Intelligent Sports Video Classification Based on Deep Neural Network (DNN) Algorithm and Transfer Learning
Traditional text annotation-based video retrieval is done by manually labeling videos with text, which is inefficient and highly subjective and generally cannot accurately describe the meaning of videos. Traditional content-based video retrieval uses convolutional neural networks to extract the unde...
Saved in:
| Published in | Computational intelligence and neuroscience Vol. 2021; no. 1; p. 1825273 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
United States
Hindawi
2021
John Wiley & Sons, Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1687-5265 1687-5273 1687-5273 |
| DOI | 10.1155/2021/1825273 |
Cover
| Abstract | Traditional text annotation-based video retrieval is done by manually labeling videos with text, which is inefficient and highly subjective and generally cannot accurately describe the meaning of videos. Traditional content-based video retrieval uses convolutional neural networks to extract the underlying feature information of images to build indexes and achieves similarity retrieval of video feature vectors according to certain similarity measure algorithms. In this paper, by studying the characteristics of sports videos, we propose the histogram difference method based on using transfer learning and the four-step method based on block matching for mutation detection and fading detection of video shots, respectively. By adaptive thresholding, regions with large frame difference changes are marked as candidate regions for shots, and then the shot boundaries are determined by mutation detection algorithm. Combined with the characteristics of sports video, this paper proposes a key frame extraction method based on clustering and optical flow analysis, and experimental comparison with the traditional clustering method. In addition, this paper proposes a key frame extraction algorithm based on clustering and optical flow analysis for key frame extraction of sports video. The algorithm effectively removes the redundant frames, and the extracted key frames are more representative. Through extensive experiments, the keyword fuzzy finding algorithm based on improved deep neural network and ontology semantic expansion proposed in this paper shows a more desirable retrieval performance, and it is feasible to use this method for video underlying feature extraction, annotation, and keyword finding, and one of the outstanding features of the algorithm is that it can quickly and effectively retrieve the desired video in a large number of Internet video resources, reducing the false detection rate and leakage rate while improving the fidelity, which basically meets people’s daily needs. |
|---|---|
| AbstractList | Traditional text annotation-based video retrieval is done by manually labeling videos with text, which is inefficient and highly subjective and generally cannot accurately describe the meaning of videos. Traditional content-based video retrieval uses convolutional neural networks to extract the underlying feature information of images to build indexes and achieves similarity retrieval of video feature vectors according to certain similarity measure algorithms. In this paper, by studying