Intelligent Sports Video Classification Based on Deep Neural Network (DNN) Algorithm and Transfer Learning

Traditional text annotation-based video retrieval is done by manually labeling videos with text, which is inefficient and highly subjective and generally cannot accurately describe the meaning of videos. Traditional content-based video retrieval uses convolutional neural networks to extract the unde...

Full description

Saved in:
Bibliographic Details
Published inComputational intelligence and neuroscience Vol. 2021; no. 1; p. 1825273
Main Author Guo, Xiaoping
Format Journal Article
LanguageEnglish
Published United States Hindawi 2021
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN1687-5265
1687-5273
1687-5273
DOI10.1155/2021/1825273

Cover

Abstract Traditional text annotation-based video retrieval is done by manually labeling videos with text, which is inefficient and highly subjective and generally cannot accurately describe the meaning of videos. Traditional content-based video retrieval uses convolutional neural networks to extract the underlying feature information of images to build indexes and achieves similarity retrieval of video feature vectors according to certain similarity measure algorithms. In this paper, by studying the characteristics of sports videos, we propose the histogram difference method based on using transfer learning and the four-step method based on block matching for mutation detection and fading detection of video shots, respectively. By adaptive thresholding, regions with large frame difference changes are marked as candidate regions for shots, and then the shot boundaries are determined by mutation detection algorithm. Combined with the characteristics of sports video, this paper proposes a key frame extraction method based on clustering and optical flow analysis, and experimental comparison with the traditional clustering method. In addition, this paper proposes a key frame extraction algorithm based on clustering and optical flow analysis for key frame extraction of sports video. The algorithm effectively removes the redundant frames, and the extracted key frames are more representative. Through extensive experiments, the keyword fuzzy finding algorithm based on improved deep neural network and ontology semantic expansion proposed in this paper shows a more desirable retrieval performance, and it is feasible to use this method for video underlying feature extraction, annotation, and keyword finding, and one of the outstanding features of the algorithm is that it can quickly and effectively retrieve the desired video in a large number of Internet video resources, reducing the false detection rate and leakage rate while improving the fidelity, which basically meets people’s daily needs.
AbstractList Traditional text annotation-based video retrieval is done by manually labeling videos with text, which is inefficient and highly subjective and generally cannot accurately describe the meaning of videos. Traditional content-based video retrieval uses convolutional neural networks to extract the underlying feature information of images to build indexes and achieves similarity retrieval of video feature vectors according to certain similarity measure algorithms. In this paper, by studying the characteristics of sports videos, we propose the histogram difference method based on using transfer learning and the four-step method based on block matching for mutation detection and fading detection of video shots, respectively. By adaptive thresholding, regions with large frame difference changes are marked as candidate regions for shots, and then the shot boundaries are determined by mutation detection algorithm. Combined with the characteristics of sports video, this paper proposes a key frame extraction method based on clustering and optical flow analysis, and experimental comparison with the traditional clustering method. In addition, this paper proposes a key frame extraction algorithm based on clustering and optical flow analysis for key frame extraction of sports video. The algorithm effectively removes the redundant frames, and the extracted key frames are more representative. Through extensive experiments, the keyword fuzzy finding algorithm based on improved deep neural network and ontology semantic expansion proposed in this paper shows a more desirable retrieval performance, and it is feasible to use this method for video underlying feature extraction, annotation, and keyword finding, and one of the outstanding features of the algorithm is that it can quickly and effectively retrieve the desired video in a large number of Internet video resources, reducing the false detection rate and leakage rate while improving the fidelity, which basically meets people’s daily needs.
