An Analysis of New Feature Extraction Methods Based on Machine Learning Methods for Classification Radiological Images

The lungs are COVID-19’s most important focus, as it induces inflammatory changes in the lungs that can lead to respiratory insufficiency. Reducing the supply of oxygen to human cells negatively impacts humans, and multiorgan failure with a high mortality rate may, in certain circumstances, occur. R...

Full description

Saved in:
Bibliographic Details
Published inComputational intelligence and neuroscience Vol. 2022; pp. 1 - 13
Main Authors Zadeh, Firoozeh Abolhasani, Ardalani, Mohammadreza Vazifeh, Salehi, Ali Rezaei, Jalali Farahani, Roza, Hashemi, Mandana, Mohammed, Adil Hussein
Format Journal Article
LanguageEnglish
Published United States Hindawi 25.05.2022
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN1687-5265
1687-5273
1687-5273
DOI10.1155/2022/3035426

Cover

Abstract The lungs are COVID-19’s most important focus, as it induces inflammatory changes in the lungs that can lead to respiratory insufficiency. Reducing the supply of oxygen to human cells negatively impacts humans, and multiorgan failure with a high mortality rate may, in certain circumstances, occur. Radiological pulmonary evaluation is a vital part of patient therapy for the critically ill patient with COVID-19. The evaluation of radiological imagery is a specialized activity that requires a radiologist. Artificial intelligence to display radiological images is one of the essential topics. Using a deep machine learning technique to identify morphological differences in the lungs of COVID-19-infected patients could yield promising results on digital images of chest X-rays. Minor differences in digital images that are not detectable or apparent to the human eye may be detected using computer vision algorithms. This paper uses machine learning methods to diagnose COVID-19 on chest X-rays, and the findings have been very promising. The dataset includes COVID-19-enhanced X-ray images for disease detection using chest X-ray images. The data were gathered from two publicly accessible datasets. The feature extractions are done using the gray level co-occurrence matrix methods. K-nearest neighbor, support vector machine, linear discrimination analysis, naïve Bayes, and convolutional neural network methods are used for the classification of patients. According to the findings, convolutional neural networks’ efficiency linked to imaging modalities with fewer human involvements outperforms other traditional machine learning approaches.
AbstractList The lungs are COVID-19’s most important focus, as it induces inflammatory changes in the lungs that can lead to respiratory insufficiency. Reducing the supply of oxygen to human cells negatively impacts humans, and multiorgan failure with a high mortality rate may, in certain circumstances, occur. Radiological pulmonary evaluation is a vital part of patient therapy for the critically ill patient with COVID-19. The evaluation of radiological imagery is a specialized activity that requires a radiologist. Artificial intelligence to display radiological images is one of the essential topics. Using a deep machine learning technique to identify morphological differences in the lungs of COVID-19-infected patients could yield promising results on digital images of chest X-rays. Minor differences in digital images that are not detectable or apparent to the human eye may be detected using computer vision algorithms. This paper uses machine learning methods to diagnose COVID-19 on chest X-rays, and the findings have been very promising. The dataset includes COVID-19-enhanced X-ray images for disease detection using chest X-ray images. The data were gathered from two publicly accessible datasets. The feature extractions are done using the gray level co-occurrence matrix methods. K-nearest neighbor, support vector machine, linear discrimination analysis, naïve Bayes, and convolutional neural network methods are used for the classification of patients. According to the findings, convolutional neural networks’ efficiency linked to imaging modalities with fewer human involvements outperforms other traditional machine learning approaches.
The lungs are COVID-19's most important focus, as it induces inflammatory changes in the lungs that can lead to respiratory insufficiency. Reducing the supply of oxygen to human cells negatively impacts humans, and multiorgan failure with a high mortality rate may, in certain circumstances, occur. Radiological pulmonary evaluation is a vital part of patient therapy for the critically ill patient with COVID-19. The evaluation of radiological imagery is a specialized activity that requires a radiologist. Artificial intelligence to display radiological images is one of the essential topics. Using a deep machine learning technique to identify morphological differences in the lungs of COVID-19-infected patients could yield promising results on digital images of chest X-rays. Minor differences in digital images that are not detectable or apparent to the human eye may be detected using computer vision algorithms. This paper uses machine learning methods to diagnose COVID-19 on chest X-rays, and the findings have been very promising. The dataset includes COVID-19-enhanced X-ray images for disease detection using chest X-ray images. The data were gathered from two publicly accessible datasets. The feature extractions are done using the gray level co-occurrence matrix methods. K-nearest neighbor, support vector machine, linear discrimination analysis, naïve Bayes, and convolutional neural network methods are used for the classification of patients. According to the findings, convolutional neural networks' efficiency linked to imaging modalities with fewer human involvements outperforms other traditional machine learning approaches.The lungs are COVID-19's most important focus, as it induces inflammatory changes in the lungs that can lead to respiratory insufficiency. Reducing the supply of oxygen to human cells negatively impacts humans, and multiorgan failure with a high mortality rate may, in certain circumstances, occur. Radiological pulmonary evaluation is a vital part of patient therapy for the critically ill patient with COVID-19. The evaluation of radiological imagery is a specialized activity that requires a radiologist. Artificial intelligence to display radiological images is one of the essential topics. Using a deep machine learning technique to identify morphological differences in the lungs of COVID-19-infected patients could yield promising results on digital images of chest X-rays. Minor differences in digital images that are not detectable or apparent to the human eye may be detected using computer vision algorithms. This paper uses machine learning methods to diagnose COVID-19 on chest X-rays, and the findings have been very promising. The dataset includes COVID-19-enhanced X-ray images for disease detection using chest X-ray images. The data were gathered from two publicly accessible datasets. The feature extractions are done using the gray level co-occurrence matrix methods. K-nearest neighbor, support vector machine, linear discrimination analysis, naïve Bayes, and convolutional neural network methods are used for the classification of patients. According to the findings, convolutional neural networks' efficiency linked to imaging modalities with fewer human involvements outperforms other traditional machine learning approaches.
