An Analysis of New Feature Extraction Methods Based on Machine Learning Methods for Classification Radiological Images
The lungs are COVID-19’s most important focus, as it induces inflammatory changes in the lungs that can lead to respiratory insufficiency. Reducing the supply of oxygen to human cells negatively impacts humans, and multiorgan failure with a high mortality rate may, in certain circumstances, occur. R...
Saved in:
| Published in | Computational intelligence and neuroscience Vol. 2022; pp. 1 - 13 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Hindawi
25.05.2022
John Wiley & Sons, Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1687-5265 1687-5273 1687-5273 |
| DOI | 10.1155/2022/3035426 |
Cover
| Abstract | The lungs are COVID-19’s most important focus, as it induces inflammatory changes in the lungs that can lead to respiratory insufficiency. Reducing the supply of oxygen to human cells negatively impacts humans, and multiorgan failure with a high mortality rate may, in certain circumstances, occur. Radiological pulmonary evaluation is a vital part of patient therapy for the critically ill patient with COVID-19. The evaluation of radiological imagery is a specialized activity that requires a radiologist. Artificial intelligence to display radiological images is one of the essential topics. Using a deep machine learning technique to identify morphological differences in the lungs of COVID-19-infected patients could yield promising results on digital images of chest X-rays. Minor differences in digital images that are not detectable or apparent to the human eye may be detected using computer vision algorithms. This paper uses machine learning methods to diagnose COVID-19 on chest X-rays, and the findings have been very promising. The dataset includes COVID-19-enhanced X-ray images for disease detection using chest X-ray images. The data were gathered from two publicly accessible datasets. The feature extractions are done using the gray level co-occurrence matrix methods. K-nearest neighbor, support vector machine, linear discrimination analysis, naïve Bayes, and convolutional neural network methods are used for the classification of patients. According to the findings, convolutional neural networks’ efficiency linked to imaging modalities with fewer human involvements outperforms other traditional machine learning approaches. |
|---|---|
| AbstractList | The lungs are COVID-19’s most important focus, as it induces inflammatory changes in the lungs that can lead to respiratory insufficiency. Reducing the supply of oxygen to human cells negatively impacts humans, and multiorgan failure with a high mortality rate may, in certain circumstances, occur. Radiological pulmonary evaluation is a vital part of patient therapy for the critically ill patient with COVID-19. The evaluation of radiological imagery is a specialized activity that requires a radiologist. Artificial intelligence to display radiological images is one of the essential topics. Using a deep machine learning technique to identify morphological differences in the lungs of COVID-19-infected patients could yield promising results on digital images of chest X-rays. Minor differences in digital images that are not detectable or apparent to the human eye may be detected using computer vision algorithms. This paper uses machine learning methods to diagnose COVID-19 on chest X-rays, and the findings have been very promising. The dataset includes COVID-19-enhanced X-ray images for disease detection using chest X-ray images. The data were gathered from two publicly accessible datasets. The feature extractions are done using the gray level co-occurrence matrix methods. K-nearest neighbor, support vector machine, linear discrimination analysis, naïve Bayes, and convolutional neural network methods are used for the classification of patients. According to the findings, convolutional neural networks’ efficiency linked to imaging modalities with fewer human involvements outperforms other traditional machine learning approaches. The lungs are COVID-19's most important focus, as it induces inflammatory changes in the lungs that can lead to respiratory insufficiency. Reducing the supply of oxygen to human cells negatively impacts humans, and multiorgan failure with a high mortality rate may, in certain circumstances, occur. Radiological pulmonary evaluation is a vital part of patient therapy for the critically ill patient with COVID-19. The evaluation of radiological imagery is a