Traditional text annotation-based video retrieval is done by manually labeling videos with text, which is inefficient and highly subjective and generally cannot accurately describe the meaning of videos. Traditional content-based video retrieval uses convolutional neural networks to extract the underlying feature information of images to build indexes and achieves similarity retrieval of video feature vectors according to certain similarity measure algorithms. In this paper, by studying the characteristics of sports videos, we propose the histogram difference method based on using transfer learning and the four-step method based on block matching for mutation detection and fading detection of video shots, respectively. By adaptive thresholding, regions with large frame difference changes are marked as candidate regions for shots, and then the shot boundaries are determined by mutation detection algorithm. Combined with the characteristics of sports video, this paper proposes a key frame extraction method based on clustering and optical flow analysis, and experimental comparison with the traditional clustering method. In addition, this paper proposes a key frame extraction algorithm based on clustering and optical flow analysis for key frame extraction of sports video. The algorithm effectively removes the redundant frames, and the extracted key frames are more representative. Through extensive experiments, the keyword fuzzy finding algorithm based on improved deep neural network and ontology semantic expansion proposed in this paper shows a more desirable retrieval performance, and it is feasible to use this method for video underlying feature extraction, annotation, and keyword finding, and one of the outstanding features of the algorithm is that it can quickly and effectively retrieve the desired video in a large number of Internet video resources, reducing the false detection rate and leakage rate while improving the fidelity, which basically meets people's daily needs.Traditional text annotation-based video retrieval is done by manually labeling videos with text, which is inefficient and highly subjective and generally cannot accurately describe the meaning of videos. Traditional content-based video retrieval uses convolutional neural networks to extract the underlying feature information of images to build indexes and achieves similarity retrieval of video feature vectors according to certain similarity measure algorithms. In this paper, by studying the characteristics of sports videos, we propose the histogram difference method based on using transfer learning and the four-step method based on block matching for mutation detection and fading detection of video shots, respectively. By adaptive thresholding, regions with large frame difference changes are marked as candidate regions for shots, and then the shot boundaries are determined by mutation detection algorithm. Combined with the characteristics of sports video, this paper proposes a key frame extraction method based on clustering and optical flow analysis, and experimental comparison with the traditional clustering method. In addition, this paper proposes a key frame extraction algorithm based on clustering and optical flow analysis for key frame extraction of sports video. The algorithm effectively removes the redundant frames, and the extracted key frames are more representative. Through extensive experiments, the keyword fuzzy finding algorithm based on improved deep neural network and ontology semantic expansion proposed in this paper shows a more desirable retrieval performance, and it is feasible to use this method for video underlying feature extraction, annotation, and keyword finding, and one of the outstanding features of the algorithm is that it can quickly and effectively retrieve the desired video in a large number of Internet video resources, reducing the false detection rate and leakage rate while improving the fidelity, which basically meets people's daily needs.
