Artificial Intelligence Based Algorithms for Prostate Cancer Classification and Detection on Magnetic Resonance Imaging: A Narrative Review

Due to the upfront role of magnetic resonance imaging (MRI) for prostate cancer (PCa) diagnosis, a multitude of artificial intelligence (AI) applications have been suggested to aid in the diagnosis and detection of PCa. In this review, we provide an overview of the current field, including studies b...

Full description

Saved in:
Bibliographic Details
Published inDiagnostics (Basel) Vol. 11; no. 6; p. 959
Main Authors Twilt, Jasper J., van Leeuwen, Kicky G., Huisman, Henkjan J., Fütterer, Jurgen J., de Rooij, Maarten
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 26.05.2021
MDPI
Subjects
Online AccessGet full text
ISSN2075-4418
2075-4418
DOI10.3390/diagnostics11060959

Cover

Abstract Due to the upfront role of magnetic resonance imaging (MRI) for prostate cancer (PCa) diagnosis, a multitude of artificial intelligence (AI) applications have been suggested to aid in the diagnosis and detection of PCa. In this review, we provide an overview of the current field, including studies between 2018 and February 2021, describing AI algorithms for (1) lesion classification and (2) lesion detection for PCa. Our evaluation of 59 included studies showed that most research has been conducted for the task of PCa lesion classification (66%) followed by PCa lesion detection (34%). Studies showed large heterogeneity in cohort sizes, ranging between 18 to 499 patients (median = 162) combined with different approaches for performance validation. Furthermore, 85% of the studies reported on the stand-alone diagnostic accuracy, whereas 15% demonstrated the impact of AI on diagnostic thinking efficacy, indicating limited proof for the clinical utility of PCa AI applications. In order to introduce AI within the clinical workflow of PCa assessment, robustness and generalizability of AI applications need to be further validated utilizing external validation and clinical workflow experiments.
AbstractList Due to the upfront role of magnetic resonance imaging (MRI) for prostate cancer (PCa) diagnosis, a multitude of artificial intelligence (AI) applications have been suggested to aid in the diagnosis and detection of PCa. In this review, we provide an overview of the current field, including studies between 2018 and February 2021, describing AI algorithms for (1) lesion classification and (2) lesion detection for PCa. Our evaluation of 59 included studies showed that most research has been conducted for the task of PCa lesion classification (66%) followed by PCa lesion detection (34%). Studies showed large heterogeneity in cohort sizes, ranging between 18 to 499 patients (median = 162) combined with different approaches for performance validation. Furthermore, 85% of the studies reported on the stand-alone diagnostic accuracy, whereas 15% demonstrated the impact of AI on diagnostic thinking efficacy, indicating limited proof for the clinical utility of PCa AI applications. In order to introduce AI within the clinical workflow of PCa assessment, robustness and generalizability of AI applications need to be further validated utilizing external validation and clinical workflow experiments.
Due to the upfront role of magnetic resonance imaging (MRI) for prostate cancer (PCa) diagnosis, a multitude of artificial intelligence (AI) applications have been suggested to aid in the diagnosis and detection of PCa. In this review, we provide an overview of the current field, including studies between 2018 and February 2021, describing AI algorithms for (1) lesion classification and (2) lesion detection for PCa. Our evaluation of 59 included studies showed that most research has been conducted for the task of PCa lesion classification (66%) followed by PCa lesion detection (34%). Studies showed large heterogeneity in cohort sizes, ranging between 18 to 499 patients (median = 162) combined with different approaches for performance validation. Furthermore, 85% of the studies reported on the stand-alone diagnostic accuracy, whereas 15% demonstrated the impact of AI on diagnostic thinking efficacy, indicating limited proof for the clinical utility of PCa AI applications. In order to introduce AI within the clinical workflow of PCa assessment, robustness and generalizability of AI applications need to be further validated utilizing external validation and clinical workflow experiments.Due to the upfront role of magnetic resonance imaging (MRI) for prostate cancer (PCa) diagnosis, a multitude of artificial intelligence (AI) applications have been suggested to aid in the diagnosis and detection of PCa. In this review, we provide an overview of the current field, including studies between 2018 and February 2021, describing AI algorithms for (1) lesion classification and (2) lesion detection for PCa. Our evaluation of 59 included studies showed that most research has been conducted for the task of PCa lesion classification (66%) followed by PCa lesion detection (34%). Studies showed large heterogeneity in cohort sizes, ranging between 18 to 499 patients (median = 162) combined with different approaches for performance validation. Furthermore, 85% of the studies reported on the stand-alone diagnostic accuracy, whereas 15% demonstrated the impact of AI on diagnostic thinking efficacy, indicating limited proof for the clinical utility of PCa AI applications. In order to introduce AI within the clinical workflow of PCa assessment, robustness and generalizability of AI applications need to be further validated utilizing external validation and clinical workflow experiments.
Author Fütterer, Jurgen J.
van Leeuwen, Kicky G.
Huisman, Henkjan J.
de Rooij, Maarten
Twilt, Jasper J.
AuthorAffiliation Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; kicky.vanleeuwen@radboudumc.nl (K.G.v.L.); henkjan.huisman@radboudumc.nl (H.J.H.); jurgen.futterer@radboudumc.nl (J.J.F.); maarten.derooij@radboudumc.nl (M.d.R.)
AuthorAffiliation_xml – name: Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; kicky.vanleeuwen@radboudumc.nl (K.G.v.L.); henkjan.huisman@radboudumc.nl (H.J.H.); jurgen.futterer@radboudumc.nl (J.J.F.); maarten.derooij@radboudumc.nl (M.d.R.)
Author_xml – sequence: 1
  givenname: Jasper J.
  orcidid: 0000-0002-9673-6770
  surname: Twilt
  fullname: Twilt, Jasper J.
– sequence: 2
  givenname: Kicky G.
  orcidid: 0000-0002-8902-5161
  surname: van Leeuwen
  fullname: van Leeuwen, Kicky G.
– sequence: 3
  givenname: Henkjan J.
  orcidid: 0000-0001-6753-3221
  surname: Huisman
  fullname: Huisman, Henkjan J.
– sequence: 4
  givenname: Jurgen J.
  surname: Fütterer
  fullname: Fütterer, Jurgen J.