the characteristics of sports videos, we propose the histogram difference method based on using transfer learning and the four-step method based on block matching for mutation detection and fading detection of video shots, respectively. By adaptive thresholding, regions with large frame difference changes are marked as candidate regions for shots, and then the shot boundaries are determined by mutation detection algorithm. Combined with the characteristics of sports video, this paper proposes a key frame extraction method based on clustering and optical flow analysis, and experimental comparison with the traditional clustering method. In addition, this paper proposes a key frame extraction algorithm based on clustering and optical flow analysis for key frame extraction of sports video. The algorithm effectively removes the redundant frames, and the extracted key frames are more representative. Through extensive experiments, the keyword fuzzy finding algorithm based on improved deep neural network and ontology semantic expansion proposed in this paper shows a more desirable retrieval performance, and it is feasible to use this method for video underlying feature extraction, annotation, and keyword finding, and one of the outstanding features of the algorithm is that it can quickly and effectively retrieve the desired video in a large number of Internet video resources, reducing the false detection rate and leakage rate while improving the fidelity, which basically meets people’s daily needs. Traditional text annotation-based video retrieval is done by manually labeling videos with text, which is inefficient and highly subjective and generally cannot accurately describe the meaning of videos. Traditional content-based video retrieval uses convolutional neural networks to extract the underlying feature information of images to build indexes and achieves similarity retrieval of video feature vectors according to certain similarity measure algorithms. In this paper, by studying the characteristics of sports videos, we propose the histogram difference method based on using transfer learning and the four-step method based on block matching for mutation detection and fading detection of video shots, respectively. By adaptive thresholding, regions with large frame difference changes are marked as candidate regions for shots, and then the shot boundaries are determined by mutation detection algorithm. Combined with the characteristics of sports video, this paper proposes a key frame extraction method based on clustering and optical flow analysis, and experimental comparison with the traditional clustering method. In addition, this paper proposes a key frame extraction algorithm based on clustering and optical flow analysis for key frame extraction of sports video. The algorithm effectively removes the redundant frames, and the extracted key frames are more representative. Through extensive experiments, the keyword fuzzy finding algorithm based on improved deep neural network and ontology semantic expansion proposed in this paper shows a more desirable retrieval performance, and it is feasible to use this method for video underlying feature extraction, annotation, and keyword finding, and one of the outstanding features of the