ 123 29M 39C 3TQ 3V. 4.4 53G 5BI 5M7 70F 7X7 7XC 88E 8FE 8FH 8FI 8FJ AAEEF AARCD AAWYQ AAYZH AAZLF ABAWZ ABJNI ABLJU ABUWG ACGFO ACGFS ACMJI ACPRK ADBBV ADFRT AENEX AEUYN AFBBN AFKRA AFRAH AFSHS AGAYW AHBCP AHMBA AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CAG CCPQU COF DB5 DU5 EBS EE. EJD EMOBN F5P FEDTE FSGXE FYUFA FZEXT HCIFZ HMCUK HVGLF HZ~ IAO IGS IHR INH INR ISR ITC LGEZI LK8 LOTEE M1P M7P NADUK NNMJJ NXXTH O9- ODYON P2P PATMY PQQKQ PROAC PSQYO PYCSY RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG UKHRP AAYXX AFANA ATHPR CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NFIDA NPM AGSTI 7QG 7T5 7T7 7TM 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 |
| ID | FETCH-LOGICAL-c476t-73f142e9ecab46fc6d2f4fc35fff8b99b37c23d196e2584f629c0f9acac555d93 |
| IEDL.DBID | BENPR |
| ISSN | 1754-2189 1750-2799 |
| IngestDate | Sun Sep 28 09:39:32 EDT 2025 Tue Oct 07 06:11:50 EDT 2025 Mon Oct 20 22:28:40 EDT 2025 Mon Oct 20 16:11:30 EDT 2025 Thu Oct 16 14:02:22 EDT 2025 Mon Jul 21 05:39:53 EDT 2025 Wed Oct 01 00:20:07 EDT 2025 Thu Apr 24 23:02:10 EDT 2025 Fri Feb 21 02:37:35 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | 2021. The Author(s), under exclusive licence to Springer Nature Limited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c476t-73f142e9ecab46fc6d2f4fc35fff8b99b37c23d196e2584f629c0f9acac555d93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0001-7858-6521 0000-0002-0415-1506 0000-0002-7119-5330 |
| PMID | 34172973 |
| PQID | 2557914467 |
| PQPubID | 536306 |
| PageCount | 27 |
| ParticipantIDs | proquest_miscellaneous_2545596666 proquest_journals_2557914467 gale_infotracmisc_A670672097 gale_infotracacademiconefile_A670672097 gale_incontextgauss_ISR_A670672097 pubmed_primary_34172973 crossref_primary_10_1038_s41596_021_00550_0 crossref_citationtrail_10_1038_s41596_021_00550_0 springer_journals_10_1038_s41596_021_00550_0 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-08-01 |
| PublicationDateYYYYMMDD | 2021-08-01 |
| PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationSubtitle | Recipes for Researchers |
| PublicationTitle | Nature protocols |
| PublicationTitleAbbrev | Nat Protoc |
| PublicationTitleAlternate | Nat Protoc |
| PublicationYear | 2021 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | Mathew (CR78) 2020 Ma (CR76) 2020; 9 Finak, Jiang, Gottardo (CR32) 2018; 93 Hahne (CR83) 2009; 77A CR38 Eccles (CR73) 2020; 30 Pelon (CR39) 2020; 11 Metelli (CR42) 2020; 12 CR79 Kohonen (CR10) 1990; 78 Bhattacharya (CR28) 2018; 5 CR34 CR33 Nowicka (CR37) 2019; 6 CR77 Guilliams (CR8) 2016; 45 CR31 Zhao (CR75) 2020; 11 Neeland (CR66) 2020; 11 Saeys, Van Gassen, Lambrecht (CR5) 2016; 16 Muppidi, Radfar (CR69) 2020; 19 Shaul (CR43) 2020; 34 Ali (CR54) 2020; 1 Mitsialis (CR70) 2020 Jokela (CR64) 2020; 50 Ho (CR45) 2020; 8 Wuggenig (CR59) 2020; 3 CR9 Vetters (CR29) 2019; 216 Brooks (CR71) 2020; 10 Friebel (CR48) 2020; 181 Kverneland (CR50) 2020; 11 Rein, Notø, Bostad, Huse, Stokke (CR63) 2020; 97 Hagert, Bohn, Wittenborn, Degn (CR62) 2020; 97 Weber, Nowicka, Soneson, Robinson (CR22) 2019; 2 Färkkilä (CR51) 2020; 11 Leelatian (CR57) 2020; 9 Shekhar, Brodin, Davis, Chakraborty (CR12) 2014; 111 Amir (CR26) 2019; 10 Pedersen, Olsen (CR18) 2020; 97 Van Gassen, Gaudilliere, Angst, Saeys, Aghaeepour (CR23) 2020; 97 Eichmann (CR68) 2020; 204 Finak (CR82) 2014; 85A Yarchoan (CR46) 2020; 5 Grandi (CR65) 2020; 6 Futamura (CR4) 2015; 87 Spidlen, Breuer, Rosenberg, Kotecha, Brinkman (CR30) 2012; 81A Spitzer, Nolan (CR3) 2016; 165 Ho (CR41) 2020; 5 Ranganath (CR55) 2020; 11 Hawke, Mitchell, Ormiston (CR61) 2020; 204 Emmaneel (CR7) 2019; 10 Finak (CR35) 2014; 10 Monaco (CR80) 2016; 32 De Biasi (CR74) 2020; 11 Weber, Robinson (CR16) 2016; 89 Rybakowska, Alarcón-Riquelme, Marañón (CR84) 2020; 18 Lacombe, Lechevalier, Vial, Béné (CR27) 2019; 95 Ye, Ho (CR15) 2019; 13 Khalsa (CR53) 2020; 11 Malek (CR36) 2015; 31 Ghorani (CR47) 2020; 1 Lo, Hahne, Brinkman, Gottardo (CR14) 2009; 10 Fletez‐Brant, Špidlen, Brinkman, Roederer, Chattopadhyay (CR81) 2016; 89 Laban (CR44) 2020; 50 Duetz, Bachas, Westers, van de Loosdrecht (CR40) 2020; 32 Liechti, Roederer (CR2) 2019; 95 Liu (CR17) 2019; 20 Perez (CR49) 2020; 136 Grayson (CR56) 2020; 15 Van Gassen (CR6) 2015; 87 Gudbergsson (CR58) 2020; 57 Hamers (CR20) 2019; 39 CR25 Kotecha, Krutzik, Irish (CR24) 2010; 53 CR21 Stanley (CR85) 2020; 11 Jang (CR67) 2020; 10 van der Maaten, Hinton (CR11) 2008; 9 Liu (CR19) 2020; 8 Aghaeepour, Nikolic, Hoos, Brinkman (CR13) 2011; 79A Ji (CR52) 2020; 182 Utz (CR60) 2020; 181 Adan, Alizada, Kiraz, Baran, Nalbant (CR1) 2017; 37 Johnson (CR72) 2020; 11 MH Spitzer (550_CR3) 2016; 165 T Kohonen (550_CR10) 1990; 78 X Ye (550_CR15) 2019; 13 T Ma (550_CR76) 2020; 9 LM Weber (550_CR16) 2016; 89 KG Laban (550_CR44) 2020; 50 SG Utz (550_CR60) 2020; 181 A Emmaneel (550_CR7) 2019; 10 K Shekhar (550_CR12) 2014; 111 550_CR9 M Guilliams (550_CR8) 2016; 45 A Metelli (550_CR42) 2020; 12 ME Shaul (550_CR43) 2020; 34 BZ Johnson (550_CR72) 2020; 11 K Futamura (550_CR4) 2015; 87 JM Grayson (550_CR56) 2020; 15 ED Amir (550_CR26) 2019; 10 M Yarchoan (550_CR46) 2020; 5 T Ranganath (550_CR55) 2020; 11 L van der Maaten (550_CR11) 2008; 9 A Färkkilä (550_CR51) 2020; 11 G Monaco (550_CR80) 2016; 32 P Liu (550_CR19) 2020; 8 LG Hawke (550_CR61) 2020; 204 J Spidlen (550_CR30) 2012; 81A G Finak (550_CR82) 2014; 85A M Eichmann (550_CR68) 2020; 204 550_CR21 LM Weber (550_CR22) 2019; 2 S Van Gassen (550_CR23) 2020; 97 E Ghorani (550_CR47) 2020; 1 D Mathew (550_CR78) 2020 N Aghaeepour (550_CR13) 2011; 79A WJ Ho (550_CR45) 2020; 8 K Lo (550_CR14) 2009; 10 S Bhattacharya (550_CR28) 2018; 5 F Hahne (550_CR83) 2009; 77A G Finak (550_CR32) 2018; 93 H Jokela (550_CR64) 2020; 50 C Duetz (550_CR40) 2020; 32 Y Saeys (550_CR5) 2016; 16 550_CR25 F Lacombe (550_CR27) 2019; 95 MR Neeland (550_CR66) 2020; 11 ID Rein (550_CR63) 2020; 97 JS Jang (550_CR67) 2020; 10 WJ Ho (550_CR41) 2020; 5 E Friebel (550_CR48) 2020; 181 CF Hagert (550_CR62) 2020; 97 550_CR34 JD Eccles (550_CR73) 2020; 30 550_CR33 550_CR77 AAJ Hamers (550_CR20) 2019; 39 550_CR31 M Malek (550_CR36) 2015; 31 JM Gudbergsson (550_CR58) 2020; 57 FC Grandi (550_CR65) 2020; 6 P Wuggenig (550_CR59) 2020; 3 X Liu (550_CR17) 2019; 20 N Leelatian (550_CR57) 2020; 9 A Adan (550_CR1) 2017; 37 A Muppidi (550_CR69) 2020; 19 JK Khalsa (550_CR53) 2020; 11 S Van Gassen (550_CR6) 2015; 87 V Mitsialis (550_CR70) 2020 T Liechti (550_CR2) 2019; 95 J Vetters (550_CR29) 2019; 216 F Pelon (550_CR39) 2020; 11 550_CR38 NQ Zhao (550_CR75) 2020; 11 550_CR79 K Fletez‐Brant (550_CR81) 2016; 89 CB Pedersen (550_CR18) 2020; 97 G Finak (550_CR35) 2014; 10 P Rybakowska (550_CR84) 2020; 18 N Stanley (550_CR85) 2020; 11 AH Kverneland (550_CR50) 2020; 11 AES Brooks (550_CR71) 2020; 10 HR Ali (550_CR54) 2020; 1 S De Biasi (550_CR74) 2020; 11 N Kotecha (550_CR24) 2010; 53 M Nowicka (550_CR37) 2019; 6 C Perez (550_CR49) 2020; 136 AL Ji (550_CR52) 2020; 182 |
| References_xml | – volume: 20 start-page: 297 year: 2019 ident: CR17 article-title: A comparison framework and guideline of clustering methods for mass cytometry data publication-title: Genome Biol. doi: 10.1186/s13059-019-1917-7 – volume: 95 start-page: 150 year: 2019 end-page: 155 ident: CR2 article-title: OMIP-051 – 28-color flow cytometry panel to characterize B cells and myeloid cells publication-title: Cytometry A doi: 10.1002/cyto.a.23689 – volume: 5 start-page: e132286 year: 2020 ident: CR41 article-title: Multipanel mass cytometry reveals anti–PD-1 therapy–mediated B and T cell compartment remodeling in tumor-draining lymph nodes publication-title: JCI Insight doi: 10.1172/jci.insight.132286 – volume: 11 year: 2020 ident: CR66 article-title: Mass cytometry reveals cellular fingerprint associated with IgE+ peanut tolerance and allergy in early life publication-title: Nat. Commun. doi: 10.1038/s41467-020-14919-4 – volume: 181 start-page: 1626 year: 2020 end-page: 1642.e20 ident: CR48 article-title: Single-cell mapping of human brain cancer reveals tumor-specific instruction of tissue-invading leukocytes publication-title: Cell doi: 10.1016/j.cell.2020.04.055 – volume: 45 start-page: 669 year: 2016 end-page: 684 ident: CR8 article-title: Unsupervised high-dimensional analysis aligns dendritic cells across tissues and species publication-title: Immunity doi: 10.1016/j.immuni.2016.08.015 – volume: 1 start-page: 163 year: 2020 end-page: 175 ident: CR54 article-title: Imaging mass cytometry and multiplatform genomics define the phenogenomic landscape of breast cancer publication-title: Nat. Cancer doi: 10.1038/s43018-020-0026-6 – volume: 57 start-page: 3943 year: 2020 end-page: 3955 ident: CR58 article-title: Conventional treatment of glioblastoma reveals persistent CD44+ subpopulations publication-title: Mol. Neurobiol. doi: 10.1007/s12035-020-02004-2 – volume: 32 start-page: 2473 year: 2016 end-page: 2480 ident: CR80 article-title: flowAI: automatic and interactive anomaly discerning tools for flow cytometry data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw191 – volume: 11 year: 2020 ident: CR53 article-title: Immune phenotyping of diverse syngeneic murine brain tumors identifies immunologically distinct types publication-title: Nat. Commun. doi: 10.1038/s41467-020-17704-5 – volume: 165 start-page: 780 year: 2016 end-page: 791 ident: CR3 article-title: Mass cytometry: single cells, many features publication-title: Cell doi: 10.1016/j.cell.2016.04.019 – volume: 37 start-page: 163 year: 2017 end-page: 176 ident: CR1 article-title: Flow cytometry: basic principles and applications publication-title: Crit. Rev. Biotechnol. doi: 10.3109/07388551.2015.1128876 – volume: 8 start-page: 234 year: 2020 ident: CR19 article-title: Recent advances in computer-assisted algorithms for cell subtype identification of cytometry data publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2020.00234 – volume: 5 start-page: e136417 year: 2020 ident: CR46 article-title: Effects of B cell–activating factor on tumor immunity publication-title: JCI Insight doi: 10.1172/jci.insight.136417 – volume: 97 start-page: 219 year: 2020 end-page: 221 ident: CR18 article-title: Algorithmic clustering of single-cell cytometry data—how unsupervised are these analyses really? publication-title: Cytometry A doi: 10.1002/cyto.a.23917 – volume: 39 start-page: 25 year: 2019 end-page: 36 ident: CR20 article-title: Human monocyte heterogeneity as revealed by high-dimensional mass cytometry publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.118.311022 – volume: 97 start-page: 832 year: 2020 end-page: 844 ident: CR63 article-title: Cell cycle analysis and relevance for single-cell gating in mass cytometry publication-title: Cytometry A doi: 10.1002/cyto.a.23960 – ident: CR77 – volume: 10 year: 2020 ident: CR67 article-title: Single-cell mass cytometry on peripheral blood identifies immune cell subsets associated with primary biliary cholangitis publication-title: Sci. Rep. doi: 10.1038/s41598-020-69358-4 – volume: 2 start-page: 183 year: 2019 ident: CR22 article-title: diffcyt: differential discovery in high-dimensional cytometry via high-resolution clustering publication-title: Commun. Biol. doi: 10.1038/s42003-019-0415-5 – ident: CR25 – volume: 11 year: 2020 ident: CR74 article-title: Marked T cell activation, senescence, exhaustion and skewing towards TH17 in patients with COVID-19 pneumonia publication-title: Nat. Commun. doi: 10.1038/s41467-020-17292-4 – volume: 81A start-page: 727 year: 2012 end-page: 731 ident: CR30 article-title: FlowRepository: a resource of annotated flow cytometry datasets associated with peer-reviewed publications publication-title: Cytometry A doi: 10.1002/cyto.a.22106 – volume: 95 start-page: 1191 year: 2019 end-page: 1197 ident: CR27 article-title: An R-derived FlowSOM process to analyze unsupervised clustering of normal and malignant human bone marrow classical flow cytometry data publication-title: Cytometry A doi: 10.1002/cyto.a.23897 – ident: CR21 – volume: 204 start-page: 3129 year: 2020 end-page: 3138 ident: CR68 article-title: Costimulation blockade disrupts CD4+ T cell memory pathways and uncouples their link to decline in β-cell function in type 1 diabetes publication-title: J. Immunol. doi: 10.4049/jimmunol.1901439 – volume: 11 start-page: 829 year: 2020 ident: CR75 article-title: Treated HIV infection alters phenotype but not HIV-specific function of peripheral blood natural killer cells publication-title: Front. Immunol. doi: 10.3389/fimmu.2020.00829 – volume: 6 start-page: 748 year: 2019 ident: CR37 article-title: CyTOF workflow: differential discovery in high-throughput high-dimensional cytometry datasets publication-title: F1000Research doi: 10.12688/f1000research.11622.3 – volume: 204 start-page: 3171 year: 2020 end-page: 3181 ident: CR61 article-title: TGF-β and IL-15 synergize through MAPK pathways to drive the conversion of human NK cells to an innate lymphoid cell 1–like phenotype publication-title: J. Immunol. doi: 10.4049/jimmunol.1900866 – volume: 19 start-page: 100328 year: 2020 ident: CR69 article-title: Löfgren’s syndrome sarcoidosis and Non-LS sarcoidosis prediction using 1d-Convolutional neural networks publication-title: Inform. Med. Unlocked doi: 10.1016/j.imu.2020.100328 – volume: 111 start-page: 202 year: 2014 end-page: 207 ident: CR12 article-title: Automatic classification of cellular expression by nonlinear stochastic embedding (ACCENSE) publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1321405111 – ident: CR9 – volume: 89 start-page: 461 year: 2016 end-page: 471 ident: CR81 article-title: flowClean: automated identification and removal of fluorescence anomalies in flow cytometry data publication-title: Cytometry A doi: 10.1002/cyto.a.22837 – year: 2020 ident: CR70 article-title: Single-cell analyses of colon and blood reveal distinct immune cell signatures of ulcerative colitis and Crohn’s disease publication-title: Gastroenterology doi: 10.1053/j.gastro.2020.04.074 – volume: 16 start-page: 449 year: 2016 end-page: 462 ident: CR5 article-title: Computational flow cytometry: helping to make sense of high-dimensional immunology data publication-title: Nat. Rev. Immunol. doi: 10.1038/nri.2016.56 – volume: 5 start-page: 180015 year: 2018 ident: CR28 article-title: ImmPort, toward repurposing of open access