– sequence: 5
  givenname: Maarten
  surname: de Rooij
  fullname: de Rooij, Maarten
BookMark eNqNUttu1DAQjVARLaVfwIslXnjZYjtO4vCAtF0KrFQuQn23Js449SprL7Z3q34DP42zWyFaIYRlyZc553hmjp8XR847LIqXjJ6XZUvf9BYG52OyOjJGa9pW7ZPihNOmmgnB5NEf--PiLMYVzaNlpeTVs-K4FLQpa96cFD_nIVljtYWRLF3CcbQDOo3kAiL2ZD4OPth0s47E-EC-hfwkJCQLyJhAFiPEONEhWe8IuJ68x4R6f8rzc04Sc47kO0bvJg5ZrmGwbnhL5uQLhJCJO8zhncXbF8VTA2PEs_v1tLj-cHm9-DS7-vpxuZhfzbRo6jRjojdN03Q18J6hQUklVpyXdccp5Lo0a03FqBSMYW3ydd233PTQl90UKk-L5UG297BSm2DXEO6UB6v2Fz4MCnJT9IiqkrKTHdUVw0pI5B3UUjKDxmR1yiYtcdDaug3c3cI4_hZkVE1Oqb84lWnvDrTNtltjr9GlAOODXB5GnL1Rg98pyXkr60ng9b1A8D-2GJNa26ize-DQb6PiVVmLNneBZ-irR9CV3waXG5xRQjRclJxlVHlA6WxxDGj-s472EUvbtP8LOWs7_pP7C5v24gE
CitedBy_id crossref_primary_10_1007_s00330_021_08320_y
crossref_primary_10_3390_cancers14225595
crossref_primary_10_1002_nbm_5062
crossref_primary_10_3390_diagnostics13203238
crossref_primary_10_1002_pros_24703
crossref_primary_10_3390_app14188097
crossref_primary_10_1016_j_bspc_2024_106654
crossref_primary_10_1016_j_euros_2022_04_017
crossref_primary_10_1016_j_apergo_2024_104243
crossref_primary_10_1200_EDBK_350652
crossref_primary_10_1186_s13244_023_01421_w
crossref_primary_10_1186_s13244_023_01502_w
crossref_primary_10_1186_s41747_022_00288_8
crossref_primary_10_1200_GO_24_00583
crossref_primary_10_3390_s24061954
crossref_primary_10_1016_j_bbcan_2023_189026
crossref_primary_10_1016_j_euros_2023_05_018
crossref_primary_10_3390_jpm14060546
crossref_primary_10_1259_bjr_20210563
crossref_primary_10_1148_rg_2021210187
crossref_primary_10_3390_tomography8040168
crossref_primary_10_3390_diagnostics15050625
crossref_primary_10_3390_cancers16101822
crossref_primary_10_3390_cancers16172951
crossref_primary_10_1109_TBME_2023_3326799
crossref_primary_10_1016_j_euo_2024_03_003
crossref_primary_10_2214_AJR_21_26917
crossref_primary_10_1007_s13755_023_00264_5
crossref_primary_10_3390_diagnostics12020289
crossref_primary_10_3390_diagnostics13122008
crossref_primary_10_1016_j_diii_2023_04_006
crossref_primary_10_1016_j_eururo_2021_07_024
crossref_primary_10_1038_s41598_023_33339_0
crossref_primary_10_3389_fonc_2022_948662
crossref_primary_10_23736_S2723_9284_23_00255_0
crossref_primary_10_1186_s41747_021_00245_x
crossref_primary_10_3390_cancers16172988
crossref_primary_10_1186_s41747_022_00287_9
crossref_primary_10_1016_j_ejrad_2023_111095
crossref_primary_10_3390_diagnostics14222576
crossref_primary_10_1016_j_ejrad_2023_111252
crossref_primary_10_1007_s00330_022_08609_6
crossref_primary_10_3389_fonc_2021_802964
crossref_primary_10_3390_cancers15133416
crossref_primary_10_3390_cancers17020194
crossref_primary_10_1038_s41585_022_00638_6
crossref_primary_10_3390_ijms24032185
crossref_primary_10_3390_life12101490
crossref_primary_10_3390_pharmaceutics16081107
crossref_primary_10_1007_s00330_024_11012_y
crossref_primary_10_1155_2024_2741986
Cites_doi 10.1093/bib/bbx044
10.1097/JU.0000000000000272
10.3390/cancers12092366
10.1016/j.ejrad.2017.11.001
10.1016/j.ejrad.2019.02.032
10.1007/s00330-020-07086-z
10.1007/s11548-019-01967-5
10.1002/jmri.26047
10.1109/TMI.2017.2789181
10.1117/1.JMI.5.4.044507
10.3390/cancers12061606
10.1093/jnci/djy222
10.1056/NEJMoa1801993
10.1007/s00330-020-07030-1
10.1038/s41598-019-55972-4
10.1148/radiol.2018173064
10.1186/s12885-019-6504-5
10.1109/TBME.2020.2993528
10.1002/jmri.26674
10.1111/bju.14603
10.1186/s12880-019-0308-6
10.3390/s20185411
10.3322/caac.21590
10.1177/0272989X9101100203
10.3390/diagnostics10110951
10.1148/radiol.2016151406
10.1148/radiol.2017171265
10.1038/s41598-018-38381-x
10.1097/PAS.0000000000001497
10.3348/kjr.2018.0070
10.1007/s12194-019-00552-4
10.1117/1.JMI.4.2.024506
10.1148/radiol.2017171920
10.1016/j.ejmp.2020.10.013
10.1148/rg.2017160130
10.1002/acm2.12992
10.1148/radiol.2019190938
10.1002/jmri.27008
10.1186/s12880-018-0258-4
10.1177/0272989X14547233
10.1038/s41598-020-80749-5
10.1016/j.imu.2019.100256
10.1016/j.clinimag.2019.12.010
10.1148/radiol.2018171820
10.18632/oncotarget.26100
10.1007/s00330-019-06417-z
10.1016/j.eururo.2018.08.038
10.1016/j.media.2017.07.005
10.21037/tau.2017.12.24
10.1148/radiol.2015151169
10.2214/AJR.19.22573
10.1016/j.compbiomed.2015.02.009
10.1148/radiol.2019192515
10.1016/j.eururo.2018.11.023
10.1016/j.eururo.2016.08.003
10.1002/acm2.12542
10.2214/AJR.16.16876
10.1016/S2589-7500(19)30123-2
10.1016/j.ejrad.2019.03.010
10.1109/TMI.2019.2901928
10.1016/S1470-2045(18)30569-2
10.1016/j.ijrobp.2018.04.044
10.1007/s10278-018-0160-1
10.1007/s00330-020-07008-z
10.3390/cancers12082200
10.1002/mp.13367
10.1007/s11427-015-4876-6
10.1177/1533034618775530
10.1007/s00330-021-07892-z
10.1016/j.eururo.2015.08.052
10.1177/1533033819858363
10.3390/cancers10080249
10.1007/s00261-018-1824-5
10.1007/s00330-018-5374-6
10.1146/annurev-bioeng-071516-044442
10.1016/j.compmedimag.2019.04.006
10.1007/s00330-020-06958-8
10.1016/j.crad.2019.07.011
10.1117/1.JMI.7.5.054501
10.1016/j.mri.2020.09.011
10.1097/RLI.0000000000000780
10.1007/s00330-019-06244-2
10.1038/s41598-020-72544-z
10.3390/cancers12071767
10.1002/jmri.26243
10.1007/s00330-019-06488-y
10.1111/bju.14397
10.1016/j.jacr.2019.05.047
10.1002/jmri.26555
10.1016/j.diii.2019.06.012
10.3348/kjr.2019.0025
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
3V.
7XB
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/diagnostics11060959
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
Research Library
Research Library (Corporate)
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
Publicly Available Content Database


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2075-4418
ExternalDocumentID oai_doaj_org_article_588b8b0c51e548e2ba6881feff84101f
10.3390/diagnostics11060959
PMC8229869
10_3390_diagnostics11060959
GroupedDBID 53G
5VS
8G5
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BCNDV
BENPR
BPHCQ
CCPQU
CITATION
DWQXO
EBD
ESX
GNUQQ
GROUPED_DOAJ
GUQSH
HYE
IAO
IHR
ITC
KQ8
M2O
M48
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RPM
3V.