The lungs are COVID-19's most important focus, as it induces inflammatory changes in the lungs that can lead to respiratory insufficiency. Reducing the supply of oxygen to human cells negatively impacts humans, and multiorgan failure with a high mortality rate may, in certain circumstances, occur. Radiological pulmonary evaluation is a vital part of patient therapy for the critically ill patient with COVID-19. The evaluation of radiological imagery is a specialized activity that requires a radiologist. Artificial intelligence to display radiological images is one of the essential topics. Using a deep machine learning technique to identify morphological differences in the lungs of COVID-19-infected patients could yield promising results on digital images of chest X-rays. Minor differences in digital images that are not detectable or apparent to the human eye may be detected using computer vision algorithms. This paper uses machine learning methods to diagnose COVID-19 on chest X-rays, and the findings have been very promising. The dataset includes COVID-19-enhanced X-ray images for disease detection using chest X-ray images. The data were gathered from two publicly accessible datasets. The feature extractions are done using the gray level co-occurrence matrix methods. -nearest neighbor, support vector machine, linear discrimination analysis, naïve Bayes, and convolutional neural network methods are used for the classification of patients. According to the findings, convolutional neural networks' efficiency linked to imaging modalities with fewer human involvements outperforms other traditional machine learning approaches.
Audience Academic
Author Jalali Farahani, Roza
Mohammed, Adil Hussein
Ardalani, Mohammadreza Vazifeh
Salehi, Ali Rezaei
Hashemi, Mandana
Zadeh, Firoozeh Abolhasani
AuthorAffiliation 3 Industrial Engineering Department, Technical and Engineering Faculty, University of Science and Culture, Tehran, Iran
2 Robotics Research Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
4 Department of Electrical Engineering, Islamic Azad University, Tehran, Iran
1 Department of Surgery, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
5 School of Industrial and Information Engineering, Politecnico di Milano University, Milan, Italy
6 Department of Communication and Computer Engineering, Faculty of Engineering, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
AuthorAffiliation_xml – name: 1 Department of Surgery, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
– name: 5 School of Industrial and Information Engineering, Politecnico di Milano University, Milan, Italy
– name: 6 Department of Communication and Computer Engineering, Faculty of Engineering, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
– name: 4 Department of Electrical Engineering, Islamic Azad University, Tehran, Iran
– name: 2 Robotics Research Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
– name: 3 Industrial Engineering Department, Technical and Engineering Faculty, University of Science and Culture, Tehran, Iran
Author_xml – sequence: 1
  givenname: Firoozeh Abolhasani
  orcidid: 0000-0002-7349-7498
  surname: Zadeh
  fullname: Zadeh, Firoozeh Abolhasani
  organization: Department of SurgeryFaculty of MedicineKerman University of Medical SciencesKermanIrankmu.ac.ir
– sequence: 2
  givenname: Mohammadreza Vazifeh
  surname: Ardalani
  fullname: Ardalani, Mohammadreza Vazifeh
  organization: Robotics Research LaboratoryCenter of Excellence in Experimental Solid Mechanics and DynamicsSchool of Mechanical EngineeringIran University of Science and TechnologyTehranIraniust.ac.ir
– sequence: 3
  givenname: Ali Rezaei
  surname: Salehi
  fullname: Salehi, Ali Rezaei
  organization: Industrial Engineering DepartmentTechnical and Engineering FacultyUniversity of Science and CultureTehranIranusc.ac.ir
– sequence: 4
  givenname: Roza
  surname: Jalali Farahani
  fullname: Jalali Farahani, Roza
  organization: Department of Electrical EngineeringIslamic Azad UniversityTehranIranazad.ac.ir
– sequence: 5
  givenname: Mandana
  surname: Hashemi
  fullname: Hashemi, Mandana
  organization: School of Industrial and Information EngineeringPolitecnico di Milano UniversityMilanItaly
– sequence: 6
  givenname: Adil Hussein
  surname: Mohammed
  fullname: Mohammed, Adil Hussein
  organization: Department of Communication and Computer EngineeringFaculty of EngineeringCihan University-ErbilErbilKurdistan RegionIraqcihanuniversity.edu.iq
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35634075$$D View this record in MEDLINE/PubMed