algorithm is that it can quickly and effectively retrieve the desired video in a large number of Internet video resources, reducing the false detection rate and leakage rate while improving the fidelity, which basically meets people's daily needs.Traditional text annotation-based video retrieval is done by manually labeling videos with text, which is inefficient and highly subjective and generally cannot accurately describe the meaning of videos. Traditional content-based video retrieval uses convolutional neural networks to extract the underlying feature information of images to build indexes and achieves similarity retrieval of video feature vectors according to certain similarity measure algorithms. In this paper, by studying the characteristics of sports videos, we propose the histogram difference method based on using transfer learning and the four-step method based on block matching for mutation detection and fading detection of video shots, respectively. By adaptive thresholding, regions with large frame difference changes are marked as candidate regions for shots, and then the shot boundaries are determined by mutation detection algorithm. Combined with the characteristics of sports video, this paper proposes a key frame extraction method based on clustering and optical flow analysis, and experimental comparison with the traditional clustering method. In addition, this paper proposes a key frame extraction algorithm based on clustering and optical flow analysis for key frame extraction of sports video. The algorithm effectively removes the redundant frames, and the extracted key frames are more representative. Through extensive experiments, the keyword fuzzy finding algorithm based on improved deep neural network and ontology semantic expansion proposed in this paper shows a more desirable retrieval performance, and it is feasible to use this method for video underlying feature extraction, annotation, and keyword finding, and one of the outstanding features of the algorithm is that it can quickly and effectively retrieve the desired video in a large number of Internet video resources, reducing the false detection rate and leakage rate while improving the fidelity, which basically meets people's daily needs. |
| Audience | Academic |
| Author | Guo, Xiaoping |
| AuthorAffiliation | Shaanxi Normal University, Xi'an, Shaanxi 710000, China |
| AuthorAffiliation_xml | – name: Shaanxi Normal University, Xi'an, Shaanxi 710000, China |
| Author_xml | – sequence: 1 givenname: Xiaoping orcidid: 0000-0003-4833-7107 surname: Guo fullname: Guo, Xiaoping organization: Shaanxi Normal UniversityXi’anShaanxi 710000Chinasnnu.edu.cn |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34868286$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkcuP0zAQhyO0K_YBN87IEpdFbFjHr7gXpNLlsVJVDixcLTeepC6pHeyEav97HFoKrAScPJK_-Xn8zVl25LyDLHtS4JdFwfkVwaS4KiThpKQPstNCyDIf66NDLfhJdhbjGmNeckweZieUSSGJFKfZ-sb10La2Adejj50PfUSfrQGPZq2O0da20r31Dr3WEQxKxTVAhxYwBN2mo9_68AVdXC8Wz9G0bXyw_WqDtDPoNmgXawhoDjo465pH2XGt2wiP9-d59untm9vZ-3z-4d3NbDrPK1aKPmeGcloAXVa44pRiwzCYEjQ3zNScmAKMpmyJ5bKWtC55WQIvNGY1ZxRLAvQ8y3e5g-v03Va3reqC3ehwpwqsRmdqdKb2zhL_asd3w3IDpkom0t8OPV5b9eeNsyvV-G9KCsonWKaAi31A8F8HiL3a2Fglq9qBH6IiApcUc8HGt57dQ9d-CC7pGCkhuCRC_KIa3YKyrvbp3WoMVVMhORN4MmGJevr73IeBfy43AWQHVMHHGKBWle1_bDPF2fZvNi7vNf1H3osdvrLO6K39N_0dDe_PsQ |