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ADRAZ
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c476t-14df777b6a2d1efe808e52236b20a073c19f5108411e6f36b6d92fdad3bc19f3
IEDL.DBID M48
ISSN 2075-4418
IngestDate Fri Oct 03 12:40:53 EDT 2025
Sun Oct 26 04:10:21 EDT 2025
Tue Sep 30 16:56:19 EDT 2025
Fri Sep 05 12:32:47 EDT 2025
Mon Jun 30 02:10:34 EDT 2025
Thu Oct 16 04:36:58 EDT 2025
Thu Apr 24 23:01:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c476t-14df777b6a2d1efe808e52236b20a073c19f5108411e6f36b6d92fdad3bc19f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-8902-5161
0000-0001-6753-3221
0000-0002-9673-6770
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/diagnostics11060959
PMID 34073627
PQID 2544724321
PQPubID 2032410
ParticipantIDs doaj_primary_oai_doaj_org_article_588b8b0c51e548e2ba6881feff84101f
unpaywall_primary_10_3390_diagnostics11060959
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8229869
proquest_miscellaneous_2536495102
proquest_journals_2544724321
crossref_primary_10_3390_diagnostics11060959
crossref_citationtrail_10_3390_diagnostics11060959
PublicationCentury 2000
PublicationDate 20210526
PublicationDateYYYYMMDD 2021-05-26
PublicationDate_xml – month: 5
  year: 2021
  text: 20210526
  day: 26
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Diagnostics (Basel)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_94
Park (ref_103) 2019; 20
Cornel (ref_6) 2019; 75
Antonelli (ref_24) 2019; 29
Schelb (ref_84) 2021; 31
Zhao (ref_90) 2015; 58
Reda (ref_54) 2018; 17
Fryback (ref_20) 1991; 11
ref_98
Park (ref_102) 2020; 20
Sung (ref_1) 2021; 68
ref_97
ref_96
Sumathipala (ref_86) 2018; 5
Zhu (ref_89) 2020; 60
Erickson (ref_15) 2017; 37
Orczyk (ref_38) 2019; 124
Greer (ref_76) 2018; 28
McGarry (ref_80) 2020; 7
Khalvati (ref_78) 2018; 18
Abraham (ref_62) 2019; 17
Rosenkrantz (ref_10) 2017; 208
Zhang (ref_47) 2020; 10
Freixenet (ref_91) 2015; 60
Smith (ref_12) 2019; 49
Ishioka (ref_77) 2018; 122
Siegel (ref_2) 2020; 70
ref_23
Li (ref_35) 2018; 98
ref_21
Wynants (ref_61) 2018; 74
Gaur (ref_73) 2018; 9
Xu (ref_46) 2019; 114
Takeuchi (ref_56) 2019; 13
Mehralivand (ref_82) 2020; 215
Rudolph (ref_11) 2020; 10
Xu (ref_88) 2019; 14
Alkadi (ref_70) 2019; 32
Qi (ref_39) 2020; 51
Kim (ref_100) 2019; 20
Drost (ref_7) 2019; 2019
Liu (ref_101) 2019; 1
Miotto (ref_18) 2017; 19
Akamine (ref_22) 2020; 74
Broeders (ref_99) 2019; 111
Vickers (ref_50) 2015; 35
Lee (ref_79) 2019; 75
Gillies (ref_16) 2016; 278
Shen (ref_17) 2017; 19
Puech (ref_5) 2019; 20
Deniffel (ref_53) 2020; 30
Bonekamp (ref_26) 2018; 289
Chen (ref_28) 2019; 49
Chen (ref_52) 2019; 18
Kinsella (ref_69) 2018; 7
Vos (ref_93) 2021; 68
Grignon (ref_68) 2020; 44
Wu (ref_45) 2019; 50
Aldoj (ref_51) 2020; 30
Janic (ref_72) 2019; 9
Kasivisvanathan (ref_4) 2018; 378
Bluemke (ref_95) 2020; 294
Jensen (ref_65) 2019; 20
Dinh (ref_29) 2018; 287
Dinh (ref_30) 2016; 280
Sanyal (ref_83) 2020; 2020
Schelb (ref_85) 2019; 293
Min (ref_37) 2019; 115
Toivonen (ref_40) 2019; 88
Arif (ref_71) 2020; 30
ref_67
Weinreb (ref_9) 2016; 69
Choy (ref_14) 2018; 288
Varghese (ref_42) 2019; 9
ref_66
Transin (ref_41) 2019; 100
ref_64
Kwon (ref_34) 2018; 5
ref_63
Bleker (ref_25) 2020; 30
Wang (ref_87) 2018; 37
Song (ref_55) 2018; 48
Hectors (ref_32) 2019; 202
Yuan (ref_59) 2019; 46
Menias (ref_3) 2019; 16
Liu (ref_36) 2019; 74
ref_31
Fujita (ref_13) 2020; 13
Yoo (ref_58) 2019; 9
Park (ref_49) 2018; 286
Kan (ref_33) 2020; 30
Viswanath (ref_43) 2019; 19
Brancato (ref_27) 2021; 11
ref_104
Gholizadeh (ref_75) 2020; 21
ref_105
ref_44
Zhong (ref_60) 2019; 44
Wang (ref_57) 2020; 80
Mottet (ref_8) 2017; 71
McGarry (ref_81) 2018; 101
Cao (ref_92) 2019; 38
ref_48
Litjens (ref_19) 2017; 42
Lay (ref_74) 2017; 4
References_xml – volume: 19
  start-page: 1236
  year: 2017
  ident: ref_18
  article-title: Deep learning for healthcare: Review, opportunities and challenges
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbx044
– volume: 202
  start-page: 498
  year: 2019
  ident: ref_32
  article-title: Radiomics Features Measured with Multiparametric Magnetic Resonance Imaging Predict Prostate Cancer Aggressiveness
  publication-title: J. Urol.
  doi: 10.1097/JU.0000000000000272
– ident: ref_31
  doi: 10.3390/cancers12092366
– volume: 98
  start-page: 61
  year: 2018
  ident: ref_35
  article-title: Support Vector Machines (SVM) classification of prostate cancer Gleason score in central gland using multiparametric magnetic resonance images: A cross-validated study
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2017.11.001
– volume: 114
  start-page: 38
  year: 2019
  ident: ref_46
  article-title: Using biparametric MRI radiomics signature to differentiate between benign and malignant prostate lesions
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2019.02.032
– volume: 31
  start-page: 302
  year: 2021
  ident: ref_84
  article-title: Simulated clinical deployment of fully automatic deep learning for clinical prostate MRI assessment
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-020-07086-z
– volume: 14
  start-page: 1647
  year: 2019
  ident: ref_88
  article-title: Prostate cancer detection using residual networks
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-019-01967-5
– volume: 48
  start-page: 1570
  year: 2018
  ident: ref_55
  article-title: Computer-aided diagnosis of prostate cancer using a deep convolutional neural network from multiparametric MRI
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.26047
– volume: 2019
  start-page: 1
  year: 2019
  ident: ref_7
  article-title: Prostate MRI, with or without MRI-targeted biopsy, and systematic biopsy for detecting prostate cancer
  publication-title: Cochrane Database Syst. Rev.