specialized activity that requires a radiologist. Artificial intelligence to display radiological images is one of the essential topics. Using a deep machine learning technique to identify morphological differences in the lungs of COVID-19-infected patients could yield promising results on digital images of chest X-rays. Minor differences in digital images that are not detectable or apparent to the human eye may be detected using computer vision algorithms. This paper uses machine learning methods to diagnose COVID-19 on chest X-rays, and the findings have been very promising. The dataset includes COVID-19-enhanced X-ray images for disease detection using chest X-ray images. The data were gathered from two publicly accessible datasets. The feature extractions are done using the gray level co-occurrence matrix methods. K-nearest neighbor, support vector machine, linear discrimination analysis, naïve Bayes, and convolutional neural network methods are used for the classification of patients. According to the findings, convolutional neural networks' efficiency linked to imaging modalities with fewer human involvements outperforms other traditional machine learning approaches.The lungs are COVID-19's most important focus, as it induces inflammatory changes in the lungs that can lead to respiratory insufficiency. Reducing the supply of oxygen to human cells negatively impacts humans, and multiorgan failure with a high mortality rate may, in certain circumstances, occur. Radiological pulmonary evaluation is a vital part of patient therapy for the critically ill patient with COVID-19. The evaluation of radiological imagery is a specialized activity that requires a radiologist. Artificial intelligence to display radiological images is one of the essential topics. Using a deep machine learning technique to identify morphological differences in the lungs of COVID-19-infected patients could yield promising results on digital images of chest X-rays. Minor differences in digital images that are not detectable or apparent to the human eye may be detected using computer vision algorithms. This paper uses machine learning methods to diagnose COVID-19 on chest X-rays, and the findings have been very promising. The dataset includes COVID-19-enhanced X-ray images for disease detection using chest X-ray images. The data were gathered from two publicly accessible datasets. The feature extractions are done using the gray level co-occurrence matrix methods. K-nearest neighbor, support vector machine, linear discrimination analysis, naïve Bayes, and convolutional neural network methods are used for the classification of patients. According to the findings, convolutional neural networks' efficiency linked to imaging modalities with fewer human involvements outperforms other traditional machine learning approaches. The lungs are COVID-19's most important focus, as it induces inflammatory changes in the lungs that can lead to respiratory insufficiency. Reducing the supply of oxygen to human cells negatively impacts humans, and multiorgan failure with a high mortality rate may, in certain circumstances, occur. Radiological pulmonary evaluation is a vital part of patient therapy for the critically ill patient with COVID-19. The evaluation of radiological imagery is a specialized activity that requires a radiologist. Artificial intelligence to display radiological images is one of the essential topics. Using a deep machine learning technique to identify morphological differences in the lungs of COVID-19-infected patients could yield promising results on digital images of chest X-rays. Minor differences in digital images that are not detectable or apparent to the human eye may be detected using computer vision algorithms. This paper uses machine learning methods to diagnose COVID-19 on chest X-rays, and the findings have been very promising. The dataset includes COVID-19-enhanced X-ray images for disease detection using chest X-ray images. The data were gathered from two publicly accessible datasets. The feature extractions are done using the gray level co-occurrence matrix methods. -nearest neighbor, support vector machine, linear discrimination analysis, naïve Bayes, and convolutional neural network methods are used for the classification of patients. According to the findings, convolutional neural networks' efficiency linked to imaging modalities with fewer human involvements outperforms other traditional machine learning approaches. |
| Audience | Academic |