immunological assay data for translational and clinical research publication-title: Sci. Data doi: 10.1038/sdata.2018.15 – volume: 10 start-page: 145 year: 2009 ident: CR14 article-title: flowClust: a Bioconductor package for automated gating of flow cytometry data publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-10-145 – volume: 30 start-page: 351 year: 2020 end-page: 366.e7 ident: CR73 article-title: T-bet+ memory B cells link to local cross-reactive IgG upon human rhinovirus infection publication-title: Cell Rep doi: 10.1016/j.celrep.2019.12.027 – volume: 89 start-page: 1084 year: 2016 end-page: 1096 ident: CR16 article-title: Comparison of clustering methods for high-dimensional single-cell flow and mass cytometry data publication-title: Cytometry A doi: 10.1002/cyto.a.23030 – volume: 11 year: 2020 ident: CR85 article-title: VoPo leverages cellular heterogeneity for predictive modeling of single-cell data publication-title: Nat. Commun. doi: 10.1038/s41467-020-17569-8 – volume: 12 start-page: eaay4860 year: 2020 ident: CR42 article-title: Thrombin contributes to cancer immune evasion via proteolysis of platelet-bound GARP to activate LTGF-β publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aay4860 – volume: 79A start-page: 6 year: 2011 end-page: 13 ident: CR13 article-title: Rapid cell population identification in flow cytometry data publication-title: Cytometry A doi: 10.1002/cyto.a.21007 – volume: 85A start-page: 277 year: 2014 end-page: 286 ident: CR82 article-title: High-throughput flow cytometry data normalization for clinical trials publication-title: Cytometry A doi: 10.1002/cyto.a.22433 – volume: 9 start-page: e56879 year: 2020 ident: CR57 article-title: Unsupervised machine learning reveals risk stratifying glioblastoma tumor cells publication-title: eLife doi: 10.7554/eLife.56879 – volume: 50 start-page: 548 year: 2020 end-page: 557 ident: CR44 article-title: cDC2 and plasmacytoid dendritic cells diminish from tissues of patients with non-Hodgkin orbital lymphoma and idiopathic orbital inflammation publication-title: Eur. J. Immunol. doi: 10.1002/eji.201948370 – volume: 181 start-page: 557 year: 2020 end-page: 573.e18 ident: CR60 article-title: Early fate defines microglia and non-parenchymal brain macrophage development publication-title: Cell doi: 10.1016/j.cell.2020.03.021 – volume: 87 start-page: 830 year: 2015 end-page: 842 ident: CR4 article-title: Novel full-spectral flow cytometry with multiple spectrally-adjacent fluorescent proteins and fluorochromes and visualization of in vivo cellular movement publication-title: Cytometry A doi: 10.1002/cyto.a.22725 – volume: 10 start-page: 2009 year: 2019 ident: CR7 article-title: A computational pipeline for the diagnosis of CVID patients publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.02009 – volume: 10 start-page: e1003806 year: 2014 ident: CR35 article-title: OpenCyto: an open source infrastructure for scalable, robust, reproducible, and automated, end-to-end flow cytometry data analysis publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1003806 – volume: 136 start-page: 199 year: 2020 end-page: 209 ident: CR49 article-title: Immunogenomic identification and characterization of granulocytic myeloid-derived suppressor cells in multiple myeloma publication-title: Blood doi: 10.1182/blood.2019004537 – ident: CR33 – volume: 97 start-page: 811 year: 2020 end-page: 823 ident: CR62 article-title: Seeing the confetti colors in a new light utilizing flow cytometry and imaging flow cytometry publication-title: Cytometry A doi: 10.1002/cyto.a.24032 – volume: 93 start-page: 1189 year: 2018 end-page: 1196 ident: CR32 article-title: CytoML for cross-platform cytometry data sharing publication-title: Cytometry A doi: 10.1002/cyto.a.23663 – volume: 34 start-page: 4204 year: 2020 end-page: 4218 ident: CR43 article-title: Circulating neutrophil subsets in advanced lung cancer patients exhibit unique immune signature and relate to prognosis publication-title: FASEB J. doi: 10.1096/fj.201902467R – volume: 50 start-page: 1500 year: 2020 end-page: 1514 ident: CR64 article-title: Fetal-derived macrophages persist and sequentially maturate in ovaries after birth in mice publication-title: Eur. J. Immunol. doi: 10.1002/eji.202048531 – volume: 32 start-page: 162 year: 2020 end-page: 169 ident: CR40 article-title: Computational analysis of flow cytometry data in hematological malignancies: future clinical practice? publication-title: Curr. Opin. Oncol. doi: 10.1097/CCO.0000000000000607 – volume: 13 year: 2019 ident: CR15 article-title: Ultrafast clustering of single-cell flow cytometry data using FlowGrid publication-title: BMC Syst. Biol. doi: 10.1186/s12918-019-0690-2 – ident: CR79 – volume: 11 start-page: 1481 year: 2020 