Audience Academic
Author Guo, Xiaoping
AuthorAffiliation Shaanxi Normal University, Xi'an, Shaanxi 710000, China
AuthorAffiliation_xml – name: Shaanxi Normal University, Xi'an, Shaanxi 710000, China
Author_xml – sequence: 1
  givenname: Xiaoping
  orcidid: 0000-0003-4833-7107
  surname: Guo
  fullname: Guo, Xiaoping
  organization: Shaanxi Normal UniversityXi’anShaanxi 710000Chinasnnu.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34868286$$D View this record in MEDLINE/PubMed
BookMark eNqFkcuP0zAQhyO0K_YBN87IEpdFbFjHr7gXpNLlsVJVDixcLTeepC6pHeyEav97HFoKrAScPJK_-Xn8zVl25LyDLHtS4JdFwfkVwaS4KiThpKQPstNCyDIf66NDLfhJdhbjGmNeckweZieUSSGJFKfZ-sb10La2Adejj50PfUSfrQGPZq2O0da20r31Dr3WEQxKxTVAhxYwBN2mo9_68AVdXC8Wz9G0bXyw_WqDtDPoNmgXawhoDjo465pH2XGt2wiP9-d59untm9vZ-3z-4d3NbDrPK1aKPmeGcloAXVa44pRiwzCYEjQ3zNScmAKMpmyJ5bKWtC55WQIvNGY1ZxRLAvQ8y3e5g-v03Va3reqC3ehwpwqsRmdqdKb2zhL_asd3w3IDpkom0t8OPV5b9eeNsyvV-G9KCsonWKaAi31A8F8HiL3a2Fglq9qBH6IiApcUc8HGt57dQ9d-CC7pGCkhuCRC_KIa3YKyrvbp3WoMVVMhORN4MmGJevr73IeBfy43AWQHVMHHGKBWle1_bDPF2fZvNi7vNf1H3osdvrLO6K39N_0dDe_PsQ
CitedBy_id crossref_primary_10_1155_2023_9862902
crossref_primary_10_3390_app14020948
crossref_primary_10_1080_13682199_2023_2191539
Cites_doi 10.1016/j.cirp.2019.04.046
10.1109/TSG.2020.2970156
10.1016/j.tust.2018.11.011
10.1016/j.triboint.2019.05.029
10.1007/s12652-019-01474-0
10.1109/tii.2020.2994747
10.1109/TII.2020.3016958
10.1121/10.0000492
10.1016/j.rbmo.2020.07.003
10.1166/jmihi.2020.3177
10.1016/j.ipm.2018.10.014
10.1016/j.tust.2018.09.022
10.2298/CSIS180105025Z
10.1016/j.cosrev.2018.10.003
10.1016/j.promfg.2019.05.086
10.1016/j.ins.2019.05.040
10.1109/MNET.2018.1800121
10.1007/s12652-020-02537-3
10.1016/j.renene.2020.01.093
10.1109/TII.2019.2952261
10.1007/s11227-019-02954-y
ContentType Journal Article
Copyright Copyright © 2021 Xiaoping Guo.
COPYRIGHT 2021 John Wiley & Sons, Inc.
Copyright © 2021 Xiaoping Guo. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright © 2021 Xiaoping Guo. 2021
Copyright_xml – notice: Copyright © 2021 Xiaoping Guo.
– notice: COPYRIGHT 2021 John Wiley & Sons, Inc.
– notice: Copyright © 2021 Xiaoping Guo. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
– notice: Copyright © 2021 Xiaoping Guo. 2021
DBID RHU
RHW
RHX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QF
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7X7
7XB
8AL
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
CWDGH
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
K7-
K9.
KR7
L6V
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
Q9U
7X8
5PM
ADTOC
UNPAY
DOI 10.1155/2021/1825273
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
Middle East & Africa Database (ProQuest)
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
ProQuest SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Materials Research Database
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Middle East & Africa Database
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
Corrosion Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Publicly Available Content Database
MEDLINE
CrossRef

Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1687-5273
Editor Gupta, Suneet Kumar
Editor_xml – sequence: 1
  givenname: Suneet Kumar
  surname: Gupta
  fullname: Gupta, Suneet Kumar
ExternalDocumentID 10.1155/2021/1825273
PMC8635908
A685460994
34868286
10_1155_2021_1825273
Genre Retracted Publication
Journal Article
GrantInformation_xml – fundername: Shaanxi Normal University
GroupedDBID ---
188
29F
2WC
3V.