BookMark eNqFkl2LEzEUhoOsuLvVO68l4I2gdfMxyczcCLXs6kJVEL0O6eSkzZIm3cnM1v57M23t6oIKgXw97zkn78k5OgkxAELPKXlLqRAXjDB2wQkXBZOP0BmVVTkWrOQnx7UUp-g8pRtCRCkIe4JOuZC8IKU4Q3eTgCdB-21yCUeLP8MGX4Hu-hbw5Y-u1U3nYsCfoFtGk_B7ncDg4UA3SxcAz0C3wYXFkbCxxVOvU3LWNXon_qqNiz4u8t7j65VeQHqKHlvtEzw7zCP0_ery2_TjePblw_V0Mhs3RSm7MS-BWC3nzNjaNpW2ltZSGBAFN_klwGVlodAFAQBryNxwYViRKc2rBqTgIzTex-3DWm832nu1bt1Kt1tFiRr8U4N_6uBf5t_t-XU_X4FpIGQL7jVRO_XnTXBLtYh3qqacloTnAK8OAdp420Pq1MqlBrzXAWKfFJMlreuKkiHXywfoTezb3IsdxRkrhajvqYX2oFywcWjKEFRNSiIpozyPEXrxe93Hgn81OgNv9kDTxpRasP_zgT3AG9ftupmzO_830eu9KP8Mozfu3yl-AuMp1XU
CitedBy_id crossref_primary_10_1155_2023_1224619
crossref_primary_10_3390_su152416593
Cites_doi 10.1080/00207454.2021.1883602
10.1016/j.idm.2020.04.001
10.1109/cvpr.2017.243
10.21203/rs.3.rs-17715/v1
10.1016/s0925-2312(03)00431-4
10.1001/jama.2020.4861
10.1097/rli.0000000000000672
10.1080/10255842.2021.1921164
10.1038/nrg3208
10.1016/j.compbiomed.2021.104454
10.1101/2020.04.01.20049825
10.1136/amiajnl-2012-001145
10.7717/peerj-cs.564
10.1007/s11356-021-13249-2
10.1038/nbt.4233
10.14299/ijser.2020.03.02
10.1101/2020.04.04.20052092
10.1007/s13246-020-00865-4
10.1108/JES-01-2022-0052
10.4137/bii.s31559
10.1007/s11356-020-11644-9
10.3390/s21217286
10.1016/j.chaos.2020.110170
10.5589/m02-004
10.1016/j.media.2017.07.005
10.1109/RBME.2020.2987975
10.1016/j.compbiomed.2021.104425
10.1148/radiol.2020200432
10.1016/j.compbiomed.2020.103792
10.1016/j.ejrad.2020.109041
10.1080/24749508.2019.1585657
10.1109/JBHI.2020.2986376
10.1148/radiol.2020200642
10.1146/annurev-bioeng-071516-044442
10.1109/icip.2018.8451355
10.1038/s41591-018-0316-z
10.1002/jctb.4820
10.1109/JIOT.2020.3007518
10.1016/j.acra.2020.03.003
10.1007/978-3-319-24574-4_28
10.1111/exsy.12759
10.1016/j.rxeng.2020.11.002
10.1155/2021/9995073
10.1016/j.drudis.2018.01.039
10.1016/j.asoc.2021.107449
10.1109/tsmc.1985.6313426
10.1007/s10044-020-00950-0
10.24869/psyd.2020.262
10.3390/electronics8030292
10.1016/s2468-2667(20)30073-6
10.5858/arpa.2020-0901-sa
10.1101/2020.05.04.20082081
10.1148/radiol.2020200905
10.1007/s00521-020-05687-9
10.1038/s41598-020-76550-z
10.1038/s41467-020-18685-1
10.1109/access.2021.3058537
10.1109/ICCSRE.2019.8807741
10.3390/app11199023
10.24869/psyd.2020.570
10.33889/IJMEMS.2020.5.4.052
10.3390/s21155137
10.1016/j.asoc.2020.106912
10.2174/1574893615999200607173829
10.1016/j.cell.2018.02.010
ContentType Journal Article
Copyright Copyright © 2022 Firoozeh Abolhasani Zadeh et al.
COPYRIGHT 2022 John Wiley & Sons, Inc.
Copyright © 2022 Firoozeh Abolhasani Zadeh et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright © 2022 Firoozeh Abolhasani Zadeh et al. 2022
Copyright_xml – notice: Copyright © 2022 Firoozeh Abolhasani Zadeh et al.
– notice: COPYRIGHT 2022 John Wiley & Sons, Inc.
– notice: Copyright © 2022 Firoozeh Abolhasani Zadeh et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
– notice: Copyright © 2022 Firoozeh Abolhasani Zadeh et al. 2022
DBID RHU
RHW
RHX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QF
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7X7
7XB
8AL
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
COVID
CWDGH
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
K7-
K9.
KR7
L6V
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
Q9U
7X8
5PM
ADTOC
UNPAY
DOI 10.1155/2022/3035426
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
ProQuest Health & Medical Complete
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
Coronavirus Research Database
Middle East & Africa Database
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Engineering Database (Proquest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (Proquest)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Materials Research Database
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Coronavirus Research Database
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Middle East & Africa Database
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
Corrosion Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

CrossRef
MEDLINE - Academic
Publicly Available Content Database
MEDLINE
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1687-5273
Editor Al qaness, Mohammed A. A.
Editor_xml – sequence: 1
  givenname: Mohammed A. A.
  surname: Al qaness
  fullname: Al qaness, Mohammed A. A.
EndPage 13
ExternalDocumentID 10.1155/2022/3035426
PMC9131703
A706121321
35634075
10_1155_2022_3035426
Genre Journal Article
GeographicLocations Iran
Taiwan
GeographicLocations_xml – name: Iran
– name: Taiwan
GroupedDBID ---
188
29F
2WC
3V.