ident: CR72 article-title: Pediatric burn survivors have long-term immune dysfunction with diminished vaccine response publication-title: Front. Immunol. doi: 10.3389/fimmu.2020.01481 – volume: 6 start-page: eaay5352 year: 2020 ident: CR65 article-title: Single-cell mass cytometry reveals cross-talk between inflammation-dampening and inflammation-amplifying cells in osteoarthritic cartilage publication-title: Sci. Adv. doi: 10.1126/sciadv.aay5352 – volume: 10 start-page: 1315 year: 2019 ident: CR26 article-title: Development of a comprehensive antibody staining database using a standardized analytics pipeline publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.01315 – volume: 11 year: 2020 ident: CR39 article-title: Cancer-associated fibroblast heterogeneity in axillary lymph nodes drives metastases in breast cancer through complementary mechanisms publication-title: Nat. Commun. doi: 10.1038/s41467-019-14134-w – year: 2020 ident: CR78 article-title: Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications publication-title: Science doi: 10.1126/science.abc8511 – volume: 31 start-page: 606 year: 2015 end-page: 607 ident: CR36 article-title: flowDensity: reproducing manual gating of flow cytometry data by automated density-based cell population identification publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu677 – volume: 87 start-page: 636 year: 2015 end-page: 645 ident: CR6 article-title: FlowSOM: using self-organizing maps for visualization and interpretation of cytometry data publication-title: Cytometry A doi: 10.1002/cyto.a.22625 – volume: 10 start-page: 1695 year: 2020 ident: CR71 article-title: Ex vivo human adipose tissue derived mesenchymal stromal cells (ASC) are a heterogeneous population that demonstrate rapid culture-induced changes publication-title: Front. Pharmacol. doi: 10.3389/fphar.2019.01695 – volume: 77A start-page: 121 year: 2009 end-page: 131 ident: CR83 article-title: Per-channel basis normalization methods for flow cytometry data publication-title: Cytometry A – volume: 11 start-page: 714 year: 2020 ident: CR55 article-title: Characterization of the impact of daclizumab beta on circulating natural killer cells by mass cytometry publication-title: Front. Immunol. doi: 10.3389/fimmu.2020.00714 – ident: CR38 – volume: 1 start-page: 546 year: 2020 end-page: 561 ident: CR47 article-title: The T cell differentiation landscape is shaped by tumour mutations in lung cancer publication-title: Nat. Cancer doi: 10.1038/s43018-020-0066-y – volume: 15 start-page: e0234778 year: 2020 ident: CR56 article-title: Photodepletion with 2-Se-Cl prevents lethal graft-versus-host disease while preserving antitumor immunity publication-title: PLoS ONE doi: 10.1371/journal.pone.0234778 – volume: 216 start-page: 2010 year: 2019 end-page: 2023 ident: CR29 article-title: The ubiquitin-editing enzyme A20 controls NK cell homeostasis through regulation of mTOR activity and TNF publication-title: J. Exp. Med. doi: 10.1084/jem.20182164 – ident: CR31 – volume: 11 year: 2020 ident: CR51 article-title: Immunogenomic profiling determines responses to combined PARP and PD-1 inhibition in ovarian cancer publication-title: Nat. Commun. doi: 10.1038/s41467-020-15315-8 – volume: 18 start-page: 874 year: 2020 end-page: 886 ident: CR84 article-title: Key steps and methods in the experimental design and data analysis of highly multi-parametric flow and mass cytometry publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2020.03.024 – ident: CR34 – volume: 3 start-page: 130 year: 2020 ident: CR59 article-title: Loss of the branched-chain amino acid transporter CD98hc alters the development of colonic macrophages in mice publication-title: Commun. Biol. doi: 10.1038/s42003-020-0842-3 – volume: 9 start-page: 2579 year: 2008 end-page: 2605 ident: CR11 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – volume: 53 start-page: 10.17.1 year: 2010 end-page: 10.17.24 ident: CR24 article-title: Web-based analysis and publication of flow cytometry experiments publication-title: Curr. Protoc. Cytom. – volume: 8 start-page: e000394 year: 2020 ident: CR45 article-title: Viral status, immune microenvironment and immunological response to checkpoint inhibitors in hepatocellular carcinoma publication-title: J. Immunother. Cancer doi: 10.1136/jitc-2019-000394 – volume: 182 start-page: 497 year: 2020 end-page: 514.e22 ident: CR52 article-title: Multimodal analysis of composition and spatial architecture in human squamous cell carcinoma publication-title: Cell doi: 10.1016/j.cell.2020.05.039 – volume: 78 start-page: 1464 year: 1990 end-page: 1480 ident: CR10 article-title: The self-organizing map publication-title: Proc. IEEE doi: 10.1109/5.58325 – volume: 97 start-page: 268 year: 2020 end-page: 278 ident: CR23 