4.4
53G
5GY
5VS
6J9
7X7
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAFWJ
AAJEY
AAKPC
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIWK
ACM
ACPRK
ADBBV
ADRAZ
AENEX
AFKRA
AHMBA
AINHJ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
CCPQU
CS3
CWDGH
DIK
DWQXO
E3Z
EBD
EBS
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
I-F
IAO
ICD
INH
INR
IPY
ITC
K6V
K7-
KQ8
L6V
LK8
M0N
M1P
M48
M7P
M7S
MK~
O5R
O5S
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
Q2X
RHU
RHW
RHX
RNS
RPM
SV3
TR2
TUS
UKHRP
XH6
~8M
0R~
24P
2UF
AAMMB
AAYXX
ACCMX
ACUHS
AEFGJ
AGXDD
AIDQK
AIDYY
C1A
CITATION
EJD
H13
IHR
IL9
OVT
PGMZT
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
UZ4
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7XB
8AL
8BQ
8FD
8FK
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c476t-4d3531e3bc0c5330d40ed7ea5d4df52d1eda34b08bf83f7577e51a04f543082e3
IEDL.DBID M48
ISSN 1687-5265
1687-5273
IngestDate Sun Oct 26 04:15:30 EDT 2025
Tue Sep 30 16:55:31 EDT 2025
Sun Sep 28 09:39:56 EDT 2025
Tue Oct 07 06:12:28 EDT 2025
Mon Oct 20 22:47:35 EDT 2025
Mon Jul 21 06:02:28 EDT 2025
Wed Oct 01 02:22:15 EDT 2025
Thu Apr 24 23:06:44 EDT 2025
Sun Jun 02 18:51:55 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © 2021 Xiaoping Guo.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c476t-4d3531e3bc0c5330d40ed7ea5d4df52d1eda34b08bf83f7577e51a04f543082e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Correction/Retraction-3
Academic Editor: Suneet Kumar Gupta
ORCID 0000-0003-4833-7107
OpenAccessLink https://dx.doi.org/10.1155/2021/1825273
PMID 34868286
PQID 2606658266
PQPubID 237303
ParticipantIDs unpaywall_primary_10_1155_2021_1825273
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8635908
proquest_miscellaneous_2607305643
proquest_journals_2606658266
gale_infotracmisc_A685460994
pubmed_primary_34868286
crossref_citationtrail_10_1155_2021_1825273
crossref_primary_10_1155_2021_1825273
hindawi_primary_10_1155_2021_1825273
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Computational intelligence and neuroscience
PublicationTitleAlternate Comput Intell Neurosci
PublicationYear 2021
Publisher Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
References e_1_2_8_16_2
e_1_2_8_17_2
e_1_2_8_18_2
e_1_2_8_19_2
e_1_2_8_12_2
e_1_2_8_13_2
e_1_2_8_14_2
e_1_2_8_15_2
e_1_2_8_9_2
e_1_2_8_2_2
e_1_2_8_1_2
e_1_2_8_4_2
e_1_2_8_3_2
e_1_2_8_6_2
e_1_2_8_5_2
e_1_2_8_8_2
e_1_2_8_7_2
e_1_2_8_20_2
e_1_2_8_10_2
e_1_2_8_21_2
e_1_2_8_11_2
38074351 - Comput Intell Neurosci. 2023 Nov 29;2023:9862902
References_xml – ident: e_1_2_8_15_2
  doi: 10.1016/j.cirp.2019.04.046
– ident: e_1_2_8_16_2
  doi: 10.1109/TSG.2020.2970156
– ident: e_1_2_8_6_2
  doi: 10.1016/j.tust.2018.11.011
– ident: e_1_2_8_19_2
  doi: 10.1016/j.triboint.2019.05.029
– ident: e_1_2_8_11_2
  doi: 10.1007/s12652-019-01474-0
– ident: e_1_2_8_21_2
  doi: 10.1109/tii.2020.2994747
– ident: e_1_2_8_12_2
  doi: 10.1109/TII.2020.3016958
– ident: e_1_2_8_13_2
  doi: 10.1121/10.0000492
– ident: e_1_2_8_14_2
  doi: 10.1016/j.rbmo.2020.07.003
– ident: e_1_2_8_20_2
  doi: 10.1166/jmihi.2020.3177
– ident: e_1_2_8_1_2
  doi: 10.1016/j.ipm.2018.10.014
– ident: e_1_2_8_5_2
  doi: 10.1016/j.tust.2018.09.022
– ident: e_1_2_8_17_2
  doi: 10.2298/CSIS180105025Z
– ident: e_1_2_8_18_2
  doi: 10.1016/j.cosrev.2018.10.003
– ident: e_1_2_8_4_2
  doi: 10.1016/j.promfg.2019.05.086
– ident: e_1_2_8_8_2
  doi: 10.1016/j.ins.2019.05.040
– ident: e_1_2_8_10_2
  doi: 10.1109/MNET.2018.1800121
– ident: e_1_2_8_7_2
  doi: 10.1007/s12652-020-02537-3
– ident: e_1_2_8_2_2
  doi: 10.1016/j.renene.2020.01.093
– ident: e_1_2_8_9_2
  doi: 10.1109/TII.2019.2952261
– ident: e_1_2_8_3_2
  doi: 10.1007/s11227-019-02954-y
– reference: 38074351 - Comput Intell Neurosci. 2023 Nov 29;2023:9862902
SSID ssj0057502
Score 2.248385
SecondaryResourceType retracted_publication
Snippet Traditional text annotation-based video retrieval is done by manually labeling videos with text, which is inefficient and highly subjective and generally...