4.4
53G
5GY
5VS
6J9
7X7
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAFWJ
AAJEY
AAKPC
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIWK
ACM
ACPRK
ADBBV
ADRAZ
AENEX
AFKRA
AHMBA
AINHJ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
CCPQU
CS3
CWDGH
DIK
DWQXO
E3Z
EBD
EBS
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
I-F
IAO
ICD
INH
INR
IPY
ITC
K6V
K7-
KQ8
L6V
LK8
M0N
M1P
M48
M7P
M7S
MK~
O5R
O5S
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
Q2X
RHU
RHW
RHX
RNS
RPM
SV3
TR2
TUS
UKHRP
XH6
~8M
0R~
24P
AAMMB
AAYXX
ACCMX
ACUHS
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
H13
IHR
OVT
PGMZT
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
2UF
C1A
CGR
CNMHZ
CUY
CVCKV
CVF
ECM
EIF
EJD
IL9
NPM
UZ4
7QF
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7XB
8AL
8BQ
8FD
8FK
COVID
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c476t-37e0fa6b2df9fc8aff1965de543d502e368fe4a40eeefd0bd35d24ff1a38ce653
IEDL.DBID M48
ISSN 1687-5265
1687-5273
IngestDate Sun Oct 26 03:11:10 EDT 2025
Tue Sep 30 15:52:07 EDT 2025
Wed Oct 01 14:31:03 EDT 2025
Tue Oct 07 06:06:30 EDT 2025
Mon Oct 20 22:49:09 EDT 2025
Thu Apr 03 07:08:28 EDT 2025
Thu Apr 24 22:54:43 EDT 2025
Wed Oct 01 02:22:22 EDT 2025
Sun Jun 02 18:52:11 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
Copyright © 2022 Firoozeh Abolhasani Zadeh et al.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c476t-37e0fa6b2df9fc8aff1965de543d502e368fe4a40eeefd0bd35d24ff1a38ce653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Academic Editor: Mohammed A. A. Al qaness
ORCID 0000-0002-7349-7498
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1155/2022/3035426
PMID 35634075
PQID 2673227559
PQPubID 237303
PageCount 13
ParticipantIDs unpaywall_primary_10_1155_2022_3035426
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9131703
proquest_miscellaneous_2671998106
proquest_journals_2673227559
gale_infotracmisc_A706121321
pubmed_primary_35634075
crossref_primary_10_1155_2022_3035426
crossref_citationtrail_10_1155_2022_3035426
hindawi_primary_10_1155_2022_3035426
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-25
PublicationDateYYYYMMDD 2022-05-25
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-25
  day: 25
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Computational intelligence and neuroscience
PublicationTitleAlternate Comput Intell Neurosci
PublicationYear 2022
Publisher Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
References 44
88
45
89
48
49
P. C. Joseph (87) 2020
H. S. Maghdid (8) 2020
R. Gupta (51) 2020
91
52
53
G. Gaal (74) 2020
10
A. McCallum (85) 2019
11
55
12
56
13
57
14
15
16
17
18
19
C. Li (70) 2020
F. N. Iandola (34) 2016
A. Narin (59) 2020
1
2
3
4
5
6
7
9
60
61
S. Das (32) 2017
20
64
21
M. Mahmoudi (54) 2022
22
23
67
24
K. Simonyan (35) 2014
M. Yousefzadeh (47) 2020
25
A. F. de Moraes Batista (65) 2020
69
26
27
L. Wang (58) 2020
Z. Tang (71) 2020
28
29
N. Nejatishahidin (79) 2020
M. Rezaei (46)
C. Szegedy (38)
F. Shi (72) 2020
30
I. Goodfellow (90) 2016
31
D.-P. Fan (75) 2020
76
33
77
78
A. Radulescu (50) 2020
39
F. Chollet (37)
L. Li (42) 2020; 19
K. He (36) 2015
A. E. Hassanien (66) 2020
R. Kumar (68) 2020
X. Chen (73) 2020
80
81
82
83
40
84
41
M. Barstugan (63) 2020
86
43
E. E.-D. Hemdan (62) 2020
References_xml – ident: 82
  doi: 10.1080/00207454.2021.1883602
– ident: 91
  doi: 10.1016/j.idm.2020.04.001
– ident: 40
  doi: 10.1109/cvpr.2017.243
– ident: 56
  doi: 10.21203/rs.3.rs-17715/v1
– ident: 84
  doi: 10.1016/s0925-2312(03)00431-4
– ident: 3
  doi: 10.1001/jama.2020.4861
– year: 2020
  ident: 8
  article-title: Diagnosing COVID-19 pneumonia from X-ray and CT images using deep learning and transfer learning algorithms
– ident: 67
  doi: 10.1097/rli.0000000000000672
– ident: 86
  doi: 10.1080/10255842.2021.1921164
– ident: 11
  doi: 10.1038/nrg3208
– year: 2020
  ident: 75
  article-title: Inf-Net: automatic COVID-19 lung infection segmentation from CT scans
– ident: 16
  doi: 10.1016/j.compbiomed.2021.104454
– year: 2020
  ident: 51
  article-title: SEIR and Regression Model based COVID- 19 outbreak predictions in India
  doi: 10.1101/2020.04.01.20049825
– ident: 10
  doi: 10.1136/amiajnl-2012-001145
– year: 2020
  ident: 59
  article-title: Automatic detection of coronavirus disease (covid-19) using x-ray images and deep convolutional neural networks
– ident: 76
  doi: 10.7717/peerj-cs.564
– year: 2020
  ident: 71
  article-title: Severity assessment of coronavirus disease 2019 (COVID-19) using quantitative features from chest CT images
– ident: 15
  doi: 10.1007/s11356-021-13249-2
– ident: 22
  doi: 10.1038/nbt.4233
– ident: 69
  doi: 10.14299/ijser.2020.03.02
– year: 2020
  ident: 79
  article-title: Object pose estimation using mid-level visual representations
– year: 2020
  ident: 87
  article-title: COVID-19 image data collection: prospective predictions are the future
– ident: 9
  doi: 10.1101/2020.04.04.20052092
– ident: 61
  doi: 10.1007/s13246-020-00865-4
– year: 2016
  ident: 34
  article-title: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size
– year: 2022
  ident: 54
  article-title: COVID Lessons: was there any way to reduce the negative effect of COVID-19 on the United States economy?
