Evaluation of Mechanical Properties of Materials Based on Genetic Algorithm Optimizing BP Neural Network
In the 21st century, with the increasingly urgent requirements for lightweight in the fields of aviation, aerospace, and electronics, especially automobiles, many properties of magnesium alloy materials, especially the low-density performance characteristics, have been widely valued. In order to bet...
Saved in:
| Published in | Computational intelligence and neuroscience Vol. 2021; no. 1; p. 2115653 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Hindawi
2021
John Wiley & Sons, Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1687-5265 1687-5273 1687-5273 |
| DOI | 10.1155/2021/2115653 |
Cover
| Summary: | In the 21st century, with the increasingly urgent requirements for lightweight in the fields of aviation, aerospace, and electronics, especially automobiles, many properties of magnesium alloy materials, especially the low-density performance characteristics, have been widely valued. In order to better use magnesium metal materials, it is very important to evaluate its mechanical properties. This article is based on 196 sets of mechanical performance experimental results and related data of AZ31 and AZ91 2 magnesium alloys. Based on data analysis and sorting, take deformation temperature, deformation rate, deformation coefficient, solid solution temperature, and solid solution time as input and take ultimate tensile strength (UTS), yield strength (YS), and elongation (ELO) as output. The 5-8-1 three-layer BP neural network forecast model optimized by the genetic algorithm is used for data training. The training results show that the prediction model can accurately predict the tensile strength, yield strength, and elongation. Compared with the general BP neural network prediction model, the BP neural network based on the genetic algorithm has small discreteness and high fitness: the average error of UTS and YS of AZ31 magnesium alloy is reduced to 0.88% and 3.3%, respectively. The most obvious is that the elongation of AZ31 ELO is reduced, and the error is reduced to 8.1%. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Correction/Retraction-3 Academic Editor: Syed Hassan Ahmed |
| ISSN: | 1687-5265 1687-5273 1687-5273 |
| DOI: | 10.1155/2021/2115653 |