– volume: 37
  start-page: 1127
  year: 2018
  ident: ref_87
  article-title: Automated detection of clinically significant prostate cancer in mp-MRI images based on an end-to-end deep neural network
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2017.2789181
– volume: 5
  start-page: 1
  year: 2018
  ident: ref_86
  article-title: Prostate cancer detection from multi-institution multiparametric MRIs using deep convolutional neural networks
  publication-title: J. Med. Imaging
  doi: 10.1117/1.JMI.5.4.044507
– ident: ref_98
  doi: 10.3390/cancers12061606
– volume: 111
  start-page: 916
  year: 2019
  ident: ref_99
  article-title: Stand-Alone Artificial Intelligence for Breast Cancer Detection in Mammography: Comparison With 101 Radiologists
  publication-title: JNCI J. Natl. Cancer Inst.
  doi: 10.1093/jnci/djy222
– volume: 378
  start-page: 1767
  year: 2018
  ident: ref_4
  article-title: MRI-targeted or standard biopsy for prostate-cancer diagnosis
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1801993
– volume: 30
  start-page: 6867
  year: 2020
  ident: ref_53
  article-title: Using decision curve analysis to benchmark performance of a magnetic resonance imaging-based deep learning model for prostate cancer risk assessment
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-020-07030-1
– ident: ref_48
– volume: 9
  start-page: 1
  year: 2019
  ident: ref_58
  article-title: Prostate Cancer Detection using Deep Convolutional Neural Networks
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-55972-4
– volume: 289
  start-page: 128
  year: 2018
  ident: ref_26
  article-title: Radiomic Machine Learning for Characterization of Prostate Lesions with MRI: Comparison to ADC Values
  publication-title: Radiology
  doi: 10.1148/radiol.2018173064
– volume: 2020
  start-page: 552
  year: 2020
  ident: ref_83
  article-title: An Automated Two-step Pipeline for Aggressive Prostate Lesion Detection from Multi-parametric MR Sequence
  publication-title: AMIA Jt. Summits Transl. Sci. Proc.
– volume: 20
  start-page: 1
  year: 2020
  ident: ref_102
  article-title: A systematic review reporting quality of radiomics research in neuro-oncology: Toward clinical utility and quality improvement using high-dimensional imaging features
  publication-title: BMC Cancer
  doi: 10.1186/s12885-019-6504-5
– volume: 68
  start-page: 374
  year: 2021
  ident: ref_93
  article-title: Deep Learning Regression for Prostate Cancer Detection and Grading in Bi-Parametric MRI
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2020.2993528
– volume: 50
  start-page: 940
  year: 2019
  ident: ref_45
  article-title: Transition Zone Prostate Cancer: Logistic Regression and Machine-Learning Models of Quantitative ADC, Shape and Texture Features Are Highly Accurate for Diagnosis
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.26674
– volume: 9
  start-page: 1
  year: 2019
  ident: ref_72
  article-title: Detection of Dominant Intra-prostatic Lesions in Patients With Prostate Cancer Using an Artificial Neural Network and MR Multi-modal Radiomics Analysis
  publication-title: Front. Oncol.
– volume: 124
  start-page: 76
  year: 2019
  ident: ref_38
  article-title: Prostate cancer heterogeneity: Texture analysis score based on multiple magnetic resonance imaging sequences for detection, stratification and selection of lesions at time of biopsy
  publication-title: BJU Int.
  doi: 10.1111/bju.14603
– volume: 19
  start-page: 1
  year: 2019
  ident: ref_43
  article-title: Comparing radiomic classifiers and classifier ensembles for detection of peripheral zone prostate tumors on T2-weighted MRI: A multi-site study
  publication-title: BMC Med. Imaging
  doi: 10.1186/s12880-019-0308-6
– ident: ref_97
– ident: ref_63
  doi: 10.3390/s20185411
– volume: 70
  start-page: 7
  year: 2020
  ident: ref_2
  article-title: Cancer statistics, 2020
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21590
– volume: 11
  start-page: 88
  year: 1991
  ident: ref_20
  article-title: The Efficacy of Diagnostic Imaging
  publication-title: Med. Decis. Mak.
  doi: 10.1177/0272989X9101100203
– ident: ref_94
  doi: 10.3390/diagnostics10110951
– ident: ref_67
– volume: 280
  start-page: 117
  year: 2016
  ident: ref_30
  article-title: Quantitative analysis of prostate multiparametric MR images for detection of aggressive prostate cancer in the peripheral zone: A multiple imager study
  publication-title: Radiology
  doi: 10.1148/radiol.2016151406
– volume: 287
  start-page: 525
  year: 2018
  ident: ref_29
  article-title: Characterization of prostate cancer with Gleason score of at least 7 by using quantitative multiparametric MR imaging: Validation of a computer-aided diagnosis system in patients referred for prostate biopsy
  publication-title: Radiology
  doi: 10.1148/radiol.2017171265
– volume: 9
  start-page: 1
  year: 2019
  ident: ref_42
  article-title: Objective risk stratification of prostate cancer using machine learning and radiomics applied to multiparametric magnetic resonance images
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-38381-x
– volume: 44
  start-page: E87
  year: 2020
  ident: ref_68
  article-title: The 2019 International Society of Urological Pathology (ISUP) Consensus Conference on Grading of Prostatic Carcinoma
  publication-title: Am. J. Surg. Pathol.
  doi: 10.1097/PAS.0000000000001497
– volume: 20
  start-page: 1124
  year: 2019
  ident: ref_103
  article-title: Reproducibility and generalizability in radiomics modeling: Possible strategies in radiologic and statistical perspectives
  publication-title: Korean J. Radiol.
  doi: 10.3348/kjr.2018.0070
– volume: 13
  start-page: 6
  year: 2020
  ident: ref_13
  article-title: AI—based computer—aided diagnosis ( AI—CAD): The latest review to read first
  publication-title: Radiol. Phys. Technol.
  doi: 10.1007/s12194-019-00552-4
– volume: 4
  start-page: 1
  year: 2017
  ident: ref_74
  article-title: Detection of prostate cancer in multiparametric MRI using random forest with instance weighting
  publication-title: J. Med. Imaging
  doi: 10.1117/1.JMI.4.2.024506
– volume: 286
  start-page: 800
  year: 2018
  ident: ref_49
  article-title: Methodologic Guide for Evaluating Clinical Performance and Effect of Artificial Intelligence Technology for Medical Diagnosis and Prediction
  publication-title: Radiology
  doi: 10.1148/radiol.2017171920
– volume: 13
  start-page: 145
  year: 2019
  ident: ref_56
  article-title: Prediction of prostate cancer by deep learning with multilayer artificial neural network
  publication-title: Can. Urol. Assoc. J.