| Author | Jalali Farahani, Roza Mohammed, Adil Hussein Ardalani, Mohammadreza Vazifeh Salehi, Ali Rezaei Hashemi, Mandana Zadeh, Firoozeh Abolhasani |
| AuthorAffiliation | 3 Industrial Engineering Department, Technical and Engineering Faculty, University of Science and Culture, Tehran, Iran 2 Robotics Research Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran 4 Department of Electrical Engineering, Islamic Azad University, Tehran, Iran 1 Department of Surgery, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran 5 School of Industrial and Information Engineering, Politecnico di Milano University, Milan, Italy 6 Department of Communication and Computer Engineering, Faculty of Engineering, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq |
| AuthorAffiliation_xml | – name: 1 Department of Surgery, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran – name: 5 School of Industrial and Information Engineering, Politecnico di Milano University, Milan, Italy – name: 6 Department of Communication and Computer Engineering, Faculty of Engineering, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq – name: 4 Department of Electrical Engineering, Islamic Azad University, Tehran, Iran – name: 2 Robotics Research Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran – name: 3 Industrial Engineering Department, Technical and Engineering Faculty, University of Science and Culture, Tehran, Iran |
| Author_xml | – sequence: 1 givenname: Firoozeh Abolhasani orcidid: 0000-0002-7349-7498 surname: Zadeh fullname: Zadeh, Firoozeh Abolhasani organization: Department of SurgeryFaculty of MedicineKerman University of Medical SciencesKermanIrankmu.ac.ir – sequence: 2 givenname: Mohammadreza Vazifeh surname: Ardalani fullname: Ardalani, Mohammadreza Vazifeh organization: Robotics Research LaboratoryCenter of Excellence in Experimental Solid Mechanics and DynamicsSchool of Mechanical EngineeringIran University of Science and TechnologyTehranIraniust.ac.ir – sequence: 3 givenname: Ali Rezaei surname: Salehi fullname: Salehi, Ali Rezaei organization: Industrial Engineering DepartmentTechnical and Engineering FacultyUniversity of Science and CultureTehranIranusc.ac.ir – sequence: 4 givenname: Roza surname: Jalali Farahani fullname: Jalali Farahani, Roza organization: Department of Electrical EngineeringIslamic Azad UniversityTehranIranazad.ac.ir – sequence: 5 givenname: Mandana surname: Hashemi fullname: Hashemi, Mandana organization: School of Industrial and Information EngineeringPolitecnico di Milano UniversityMilanItaly – sequence: 6 givenname: Adil Hussein surname: Mohammed fullname: Mohammed, Adil Hussein organization: Department of Communication and Computer EngineeringFaculty of EngineeringCihan University-ErbilErbilKurdistan RegionIraqcihanuniversity.edu.iq |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35634075$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkl2LEzEUhoOsuLvVO68l4I2gdfMxyczcCLXs6kJVEL0O6eSkzZIm3cnM1v57M23t6oIKgXw97zkn78k5OgkxAELPKXlLqRAXjDB2wQkXBZOP0BmVVTkWrOQnx7UUp-g8pRtCRCkIe4JOuZC8IKU4Q3eTgCdB-21yCUeLP8MGX4Hu-hbw5Y-u1U3nYsCfoFtGk_B7ncDg4UA3SxcAz0C3wYXFkbCxxVOvU3LWNXon_qqNiz4u8t7j65VeQHqKHlvtEzw7zCP0_ery2_TjePblw_V0Mhs3RSm7MS-BWC3nzNjaNpW2ltZSGBAFN_klwGVlodAFAQBryNxwYViRKc2rBqTgIzTex-3DWm832nu1bt1Kt1tFiRr8U4N_6uBf5t_t-XU_X4FpIGQL7jVRO_XnTXBLtYh3qqacloTnAK8OAdp420Pq1MqlBrzXAWKfFJMlreuKkiHXywfoTezb3IsdxRkrhajvqYX2oFywcWjKEFRNSiIpozyPEXrxe93Hgn81OgNv9kDTxpRasP_zgT3AG9ftupmzO_830eu9KP8Mozfu3yl-AuMp1XU |
| CitedBy_id | crossref_primary_10_1155_2023_1224619 crossref_primary_10_3390_su152416593 |
| Cites_doi | 10.1080/00207454.2021.1883602 10.1016/j.idm.2020.04.001 10.1109/cvpr.2017.243 10.21203/rs.3.rs-17715/v1 10.1016/s0925-2312(03)00431-4 10.1001/jama.2020.4861 10.1097/rli.0000000000000672 10.1080/10255842.2021.1921164 10.1038/nrg3208 10.1016/j.compbiomed.2021.104454 10.1101/2020.04.01.20049825 10.1136/amiajnl-2012-001145 10.7717/peerj-cs.564 10.1007/s11356-021-13249-2 10.1038/nbt.4233 10.14299/ijser.2020.03.02 10.1101/2020.04.04.20052092 10.1007/s13246-020-00865-4 10.1108/JES-01-2022-0052 10.4137/bii.s31559 10.1007/s11356-020-11644-9 10.3390/s21217286 10.1016/j.chaos.2020.110170 10.5589/m02-004 10.1016/j.media.2017.07.005 10.1109/RBME.2020.2987975 10.1016/j.compbiomed.2021.104425 10.1148/radiol.2020200432 10.1016/j.compbiomed.2020.103792 10.1016/j.ejrad.2020.109041 10.1080/24749508.2019.1585657 10.1109/JBHI.2020.2986376 10.1148/radiol.2020200642 10.1146/annurev-bioeng-071516-044442 10.1109/icip.2018.8451355 10.1038/s41591-018-0316-z 