article-title: CytoNorm: a normalization algorithm for cytometry data publication-title: Cytometry A doi: 10.1002/cyto.a.23904 – volume: 11 start-page: 2092 year: 2020 end-page: 2105 ident: CR50 article-title: Adoptive cell therapy in combination with checkpoint inhibitors in ovarian cancer publication-title: Oncotarget doi: 10.18632/oncotarget.27604 – volume: 9 start-page: e55487 year: 2020 ident: CR76 article-title: HIV efficiently infects T cells from the endometrium and remodels them to promote systemic viral spread publication-title: eLife doi: 10.7554/eLife.55487 – volume: 10 start-page: 145 year: 2009 ident: 550_CR14 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-10-145 – volume: 32 start-page: 2473 year: 2016 ident: 550_CR80 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw191 – volume: 39 start-page: 25 year: 2019 ident: 550_CR20 publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.118.311022 – year: 2020 ident: 550_CR70 publication-title: Gastroenterology doi: 10.1053/j.gastro.2020.04.074 – volume: 81A start-page: 727 year: 2012 ident: 550_CR30 publication-title: Cytometry A doi: 10.1002/cyto.a.22106 – volume: 11 start-page: 1481 year: 2020 ident: 550_CR72 publication-title: Front. Immunol. doi: 10.3389/fimmu.2020.01481 – volume: 97 start-page: 268 year: 2020 ident: 550_CR23 publication-title: Cytometry A doi: 10.1002/cyto.a.23904 – volume: 5 start-page: e136417 year: 2020 ident: 550_CR46 publication-title: JCI Insight doi: 10.1172/jci.insight.136417 – ident: 550_CR25 – volume: 37 start-page: 163 year: 2017 ident: 550_CR1 publication-title: Crit. Rev. Biotechnol. doi: 10.3109/07388551.2015.1128876 – volume: 3 start-page: 130 year: 2020 ident: 550_CR59 publication-title: Commun. Biol. doi: 10.1038/s42003-020-0842-3 – volume: 6 start-page: eaay5352 year: 2020 ident: 550_CR65 publication-title: Sci. Adv. doi: 10.1126/sciadv.aay5352 – volume: 89 start-page: 461 year: 2016 ident: 550_CR81 publication-title: Cytometry A doi: 10.1002/cyto.a.22837 – volume: 216 start-page: 2010 year: 2019 ident: 550_CR29 publication-title: J. Exp. Med. doi: 10.1084/jem.20182164 – volume: 182 start-page: 497 year: 2020 ident: 550_CR52 publication-title: Cell doi: 10.1016/j.cell.2020.05.039 – volume: 32 start-page: 162 year: 2020 ident: 550_CR40 publication-title: Curr. Opin. Oncol. doi: 10.1097/CCO.0000000000000607 – volume: 16 start-page: 449 year: 2016 ident: 550_CR5 publication-title: Nat. Rev. Immunol. doi: 10.1038/nri.2016.56 – volume: 8 start-page: e000394 year: 2020 ident: 550_CR45 publication-title: J. Immunother. Cancer doi: 10.1136/jitc-2019-000394 – volume: 9 start-page: 2579 year: 2008 ident: 550_CR11 publication-title: J. Mach. Learn. Res. – volume: 11 year: 2020 ident: 550_CR39 publication-title: Nat. Commun. doi: 10.1038/s41467-019-14134-w – volume: 9 start-page: e56879 year: 2020 ident: 550_CR57 publication-title: eLife doi: 10.7554/eLife.56879 – volume: 204 start-page: 3171 year: 2020 ident: 550_CR61 publication-title: J. Immunol. doi: 10.4049/jimmunol.1900866 – volume: 89 start-page: 1084 year: 2016 ident: 550_CR16 publication-title: Cytometry A doi: 10.1002/cyto.a.23030 – volume: 95 start-page: 1191 year: 2019 ident: 550_CR27 publication-title: Cytometry A doi: 10.1002/cyto.a.23897 – volume: 11 year: 2020 ident: 550_CR74 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17292-4 – volume: 87 start-page: 830 year: 2015 ident: 550_CR4 publication-title: Cytometry A doi: 10.1002/cyto.a.22725 – volume: 10 start-page: 1695 year: 2020 ident: 550_CR71 publication-title: Front. Pharmacol. doi: 10.3389/fphar.2019.01695 – volume: 5 start-page: e132286 year: 2020 ident: 550_CR41 publication-title: JCI Insight doi: 10.1172/jci.insight.132286 – volume: 19 start-page: 100328 year: 2020 ident: 550_CR69 publication-title: Inform. Med. Unlocked doi: 10.1016/j.imu.2020.100328 – volume: 18 start-page: 874 year: 2020 ident: 550_CR84 publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2020.03.024 – volume: 15 start-page: e0234778 year: 2020 ident: 550_CR56 publication-title: PLoS ONE doi: 10.1371/journal.pone.0234778 – ident: 550_CR77 doi: 10.1093/infdis/jiaa269 – volume: 136 start-page: 199 year: 2020 ident: 550_CR49 publication-title: Blood doi: 10.1182/blood.2019004537 – volume: 181 start-page: 557 year: 2020 ident: 550_CR60 publication-title: Cell doi: 10.1016/j.cell.2020.03.021 – volume: 20 start-page: 297 year: 2019 ident: 550_CR17 publication-title: Genome Biol. doi: 10.1186/s13059-019-1917-7 – volume: 97 start-page: 811 year: 2020 ident: 550_CR62 publication-title: Cytometry A doi: 10.1002/cyto.a.24032 – volume: 181 start-page: 1626 year: 2020 ident: 550_CR48 publication-title: Cell doi: 10.1016/j.cell.2020.04.055 – volume: 111 start-page: 202 year: 2014 ident: 550_CR12 