| CitedBy_id | crossref_primary_10_1155_2023_9862902 crossref_primary_10_3390_app14020948 crossref_primary_10_1080_13682199_2023_2191539 |
| Cites_doi | 10.1016/j.cirp.2019.04.046 10.1109/TSG.2020.2970156 10.1016/j.tust.2018.11.011 10.1016/j.triboint.2019.05.029 10.1007/s12652-019-01474-0 10.1109/tii.2020.2994747 10.1109/TII.2020.3016958 10.1121/10.0000492 10.1016/j.rbmo.2020.07.003 10.1166/jmihi.2020.3177 10.1016/j.ipm.2018.10.014 10.1016/j.tust.2018.09.022 10.2298/CSIS180105025Z 10.1016/j.cosrev.2018.10.003 10.1016/j.promfg.2019.05.086 10.1016/j.ins.2019.05.040 10.1109/MNET.2018.1800121 10.1007/s12652-020-02537-3 10.1016/j.renene.2020.01.093 10.1109/TII.2019.2952261 10.1007/s11227-019-02954-y |
| ContentType | Journal Article |
| Copyright | Copyright © 2021 Xiaoping Guo. COPYRIGHT 2021 John Wiley & Sons, Inc. Copyright © 2021 Xiaoping Guo. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 Copyright © 2021 Xiaoping Guo. 2021 |
| Copyright_xml | – notice: Copyright © 2021 Xiaoping Guo. – notice: COPYRIGHT 2021 John Wiley & Sons, Inc. – notice: Copyright © 2021 Xiaoping Guo. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 – notice: Copyright © 2021 Xiaoping Guo. 2021 |
| DBID | RHU RHW RHX AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QF 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7X7 7XB 8AL 8BQ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU CWDGH DWQXO F28 FR3 FYUFA GHDGH GNUQQ H8D H8G HCIFZ JG9 JQ2 K7- K9. KR7 L6V L7M LK8 L~C L~D M0N M0S M1P M7P M7S P5Z P62 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS Q9U 7X8 5PM ADTOC UNPAY |
| DOI | 10.1155/2021/1825273 |
| DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Aluminium Industry Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Middle East & Africa Database (ProQuest) ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Aerospace Database Copper Technical Reference Library ProQuest SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Health & Medical Collection Medical Database Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Materials Research Database ProQuest One Psychology Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File ProQuest One Applied & Life Sciences Engineered Materials Abstracts Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Ceramic Abstracts Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Health & Medical Research Collection ProQuest Engineering Collection Middle East & Africa Database Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection Corrosion Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE CrossRef |
| Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1687-5273 |
| Editor | Gupta, Suneet Kumar |
| Editor_xml | – sequence: 1 givenname: Suneet Kumar surname: Gupta fullname: Gupta, Suneet Kumar |
| ExternalDocumentID | 10.1155/2021/1825273 PMC8635908 A685460994 34868286 10_1155_2021_1825273 |
| Genre | Retracted Publication Journal Article |
| GrantInformation_xml | – fundername: Shaanxi Normal University |