– volume: 80
  start-page: 92
  year: 2020
  ident: ref_57
  article-title: Selecting proper combination of mpMRI sequences for prostate cancer classification using multi-input convolutional neuronal network
  publication-title: Phys. Medica
  doi: 10.1016/j.ejmp.2020.10.013
– volume: 37
  start-page: 505
  year: 2017
  ident: ref_15
  article-title: Machine learning for medical imaging
  publication-title: Radiographics
  doi: 10.1148/rg.2017160130
– volume: 21
  start-page: 179
  year: 2020
  ident: ref_75
  article-title: Voxel-based supervised machine learning of peripheral zone prostate cancer using noncontrast multiparametric MRI
  publication-title: J. Appl. Clin. Med. Phys.
  doi: 10.1002/acm2.12992
– volume: 293
  start-page: 607
  year: 2019
  ident: ref_85
  article-title: Classification of cancer at prostate MRI: Deep Learning versus Clinical PI-RADS Assessment
  publication-title: Radiology
  doi: 10.1148/radiol.2019190938
– volume: 51
  start-page: 1890
  year: 2020
  ident: ref_39
  article-title: Multiparametric MRI-Based Radiomics for Prostate Cancer Screening With PSA in 4–10 ng/mL to Reduce Unnecessary Biopsies
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.27008
– volume: 18
  start-page: 1
  year: 2018
  ident: ref_78
  article-title: MPCaD: A multi-scale radiomics-driven framework for automated prostate cancer localization and detection
  publication-title: BMC Med. Imaging
  doi: 10.1186/s12880-018-0258-4
– volume: 35
  start-page: 162
  year: 2015
  ident: ref_50
  article-title: Calibration of risk prediction models: Impact on decision-analytic performance
  publication-title: Med. Decis. Mak.
  doi: 10.1177/0272989X14547233
– volume: 10
  start-page: 1
  year: 2020
  ident: ref_47
  article-title: Development of a Novel, Multi-Parametric, MRI-Based Radiomic Nomogram for Differentiating Between Clinically Significant and Insignificant Prostate Cancer
  publication-title: Front. Oncol.
– volume: 11
  start-page: 1
  year: 2021
  ident: ref_27
  article-title: Evaluation of a multiparametric MRI radiomic-based approach for stratification of equivocal PI-RADS 3 and upgraded PI-RADS 4 prostatic lesions
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-80749-5
– volume: 17
  start-page: 1
  year: 2019
  ident: ref_62
  article-title: Automated grading of prostate cancer using convolutional neural network and ordinal class classifier
  publication-title: Inform. Med. Unlocked
  doi: 10.1016/j.imu.2019.100256
– volume: 60
  start-page: 123
  year: 2020
  ident: ref_89
  article-title: Feasibility of integrating computer-aided diagnosis with structured reports of prostate multiparametric MRI
  publication-title: Clin. Imaging
  doi: 10.1016/j.clinimag.2019.12.010
– volume: 288
  start-page: 318
  year: 2018
  ident: ref_14
  article-title: Current Applications and Future Impact of Machine Learning in Radiology
  publication-title: Radiology
  doi: 10.1148/radiol.2018171820
– volume: 9
  start-page: 33804
  year: 2018
  ident: ref_73
  article-title: Can computer-aided diagnosis assist in the identification of prostate cancer on prostate MRI? A multi-center, multi-reader investigation
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.26100
– volume: 30
  start-page: 1243
  year: 2020
  ident: ref_51
  article-title: Semi-automatic classification of prostate cancer on multi-parametric MR imaging using a multi-channel 3D convolutional neural network
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-019-06417-z
– volume: 74
  start-page: 796
  year: 2018
  ident: ref_61
  article-title: Reporting and Interpreting Decision Curve Analysis: A Guide for Investigators
  publication-title: Eur. Urol.
  doi: 10.1016/j.eururo.2018.08.038
– volume: 42
  start-page: 60
  year: 2017
  ident: ref_19
  article-title: A Survey on Deep Learning in Medical Image Analysis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.07.005
– volume: 7
  start-page: 83
  year: 2018
  ident: ref_69
  article-title: Active surveillance for prostate cancer: A systematic review of contemporary worldwide practices
  publication-title: Transl. Androl. Urol.
  doi: 10.21037/tau.2017.12.24
– volume: 68
  start-page: 394
  year: 2021
  ident: ref_1
  article-title: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
  publication-title: CA Cancer J. Clin.
– volume: 278
  start-page: 563
  year: 2016
  ident: ref_16
  article-title: Radiomics: Images are more than pictures, they are data
  publication-title: Radiology
  doi: 10.1148/radiol.2015151169
– volume: 215
  start-page: 903
  year: 2020
  ident: ref_82
  article-title: Multicenter Multireader Evaluation of an Artificial Intelligence-Based Attention Mapping System for the Detection of Prostate Cancer with Multiparametric MRI
  publication-title: Am. J. Roentgenol.
  doi: 10.2214/AJR.19.22573
– volume: 60
  start-page: 8
  year: 2015
  ident: ref_91
  article-title: Computer-Aided Detection and diagnosis for prostate cancer based on mono and multi-parametric MRI: A review
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2015.02.009
– volume: 294
  start-page: 487
  year: 2020
  ident: ref_95
  article-title: Assessing radiology research on artificial intelligence: A brief guide for authors, reviewers, and readers-from the Radiology Editorial Board
  publication-title: Radiology
  doi: 10.1148/radiol.2019192515
– volume: 75
  start-page: 570
  year: 2019
  ident: ref_6
  article-title: Head-to-head Comparison of Transrectal Ultrasound-guided Prostate Biopsy Versus Multiparametric Prostate Resonance Imaging with Subsequent Magnetic Resonance-guided Biopsy in Biopsy-naïve Men with Elevated Prostate-specific Antigen: A Large Prospective Mu
  publication-title: Eur. Urol.
  doi: 10.1016/j.eururo.2018.11.023
– volume: 71
  start-page: 618
  year: 2017
  ident: ref_8
  article-title: EAU-ESTRO-SIOG Guidelines on Prostate Cancer. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent
  publication-title: Eur. Urol.
  doi: 10.1016/j.eururo.2016.08.003
– volume: 20
  start-page: 146
  year: 2019
  ident: ref_65
  article-title: Assessment of prostate cancer prognostic Gleason grade group using zonal-specific features extracted from biparametric MRI using a KNN classifier
  publication-title: J. Appl. Clin. Med. Phys.
  doi: 10.1002/acm2.12542
– volume: 5
  start-page: 1
  year: 2018
  ident: ref_34
  article-title: Classification of suspicious lesions on prostate multiparametric MRI using machine learning
  publication-title: J. Med. Imaging
– volume: 208
  start-page: 92
  year: 2017
  ident: ref_10
  article-title: The Learning Curve in Prostate MRI Interpretation: Self-Directed Learning Versus Continual Reader Feedback
  publication-title: Am. J. Roentgenol.
  doi: 10.2214/AJR.16.16876
– volume: 1
  start-page: 271
  year: 2019
  ident: ref_101
  article-title: A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: A systematic review and meta-analysis
  publication-title: Lancet Digit. Heal.