Traditional text annotation‐based video retrieval is done by manually labeling videos with text, which is inefficient and highly subjective and generally...
SourceID unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
hindawi
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1825273
SubjectTerms Accuracy
Algorithms
Annotations
Artificial neural networks
Classification
Cluster Analysis
Clustering
Deep learning
Feature extraction
Frames (data processing)
Histograms
Humans
Information processing
Information technology
Machine Learning
Methods
Mutation
Neural networks
Neural Networks, Computer
Optical flow (image analysis)
Performance indices
Query expansion
Retrieval
Similarity
Sports
Support vector machines
Transfer learning
Video data
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLbYJAQvCBiXwEBGGhMIRcvFdtzHwpgKD31ADPUtcuyTtahLqzbVtH_POY4bUcbtLZFvSY6Pz3ecT58ZOxpYWxESjXUt8liYWsfaqjSWxhrhEDCA9SzfsRqdi88TOQkiSeubv_Ax2lF6np4gDCapsD22pxUxt76MJtsFFwFHRy1U6C-k9r7lt__SdifyhPX39pQy36vZ7_DlTZrknU2zNNdXZj7_KQad3Wf3Anjkw87aD9gtaB6yg2GDifPlNT_mns7p98kP2PdPvdhmy_1Z5mv-beZgwf05mMQQ8kbh7zGOOY4XpwBLTmIdOMS4Y4fzN6fj8Vs-nF8sVrN2eslN47gPbzWseNBmvXjEzs8-fv0wisPBCrEVhWpj4XJ0Pcgrm1hilzqRgCvASCdcLTOXgjO5qBJd1TqvC1kUIFOTiFoKUreB_DHbbxYNPGW8gswYqAZq4IzIrdG2yCAVMgOB2C_NIvZu-9FLG1TH6fCLeemzDylLMlEZTBSx133tZae28Yd6h2S_kpwQe7PoErYcKi2FQsQrInYU7PqvXrZGL4PnrsuMMjqJSZeK2Ku-mAYgNloDi42vU1DqJbCLJ90c6QfKBU7QTGPrYmf29BVIz3u3pJlNva63RvA3SHTEjvt59tfnf_Z_r_mc3aXbbt_okO23qw28QCTVVi-9H_0A8ooTFQ
  priority: 102
  providerName: Hindawi Publishing
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fb9MwED6NTgheJmAwMgYy0phAKFp-2In7gFDHNg0eIoQY2lvk2Je1qEvL1mraf4_PcQIVMN4i5WRbvjv7s_PlO4DdodYVIdFQ1jwNuaplKHUWh0JpxY0FDKgdy7fITk75pzNxtgZF9y8M0Sq7NdEt1Gam6Y58PyGkLSwYzt7Pf4RUNYq-rnYlNJQvrWDeOYmxO7CekDLWANYPjorPX7q12WKTloWY2dQiYfiOCi8E3QLE-xZtkyLZyibll-q7YzokX0_-BkX_ZFTeWzZzdXOtptPftqvjB7DhcSYbtYHxENaweQSbo8aesS9u2B5zzE93pb4J3z_2upwL5sqeX7FvE4Mz5kpmEpnI-Y8d2C3PMPtwiDhnpOthuyhaIjl7fVgUb9hoem5nbTG-YKoxzO2ENV4yL-N6_hhOj4--fjgJfQ2GUPM8W4TcpDZLMa10pImIaniEJkclDDe1SEyMRqW8imRVy7TORZ6jiFXEa8FJCAfTJzBoZg0-BVZhohRWw2xoFE-1kjpPMOYiQW5hYpwE8Lab9FJ7gXKqkzEt3UFFiJJcVHoXBfCqt563whz_sNsh_5WUr7Y1bbNHl6NMCp5ZcMwD2PV-_V8rndNLn-RX5a-QDOBl_5o6IOJag7Ols8nplMZtE1ttjPQdpVxm9Bd_APlK9PQGJP29-qaZjJ0EuLQ4cRjJAPb6OLt1_Nu3j_8Z3Cfr9mppBwaLyyU-t2BrUb3wGfQTLyYj7Q