10.1002/jctb.4820 10.1109/JIOT.2020.3007518 10.1016/j.acra.2020.03.003 10.1007/978-3-319-24574-4_28 10.1111/exsy.12759 10.1016/j.rxeng.2020.11.002 10.1155/2021/9995073 10.1016/j.drudis.2018.01.039 10.1016/j.asoc.2021.107449 10.1109/tsmc.1985.6313426 10.1007/s10044-020-00950-0 10.24869/psyd.2020.262 10.3390/electronics8030292 10.1016/s2468-2667(20)30073-6 10.5858/arpa.2020-0901-sa 10.1101/2020.05.04.20082081 10.1148/radiol.2020200905 10.1007/s00521-020-05687-9 10.1038/s41598-020-76550-z 10.1038/s41467-020-18685-1 10.1109/access.2021.3058537 10.1109/ICCSRE.2019.8807741 10.3390/app11199023 10.24869/psyd.2020.570 10.33889/IJMEMS.2020.5.4.052 10.3390/s21155137 10.1016/j.asoc.2020.106912 10.2174/1574893615999200607173829 10.1016/j.cell.2018.02.010 |
| ContentType | Journal Article |
| Copyright | Copyright © 2022 Firoozeh Abolhasani Zadeh et al. COPYRIGHT 2022 John Wiley & Sons, Inc. Copyright © 2022 Firoozeh Abolhasani Zadeh et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 Copyright © 2022 Firoozeh Abolhasani Zadeh et al. 2022 |
| Copyright_xml | – notice: Copyright © 2022 Firoozeh Abolhasani Zadeh et al. – notice: COPYRIGHT 2022 John Wiley & Sons, Inc. – notice: Copyright © 2022 Firoozeh Abolhasani Zadeh et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 – notice: Copyright © 2022 Firoozeh Abolhasani Zadeh et al. 2022 |
| DBID | RHU RHW RHX AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QF 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7X7 7XB 8AL 8BQ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU COVID CWDGH DWQXO F28 FR3 FYUFA GHDGH GNUQQ H8D H8G HCIFZ JG9 JQ2 K7- K9. KR7 L6V L7M LK8 L~C L~D M0N M0S M1P M7P M7S P5Z P62 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS Q9U 7X8 5PM ADTOC UNPAY |
| DOI | 10.1155/2022/3035426 |
| DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Aluminium Industry Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts ProQuest Health & Medical Complete ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College Coronavirus Research Database Middle East & Africa Database ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Engineering Database (Proquest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (Proquest) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Materials Research Database ProQuest One Psychology Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File ProQuest One Applied & Life Sciences Engineered Materials Abstracts Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Coronavirus Research Database ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Ceramic Abstracts Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Health & Medical Research Collection ProQuest Engineering Collection Middle East & Africa Database Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection Corrosion Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database MEDLINE |
| Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1687-5273 |
| Editor | Al qaness, Mohammed A. A. |
| Editor_xml | – sequence: 1 givenname: Mohammed A. A. surname: Al qaness fullname: Al qaness, Mohammed A. A. |
| EndPage | 13 |
| ExternalDocumentID | 10.1155/2022/3035426 PMC9131703 A706121321 35634075 10_1155_2022_3035426 |
| Genre | Journal Article |
| GeographicLocations | Iran Taiwan |
| GeographicLocations_xml | – name: Iran – name: Taiwan |
| GroupedDBID | --- 188 29F 2WC 3V. 4.4 53G 5GY 5VS 6J9 7X7 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAFWJ AAJEY AAKPC ABDBF ABIVO ABJCF ABUWG ACGFO ACIWK ACM ACPRK ADBBV ADRAZ AENEX AFKRA AHMBA AINHJ ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI CCPQU CS3 CWDGH DIK DWQXO E3Z EBD EBS EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE I-F IAO ICD INH INR IPY ITC K6V K7- KQ8 L6V LK8 M0N M1P M48 M7P M7S MK~ O5R O5S OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO PSYQQ PTHSS Q2X RHU RHW RHX RNS RPM SV3 TR2 TUS UKHRP XH6 ~8M 0R~ 24P AAMMB AAYXX ACCMX ACUHS AEFGJ AGXDD AIDQK AIDYY CITATION H13 IHR OVT PGMZT PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO 2UF C1A CGR CNMHZ CUY CVCKV CVF ECM EIF EJD IL9 NPM UZ4 7QF 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7XB 8AL 8BQ 8FD 8FK COVID F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c476t-37e0fa6b2df9fc8aff1965de543d502e368fe4a40eeefd0bd35d24ff1a38ce653 |
| IEDL.DBID | M48 |
| ISSN | 1687-5265 1687-5273 |