| GroupedDBID | --- 188 29F 2WC 3V. 4.4 53G 5GY 5VS 6J9 7X7 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAFWJ AAJEY AAKPC ABDBF ABIVO ABJCF ABUWG ACGFO ACIWK ACM ACPRK ADBBV ADRAZ AENEX AFKRA AHMBA AINHJ ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI CCPQU CS3 CWDGH DIK DWQXO E3Z EBD EBS EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE I-F IAO ICD INH INR IPY ITC K6V K7- KQ8 L6V LK8 M0N M1P M48 M7P M7S MK~ O5R O5S OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO PSYQQ PTHSS Q2X RHU RHW RHX RNS RPM SV3 TR2 TUS UKHRP XH6 ~8M 0R~ 24P 2UF AAMMB AAYXX ACCMX ACUHS AEFGJ AGXDD AIDQK AIDYY C1A CITATION EJD H13 IHR IL9 OVT PGMZT PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO UZ4 CGR CUY CVF ECM EIF NPM 7QF 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7XB 8AL 8BQ 8FD 8FK F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c476t-4d3531e3bc0c5330d40ed7ea5d4df52d1eda34b08bf83f7577e51a04f543082e3 |
| IEDL.DBID | M48 |
| ISSN | 1687-5265 1687-5273 |
| IngestDate | Sun Oct 26 04:15:30 EDT 2025 Tue Sep 30 16:55:31 EDT 2025 Sun Sep 28 09:39:56 EDT 2025 Tue Oct 07 06:12:28 EDT 2025 Mon Oct 20 22:47:35 EDT 2025 Mon Jul 21 06:02:28 EDT 2025 Wed Oct 01 02:22:15 EDT 2025 Thu Apr 24 23:06:44 EDT 2025 Sun Jun 02 18:51:55 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright © 2021 Xiaoping Guo. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c476t-4d3531e3bc0c5330d40ed7ea5d4df52d1eda34b08bf83f7577e51a04f543082e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Correction/Retraction-3 Academic Editor: Suneet Kumar Gupta |
| ORCID | 0000-0003-4833-7107 |
| OpenAccessLink | https://dx.doi.org/10.1155/2021/1825273 |
| PMID | 34868286 |
| PQID | 2606658266 |
| PQPubID | 237303 |
| ParticipantIDs | unpaywall_primary_10_1155_2021_1825273 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8635908 proquest_miscellaneous_2607305643 proquest_journals_2606658266 gale_infotracmisc_A685460994 pubmed_primary_34868286 crossref_citationtrail_10_1155_2021_1825273 crossref_primary_10_1155_2021_1825273 hindawi_primary_10_1155_2021_1825273 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-00-00 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 2021-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | Computational intelligence and neuroscience |
| PublicationTitleAlternate | Comput Intell Neurosci |
| PublicationYear | 2021 |
| Publisher | Hindawi John Wiley & Sons, Inc |
| Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc |
| References | e_1_2_8_16_2 e_1_2_8_17_2 e_1_2_8_18_2 e_1_2_8_19_2 e_1_2_8_12_2 e_1_2_8_13_2 e_1_2_8_14_2 e_1_2_8_15_2 e_1_2_8_9_2 e_1_2_8_2_2 e_1_2_8_1_2 e_1_2_8_4_2 e_1_2_8_3_2 e_1_2_8_6_2 e_1_2_8_5_2 e_1_2_8_8_2 e_1_2_8_7_2 e_1_2_8_20_2 e_1_2_8_10_2 e_1_2_8_21_2 e_1_2_8_11_2 38074351 - Comput Intell Neurosci. 2023 Nov 29;2023:9862902 |
| References_xml | – ident: e_1_2_8_15_2 doi: 10.1016/j.cirp.2019.04.046 – ident: e_1_2_8_16_2 doi: 10.1109/TSG.2020.2970156 – ident: e_1_2_8_6_2 doi: 10.1016/j.tust.2018.11.011 – ident: e_1_2_8_19_2 doi: 10.1016/j.triboint.2019.05.029 – ident: e_1_2_8_11_2 doi: 10.1007/s12652-019-01474-0 – ident: e_1_2_8_21_2 doi: 10.1109/tii.2020.2994747 – ident: e_1_2_8_12_2 doi: 10.1109/TII.2020.3016958 – ident: e_1_2_8_13_2 doi: 10.1121/10.0000492 – ident: e_1_2_8_14_2 doi: 10.1016/j.rbmo.2020.07.003 – ident: e_1_2_8_20_2 doi: 10.1166/jmihi.2020.3177 – ident: e_1_2_8_1_2 doi: 10.1016/j.ipm.2018.10.014 – ident: e_1_2_8_5_2 