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwGP00OiF44TYugYGMNCYQSpeLnbjiKTCmwUOEEEVDgCLHdtaKLqnalGn8evw5Fyh38ZYon-zE_myfY50cA-yMpMwRibq8oKFLRcFdLiPfZUIKqgxg0NKqfNPocExfHrGjDXjS_Quj0CK-Emo5nCAnPZ3a2bpt1-WeNGzR0HV_z8BitA4bzlVxDjYjZoD4ADbH6avkHVKsyAwdNH7_dh2HneydsbUi1hakdlo-31b-K9j5s3rywqqci7NTMZt9tzQdXIYP3Uc1ipRPw1WdD-WXH_we__Orr8ClFrKSpMmxq7Chy2uwlZSGrp-ckV1iRaR2d34LPr9_rWvrAK0-khe93WdN7GnqS_J2qnRF7EmcqFGyaUGempVUEXOxr_WcoF2IqS5t9Onk4X6aPiLJ7LhaTOvJCRGlInaBLfSCtO6wx9dhfPD8zbNDtz3awZU0jmqXqtAMfh3m0pOob1XU0yrWgimqChYoXysR0tzjecHDImZxrJkvPFowiv46OrwBg7Iq9S0guQ6E0PkoGilBQym4jAPtUxZoatCnHzjwuOvfTLa-53j8xiyz_IexDJs2a5vWgQd99Lzx-_hN3DamSobTADarGZQySyLOaGQwN3Vgp-3Jv5XS5VfW9XYWIKdkhvZFDtzvH2MFqIcrdbWyMTGSP2qKuNmkY19RSHmE5gAOxGuJ2gego_j6k3I6sc7i3MDPkccd2O1T-o_vf_tfA-_ARbxt9q62YVAvVvquQXN1fq8dtV8BAoxDmA
  priority: 102
  providerName: Unpaywall
Title Intelligent Sports Video Classification Based on Deep Neural Network (DNN) Algorithm and Transfer Learning
URI https://dx.doi.org/10.1155/2021/1825273
https://www.ncbi.nlm.nih.gov/pubmed/34868286
https://www.proquest.com/docview/2606658266
https://www.proquest.com/docview/2607305643
https://pubmed.ncbi.nlm.nih.gov/PMC8635908
https://downloads.hindawi.com/journals/cin/2021/1825273.pdf
UnpaywallVersion publishedVersion
Volume 2021
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: KQ8
  dateStart: 20070625
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: KQ8
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1687-5273
  dateEnd: 20230628
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: ABDBF
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: DIK
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: GX1
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: 7X7
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Middle East & Africa Database (ProQuest)
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: CWDGH
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/middleeastafrica