| IngestDate | Sun Oct 26 03:11:10 EDT 2025 Tue Sep 30 15:52:07 EDT 2025 Wed Oct 01 14:31:03 EDT 2025 Tue Oct 07 06:06:30 EDT 2025 Mon Oct 20 22:49:09 EDT 2025 Thu Apr 03 07:08:28 EDT 2025 Thu Apr 24 22:54:43 EDT 2025 Wed Oct 01 02:22:22 EDT 2025 Sun Jun 02 18:52:11 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 Copyright © 2022 Firoozeh Abolhasani Zadeh et al. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c476t-37e0fa6b2df9fc8aff1965de543d502e368fe4a40eeefd0bd35d24ff1a38ce653 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Academic Editor: Mohammed A. A. Al qaness |
| ORCID | 0000-0002-7349-7498 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1155/2022/3035426 |
| PMID | 35634075 |
| PQID | 2673227559 |
| PQPubID | 237303 |
| PageCount | 13 |
| ParticipantIDs | unpaywall_primary_10_1155_2022_3035426 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9131703 proquest_miscellaneous_2671998106 proquest_journals_2673227559 gale_infotracmisc_A706121321 pubmed_primary_35634075 crossref_primary_10_1155_2022_3035426 crossref_citationtrail_10_1155_2022_3035426 hindawi_primary_10_1155_2022_3035426 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-05-25 |
| PublicationDateYYYYMMDD | 2022-05-25 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-25 day: 25 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | Computational intelligence and neuroscience |
| PublicationTitleAlternate | Comput Intell Neurosci |
| PublicationYear | 2022 |
| Publisher | Hindawi John Wiley & Sons, Inc |
| Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc |
| References | 44 88 45 89 48 49 P. C. Joseph (87) 2020 H. S. Maghdid (8) 2020 R. Gupta (51) 2020 91 52 53 G. Gaal (74) 2020 10 A. McCallum (85) 2019 11 55 12 56 13 57 14 15 16 17 18 19 C. Li (70) 2020 F. N. Iandola (34) 2016 A. Narin (59) 2020 1 2 3 4 5 6 7 9 60 61 S. Das (32) 2017 20 64 21 M. Mahmoudi (54) 2022 22 23 67 24 K. Simonyan (35) 2014 M. Yousefzadeh (47) 2020 25 A. F. de Moraes Batista (65) 2020 69 26 27 L. Wang (58) 2020 Z. Tang (71) 2020 28 29 N. Nejatishahidin (79) 2020 M. Rezaei (46) C. Szegedy (38) F. Shi (72) 2020 30 I. Goodfellow (90) 2016 31 D.-P. Fan (75) 2020 76 33 77 78 A. Radulescu (50) 2020 39 F. Chollet (37) L. Li (42) 2020; 19 K. He (36) 2015 A. E. Hassanien (66) 2020 R. Kumar (68) 2020 X. Chen (73) 2020 80 81 82 83 40 84 41 M. Barstugan (63) 2020 86 43 E. E.-D. Hemdan (62) 2020 |
| References_xml | – ident: 82 doi: 10.1080/00207454.2021.1883602 – ident: 91 doi: 10.1016/j.idm.2020.04.001 – ident: 40 doi: 10.1109/cvpr.2017.243 – ident: 56 doi: 10.21203/rs.3.rs-17715/v1 – ident: 84 doi: 10.1016/s0925-2312(03)00431-4 – ident: 3 doi: 10.1001/jama.2020.4861 – year: 2020 ident: 8 article-title: Diagnosing COVID-19 pneumonia from X-ray and CT images using deep learning and transfer learning algorithms – ident: 67 doi: 10.1097/rli.0000000000000672 – ident: 86 doi: 10.1080/10255842.2021.1921164 – ident: 11 doi: 10.1038/nrg3208 – year: 2020 ident: 75 article-title: Inf-Net: automatic COVID-19 lung infection segmentation from CT scans – ident: 16 doi: 10.1016/j.compbiomed.2021.104454 – year: 2020 ident: 51 article-title: SEIR and Regression Model based COVID- 19 outbreak predictions in India doi: 10.1101/2020.04.01.20049825 – ident: 10 doi: 10.1136/amiajnl-2012-001145 – year: 2020 ident: 59 article-title: Automatic detection of coronavirus disease (covid-19) using x-ray images and deep convolutional neural networks – ident: 76 doi: 10.7717/peerj-cs.564 – year: 2020 ident: 71 article-title: Severity assessment of coronavirus disease 2019 (COVID-19) using quantitative features from chest CT images – ident: 15 doi: 10.1007/s11356-021-13249-2 – ident: 22 doi: 10.1038/nbt.4233 – ident: 69 doi: 10.14299/ijser.2020.03.02 – year: 2020 ident: 79 article-title: Object pose estimation using mid-level visual representations – year: 2020 ident: 87 article-title: COVID-19 image data collection: prospective predictions are the future – ident: 9 doi: 10.1101/2020.04.04.20052092 – ident: 61 doi: 10.1007/s13246-020-00865-4 – year: 2016 ident: 34 article-title: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size – year: 2022 ident: 54 article-title: COVID Lessons: was there any way to reduce the negative effect of COVID-19 on the United States economy? doi: 10.1108/JES-01-2022-0052 – ident: 12 doi: 10.4137/bii.s31559 – ident: 13 doi: 10.1007/s11356-020-11644-9 – year: 2020 ident: 73 article-title: Residual attention U-net for automated multi-class segmentation of COVID-19 chest CT images – start-page: 1800 ident: 37 article-title: Xception: deep learning with depthwise separable convolutions – ident: 78 doi: 10.3390/s21217286 – ident: 14 doi: 