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1321405111 – volume: 5 start-page: 180015 year: 2018 ident: 550_CR28 publication-title: Sci. Data doi: 10.1038/sdata.2018.15 – volume: 9 start-page: e55487 year: 2020 ident: 550_CR76 publication-title: eLife doi: 10.7554/eLife.55487 – volume: 11 start-page: 829 year: 2020 ident: 550_CR75 publication-title: Front. Immunol. doi: 10.3389/fimmu.2020.00829 – volume: 10 start-page: 1315 year: 2019 ident: 550_CR26 publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.01315 – volume: 11 year: 2020 ident: 550_CR66 publication-title: Nat. Commun. doi: 10.1038/s41467-020-14919-4 – volume: 11 year: 2020 ident: 550_CR53 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17704-5 – volume: 97 start-page: 832 year: 2020 ident: 550_CR63 publication-title: Cytometry A doi: 10.1002/cyto.a.23960 – volume: 30 start-page: 351 year: 2020 ident: 550_CR73 publication-title: Cell Rep doi: 10.1016/j.celrep.2019.12.027 – volume: 6 start-page: 748 year: 2019 ident: 550_CR37 publication-title: F1000Research doi: 10.12688/f1000research.11622.3 – ident: 550_CR79 – ident: 550_CR38 doi: 10.1007/978-3-319-24277-4 – volume: 204 start-page: 3129 year: 2020 ident: 550_CR68 publication-title: J. Immunol. doi: 10.4049/jimmunol.1901439 – volume: 31 start-page: 606 year: 2015 ident: 550_CR36 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu677 – volume: 11 year: 2020 ident: 550_CR85 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17569-8 – volume: 85A start-page: 277 year: 2014 ident: 550_CR82 publication-title: Cytometry A doi: 10.1002/cyto.a.22433 – volume: 11 start-page: 714 year: 2020 ident: 550_CR55 publication-title: Front. Immunol. doi: 10.3389/fimmu.2020.00714 – volume: 8 start-page: 234 year: 2020 ident: 550_CR19 publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2020.00234 – volume: 78 start-page: 1464 year: 1990 ident: 550_CR10 publication-title: Proc. IEEE doi: 10.1109/5.58325 – volume: 93 start-page: 1189 year: 2018 ident: 550_CR32 publication-title: Cytometry A doi: 10.1002/cyto.a.23663 – volume: 12 start-page: eaay4860 year: 2020 ident: 550_CR42 publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aay4860 – ident: 550_CR21 doi: 10.1093/bioinformatics/btaa091 – volume: 1 start-page: 163 year: 2020 ident: 550_CR54 publication-title: Nat. Cancer doi: 10.1038/s43018-020-0026-6 – volume: 77A start-page: 121 year: 2009 ident: 550_CR83 publication-title: Cytometry A doi: 10.1002/cyto.a.20823 – ident: 550_CR31 doi: 10.1101/2020.06.29.177196 – volume: 11 year: 2020 ident: 550_CR51 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15315-8 – volume: 79A start-page: 6 year: 2011 ident: 550_CR13 publication-title: Cytometry A doi: 10.1002/cyto.a.21007 – ident: 550_CR33 – year: 2020 ident: 550_CR78 publication-title: Science doi: 10.1126/science.abc8511 – volume: 2 start-page: 183 year: 2019 ident: 550_CR22 publication-title: Commun. Biol. doi: 10.1038/s42003-019-0415-5 – volume: 10 start-page: 2009 year: 2019 ident: 550_CR7 publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.02009 – volume: 10 year: 2020 ident: 550_CR67 publication-title: Sci. Rep. doi: 10.1038/s41598-020-69358-4 – volume: 97 start-page: 219 year: 2020 ident: 550_CR18 publication-title: Cytometry A doi: 10.1002/cyto.a.23917 – volume: 87 start-page: 636 year: 2015 ident: 550_CR6 publication-title: Cytometry A doi: 10.1002/cyto.a.22625 – ident: 550_CR34 doi: 10.1002/cyto.a.24501 – volume: 45 start-page: 669 year: 2016 ident: 550_CR8 publication-title: Immunity doi: 10.1016/j.immuni.2016.08.015 – volume: 53 start-page: 10.17.1 year: 2010 ident: 550_CR24 publication-title: Curr. Protoc. Cytom. – volume: 1 start-page: 546 year: 2020 ident: 550_CR47 publication-title: Nat. Cancer doi: 10.1038/s43018-020-0066-y – volume: 11 start-page: 2092 year: 2020 ident: 550_CR50 publication-title: Oncotarget doi: 10.18632/oncotarget.27604 – ident: 550_CR9 doi: 10.18129/B9.bioc.flowCore – volume: 13 year: 2019 ident: 550_CR15 publication-title: BMC Syst. Biol. doi: 10.1186/s12918-019-0690-2 – volume: 95 start-page: 150 year: 2019 ident: 550_CR2 publication-title: Cytometry A doi: 10.1002/cyto.a.23689 – volume: 165 start-page: 780 year: 2016 ident: 550_CR3 publication-title: Cell doi: 10.1016/j.cell.2016.04.019 – volume: 50 start-page: 548 year: 2020 ident: 550_CR44 publication-title: Eur. J. Immunol. doi: 10.1002/eji.201948370 – volume: 50 start-page: 1500 year: 2020 ident: 550_CR64 publication-title: Eur. J. Immunol. doi: 10.1002/eji.202048531 – volume: 34 start-page: 4204 year: 2020 ident: 550_CR43 publication-title: FASEB J. doi: 10.1096/fj.201902467R – volume: 57 start-page: 3943 year: 2020 ident: 550_CR58 publication-title: Mol. Neurobiol. doi: 10.1007/s12035-020-02004-2 – volume: 10 start-page: e1003806 year: 2014 ident: 550_CR35 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1003806 |