  doi: 10.1108/JES-01-2022-0052
– ident: 12
  doi: 10.4137/bii.s31559
– ident: 13
  doi: 10.1007/s11356-020-11644-9
– year: 2020
  ident: 73
  article-title: Residual attention U-net for automated multi-class segmentation of COVID-19 chest CT images
– start-page: 1800
  ident: 37
  article-title: Xception: deep learning with depthwise separable convolutions
– ident: 78
  doi: 10.3390/s21217286
– ident: 14
  doi: 10.1016/j.chaos.2020.110170
– ident: 81
  doi: 10.5589/m02-004
– ident: 27
  doi: 10.1016/j.media.2017.07.005
– ident: 7
  doi: 10.1109/RBME.2020.2987975
– ident: 20
  doi: 10.1016/j.compbiomed.2021.104425
– start-page: 218
  ident: 46
  article-title: Weakly-supervised hand part segmentation from depth images
– ident: 2
  doi: 10.1148/radiol.2020200432
– ident: 5
  doi: 10.1016/j.compbiomed.2020.103792
– ident: 43
  doi: 10.1016/j.ejrad.2020.109041
– ident: 44
  doi: 10.1080/24749508.2019.1585657
– year: 2020
  ident: 66
  article-title: Automatic x-ray COVID-19 lung image classification system based on multi-level thresholding and support vector machine
– ident: 29
  doi: 10.1109/JBHI.2020.2986376
– year: 2020
  ident: 63
  article-title: Coronavirus (covid- 19) classification using ct images by machine learning methods
– ident: 1
  doi: 10.1148/radiol.2020200642
– year: 2020
  ident: 62
  article-title: Covidx-net: a framework of deep learning classifiers to diagnose covid-19 in x-ray images
– ident: 24
  doi: 10.1146/annurev-bioeng-071516-044442
– ident: 39
  doi: 10.1109/icip.2018.8451355
– ident: 23
  doi: 10.1038/s41591-018-0316-z
– ident: 33
  doi: 10.1002/jctb.4820
– start-page: 4278
  ident: 38
  article-title: Inception-v4, inception-resnet and the impact of residual connections on learning
– volume: 19
  year: 2020
  ident: 42
  article-title: Artificial intelligence distinguishes COVID-19 from community acquired pneumonia on chest CT
  publication-title: Radiology
– ident: 52
  doi: 10.1109/JIOT.2020.3007518
– volume-title: Graphical Models, Lecture2: Bayesian Network Representation
  year: 2019
  ident: 85
– ident: 6
  doi: 10.1016/j.acra.2020.03.003
– ident: 41
  doi: 10.1007/978-3-319-24574-4_28
– ident: 57
  doi: 10.1111/exsy.12759
– year: 2020
  ident: 50
  article-title: Management strategies in a SEIR model of COVID 19 community spread
– ident: 89
  doi: 10.1016/j.rxeng.2020.11.002
– year: 2020
  ident: 70
  article-title: Preliminary study to identify severe from moderate cases of COVID-19 using NLR&RDW-SD combination parameter
– ident: 18
  doi: 10.1155/2021/9995073
– ident: 25
  doi: 10.1016/j.drudis.2018.01.039
– ident: 17
  doi: 10.1016/j.asoc.2021.107449
– year: 2020
  ident: 65
  article-title: COVID-19 diagnosis prediction in emergency care patients: a machine learning approach
  doi: 10.1101/2020.04.04.20052092
– ident: 83
  doi: 10.1109/tsmc.1985.6313426
– ident: 77
  doi: 10.1007/s10044-020-00950-0
– year: 2020
  ident: 74
  article-title: Attention U-net based' adversarial architectures for chest X-ray lung segmentation
– ident: 49
  doi: 10.24869/psyd.2020.262
– ident: 31
  doi: 10.3390/electronics8030292
– ident: 55
  doi: 10.1016/s2468-2667(20)30073-6
– year: 2015
  ident: 36
  article-title: Deep residual learning for image recognition
– ident: 4
  doi: 10.5858/arpa.2020-0901-sa
– year: 2020
  ident: 47
  article-title: Ai-corona: radiologist-assistant deep learning framework for COVID-19 diagnosis in chest ct scans
  doi: 10.1101/2020.05.04.20082081
– ident: 60
  doi: 10.1148/radiol.2020200905
– year: 2017
  ident: 32
  article-title: CNN architectures: LeNet, AlexNet, VGG, GoogLeNet, ResNet and more
– ident: 53
  doi: 10.1007/s00521-020-05687-9
– year: 2020
  ident: 72
  article-title: Large-scale screening of covid-19 from community acquired pneumonia using infection size-aware classification
– year: 2020
  ident: 58
  article-title: COVID-Net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest radiography images
  doi: 10.1038/s41598-020-76550-z
– ident: 48
  doi: 10.1038/s41467-020-18685-1
– ident: 21
  doi: 10.1109/access.2021.3058537
– year: 2014
  ident: 35
  article-title: Very deep convolutional networks for large-scale image recognition
– ident: 28
  doi: 10.1109/ICCSRE.2019.8807741
– ident: 80
  doi: 10.3390/app11199023
– ident: 45
  doi: 10.24869/psyd.2020.570
– ident: 64
  doi: 10.33889/IJMEMS.2020.5.4.052
– ident: 26
  doi: 10.3390/s21155137
– year: 2020
  ident: 68
  article-title: Accurate prediction of COVID-19 using chest xray images through deep feature learning model with smote and machine learning classifiers
– ident: 19
  doi: 10.1016/j.asoc.2020.106912
– ident: 30
  doi: 10.2174/1574893615999200607173829
– ident: 88
  doi: 10.1016/j.cell.2018.02.010
– volume-title: Deep Learning—An MIT Press Book
  year: 2016
  ident: 90
SSID ssj0057502
Score 2.298143
Snippet The lungs are COVID-19’s most important focus, as it induces inflammatory changes in the lungs that can lead to respiratory insufficiency. Reducing the supply...