  doi: 10.1016/S2589-7500(19)30123-2
– volume: 115
  start-page: 16
  year: 2019
  ident: ref_37
  article-title: Multi-parametric MRI-based radiomics signature for discriminating between clinically significant and insignificant prostate cancer: Cross-validation of a machine learning method
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2019.03.010
– ident: ref_66
– volume: 38
  start-page: 2496
  year: 2019
  ident: ref_92
  article-title: Joint Prostate Cancer Detection and Gleason Score Prediction in mp-MRI via FocalNet
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2901928
– volume: 20
  start-page: 100
  year: 2019
  ident: ref_5
  article-title: Use of prostate systematic and targeted biopsy on the basis of multiparametric MRI in biopsy-naive patients (MRI-FIRST): A prospective, multicentre, paired diagnostic study
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(18)30569-2
– volume: 101
  start-page: 1179
  year: 2018
  ident: ref_81
  article-title: Radio-pathomic Maps of Epithelium and Lumen Density Predict the Location of High-Grade Prostate Cancer
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
  doi: 10.1016/j.ijrobp.2018.04.044
– volume: 32
  start-page: 793
  year: 2019
  ident: ref_70
  article-title: A Deep Learning-Based Approach for the Detection and Localization of Prostate Cancer in T2 Magnetic Resonance Images
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-018-0160-1
– volume: 30
  start-page: 6582
  year: 2020
  ident: ref_71
  article-title: Clinically significant prostate cancer detection and segmentation in low-risk patients using a convolutional neural network on multi-parametric MRI
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-020-07008-z
– ident: ref_23
  doi: 10.3390/cancers12082200
– volume: 46
  start-page: 756
  year: 2019
  ident: ref_59
  article-title: Prostate cancer classification with multiparametric MRI transfer learning model
  publication-title: Med. Phys.
  doi: 10.1002/mp.13367
– volume: 58
  start-page: 666
  year: 2015
  ident: ref_90
  article-title: Prostate cancer identification: Quantitative analysis of T2-weighted MR images based on a back propagation artificial neural network model
  publication-title: Sci. China Life Sci.
  doi: 10.1007/s11427-015-4876-6
– volume: 17
  start-page: 1
  year: 2018
  ident: ref_54
  article-title: Deep Learning Role in Early Diagnosis of Prostate Cancer
  publication-title: Technol. Cancer Res. Treat.
  doi: 10.1177/1533034618775530
– ident: ref_21
  doi: 10.1007/s00330-021-07892-z
– volume: 69
  start-page: 16
  year: 2016
  ident: ref_9
  article-title: PI-RADS Prostate Imaging—Reporting and Data System: 2015, Version 2
  publication-title: Eur. Urol.
  doi: 10.1016/j.eururo.2015.08.052
– ident: ref_96
– volume: 88
  start-page: 1
  year: 2019
  ident: ref_40
  article-title: Radiomics and machine learning of multisequence multiparametric prostate MRI: Towards improved non-invasive prostate cancer characterization
  publication-title: PLoS ONE
– volume: 18
  start-page: 1
  year: 2019
  ident: ref_52
  article-title: A Transfer Learning Approach for Malignant Prostate Lesion Detection on Multiparametric MRI
  publication-title: Technol. Cancer Res. Treat.
  doi: 10.1177/1533033819858363
– ident: ref_64
  doi: 10.3390/cancers10080249
– volume: 44
  start-page: 2030
  year: 2019
  ident: ref_60
  article-title: Deep transfer learning-based prostate cancer classification using 3 Tesla multi-parametric MRI
  publication-title: Abdom. Radiol.
  doi: 10.1007/s00261-018-1824-5
– volume: 28
  start-page: 4407
  year: 2018
  ident: ref_76
  article-title: Computer-aided diagnosis prior to conventional interpretation of prostate mpMRI: An international multi-reader study
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-018-5374-6
– volume: 19
  start-page: 221
  year: 2017
  ident: ref_17
  article-title: Il Deep Learning in Medical Image Analysis
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev-bioeng-071516-044442
– volume: 75
  start-page: 14
  year: 2019
  ident: ref_79
  article-title: Model-free prostate cancer segmentation from dynamic contrast-enhanced MRI with recurrent convolutional networks: A feasibility study
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2019.04.006
– volume: 30
  start-page: 6274
  year: 2020
  ident: ref_33
  article-title: Clinico-radiological characteristic-based machine learning in reducing unnecessary prostate biopsies of PI-RADS 3 lesions with dual validation
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-020-06958-8
– volume: 74
  start-page: 1
  year: 2019
  ident: ref_36
  article-title: Prediction of prostate cancer aggressiveness with a combination of radiomics and machine learning-based analysis of dynamic contrast-enhanced MRI
  publication-title: Clin. Radiol.
  doi: 10.1016/j.crad.2019.07.011
– volume: 7
  start-page: 1
  year: 2020
  ident: ref_80
  article-title: Radio-pathomic mapping model generated using annotations from five pathologists reliably distinguishes high-grade prostate cancer
  publication-title: J. Med. Imaging
  doi: 10.1117/1.JMI.7.5.054501
– volume: 74
  start-page: 90
  year: 2020
  ident: ref_22
  article-title: Application of hierarchical clustering to multi-parametric MR in prostate: Differentiation of tumor and normal tissue with high accuracy
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2020.09.011
– ident: ref_104
  doi: 10.1097/RLI.0000000000000780
– volume: 29
  start-page: 4754
  year: 2019
  ident: ref_24
  article-title: Machine learning classifiers can predict Gleason pattern 4 prostate cancer with greater accuracy than experienced radiologists
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-019-06244-2
– volume: 10
  start-page: 1
  year: 2020
  ident: ref_11
  article-title: Diagnostic performance of PI-RADS version 2.1 compared to version 2.0 for detection of peripheral and transition zone prostate cancer
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-72544-z
– ident: ref_44
  doi: 10.3390/cancers12071767
– ident: ref_105
– volume: 49
  start-page: 875
  year: 2019
  ident: ref_28
  article-title: Prostate Cancer Differentiation and Aggressiveness: Assessment With a Radiomic-Based Model vs. PI-RADS v2
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.26243
– volume: 30
  start-page: 1313
  year: 2020
  ident: ref_25
  article-title: Multiparametric MRI and auto-fixed volume of interest-based radiomics signature for clinically significant peripheral zone prostate cancer
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-019-06488-y
– volume: 122
  start-page: 411
  year: 2018
  ident: ref_77
  article-title: Computer-aided diagnosis of prostate cancer on magnetic resonance imaging using a convolutional neural network algorithm
  publication-title: BJU Int.
  doi: 10.1111/bju.14397
– volume: 16
  start-page: 1239
  year: 2019
  ident: ref_3
  article-title: Strengths, Weaknesses, Opportunities, and Threats Analysis of Artificial Intelligence and Machine Learning Applications in Radiology
  publication-title: J. Am. Coll. Radiol.
  doi: 10.1016/j.jacr.2019.05.047
– volume: 49
  start-page: 1694
  year: 2019
  ident: ref_12
  article-title: Intra- and interreader reproducibility of PI-RADSv2: A multireader study
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.26555
– volume: 100
  start-page: 801
  year: 2019
  ident: ref_41
  article-title: Computer-aided diagnosis system for characterizing ISUP grade ≥ 2 prostate cancers at multiparametric MRI: A cross-vendor evaluation
  publication-title: Diagn. Interv. Imaging
  doi: 10.1016/j.diii.2019.06.012
– volume: 20
  start-page: 405
  year: 2019
  ident: ref_100
  article-title: Design characteristics of studies reporting the performance of artificial intelligence algorithms for diagnostic analysis of medical images: Results from recently published papers
  publication-title: Korean J. Radiol.
  doi: 10.3348/kjr.2019.0025
SSID ssj0000913825
Score 2.4285822
SecondaryResourceType review_article
Snippet Due to the upfront role of magnetic resonance imaging (MRI) for prostate cancer (PCa) diagnosis, a multitude of artificial intelligence (AI) applications have...