10.1016/j.chaos.2020.110170 – ident: 81 doi: 10.5589/m02-004 – ident: 27 doi: 10.1016/j.media.2017.07.005 – ident: 7 doi: 10.1109/RBME.2020.2987975 – ident: 20 doi: 10.1016/j.compbiomed.2021.104425 – start-page: 218 ident: 46 article-title: Weakly-supervised hand part segmentation from depth images – ident: 2 doi: 10.1148/radiol.2020200432 – ident: 5 doi: 10.1016/j.compbiomed.2020.103792 – ident: 43 doi: 10.1016/j.ejrad.2020.109041 – ident: 44 doi: 10.1080/24749508.2019.1585657 – year: 2020 ident: 66 article-title: Automatic x-ray COVID-19 lung image classification system based on multi-level thresholding and support vector machine – ident: 29 doi: 10.1109/JBHI.2020.2986376 – year: 2020 ident: 63 article-title: Coronavirus (covid- 19) classification using ct images by machine learning methods – ident: 1 doi: 10.1148/radiol.2020200642 – year: 2020 ident: 62 article-title: Covidx-net: a framework of deep learning classifiers to diagnose covid-19 in x-ray images – ident: 24 doi: 10.1146/annurev-bioeng-071516-044442 – ident: 39 doi: 10.1109/icip.2018.8451355 – ident: 23 doi: 10.1038/s41591-018-0316-z – ident: 33 doi: 10.1002/jctb.4820 – start-page: 4278 ident: 38 article-title: Inception-v4, inception-resnet and the impact of residual connections on learning – volume: 19 year: 2020 ident: 42 article-title: Artificial intelligence distinguishes COVID-19 from community acquired pneumonia on chest CT publication-title: Radiology – ident: 52 doi: 10.1109/JIOT.2020.3007518 – volume-title: Graphical Models, Lecture2: Bayesian Network Representation year: 2019 ident: 85 – ident: 6 doi: 10.1016/j.acra.2020.03.003 – ident: 41 doi: 10.1007/978-3-319-24574-4_28 – ident: 57 doi: 10.1111/exsy.12759 – year: 2020 ident: 50 article-title: Management strategies in a SEIR model of COVID 19 community spread – ident: 89 doi: 10.1016/j.rxeng.2020.11.002 – year: 2020 ident: 70 article-title: Preliminary study to identify severe from moderate cases of COVID-19 using NLR&RDW-SD combination parameter – ident: 18 doi: 10.1155/2021/9995073 – ident: 25 doi: 10.1016/j.drudis.2018.01.039 – ident: 17 doi: 10.1016/j.asoc.2021.107449 – year: 2020 ident: 65 article-title: COVID-19 diagnosis prediction in emergency care patients: a machine learning approach doi: 10.1101/2020.04.04.20052092 – ident: 83 doi: 10.1109/tsmc.1985.6313426 – ident: 77 doi: 10.1007/s10044-020-00950-0 – year: 2020 ident: 74 article-title: Attention U-net based' adversarial architectures for chest X-ray lung segmentation – ident: 49 doi: 10.24869/psyd.2020.262 – ident: 31 doi: 10.3390/electronics8030292 – ident: 55 doi: 10.1016/s2468-2667(20)30073-6 – year: 2015 ident: 36 article-title: Deep residual learning for image recognition – ident: 4 doi: 10.5858/arpa.2020-0901-sa – year: 2020 ident: 47 article-title: Ai-corona: radiologist-assistant deep learning framework for COVID-19 diagnosis in chest ct scans doi: 10.1101/2020.05.04.20082081 – ident: 60 doi: 10.1148/radiol.2020200905 – year: 2017 ident: 32 article-title: CNN architectures: LeNet, AlexNet, VGG, GoogLeNet, ResNet and more – ident: 53 doi: 10.1007/s00521-020-05687-9 – year: 2020 ident: 72 article-title: Large-scale screening of covid-19 from community acquired pneumonia using infection size-aware classification – year: 2020 ident: 58 article-title: COVID-Net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest radiography images doi: 10.1038/s41598-020-76550-z – ident: 48 doi: 10.1038/s41467-020-18685-1 – ident: 21 doi: 10.1109/access.2021.3058537 – year: 2014 ident: 35 article-title: Very deep convolutional networks for large-scale image recognition – ident: 28 doi: 10.1109/ICCSRE.2019.8807741 – ident: 80 doi: 10.3390/app11199023 – ident: 45 doi: 10.24869/psyd.2020.570 – ident: 64 doi: 10.33889/IJMEMS.2020.5.4.052 – ident: 26 doi: 10.3390/s21155137 – year: 2020 ident: 68 article-title: Accurate prediction of COVID-19 using chest xray images through deep feature learning model with smote and machine learning classifiers – ident: 19 doi: 10.1016/j.asoc.2020.106912 – ident: 30 doi: 10.2174/1574893615999200607173829 – ident: 88 doi: 10.1016/j.cell.2018.02.010 – volume-title: Deep Learning—An MIT Press Book year: 2016 ident: 90 |
| SSID | ssj0057502 |
| Score | 2.298143 |
| Snippet | The lungs are COVID-19’s most important focus, as it induces inflammatory changes in the lungs that can lead to respiratory insufficiency. Reducing the supply... The lungs are COVID-19's most important focus, as it induces inflammatory changes in the lungs that can lead to respiratory insufficiency. Reducing the supply... |