The lungs are COVID-19's most important focus, as it induces inflammatory changes in the lungs that can lead to respiratory insufficiency. Reducing the supply...
SourceID unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
hindawi
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Algorithms
Artificial Intelligence
Artificial neural networks
Bayes Theorem
Bayesian analysis
Chest
Computer vision
Coronaviruses
COVID-19
COVID-19 - diagnostic imaging
Datasets
Digital imaging
Evaluation
Feature extraction
Health aspects
Humans
Image classification
Image enhancement
Inflammation
Iran
Learning algorithms
Learning strategies
Lungs
Machine Learning
Machine vision
Mathematical analysis
Matrix methods
Medical imaging
Medical imaging equipment
Medical research
Medicine, Experimental
Methods
Mortality
Neural networks
Neural Networks, Computer
Pandemics
Support vector machines
Taiwan
X-rays
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9NAEB3RSgguCCgfhoIWqfSCLJxd79o5BtQqIMGholJu1q53lkZKnSoftP33ndnYFqF8HRNP4sSzM_Ne8vwW4MAoZ2ulXOo1upQttFJL7Cd1NE8CGjnUdRTIfjXj0_zzRE9ak6Tl7b_wadoxPZfvqdNqGiY7sFMaVm6djCddwyXAsZEWGqoXdnvv9O2_vHZr8rT99-4ZM9_L6e_w5W2Z5L11c2GvL-1s9tMMOn4ID1rwKEabbD-CO9g8hr1RQ8T5_FociijnjL-T78GPUSM6xxExD4K6mWC8t16gOLpaLTY3NIgvcQfppfhA08wLfiKqK1G0xqvf-whCtyJuocniophPcWL9tGue4tM5tablEzg9Pvr2cZy2myykdV6YFTUYzII1TvowDHVpQ2CPQY86V56uKypTBsxtniFi8JnzSnuZU5RVZY1Gq6ew28wbfA5i4KX0tRmWqHLCOdI5zGrMpQ0DmeWFS-Bdl4Cqbh3IeSOMWRWZiNYVp6tq05XA2z76YuO88Ye4fc5lxQXJF4_Ko65GBUM3YtqDBA7aHP_rXboFULVVvKykKajfFUS6EnjTH-YTsDKtwfk6xvBtisSsE3i2WS_9iZQ2igizTqDYWkl9AHt7bx9ppmfR43s4IGCXqQQO-zX318__4v--5ku4zw9Z_iD1PuyuFmt8Rahq5V7HmroBNYsYcQ
  priority: 102
  providerName: Hindawi Publishing
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Zb9NAEB6VVAheEFAOl4IWqfQFWXX2cvKAUIpSFSQiVFGpb9ZebiOlTsjR0n_PzMY2rYDyGo9iy3PsN-tvvwHY1cIaJ4RNvQo2JQmt1GD3k1pcT8qgeV-5SJAd6aMT-eVUnW7AqDkLQ7TKpibGQu2njvbI97nOMfZyBMAfZz9SmhpFX1ebERqmHq3gP0SJsXuwyUkZqwObB8PRt-OmNiM2WbMQNaYWCcM3VHilaBeA72NBV5KEFm4sUnWpvn9OTfLV-G9Q9E9G5YNVNTPXV2YyubFcHT6GRzXOZIN1YDyBjVA9ha1BhT32xTXbY5H5GbfUt-ByULFGnIRNS4aFjxE0XM0DG_5cztdnH9jXOGx6wQ5w4fOMfohEzMBqjdaz1gKBMIvTNomHFF3Pjo0fN3WWfb7AKrZ4BieHw--fjtJ6HkPqZK6XWItCVhptuS_7peuZsiQ5Qh-UFB7faxC6VwZpZBZCKH1mvVCeS7QyoueCVuI5dKppFV4C63rOvdP9XhASIRG3NmQuSG7KLs9kbhN43zigcLVYOc3MmBSxaVGqIHcVtbsSeNdaz9YiHf-w2yFfFpS79PIwk1wxyAnlYVPeTWC39vH__qUJgKJO-EXxOzwTeNtephsQia0K01W0oRON2IQn8GIdL-2NhNICe2uVQH4rkloDkgG_faUan0c58H4XMWAmEthrY-7O59---_lfwUOyJoYEVzvQWc5X4TUCr6V9U2fTLy1cKVM
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4anRC8cBuDwEBGGntB6VI7dlrxFNCmgcSEEJWGhBT5yiq6tGobxvj1HDsXKHfxlstRnNjH55wv-vwZYFcwJTVjKjbcqthLaMUS0U-sMJ84K-iI60CQPRZH4_TlCT_ZgKftWhjjJeJn0iz7px6Tnk9CtG76dbmvES0iXKf7GHk5Jpf-3LhLsCk4FuI92Bwfv87feYglcOp44fdvxxlrae-crz1iLSE1Yfly0_ivys6f2ZNXqnIuL87ldPpdajq8Du_bj6oZKR_71Ur19Zcf9B7_86tvwLWmZCV57WM3YcOWt2ArLxGun12QPRJIpOHv_BZ8ykvS6pyQmSMYQ4mvMquFJQefV4t6GQV5FfatXpJnmEMN8RcCp9OSRu71Q2eBNTUJG3d6SlPwIvJGmkkbssmLMwyIy9swPjx4-_wobrZ2iHWaiRWGNZs4KRQ1buT0UDrnlQ2N5SkzPKGWiaGzqUwTa60ziTKMG5qilWRDbQVn29ArZ6W9C2RgKDVajIaWpVhdUaVsom1KpRvQJM1UBE_a8S10o3vut9-YFgH_cF74ri2aro3gcWc9r_U-fmO3412l8GHAdx5OSl3kmS8YEd8PIthtRvJvT2n9q2hHu6AiwyibIdSL4FF32zfg-XClnVXBxi-ORDwfwZ3aHbuGGBcMYTqPIFtz1M7AK4qv3yknp0FZfDTAcjJhEex1Lv3H97_3r4b34ao_9bQLynegt1pU9gFWcyv1sJm1XwEE7URu