SourceID doaj
unpaywall
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 959
SubjectTerms Artificial intelligence
computer-aided diagnosis
deep learning
machine learning
Magnetic resonance imaging
Prostate cancer
prostate neoplasms
radiomics
Review
Software
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhh7aX0qYtdZsWFXKsiSXbeuS2SRuSwIYeUsjNSJbUBDbesPFS8hvypzMjOcs6lDaHgk96gKWZkb6RRt8QsiNBi2oDEii9duig6Fy3MuRCcKdb41Qbzzump-LoZ3VyXp-vpfrCmLBED5wmbrdWyipbtDXzAK49t0YoxYIPQVWgTgFX30LpNWcqrsEaufXqRDNUgl-_61LkGnIfw46HNGt6tBVFxv4RzHwcJPl82V2b299mNlvbgQ5fkZcDdKST9MuvyYbvtsiz6XA5_obcYU0ihKDHa0ybdB92Kkcns1_zxWV_cXVDAajSH_jcA4AmPUC5L2jMjondo6io6Rz95vsYqNVR-KYwMHzwSPHAH1k6PD2-iimO9uiEnppFohCn6bLhLTk7_H52cJQPuRbytpKiz1nlgpTSCsMd88GrQnmAZqWwvDCwDLRMBzBfmHPmRYBi4TQPzrjSYlX5jmx2886_J1Ryy5gI3La1r8BhstpUIcgSkIWtayMywh9mvWkHHnJMhzFrwB9BUTV_EFVGvq46XScajr8330dxrpoih3YsAM1qBs1q_qVZGdl-UIZmMOybBhndJK9KzjLyZVUNJon3LKbz8yW2KUWFyJVnRI6UaPRD45ru8iKSeyMBvxIwgnylbk8Z8Yf_MeKP5AXHkJ0CAx-3yWa_WPpPgLl6-zma1z3w_C9u
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEA_1CuqL-ImrVSL46NJNdjfJCiJ3taUV7ihSoW9Lskla4bp3XvcQ_wb_aWeyH3ZFirBP-YDMzkwyk5n8hpC3EqQo18CB1BUWHZQiLirpYyG4LSptVRXuO-YLcfw1-3yen--QRf8WBtMq-z0xbNR2VeEd-T5CaUmepZx9XH-PsWoURlf7Ehq6K61gPwSIsTtklyMy1oTszg4Xp1-GWxdEwQSfqIUfSsHf37dtRhtiIsNJiPBrxeiICkj-I_Pz7-TJe9t6rX_-0MvljZPp6CF50JmUdNrKwCOy4-rH5O68C5o_Ib-wpwWKoCc3EDjpDE4wS6fLC6Czuby6pmDA0lN8BgIGKD1AedjQUDUTpwcWUl1b-sk1IYGrpvDNgTB8CEkxEIDoHY6eXIXSR-_plC70poUWp20Q4ik5Ozo8OziOuxoMcZVJ0cQss15KaYTmljnvVKIcmGypMDzRsD1UrPCg1ipjzAkPzcIW3FttU4Nd6TMyqVe1e06o5IYx4bmpcpeBI2UKnXkvU7A4TJ5rERHe__Wy6vDJsUzGsgQ_BVlV_oNVEXk3TFq38By3D58hO4ehiK0dGlabi7JT1TJXyiiTVDlz4M45brRQinnnPVCZMB-RvV4Yyk7hr8s_4hmRN0M3qCrGX3TtVlsck4oMLVoeETkSotGCxj31t8sA-o3A_EoABfEgbv9D8YvbF_uS3OeYpJNgquMemTSbrXsFVlZjXneq8xt9fi0z
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLWgk4CX8TmRMZCReCRL7SS2wwvqBtOG1GoPmzSeIju2t4ourdIUBH-BP829SVotE0KAlKfYluL42Pdc-_pcQt5IQFGqYQRil1l0ULIwK6QPheA2K7RVRbPfMZ6I4_Pk00V60W24LbuwSnDFp80izcGehWCvVcRYJKIszaKF9e-_djtJTHBwWPCi212yJVLg4gOydT45HX3GjHLrtq3UUAy-fWTb6DXUPwarh1JrWc8cNar9Pap5O1Dy_qpc6O_f9Gx2wwodPST5-vvb4JMv-6va7Bc_bkk7_n8HH5HtjqDSUYuox-SOK5-Qe-PuCP4p-YklrewEPbmh50kPwB5aOppdzqtpfXW9pECH6SleKgE6Sw8RXRVtcnBi8wYQVJeWfnB1Ew5WUnjG8OvwWiXFYwXUAnH05LpJpPSOjuhEV61QOW2PNJ6Rs6OPZ4fHYZfRISwSKeqQJdZLKY3Q3DLnnRoqBwQwFoYPNSw2Bcs8LBIqYcwJD6-Fzbi32sYGi-IdMijnpXtOqOSGMeG5KVKXgFtmMp14L2PgLyZNtQgIX49rXnRq55h0Y5aD14NgyH8DhoC83TRatGIff65-gIDZVEWl7ubFvLrMu4mfp0oZZYZFyhw4h44bLZRi3nkPvRwyH5C9NdzybvlY5qgbJ3kScxaQ15timPh4mqNLN19hnVgkyI95QGQPpr0P6peU06tGQhxl_pWAHoQbQP9Nj3f_sf4L8oBjDNAQIyn3yKCuVu4lkLjavOpm6i8oX0eh
  priority: 102
  providerName: Unpaywall
Title Artificial Intelligence Based Algorithms for Prostate Cancer Classification and Detection on Magnetic Resonance Imaging: A Narrative Review
URI https://www.proquest.com/docview/2544724321
https://www.proquest.com/docview/2536495102
https://pubmed.ncbi.nlm.nih.gov/PMC8229869
https://www.mdpi.com/2075-4418/11/6/959/pdf?version=1622101037
https://doaj.org/article/588b8b0c51e548e2ba6881feff84101f
UnpaywallVersion publishedVersion
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: ABDBF
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: M48
  dateStart: 20110501