| SSID | ssj0047367 |
| Score | 2.6274598 |
| SecondaryResourceType | review_article |
| Snippet | The dimensionality of cytometry data has strongly increased in the last decade, and in many situations the traditional manual downstream analysis becomes... |
| SourceID | proquest gale pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 3775 |
| SubjectTerms | 631/114/1314 631/1647/1407/1492 631/1647/794 Algorithms Analytical Chemistry Bioinformatics Biological Techniques Biomedical and Life Sciences Cluster Analysis Clustering Computational Biology - methods Computational Biology/Bioinformatics Computer applications Cytometry Data Analysis Datasets Dimensional analysis Electronic data processing Flow cytometry Flow Cytometry - methods Flow mapping Immunology Life Sciences Methods Microarrays Organic Chemistry Parameters Protocol Quality control Self organizing maps Software Troubleshooting Visualization Visualization (Computers) Workflow |
| Title | Analyzing high-dimensional cytometry data using FlowSOM |
| URI | https://link.springer.com/article/10.1038/s41596-021-00550-0 https://www.ncbi.nlm.nih.gov/pubmed/34172973 https://www.proquest.com/docview/2557914467 https://www.proquest.com/docview/2545596666 |
| Volume | 16 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1750-2799 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0047367 issn: 1754-2189 databaseCode: AFBBN dateStart: 20190101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1750-2799 dateEnd: 20211231 omitProxy: true ssIdentifier: ssj0047367 issn: 1754-2189 databaseCode: 7X7 dateStart: 20200101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1750-2799 dateEnd: 20211231 omitProxy: true ssIdentifier: ssj0047367 issn: 1754-2189 databaseCode: BENPR dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9QwDLe2m5B4mfimMKaCkHiAaG2SNpcHhAbaaSDtQBuT7i1q0mYvo912PaHbXz87bW_cJPZcu21cxx-18zPA-8RniXOVYKn3GZPSFkxzL5jjGoOTIk1VgGs6muaHp_LHLJttwHQ4C0NtlYNNDIa6bBz9I9_D0FdpSl7Ul4tLRlOjqLo6jNAo-tEK5ecAMbYJW5yQsUaw9fVg-ut4sM1SiTBTFn2mZOjcdH-MJhHjvTm6stCQi-l1gnE7S9Zc1V2D_Y_HulNCDZ5p8gi2-5Ay3u904DFsVPUTeNANmVw-BRVwR66RNSZsYlYSnn-HxRG7Zdv8qdqrZUydojE1wZ_Fk_Pm78nPo2dwOjn4_e2Q9eMSmJMqb5kSPpW80pUrrMy9y0vupXci896PrdZWKMdFiVuu4hh2-Jxrl3hduMJlWVZq8RxGdVNXLyG2wivvrbBOl5JYrcXwNvfWioKXRRJBOkjGuB5LnEZanJtQ0xZj00nToDRNkKZBno8rnosOSeNe6nckcEMQFTX1wJwVi_ncfD85Nvu5ovpxolUEH3oi3-DjcSHdkQJcBKFarVHurFHiHnLrl4fvavo9PDe3GhfB29Vl4qS-tLpqFkQjMSXDFDCP4EWnD6vFYXygaDJYBJ8GBbm9-f9X_ur-d3kND3nQUepB3IFRe7Wo3mBc1Npd2FQztdur_A19kAby |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqVgguiDeBAgGBOIDVxHbi9aFCBbrapd0F9SH15sZO3EtJSpNVtfw4fhszTrJlK9Fbz5lJ4vHE30w8_oaQt5FLImsLTmPnEiqEyahijlPLFAQnWRxLT9c0maajQ_HtKDlaIX_6szBYVtmviX6hziuL_8g3IPSVCpMX-ensF8WuUbi72rfQyLrWCvmmpxjrDnbsFPMLSOHqzfFXmO93jA23D76MaNdlgFoh04ZK7mLBClXYzIjU2TRnTjjLE-fcwChluLSM5-CpBQO0dilTNnIqs5lNkiRHMiaAgDXBhYLkb-3z9vTHXo8FQnLfwxYwWlAAU9Ud24n4YKMG6PQFwJDOR5An0GgJGq8CxD8IeWXL1iPh8B6524Ww4Vbrc_fJSlE-ILfappbzh0R6npPfoBoiFzLNsX9Ay_0R2nlT_Sya83mIlakhFt2fhMPT6mL_--QRObwRwz0mq2VVFk9JaLiTzhlurMoFqhoD4XTqjOEZy7MoIHFvGW077nJsoXGq_R46H-jWmhqsqb01Neh8WOictcwd10q_QYNrpMQosebmJJvVtR7v7-mtVOJ-daRkQN53Qq6Cx8NA2iMMMAhk0VqSXF-ShG_WLl_u51V3a0atLz08IK8Xl1ET6-DKopqhjIAUEFLONCBPWn9YDA7iEYmdyALysXeQy5v_f-TPrn-XV-T26GCyq3fH053n5A7z_or1j-tktTmfFS8gJmvMy87xQ3J809_aXzEiRJM |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWqIhAXxDeBAgGBOIC1ie3E6wNCFWXVpbQgSqW9ubFj91KS0mRVLT-NX8eMk2zZSvTWc2aSePLsmYnHbwh5lfgssdZxmnqfUSFMQRXznFqmIDgp0lQGuqbdvXz7QHyeZbM18mc4C4NllcOaGBbqsrb4j3wEoa9UmLzIke_LIr5tTT6c_KLYQQp3Wod2Gh1EdtziDNK35v10C771a8Ymn3583KZ9hwFqhcxbKrlPBXPK2cKI3Nu8ZF54yzPv_dgoZbi0jJeAUsfAU_ucKZt4VdjCZllWIhETLP_XJOcKywnlbJnsCclD91rwzoKCG1X9gZ2Ej0cNOM1Q-guJfAIZAk1WnOJF1_CPb7ywWRt84OQ2udUHr_Fmh7Y7ZM1Vd8n1rp3l4h6RgeHkN6jGyIJMS-wc0LF-xHbR1j9de7qIsSY1xnL7o3hyXJ_tf929Tw6uxGwPyHpVV-4RiQ330nvDjVWlQFVjIJDOvTG8YGWRRCQdLKNtz1qOzTOOddg952PdWVODNXWwpgadt0udk46z41Lpl2hwjWQYFcLqqJg3jZ7uf9ebucSd6kTJiLzphXwNj4eBdIcXYBDIn7UiubEiCbPVrl4evqvuV4tGn2M7Ii-Wl1ETK-AqV89RRkDyB8lmHpGHHR6Wg4NIRGIPsoi8GwByfvP_j_zx5e_ynNyAGaa_TPd2npCbLMAVCx83yHp7OndPIRhrzbOA-pgcXvU0-ws9rEIt |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analyzing+high-dimensional+cytometry+data+using+FlowSOM&rft.jtitle=Nature+protocols&rft.au=Quintelier+Katrien&rft.au=Couckuyt+Artuur&rft.au=Emmaneel+Annelies&rft.au=Aerts+Joachim&rft.date=2021-08-01&rft.pub=Nature+Publishing+Group&rft.issn=1754-2189&rft.eissn=1750-2799&rft.volume=16&rft.issue=8&rft.spage=3775&rft.epage=3801&rft_id=info:doi/10.1038%2Fs41596-021-00550-0&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-2189&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-2189&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-2189&client=summon |