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: 8FG
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Open Access Journals
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250430
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: M48
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: 24P
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fb9MwED7th2B7QUBhBEZlpDGBUKBJ7MR9QCilKwWJaJooKk-RYztrUZeWrtXof8_ZSaNNdPCSRMnFjnJ3ue-Sy3cAR20pM4NEXZ7TwKUi5y6XoecyIQVVCBi0tFW-Sdgf0C9DNtyCdbfR6gZebkztTD-pwXzy9vev1Qd0-PfW4Rkz-bv3DnGy4RLbhl2MUW3TxOErrb8nICYxdTyNTWfsw92A8rD8nfpabKqe0HdGJje-Gm9CoH8XUu4ti5lYXYnJ5FqU6t2HexW8JHFpDw9gSxcPoREXmFpfrMgxsQWf9k16A35-ruk4F8R2O78k38dKT4ntlGlqiKzaSAcjnSK40dV6RgydB06RlPXj5FU3SV6TeHI-nY8XowsiCkVsAMz1nFTsreePYNA7-fax71atF1xJo3DhUhWgc-ogky1p6k8VbWkVacEUVTnzlaeVCGjW4lnOgzxiUaSZJ1o0Z9Tw3-jgMewU00I_AZJpXwidtcO2EjSQgsvI1x5lvqaIDj3fgTfrm57KipfctMeYpDY_YSw12korbTnwspaelXwct8gdGv2lxnBwNIlOI9M45IyGiImpA0eVXv83ylrp6do0U9_kfAzTstCBF_VhM4GpVyv0dGllIpOcURzioLSReqK1tTkQ3bCeWsAwft88UoxHlvmbIzxst7gDx7Wd_fP6n946-TPYN4Lly6RD2FnMl_o5wqtF1oTtaBjhkvc-NWE37nQ7PVx3TpLTs6b1Klye9Ye4b5Ccxj_-AFO-JLk
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LctMwFL1T0mHKhld5GAqImTYDw7j1Q7KdBYvQUBJasmpLd0aW5CaQOqFxJhM-il_hl9CVHxAeZdUFu8xYkTTKuVdH8sm5AJstIRJkonaUUt-mPI3sSASuzbjgVGrCoIRR-faD7hF9e8JOVuBr9V8YlFVWOdEkajkWeEe-4yHTZpoMB6WCcl8t5vp8Nn3Z6-gfc8vz9l4f7nbtsoSALWgY5DaVvgaZ8hPhCNRRSuooGSrOJJUp86SrJPdp4kRJGvlpyMJQMZc7NGUUfVyUr_ttTj7bWKUK3-aWJTuuwKrGues1YHX3fedNt8r9mvsUKsdAhy4az1dSe8bwlsHd0WweHc-WNsFyK7g6wEP4fPgnqvu7YnNtlk34Ys5Ho5-2w70b8K1ayEIF82l7lifb4ssvHpP_z0rfhOslMyftIpRuwYrKbsN6O-P5-GxBmsRoZc1LiHX42KudTHNiCsVPyfFQqjExRUZRfmUQT15pkiCJ_tBRakLQCUUP0S-k9-RZp99_TtqjUz2bfHBGeCaJ4Q6pOiel8e3pHTi6lIW4C41snKn7QBLlca6SVtCSnPqCRyL0lEuZp6gm1q5nwYsKRrEoLd2xssgoNkc7xmIEXVyCzoKtuvWksDL5S7sNRGSMGU73JnS-EXE7iBgN9HGCWrBZIvVfvVToisu0OI1_QMuCp_VjHAClfpkaz0ybEM-1VHdxr0B9PZBPowB9DywIl-KhboBm6ctPsuHAmKZHmlm3nMiCZh05F87_wcXzfwJr3cN3B_FBr7__EK7hN4uLuQ1o5Ocz9UhT1Tx5XOYHAh8uO3a-A3_unpU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGJi4v3MYlMMBI2wRCWZvETtwHhMpKWRmqeGCwt-DYzlro0rKmqspP46_wZzjHuUC5jKc98BYpjh0n5xx_x_nyHUI2W0oliERdkbLAZTIVrlCh53KpJNMAGIyyLN9-uHfAXh3ywxXytfoXBmmVVUy0gVqPFe6RN3xE2hzAcNhIS1rEm0732eSzixWk8EtrVU6jMJF9s5hD-jZ92uvAu97y_e6Lt7t7bllhwFUsCnOX6QBs0ASJaiqkWWrWNDoykmumU-5rz2gZsKQpklQEacSjyHBPNlnKGcq8mAD6PUfWRBiFEBTWdt93Xu5V6wDgoILxGIIbowh9RbvnHHccvAYge1Q_W1oQy2Xh_AAT8vnwT7D3d_bmxVk2kYu5HI1-Whq7V8i36qEWjJhPO7M82VFfftGb_D-f-lVyuUTstF242DWyYrLrZL2dyXx8vKDb1HJo7ceJdfKxVyuc5tQWkJ_Sd0NtxtQWH0ValvUE-hzAg6Zw0DFmQlEhBYboF5R8-qjT7z-m7dERzD4fHFOZaWoxRWpOaCmIe3SDHJzJrG-S1WycmduEJsaX0iStsKUlC5QUKvKNx7hvGABuz3fIk8qkYlVKvWPFkVFsUz7OYzTAuDRAh2zVrSeFxMlf2m2gdcYY-aA3BXFIxe1QcBZCmsEcslla7b96qSwtLsPlNP5hZg55WJ_GAZACmJnxzLaJMN9l0MWtwgPqgQImQtRDcEi05Bt1AxRRXz6TDQdWTF0A4m41hUO2ay869f7vnH7_D8gFcJD4da-_f5dcwguL_boNspqfzMw9QLB5cr8MFZR8OGs_-Q6Tvadd
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwGP00OiF44TYugYGMNCYQSpeLnbjiKTCmwUOEEEVDgCLHdtaKLqnalGn8evw5Fyh38ZYon-zE_myfY50cA-yMpMwRibq8oKFLRcFdLiPfZUIKqgxg0NKqfNPocExfHrGjDXjS_Quj0CK-Emo5nCAnPZ3a2bpt1-WeNGzR0HV_z8BitA4bzlVxDjYjZoD4ADbH6avkHVKsyAwdNH7_dh2HneydsbUi1hakdlo-31b-K9j5s3rywqqci7NTMZt9tzQdXIYP3Uc1ipRPw1WdD-WXH_we__Orr8ClFrKSpMmxq7Chy2uwlZSGrp-ckV1iRaR2d34LPr9_rWvrAK0-khe93WdN7GnqS_J2qnRF7EmcqFGyaUGempVUEXOxr_WcoF2IqS5t9Onk4X6aPiLJ7LhaTOvJCRGlInaBLfSCtO6wx9dhfPD8zbNDtz3awZU0jmqXqtAMfh3m0pOob1XU0yrWgimqChYoXysR0tzjecHDImZxrJkvPFowiv46OrwBg7Iq9S0guQ6E0PkoGilBQym4jAPtUxZoatCnHzjwuOvfTLa-53j8xiyz_IexDJs2a5vWgQd99Lzx-_hN3DamSobTADarGZQySyLOaGQwN3Vgp-3Jv5XS5VfW9XYWIKdkhvZFDtzvH2MFqIcrdbWyMTGSP2qKuNmkY19RSHmE5gAOxGuJ2gego_j6k3I6sc7i3MDPkccd2O1T-o_vf_tfA-_ARbxt9q62YVAvVvquQXN1fq8dtV8BAoxDmA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+Sports+Video+Classification+Based+on+Deep+Neural+Network+%28DNN%29+Algorithm+and+Transfer+Learning&rft.jtitle=Computational+intelligence+and+neuroscience&rft.au=Guo%2C+Xiaoping&rft.date=2021&rft.eissn=1687-5273&rft.volume=2021&rft.spage=1825273&rft_id=info:doi/10.1155%2F2021%2F1825273&rft_id=info%3Apmid%2F34868286&rft.externalDocID=34868286
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-5265&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-5265&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-5265&client=summon