  priority: 102
  providerName: Unpaywall
Title An Analysis of New Feature Extraction Methods Based on Machine Learning Methods for Classification Radiological Images
URI https://dx.doi.org/10.1155/2022/3035426
https://www.ncbi.nlm.nih.gov/pubmed/35634075
https://www.proquest.com/docview/2673227559
https://www.proquest.com/docview/2671998106
https://pubmed.ncbi.nlm.nih.gov/PMC9131703
https://downloads.hindawi.com/journals/cin/2022/3035426.pdf
UnpaywallVersion publishedVersion
Volume 2022
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: KQ8
  dateStart: 20070625
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: KQ8
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1687-5273
  dateEnd: 20230628
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: ABDBF
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: DIK
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: GX1
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: 7X7
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Middle East & Africa Database
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: CWDGH
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/middleeastafrica
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: 8FG
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250430
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: M48
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: 24P
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9NAEB71EKIvCCiHS4kWqeQFGZxd79p5QChFSQNSoyoiUniybO-aRkqdNAdt_j0z60MEyvFiKdmJbe2cX_x5BuBEiSROhUhcLU3iUgstN0b04yaYTzKjeFumliA7UP2R_3ksxztQ8efLDVzeCe1ontRoMX17e735gA7_3jq8lITf-TsMxRKzTXN-7dJIKXr0Ws7X2IV9TFttmutw7tePGLBMKQiJCr2MupBVrPhfTriVr8qofe-S8PLN5K6q9Hdy5f11Po83N_F0-lPm6j2EB2XJyTqFjTyCHZM_hsNOjnD7asOazJJA7b_rh_C9k7OqTwmbZQxjIKMqcb0wrHu7WhSvQbBzO3d6yU4xB2pGX1hOpmFlu9ZvtQTWxMwO3iRKkrUCNoz1pAq57NMVBrTlExj1ul8-9t1yNIOb-oFaYVgyXharhOusnaVhnGXUmVAb6QuN-2qECjPjx75njMm0l2ghNfdRKhZhapQUT2Evn-XmObCW5lynqh0a4WN1xJPEeKnxeZy1uOcHiQNvKgVEadm3nMZnTCOLX6SMSF1RqS4HXtfS86Jfxx_kjkmXERkWbR46VRp1Air4EJ-3HDgpdfyvs1QGEFWmG3EVYJQMEKo58KpepgsQny03s7WVoZcbEY878Kywl_pCQiqBMFs6EGxZUi1AHcG3V_LJpe0M3m5hOegJB5q1zf31_o_-4wZfwAH9hBgTXB7D3mqxNi-xEFslDdgNxgEew95ZA_ZPu4OLIX46G7ca1tXwOOyPcWU0uOh8_QEQ1zUp