| SourceID | unpaywall pubmedcentral proquest gale pubmed crossref hindawi |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Artificial Intelligence Artificial neural networks Bayes Theorem Bayesian analysis Chest Computer vision Coronaviruses COVID-19 COVID-19 - diagnostic imaging Datasets Digital imaging Evaluation Feature extraction Health aspects Humans Image classification Image enhancement Inflammation Iran Learning algorithms Learning strategies Lungs Machine Learning Machine vision Mathematical analysis Matrix methods Medical imaging Medical imaging equipment Medical research Medicine, Experimental Methods Mortality Neural networks Neural Networks, Computer Pandemics Support vector machines Taiwan X-rays |
| SummonAdditionalLinks | – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9NAEB3RSgguCCgfhoIWqfSCLJxd79o5BtQqIMGholJu1q53lkZKnSoftP33ndnYFqF8HRNP4sSzM_Ne8vwW4MAoZ2ulXOo1upQttFJL7Cd1NE8CGjnUdRTIfjXj0_zzRE9ak6Tl7b_wadoxPZfvqdNqGiY7sFMaVm6djCddwyXAsZEWGqoXdnvv9O2_vHZr8rT99-4ZM9_L6e_w5W2Z5L11c2GvL-1s9tMMOn4ID1rwKEabbD-CO9g8hr1RQ8T5_FociijnjL-T78GPUSM6xxExD4K6mWC8t16gOLpaLTY3NIgvcQfppfhA08wLfiKqK1G0xqvf-whCtyJuocniophPcWL9tGue4tM5tablEzg9Pvr2cZy2myykdV6YFTUYzII1TvowDHVpQ2CPQY86V56uKypTBsxtniFi8JnzSnuZU5RVZY1Gq6ew28wbfA5i4KX0tRmWqHLCOdI5zGrMpQ0DmeWFS-Bdl4Cqbh3IeSOMWRWZiNYVp6tq05XA2z76YuO88Ye4fc5lxQXJF4_Ko65GBUM3YtqDBA7aHP_rXboFULVVvKykKajfFUS6EnjTH-YTsDKtwfk6xvBtisSsE3i2WS_9iZQ2igizTqDYWkl9AHt7bx9ppmfR43s4IGCXqQQO-zX318__4v--5ku4zw9Z_iD1PuyuFmt8Rahq5V7HmroBNYsYcQ priority: 102 providerName: Hindawi Publishing – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Zb9NAEB6VVAheEFAOl4IWqfQFWXX2cvKAUIpSFSQiVFGpb9ZebiOlTsjR0n_PzMY2rYDyGo9iy3PsN-tvvwHY1cIaJ4RNvQo2JQmt1GD3k1pcT8qgeV-5SJAd6aMT-eVUnW7AqDkLQ7TKpibGQu2njvbI97nOMfZyBMAfZz9SmhpFX1ebERqmHq3gP0SJsXuwyUkZqwObB8PRt-OmNiM2WbMQNaYWCcM3VHilaBeA72NBV5KEFm4sUnWpvn9OTfLV-G9Q9E9G5YNVNTPXV2YyubFcHT6GRzXOZIN1YDyBjVA9ha1BhT32xTXbY5H5GbfUt-ByULFGnIRNS4aFjxE0XM0DG_5cztdnH9jXOGx6wQ5w4fOMfohEzMBqjdaz1gKBMIvTNomHFF3Pjo0fN3WWfb7AKrZ4BieHw--fjtJ6HkPqZK6XWItCVhptuS_7peuZsiQ5Qh-UFB7faxC6VwZpZBZCKH1mvVCeS7QyoueCVuI5dKppFV4C63rOvdP9XhASIRG3NmQuSG7KLs9kbhN43zigcLVYOc3MmBSxaVGqIHcVtbsSeNdaz9YiHf-w2yFfFpS79PIwk1wxyAnlYVPeTWC39vH__qUJgKJO-EXxOzwTeNtephsQia0K01W0oRON2IQn8GIdL-2NhNICe2uVQH4rkloDkgG_faUan0c58H4XMWAmEthrY-7O59---_lfwUOyJoYEVzvQWc5X4TUCr6V9U2fTLy1cKVM priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4anRC8cBuDwEBGGntB6VI7dlrxFNCmgcSEEJWGhBT5yiq6tGobxvj1HDsXKHfxlstRnNjH55wv-vwZYFcwJTVjKjbcqthLaMUS0U-sMJ84K-iI60CQPRZH4_TlCT_ZgKftWhjjJeJn0iz7px6Tnk9CtG76dbmvES0iXKf7GHk5Jpf-3LhLsCk4FuI92Bwfv87feYglcOp44fdvxxlrae-crz1iLSE1Yfly0_ivys6f2ZNXqnIuL87ldPpdajq8Du_bj6oZKR_71Ur19Zcf9B7_86tvwLWmZCV57WM3YcOWt2ArLxGun12QPRJIpOHv_BZ8ykvS6pyQmSMYQ4mvMquFJQefV4t6GQV5FfatXpJnmEMN8RcCp9OSRu71Q2eBNTUJG3d6SlPwIvJGmkkbssmLMwyIy9swPjx4-_wobrZ2iHWaiRWGNZs4KRQ1buT0UDrnlQ2N5SkzPKGWiaGzqUwTa60ziTKMG5qilWRDbQVn29ArZ6W9C2RgKDVajIaWpVhdUaVsom1KpRvQJM1UBE_a8S10o3vut9-YFgH_cF74ri2aro3gcWc9r_U-fmO3412l8GHAdx5OSl3kmS8YEd8PIthtRvJvT2n9q2hHu6AiwyibIdSL4FF32zfg-XClnVXBxi-ORDwfwZ3aHbuGGBcMYTqPIFtz1M7AK4qv3yknp0FZfDTAcjJhEex1Lv3H97_3r4b34ao_9bQLynegt1pU9gFWcyv1sJm1XwEE7URu priority: 102 providerName: Unpaywall |
| Title | An Analysis of New Feature Extraction Methods Based on Machine Learning Methods for Classification Radiological Images |
| URI | https://dx.doi.org/10.1155/2022/3035426 https://www.ncbi.nlm.nih.gov/pubmed/35634075 https://www.proquest.com/docview/2673227559 https://www.proquest.com/docview/2671998106 https://pubmed.ncbi.nlm.nih.gov/PMC9131703 https://downloads.hindawi.com/journals/cin/2022/3035426.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 2022 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: KQ8 dateStart: 20070625 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: KQ8 dateStart: 20070101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1687-5273 dateEnd: 20230628 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: ABDBF dateStart: 20070101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: DIK dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: GX1 dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: RPM dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1687-5273 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: 7X7 dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Middle East & Africa Database customDbUrl: eissn: 1687-5273 dateEnd: 20250131 omitProxy: false ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: CWDGH dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/middleeastafrica providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1687-5273 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: 8FG dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1687-5273 dateEnd: 20250430 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: M48 dateStart: 20070101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: 24P dateStart: 20070101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9NAEB71EKIvCCiHS4kWqeQFGZxd79p5QChFSQNSoyoiUniybO-aRkqdNAdt_j0z60MEyvFiKdmJbe2cX_x5BuBEiSROhUhcLU3iUgstN0b04yaYTzKjeFumliA7UP2R_3ksxztQ8efLDVzeCe1ontRoMX17e735gA7_3jq8lITf-TsMxRKzTXN-7dJIKXr0Ws7X2IV9TFttmutw7tePGLBMKQiJCr2MupBVrPhfTriVr8qofe-S8PLN5K6q9Hdy5f11Po83N_F0-lPm6j2EB2XJyTqFjTyCHZM_hsNOjnD7asOazJJA7b_rh_C9k7OqTwmbZQxjIKMqcb0wrHu7WhSvQbBzO3d6yU4xB2pGX1hOpmFlu9ZvtQTWxMwO3iRKkrUCNoz1pAq57NMVBrTlExj1ul8-9t1yNIOb-oFaYVgyXharhOusnaVhnGXUmVAb6QuN-2qECjPjx75njMm0l2ghNfdRKhZhapQUT2Evn-XmObCW5lynqh0a4WN1xJPEeKnxeZy1uOcHiQNvKgVEadm3nMZnTCOLX6SMSF1RqS4HXtfS86Jfxx_kjkmXERkWbR46VRp1Air4EJ-3HDgpdfyvs1QGEFWmG3EVYJQMEKo58KpepgsQny03s7WVoZcbEY878Kywl_pCQiqBMFs6EGxZUi1AHcG3V_LJpe0M3m5hOegJB5q1zf31_o_-4wZfwAH9hBgTXB7D3mqxNi-xEFslDdgNxgEew95ZA_ZPu4OLIX46G7ca1tXwOOyPcWU0uOh8_QEQ1zUp |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JctNAEO0KTlHhAoGwCBIYqhJfKCXSbLIPHEwWbLIcqKTITUgzI-LCkY0tY8xH8Sv8EtPaSFjCKQeuVltSjXp5Lb15DbAuWRwpxmJXCxO7KKHlRrb7cWNbTxIjaVuonCB7JLsn_M2pOF2Ab9VeGKRVVjkxT9R6qPAd-RaVgfW9wALgkkG5b-Yz259NXvZ27MPcoHRv93i765YjBFzFA5nZ8DFeEsmY6qSdqFaUJKigp43gTAuPGiZbieER94wxifZizYSm3FpFrKWMxJEQtDn65OKUKvyaW47suAGL1s992oDF7Xc7r7tV7rfYp2A5Shu6KDxfUe2FwLcMdMsWDMFRyOFCESxLwc0zbMJn_T9B3d8Zm0vTdBTNZ9FgcKEc7t2B79VCFiyYj5vTLN5UX3_RmPx_VnoZbpfInHSKULoLCya9ByudNMqG53PSJDlXNv8IsQKfOymp5FzIMCG2VBAE09OxIbtfsnGxW4Qc5uO5J-SVhQqa4A85ddWQUtX2Q21hWweSzydF5lYeLORtpPtVZSK9c5v3J_fh5FoW5QE00mFqHgHxNaVayXbLMG5BJI1j4ynDaZT41ONB7MCLyqVCVcq745SRQZi3eUKE6IBh6YAObNTWo0LW5C92q-idIWY7XDybe1TYCRAX-4z6DqyXXvuvs1SeFpYpchL-dDMHnteH8QJI-0vNcJrb4B5Q37OneFhEQH0hJiTjFvA6EFyKjdoAhdMvH0n7Z7mAetu3qNljDjTrKLry_h9fff_PYKl7fHgQHvSO9p_ALfwn8kuoWIVGNp6aNQtbs_hpmSsIvL_uOPoBSt2ntg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFB1VrYBueJWHocAgtd0gN_aMZ5wsEApNQ0KhQoiK7ozHM9NGpE5IHEL4NH6Fn-Fev2h5lFUXbOMb2xrfx7n2mXMJ2ZBcxQnnytXCKBcltNwYuh9XQT2xRrKWSHKC7L7sHQQvD8XhEvlW7YVBWmWVE_NErUcJviNvMBmC74UAgBu2pEW86XSfjT-5OEEKv7RW4zQKF9kzizm0b9On_Q48603GurvvdnpuOWHATYJQZhBdxrOxVEzblk2asbUosKeNCLgWHjNcNq0J4sAzxljtKc2FZgFYxbyZGIkTIyD9rzRlKCEprOy877zoVXUAcFDBeJQQxihCX9HuhcA3DqwBxUMEKOpwqiCWZeHSMTbk88GfYO_v7M0rs3QcL-bxcHiqNHavke_VohaMmI_bs0xtJ19_0Zv8P1f9OrlaInbaLkLsBlky6U2y1k7jbHSyoFs059DmHyfWyOd2SiuZFzqyFEoIRZA9mxi6-yWbFLtI6Ot8bPeUPgcIoSn-kFNaDS3Vbo9qC2gpaD63FBldeRDRt7EeVBWL9k-gHkxvkYMLWYHbZDkdpeYuob5mTCey1TQ8AHDJlDJeYgIWW595Qagc8qRyrygpZd9x-sgwyts_ISJ0xqh0Rods1tbjQu7kL3br6KkRZkFcPMhJSdQOES_7nPkO2Sg9-F9nqbwuKlPnNPrpcg55XB_GCyAdMDWjWW6De0N9D05xp4iG-kJcSB4AEHZIeCZOagMUVD97JB0c58LqLR_QtMcdslVH1Ln3f-_8-39ELkOwRK_6-3v3ySr-EWknTKyT5WwyMw8AzWbqYZk2KPlw0THzA53MsH4 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4anRC8cBuDwEBGGntB6VI7dlrxFNCmgcSEEJWGhBT5yiq6tGobxvj1HDsXKHfxlstRnNjH55wv-vwZYFcwJTVjKjbcqthLaMUS0U-sMJ84K-iI60CQPRZH4_TlCT_ZgKftWhjjJeJn0iz7px6Tnk9CtG76dbmvES0iXKf7GHk5Jpf-3LhLsCk4FuI92Bwfv87feYglcOp44fdvxxlrae-crz1iLSE1Yfly0_ivys6f2ZNXqnIuL87ldPpdajq8Du_bj6oZKR_71Ur19Zcf9B7_86tvwLWmZCV57WM3YcOWt2ArLxGun12QPRJIpOHv_BZ8ykvS6pyQmSMYQ4mvMquFJQefV4t6GQV5FfatXpJnmEMN8RcCp9OSRu71Q2eBNTUJG3d6SlPwIvJGmkkbssmLMwyIy9swPjx4-_wobrZ2iHWaiRWGNZs4KRQ1buT0UDrnlQ2N5SkzPKGWiaGzqUwTa60ziTKMG5qilWRDbQVn29ArZ6W9C2RgKDVajIaWpVhdUaVsom1KpRvQJM1UBE_a8S10o3vut9-YFgH_cF74ri2aro3gcWc9r_U-fmO3412l8GHAdx5OSl3kmS8YEd8PIthtRvJvT2n9q2hHu6AiwyibIdSL4FF32zfg-XClnVXBxi-ORDwfwZ3aHbuGGBcMYTqPIFtz1M7AK4qv3yknp0FZfDTAcjJhEex1Lv3H97_3r4b34ao_9bQLynegt1pU9gFWcyv1sJm1XwEE7URu |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Analysis+of+New+Feature+Extraction+Methods+Based+on+Machine+Learning+Methods+for+Classification+Radiological+Images&rft.jtitle=Computational+intelligence+and+neuroscience&rft.au=Zadeh%2C+Firoozeh+Abolhasani&rft.au=Ardalani%2C+Mohammadreza+Vazifeh&rft.au=Salehi%2C+Ali+Rezaei&rft.au=Jalali+Farahani%2C+Roza&rft.date=2022-05-25&rft.issn=1687-5273&rft.eissn=1687-5273&rft.volume=2022&rft.spage=3035426&rft_id=info:doi/10.1155%2F2022%2F3035426&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-5265&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-5265&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-5265&client=summon |