doi: 10.1016/j.tust.2018.09.022 – ident: e_1_2_8_17_2 doi: 10.2298/CSIS180105025Z – ident: e_1_2_8_18_2 doi: 10.1016/j.cosrev.2018.10.003 – ident: e_1_2_8_4_2 doi: 10.1016/j.promfg.2019.05.086 – ident: e_1_2_8_8_2 doi: 10.1016/j.ins.2019.05.040 – ident: e_1_2_8_10_2 doi: 10.1109/MNET.2018.1800121 – ident: e_1_2_8_7_2 doi: 10.1007/s12652-020-02537-3 – ident: e_1_2_8_2_2 doi: 10.1016/j.renene.2020.01.093 – ident: e_1_2_8_9_2 doi: 10.1109/TII.2019.2952261 – ident: e_1_2_8_3_2 doi: 10.1007/s11227-019-02954-y – reference: 38074351 - Comput Intell Neurosci. 2023 Nov 29;2023:9862902 |
| SSID | ssj0057502 |
| Score | 2.248385 |
| SecondaryResourceType | retracted_publication |
| Snippet | Traditional text annotation-based video retrieval is done by manually labeling videos with text, which is inefficient and highly subjective and generally... Traditional text annotation‐based video retrieval is done by manually labeling videos with text, which is inefficient and highly subjective and generally... |
| SourceID | unpaywall pubmedcentral proquest gale pubmed crossref hindawi |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1825273 |
| SubjectTerms | Accuracy Algorithms Annotations Artificial neural networks Classification Cluster Analysis Clustering Deep learning Feature extraction Frames (data processing) Histograms Humans Information processing Information technology Machine Learning Methods Mutation Neural networks Neural Networks, Computer Optical flow (image analysis) Performance indices Query expansion Retrieval Similarity Sports Support vector machines Transfer learning Video data |
| SummonAdditionalLinks | – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLbYJAQvCBiXwEBGGhMIRcvFdtzHwpgKD31ADPUtcuyTtahLqzbVtH_POY4bUcbtLZFvSY6Pz3ecT58ZOxpYWxESjXUt8liYWsfaqjSWxhrhEDCA9SzfsRqdi88TOQkiSeubv_Ax2lF6np4gDCapsD22pxUxt76MJtsFFwFHRy1U6C-k9r7lt__SdifyhPX39pQy36vZ7_DlTZrknU2zNNdXZj7_KQad3Wf3Anjkw87aD9gtaB6yg2GDifPlNT_mns7p98kP2PdPvdhmy_1Z5mv-beZgwf05mMQQ8kbh7zGOOY4XpwBLTmIdOMS4Y4fzN6fj8Vs-nF8sVrN2eslN47gPbzWseNBmvXjEzs8-fv0wisPBCrEVhWpj4XJ0Pcgrm1hilzqRgCvASCdcLTOXgjO5qBJd1TqvC1kUIFOTiFoKUreB_DHbbxYNPGW8gswYqAZq4IzIrdG2yCAVMgOB2C_NIvZu-9FLG1TH6fCLeemzDylLMlEZTBSx133tZae28Yd6h2S_kpwQe7PoErYcKi2FQsQrInYU7PqvXrZGL4PnrsuMMjqJSZeK2Ku-mAYgNloDi42vU1DqJbCLJ90c6QfKBU7QTGPrYmf29BVIz3u3pJlNva63RvA3SHTEjvt59tfnf_Z_r_mc3aXbbt_okO23qw28QCTVVi-9H_0A8ooTFQ priority: 102 providerName: Hindawi Publishing – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fb9MwED6NTgheJmAwMgYy0phAKFp-2In7gFDHNg0eIoQY2lvk2Je1qEvL1mraf4_PcQIVMN4i5WRbvjv7s_PlO4DdodYVIdFQ1jwNuaplKHUWh0JpxY0FDKgdy7fITk75pzNxtgZF9y8M0Sq7NdEt1Gam6Y58PyGkLSwYzt7Pf4RUNYq-rnYlNJQvrWDeOYmxO7CekDLWANYPjorPX7q12WKTloWY2dQiYfiOCi8E3QLE-xZtkyLZyibll-q7YzokX0_-BkX_ZFTeWzZzdXOtptPftqvjB7DhcSYbtYHxENaweQSbo8aesS9u2B5zzE93pb4J3z_2upwL5sqeX7FvE4Mz5kpmEpnI-Y8d2C3PMPtwiDhnpOthuyhaIjl7fVgUb9hoem5nbTG-YKoxzO2ENV4yL-N6_hhOj4--fjgJfQ2GUPM8W4TcpDZLMa10pImIaniEJkclDDe1SEyMRqW8imRVy7TORZ6jiFXEa8FJCAfTJzBoZg0-BVZhohRWw2xoFE-1kjpPMOYiQW5hYpwE8Lab9FJ7gXKqkzEt3UFFiJJcVHoXBfCqt563whz_sNsh_5WUr7Y1bbNHl6NMCp5ZcMwD2PV-_V8rndNLn-RX5a-QDOBl_5o6IOJag7Ols8nplMZtE1ttjPQdpVxm9Bd_APlK9PQGJP29-qaZjJ0EuLQ4cRjJAPb6OLt1_Nu3j_8Z3Cfr9mppBwaLyyU-t2BrUb3wGfQTLyYj7Q priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwGP00OiF44TYugYGMNCYQSpeLnbjiKTCmwUOEEEVDgCLHdtaKLqnalGn8evw5Fyh38ZYon-zE_myfY50cA-yMpMwRibq8oKFLRcFdLiPfZUIKqgxg0NKqfNPocExfHrGjDXjS_Quj0CK-Emo5nCAnPZ3a2bpt1-WeNGzR0HV_z8BitA4bzlVxDjYjZoD4ADbH6avkHVKsyAwdNH7_dh2HneydsbUi1hakdlo-31b-K9j5s3rywqqci7NTMZt9tzQdXIYP3Uc1ipRPw1WdD-WXH_we__Orr8ClFrKSpMmxq7Chy2uwlZSGrp-ckV1iRaR2d34LPr9_rWvrAK0-khe93WdN7GnqS_J2qnRF7EmcqFGyaUGempVUEXOxr_WcoF2IqS5t9Onk4X6aPiLJ7LhaTOvJCRGlInaBLfSCtO6wx9dhfPD8zbNDtz3awZU0jmqXqtAMfh3m0pOob1XU0yrWgimqChYoXysR0tzjecHDImZxrJkvPFowiv46OrwBg7Iq9S0guQ6E0PkoGilBQym4jAPtUxZoatCnHzjwuOvfTLa-53j8xiyz_IexDJs2a5vWgQd99Lzx-_hN3DamSobTADarGZQySyLOaGQwN3Vgp-3Jv5XS5VfW9XYWIKdkhvZFDtzvH2MFqIcrdbWyMTGSP2qKuNmkY19RSHmE5gAOxGuJ2gego_j6k3I6sc7i3MDPkccd2O1T-o_vf_tfA-_ARbxt9q62YVAvVvquQXN1fq8dtV8BAoxDmA priority: 102 providerName: Unpaywall |
| Title | Intelligent Sports Video Classification Based on Deep Neural Network (DNN) Algorithm and Transfer Learning |
| URI | https://dx.doi.org/10.1155/2021/1825273 https://www.ncbi.nlm.nih.gov/pubmed/34868286 https://www.proquest.com/docview/2606658266 https://www.proquest.com/docview/2607305643 https://pubmed.ncbi.nlm.nih.gov/PMC8635908 https://downloads.hindawi.com/journals/cin/2021/1825273.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 2021 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: KQ8 dateStart: 20070625 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: KQ8 dateStart: 20070101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1687-5273 dateEnd: 20230628 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: ABDBF dateStart: 20070101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: DIK dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: GX1 dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: RPM dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1687-5273 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: 7X7 dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Middle East & Africa Database (ProQuest) customDbUrl: eissn: 1687-5273 dateEnd: 20250131 omitProxy: false ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: CWDGH dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/middleeastafrica providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1687-5273 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: 8FG dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Open Access Journals customDbUrl: eissn: 1687-5273 dateEnd: 20250430 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: M48 dateStart: 20070101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: 24P dateStart: 20070101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fb9MwED7th2B7QUBhBEZlpDGBUKBJ7MR9QCilKwWJaJooKk-RYztrUZeWrtXof8_ZSaNNdPCSRMnFjnJ3ue-Sy3cAR20pM4NEXZ7TwKUi5y6XoecyIQVVCBi0tFW-Sdgf0C9DNtyCdbfR6gZebkztTD-pwXzy9vev1Qd0-PfW4Rkz-bv3DnGy4RLbhl2MUW3TxOErrb8nICYxdTyNTWfsw92A8rD8nfpabKqe0HdGJje-Gm9CoH8XUu4ti5lYXYnJ5FqU6t2HexW8JHFpDw9gSxcPoREXmFpfrMgxsQWf9k16A35-ruk4F8R2O78k38dKT4ntlGlqiKzaSAcjnSK40dV6RgydB06RlPXj5FU3SV6TeHI-nY8XowsiCkVsAMz1nFTsreePYNA7-fax71atF1xJo3DhUhWgc-ogky1p6k8VbWkVacEUVTnzlaeVCGjW4lnOgzxiUaSZJ1o0Z9Tw3-jgMewU00I_AZJpXwidtcO2EjSQgsvI1x5lvqaIDj3fgTfrm57KipfctMeYpDY_YSw12korbTnwspaelXwct8gdGv2lxnBwNIlOI9M45IyGiImpA0eVXv83ylrp6do0U9_kfAzTstCBF_VhM4GpVyv0dGllIpOcURzioLSReqK1tTkQ3bCeWsAwft88UoxHlvmbIzxst7gDx7Wd_fP6n946-TPYN4Lly6RD2FnMl_o5wqtF1oTtaBjhkvc-NWE37nQ7PVx3TpLTs6b1Klye9Ye4b5Ccxj_-AFO-JLk |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LctMwFL1T0mHKhld5GAqImTYDw7j1Q7KdBYvQUBJasmpLd0aW5CaQOqFxJhM-il_hl9CVHxAeZdUFu8xYkTTKuVdH8sm5AJstIRJkonaUUt-mPI3sSASuzbjgVGrCoIRR-faD7hF9e8JOVuBr9V8YlFVWOdEkajkWeEe-4yHTZpoMB6WCcl8t5vp8Nn3Z6-gfc8vz9l4f7nbtsoSALWgY5DaVvgaZ8hPhCNRRSuooGSrOJJUp86SrJPdp4kRJGvlpyMJQMZc7NGUUfVyUr_ttTj7bWKUK3-aWJTuuwKrGues1YHX3fedNt8r9mvsUKsdAhy4az1dSe8bwlsHd0WweHc-WNsFyK7g6wEP4fPgnqvu7YnNtlk34Ys5Ho5-2w70b8K1ayEIF82l7lifb4ssvHpP_z0rfhOslMyftIpRuwYrKbsN6O-P5-GxBmsRoZc1LiHX42KudTHNiCsVPyfFQqjExRUZRfmUQT15pkiCJ_tBRakLQCUUP0S-k9-RZp99_TtqjUz2bfHBGeCaJ4Q6pOiel8e3pHTi6lIW4C41snKn7QBLlca6SVtCSnPqCRyL0lEuZp6gm1q5nwYsKRrEoLd2xssgoNkc7xmIEXVyCzoKtuvWksDL5S7sNRGSMGU73JnS-EXE7iBgN9HGCWrBZIvVfvVToisu0OI1_QMuCp_VjHAClfpkaz0ybEM-1VHdxr0B9PZBPowB9DywIl-KhboBm6ctPsuHAmKZHmlm3nMiCZh05F87_wcXzfwJr3cN3B_FBr7__EK7hN4uLuQ1o5Ocz9UhT1Tx5XOYHAh8uO3a-A3_unpU |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGJi4v3MYlMMBI2wRCWZvETtwHhMpKWRmqeGCwt-DYzlro0rKmqspP46_wZzjHuUC5jKc98BYpjh0n5xx_x_nyHUI2W0oliERdkbLAZTIVrlCh53KpJNMAGIyyLN9-uHfAXh3ywxXytfoXBmmVVUy0gVqPFe6RN3xE2hzAcNhIS1rEm0732eSzixWk8EtrVU6jMJF9s5hD-jZ92uvAu97y_e6Lt7t7bllhwFUsCnOX6QBs0ASJaiqkWWrWNDoykmumU-5rz2gZsKQpklQEacSjyHBPNlnKGcq8mAD6PUfWRBiFEBTWdt93Xu5V6wDgoILxGIIbowh9RbvnHHccvAYge1Q_W1oQy2Xh_AAT8vnwT7D3d_bmxVk2kYu5HI1-Whq7V8i36qEWjJhPO7M82VFfftGb_D-f-lVyuUTstF242DWyYrLrZL2dyXx8vKDb1HJo7ceJdfKxVyuc5tQWkJ_Sd0NtxtQWH0ValvUE-hzAg6Zw0DFmQlEhBYboF5R8-qjT7z-m7dERzD4fHFOZaWoxRWpOaCmIe3SDHJzJrG-S1WycmduEJsaX0iStsKUlC5QUKvKNx7hvGABuz3fIk8qkYlVKvWPFkVFsUz7OYzTAuDRAh2zVrSeFxMlf2m2gdcYY-aA3BXFIxe1QcBZCmsEcslla7b96qSwtLsPlNP5hZg55WJ_GAZACmJnxzLaJMN9l0MWtwgPqgQImQtRDcEi05Bt1AxRRXz6TDQdWTF0A4m41hUO2ay869f7vnH7_D8gFcJD4da-_f5dcwguL_boNspqfzMw9QLB5cr8MFZR8OGs_-Q6Tvadd |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwGP00OiF44TYugYGMNCYQSpeLnbjiKTCmwUOEEEVDgCLHdtaKLqnalGn8evw5Fyh38ZYon-zE_myfY50cA-yMpMwRibq8oKFLRcFdLiPfZUIKqgxg0NKqfNPocExfHrGjDXjS_Quj0CK-Emo5nCAnPZ3a2bpt1-WeNGzR0HV_z8BitA4bzlVxDjYjZoD4ADbH6avkHVKsyAwdNH7_dh2HneydsbUi1hakdlo-31b-K9j5s3rywqqci7NTMZt9tzQdXIYP3Uc1ipRPw1WdD-WXH_we__Orr8ClFrKSpMmxq7Chy2uwlZSGrp-ckV1iRaR2d34LPr9_rWvrAK0-khe93WdN7GnqS_J2qnRF7EmcqFGyaUGempVUEXOxr_WcoF2IqS5t9Onk4X6aPiLJ7LhaTOvJCRGlInaBLfSCtO6wx9dhfPD8zbNDtz3awZU0jmqXqtAMfh3m0pOob1XU0yrWgimqChYoXysR0tzjecHDImZxrJkvPFowiv46OrwBg7Iq9S0guQ6E0PkoGilBQym4jAPtUxZoatCnHzjwuOvfTLa-53j8xiyz_IexDJs2a5vWgQd99Lzx-_hN3DamSobTADarGZQySyLOaGQwN3Vgp-3Jv5XS5VfW9XYWIKdkhvZFDtzvH2MFqIcrdbWyMTGSP2qKuNmkY19RSHmE5gAOxGuJ2gego_j6k3I6sc7i3MDPkccd2O1T-o_vf_tfA-_ARbxt9q62YVAvVvquQXN1fq8dtV8BAoxDmA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+Sports+Video+Classification+Based+on+Deep+Neural+Network+%28DNN%29+Algorithm+and+Transfer+Learning&rft.jtitle=Computational+intelligence+and+neuroscience&rft.au=Guo%2C+Xiaoping&rft.date=2021&rft.eissn=1687-5273&rft.volume=2021&rft.spage=1825273&rft_id=info:doi/10.1155%2F2021%2F1825273&rft_id=info%3Apmid%2F34868286&rft.externalDocID=34868286 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-5265&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-5265&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-5265&client=summon |