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEF9qC-qL-InReqwgPhm93SSbjSByV1ta4Y5DelCfwm52txXS3DXNof0b_Ked2eSORqoU8rQfIZOZycxkZn9DyJsUpChRwIHIZgYDlCzMitSFQnCTFcrIwv_vmEzF4Tz-epKcbJF1QWb3Ai9vDO2wn9S8Lt__urj6DAr_CSNOCNk_mLYoDWGNwZghglr2dnkRYmcpzMB2bTbukB2wXhm2d5h0IYD_WmeIwoeVjhysZwjegWzBif51654B8zj_Pef079LKe6tqqa5-qrK8ZrcOHpIHncNJR62EPCJbtnpM7k66lPoT8htnWhgJenQNn5OOwb4ZOipPgcLm7PySgntLZ3hIBNxTuofSUlPfUxO3ewZTVRn6xTa-vKuicE2AMDwmSTFNgNgelh6d-8ZIH-mITlXdAo_TNkXxlBwf7B_vHYZdh4awiFPRhCw2Lk1TLRQ3zDorh9KCQxcJzYcKPh4FyxwovYwZs8LBsDAZd0aZSONU9IxsV4vKPic05Zox4bguEhtDmKUzFTuXRuCP6CRRIiB8_dbzokMvxyYaZQ5RDLIqv4FVAXm32bRswTv-v3yM7NwsReRtP7CoT_NOkfNESi31sEiYhWDPcq2ElMxZ54DKIXMB2V0LQ76W5hxx4FIeR5wF5PVmGhQZszOqsosVrolEjP4uD0jaE6LeA_Vnqh9nHhIcYfulAArCjbjdhuIXt3ial-Q-xzqeIVZD7pLtpl7ZV-CINXpAdsb709m3gf-RMfB6BWPz6Wz0_Q9V8Tv-
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3batwwEBVpAk1fSq_Ubdqq0L7VxJJl2S6EspsLu012CWULeTOSJSWFjXe7F0K-od_Uf-uMb41LCX0J-MmSjeUZjWY0o3MIeR-DFkUKJBDa1GCAkvppHjtfSm7SXJkkL_c7RmM5-Ca-nEVnG-RXcxYGyyobm1gaajPLcY98F6G0Yi5Czj7Pf_jIGoXZ1YZCQ9XUCmavhBirD3Yc2-srCOGWe8MDkPcHzo8OJ_sDv2YZ8HMRy5XPhHFxHGupuGHW2SRILDglodQ8UDABcpY6UNxEMGalg9vSpNwZZUKNTSG89h7ZEqFIIfbb6h-OT7-2mzwIugkhWIV2FIZpsGuqAjqEYIaFF9He0s6KWBIHdLzdv2s1t9fFXF1fqen0xkJ49Ig8rD1Y2qtU7jHZsMUTcn9U5-ifkp_YUuFS0OENwE_ahwXT0N70HH7r6uJyScFfpqd46gT8XbqP6regJUknPl5qDFWFoQd2VdaLFRSuEQwMz11SzDsgWIilw8uSaekT7dGxWlRI5rTKeTwjk7sQxnOyWcwK-4LQmGvGpOM6j6yAuE2nSjgXh-Dg6ChS0iO8-etZXsOhIyvHNIOwCEWV_UNUHvnYPjSv0EBu795HcbZdEcq7vDFbnGe1ZciiJNGJDvKIWYgeLddKJglz1jkYZcCcR3YaZchq-7LM_swGj7xrm8EyYLpHFXa2xj6hFOhAc4_EHSXqfFC3pfh-UWKMIw9AImEEfqtu_zPil7d_7FuyPZiMTrKT4fj4FXnAsT4owCrLHbK5Wqzta3DwVvpNPY0oye544v4GG-JpgQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBddC91exj6pt27TYHubiSXbsj0oI2kamnUJYXTQNyNZUjtInSxxKP0b9pftv9qdv1aPUfZS8JMkG8n3oTvd6XeEvIuAi0IJFPBNotFBSdwki6wrBNdJJnWclecdk6k4_hZ8PgvPtsiv5i4MplU2OrFU1HqR4Rl5D6G0Ih74nPVsnRYxG44-LX-4WEEKI61NOQ1Zl1nQByXcWH3J48RcX4E7tz4YD4H27zkfHZ0eHrt1xQE3CyJRuCzQNooiJSTXzFgTe7EBA8UXinsShCFjiQUmjgPGjLDQLHTCrZbaV9jlw2fvkR2MfYGO2BkcTWdf2wMfBOAEd6xCPvL9xOvpKpkO4ZhhE0bkt6SzO5ZFBDqW7995m_c3-VJeX8n5_MamOHpEHtbWLO1X7PeYbJn8Cdmd1PH6p-Qn9lQYFXR8A_yTDmDz1LQ_P4ffWlxcrinYznSGN1DA9qWHyIorWhbsxNdL7qEy13RoijJ3LKfwTGBheAeTYgwCgUMMHV-WVZc-0j6dylWFak6r-MczcnoXxHhOtvNFbvYIjbhiTFiustAE4MOpRAbWRj4YOyoMpXAIb_56mtXQ6FihY56Ci4SkSv9BKod8aF9aVsggtw8fIDnboQjrXTYsVudprSXSMI5VrLwsZAY8ScOVFHHMrLEWVukx65D9hhnSWtes0z-S4ZC3bTdoCQz9yNwsNjjGFwEa09whUYeJOhPq9uTfL0q8cawJEAtYgduy2_-s-MXtk31DdkGA0y_j6clL8oBjqpCHCZf7ZLtYbcwrsPUK9bqWIkrSO5bb34y-bbA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLWgk4CX8TmRMZCReCRL7SS2wwvqBtOG1GoPmzSeIju2t4ourdIUBH-BP829SVotE0KAlKfYluL42Pdc-_pcQt5IQFGqYQRil1l0ULIwK6QPheA2K7RVRbPfMZ6I4_Pk00V60W24LbuwSnDFp80izcGehWCvVcRYJKIszaKF9e-_djtJTHBwWPCi212yJVLg4gOydT45HX3GjHLrtq3UUAy-fWTb6DXUPwarh1JrWc8cNar9Pap5O1Dy_qpc6O_f9Gx2wwodPST5-vvb4JMv-6va7Bc_bkk7_n8HH5HtjqDSUYuox-SOK5-Qe-PuCP4p-YklrewEPbmh50kPwB5aOppdzqtpfXW9pECH6SleKgE6Sw8RXRVtcnBi8wYQVJeWfnB1Ew5WUnjG8OvwWiXFYwXUAnH05LpJpPSOjuhEV61QOW2PNJ6Rs6OPZ4fHYZfRISwSKeqQJdZLKY3Q3DLnnRoqBwQwFoYPNSw2Bcs8LBIqYcwJD6-Fzbi32sYGi-IdMijnpXtOqOSGMeG5KVKXgFtmMp14L2PgLyZNtQgIX49rXnRq55h0Y5aD14NgyH8DhoC83TRatGIff65-gIDZVEWl7ubFvLrMu4mfp0oZZYZFyhw4h44bLZRi3nkPvRwyH5C9NdzybvlY5qgbJ3kScxaQ15timPh4mqNLN19hnVgkyI95QGQPpr0P6peU06tGQhxl_pWAHoQbQP9Nj3f_sf4L8oBjDNAQIyn3yKCuVu4lkLjavOpm6i8oX0eh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence+Based+Algorithms+for+Prostate+Cancer+Classification+and+Detection+on+Magnetic+Resonance+Imaging%3A+A+Narrative+Review&rft.jtitle=Diagnostics+%28Basel%29&rft.au=Twilt%2C+Jasper+J&rft.au=van+Leeuwen%2C+Kicky+G&rft.au=Huisman%2C+Henkjan+J&rft.au=F%C3%BCtterer%2C+Jurgen+J&rft.date=2021-05-26&rft.issn=2075-4418&rft.eissn=2075-4418&rft.volume=11&rft.issue=6&rft_id=info:doi/10.3390%2Fdiagnostics11060959&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4418&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4418&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4418&client=summon