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JctNAEO0KTlHhAoGwCBIYqhJfKCXSbLIPHEwWbLIcqKTITUgzI-LCkY0tY8xH8Sv8EtPaSFjCKQeuVltSjXp5Lb15DbAuWRwpxmJXCxO7KKHlRrb7cWNbTxIjaVuonCB7JLsn_M2pOF2Ab9VeGKRVVjkxT9R6qPAd-RaVgfW9wALgkkG5b-Yz259NXvZ27MPcoHRv93i765YjBFzFA5nZ8DFeEsmY6qSdqFaUJKigp43gTAuPGiZbieER94wxifZizYSm3FpFrKWMxJEQtDn65OKUKvyaW47suAGL1s992oDF7Xc7r7tV7rfYp2A5Shu6KDxfUe2FwLcMdMsWDMFRyOFCESxLwc0zbMJn_T9B3d8Zm0vTdBTNZ9FgcKEc7t2B79VCFiyYj5vTLN5UX3_RmPx_VnoZbpfInHSKULoLCya9ByudNMqG53PSJDlXNv8IsQKfOymp5FzIMCG2VBAE09OxIbtfsnGxW4Qc5uO5J-SVhQqa4A85ddWQUtX2Q21hWweSzydF5lYeLORtpPtVZSK9c5v3J_fh5FoW5QE00mFqHgHxNaVayXbLMG5BJI1j4ynDaZT41ONB7MCLyqVCVcq745SRQZi3eUKE6IBh6YAObNTWo0LW5C92q-idIWY7XDybe1TYCRAX-4z6DqyXXvuvs1SeFpYpchL-dDMHnteH8QJI-0vNcJrb4B5Q37OneFhEQH0hJiTjFvA6EFyKjdoAhdMvH0n7Z7mAetu3qNljDjTrKLry_h9fff_PYKl7fHgQHvSO9p_ALfwn8kuoWIVGNp6aNQtbs_hpmSsIvL_uOPoBSt2ntg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFB1VrYBueJWHocAgtd0gN_aMZ5wsEApNQ0KhQoiK7ozHM9NGpE5IHEL4NH6Fn-Fev2h5lFUXbOMb2xrfx7n2mXMJ2ZBcxQnnytXCKBcltNwYuh9XQT2xRrKWSHKC7L7sHQQvD8XhEvlW7YVBWmWVE_NErUcJviNvMBmC74UAgBu2pEW86XSfjT-5OEEKv7RW4zQKF9kzizm0b9On_Q48603GurvvdnpuOWHATYJQZhBdxrOxVEzblk2asbUosKeNCLgWHjNcNq0J4sAzxljtKc2FZgFYxbyZGIkTIyD9rzRlKCEprOy877zoVXUAcFDBeJQQxihCX9HuhcA3DqwBxUMEKOpwqiCWZeHSMTbk88GfYO_v7M0rs3QcL-bxcHiqNHavke_VohaMmI_bs0xtJ19_0Zv8P1f9OrlaInbaLkLsBlky6U2y1k7jbHSyoFs059DmHyfWyOd2SiuZFzqyFEoIRZA9mxi6-yWbFLtI6Ot8bPeUPgcIoSn-kFNaDS3Vbo9qC2gpaD63FBldeRDRt7EeVBWL9k-gHkxvkYMLWYHbZDkdpeYuob5mTCey1TQ8AHDJlDJeYgIWW595Qagc8qRyrygpZd9x-sgwyts_ISJ0xqh0Rods1tbjQu7kL3br6KkRZkFcPMhJSdQOES_7nPkO2Sg9-F9nqbwuKlPnNPrpcg55XB_GCyAdMDWjWW6De0N9D05xp4iG-kJcSB4AEHZIeCZOagMUVD97JB0c58LqLR_QtMcdslVH1Ln3f-_8-39ELkOwRK_6-3v3ySr-EWknTKyT5WwyMw8AzWbqYZk2KPlw0THzA53MsH4
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4anRC8cBuDwEBGGntB6VI7dlrxFNCmgcSEEJWGhBT5yiq6tGobxvj1HDsXKHfxlstRnNjH55wv-vwZYFcwJTVjKjbcqthLaMUS0U-sMJ84K-iI60CQPRZH4_TlCT_ZgKftWhjjJeJn0iz7px6Tnk9CtG76dbmvES0iXKf7GHk5Jpf-3LhLsCk4FuI92Bwfv87feYglcOp44fdvxxlrae-crz1iLSE1Yfly0_ivys6f2ZNXqnIuL87ldPpdajq8Du_bj6oZKR_71Ur19Zcf9B7_86tvwLWmZCV57WM3YcOWt2ArLxGun12QPRJIpOHv_BZ8ykvS6pyQmSMYQ4mvMquFJQefV4t6GQV5FfatXpJnmEMN8RcCp9OSRu71Q2eBNTUJG3d6SlPwIvJGmkkbssmLMwyIy9swPjx4-_wobrZ2iHWaiRWGNZs4KRQ1buT0UDrnlQ2N5SkzPKGWiaGzqUwTa60ziTKMG5qilWRDbQVn29ArZ6W9C2RgKDVajIaWpVhdUaVsom1KpRvQJM1UBE_a8S10o3vut9-YFgH_cF74ri2aro3gcWc9r_U-fmO3412l8GHAdx5OSl3kmS8YEd8PIthtRvJvT2n9q2hHu6AiwyibIdSL4FF32zfg-XClnVXBxi-ORDwfwZ3aHbuGGBcMYTqPIFtz1M7AK4qv3yknp0FZfDTAcjJhEex1Lv3H97_3r4b34ao_9bQLynegt1pU9gFWcyv1sJm1XwEE7URu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Analysis+of+New+Feature+Extraction+Methods+Based+on+Machine+Learning+Methods+for+Classification+Radiological+Images&rft.jtitle=Computational+intelligence+and+neuroscience&rft.au=Zadeh%2C+Firoozeh+Abolhasani&rft.au=Ardalani%2C+Mohammadreza+Vazifeh&rft.au=Salehi%2C+Ali+Rezaei&rft.au=Jalali+Farahani%2C+Roza&rft.date=2022-05-25&rft.issn=1687-5273&rft.eissn=1687-5273&rft.volume=2022&rft.spage=3035426&rft_id=info:doi/10.1155%2F2022%2F3035426&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-5265&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-5265&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-5265&client=summon