Process Modeling of Mineral Dissolution From Nano‐Scale Surface Topography Observations
We present an innovative approach that combines a unique real‐time data set documenting absolute dissolution rates of a calcite crystal with an original reactive transport model tailored to the analysis of the dynamics of nano‐scale mineral dissolution processes. Providing robust and physically base...
Saved in:
| Published in | Geophysical research letters Vol. 51; no. 16 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Washington
John Wiley & Sons, Inc
28.08.2024
Wiley |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0094-8276 1944-8007 1944-8007 |
| DOI | 10.1029/2024GL110030 |
Cover
| Abstract | We present an innovative approach that combines a unique real‐time data set documenting absolute dissolution rates of a calcite crystal with an original reactive transport model tailored to the analysis of the dynamics of nano‐scale mineral dissolution processes. Providing robust and physically based fundamental understanding on the kinetics of mineral dissolution is at the core of various geo‐engineered strategies to quantify chemical weathering patterns across diverse spatial and temporal scales. Here, we rely on data obtained through Atomic Force Microscopy. We provide a mathematical framework to describe three‐dimensional dynamics of the mineral surface topography, and show convergence of the numerical approach for vertical grid spacing down to sub‐nm resolution.
Plain Language Summary
We focus on some fundamental aspects related to modeling of mechanisms underpinning chemical weathering of minerals. The latter is a ubiquitously active phenomenon driving the Earth system evolution. It underpins a variety of physico‐chemical processes that are at the core of various geo‐engineered strategies for sustainable development, including the assessment of the role of underground storage of carbon dioxide or geothermal energy in environmental stewardship. Here, we propose an innovative approach that combines for the first time a reactive transport model with a unique real‐time data set documenting absolute calcite dissolution rates. Experimental observations correspond to high‐resolution (i.e., horizontal and vertical resolution of 19.5 and ∼0.1 nm, respectively) in‐situ Atomic Force Microscopy data obtained across a calcite sample subject to dissolution. Our original reactive transport model is designed to assist quantitative appraisal of the ensuing mineral surface topography. To combine these two powerful techniques, we provide a mathematical framework for the representation of the evolution (in space and time) of the mineral surface topography, and document the robustness of the numerical approach through a convergence analysis for vertical grid spacing down to sub‐nm resolution.
Key Points
We propose a novel combination of an original reactive transport model with a unique data set documenting absolute calcite dissolution rates
We provide a sound mathematical framework to describe three‐dimensional dynamics of mineral surface topography
We document convergence of the numerical approach for vertical grid spacing down to sub‐nm resolution |
|---|---|
| AbstractList | We present an innovative approach that combines a unique real‐time data set documenting absolute dissolution rates of a calcite crystal with an original reactive transport model tailored to the analysis of the dynamics of nano‐scale mineral dissolution processes. Providing robust and physically based fundamental understanding on the kinetics of mineral dissolution is at the core of various geo‐engineered strategies to quantify chemical weathering patterns across diverse spatial and temporal scales. Here, we rely on data obtained through Atomic Force Microscopy. We provide a mathematical framework to describe three‐dimensional dynamics of the mineral surface topography, and show convergence of the numerical approach for vertical grid spacing down to sub‐nm resolution.
We focus on some fundamental aspects related to modeling of mechanisms underpinning chemical weathering of minerals. The latter is a ubiquitously active phenomenon driving the Earth system evolution. It underpins a variety of physico‐chemical processes that are at the core of various geo‐engineered strategies for sustainable development, including the assessment of the role of underground storage of carbon dioxide or geothermal energy in environmental stewardship. Here, we propose an innovative approach that combines for the first time a reactive transport model with a unique real‐time data set documenting absolute calcite dissolution rates. Experimental observations correspond to high‐resolution (i.e., horizontal and vertical resolution of 19.5 and ∼0.1 nm, respectively) in‐situ Atomic Force Microscopy data obtained across a calcite sample subject to dissolution. Our original reactive transport model is designed to assist quantitative appraisal of the ensuing mineral surface topography. To combine these two powerful techniques, we provide a mathematical framework for the representation of the evolution (in space and time) of the mineral surface topography, and document the robustness of the numerical approach through a convergence analysis for vertical grid spacing down to sub‐nm resolution.
We propose a novel combination of an original reactive transport model with a unique data set documenting absolute calcite dissolution rates We provide a sound mathematical framework to describe three‐dimensional dynamics of mineral surface topography We document convergence of the numerical approach for vertical grid spacing down to sub‐nm resolution We present an innovative approach that combines a unique real‐time data set documenting absolute dissolution rates of a calcite crystal with an original reactive transport model tailored to the analysis of the dynamics of nano‐scale mineral dissolution processes. Providing robust and physically based fundamental understanding on the kinetics of mineral dissolution is at the core of various geo‐engineered strategies to quantify chemical weathering patterns across diverse spatial and temporal scales. Here, we rely on data obtained through Atomic Force Microscopy. We provide a mathematical framework to describe three‐dimensional dynamics of the mineral surface topography, and show convergence of the numerical approach for vertical grid spacing down to sub‐nm resolution. We present an innovative approach that combines a unique real‐time data set documenting absolute dissolution rates of a calcite crystal with an original reactive transport model tailored to the analysis of the dynamics of nano‐scale mineral dissolution processes. Providing robust and physically based fundamental understanding on the kinetics of mineral dissolution is at the core of various geo‐engineered strategies to quantify chemical weathering patterns across diverse spatial and temporal scales. Here, we rely on data obtained through Atomic Force Microscopy. We provide a mathematical framework to describe three‐dimensional dynamics of the mineral surface topography, and show convergence of the numerical approach for vertical grid spacing down to sub‐nm resolution. Plain Language Summary We focus on some fundamental aspects related to modeling of mechanisms underpinning chemical weathering of minerals. The latter is a ubiquitously active phenomenon driving the Earth system evolution. It underpins a variety of physico‐chemical processes that are at the core of various geo‐engineered strategies for sustainable development, including the assessment of the role of underground storage of carbon dioxide or geothermal energy in environmental stewardship. Here, we propose an innovative approach that combines for the first time a reactive transport model with a unique real‐time data set documenting absolute calcite dissolution rates. Experimental observations correspond to high‐resolution (i.e., horizontal and vertical resolution of 19.5 and ∼0.1 nm, respectively) in‐situ Atomic Force Microscopy data obtained across a calcite sample subject to dissolution. Our original reactive transport model is designed to assist quantitative appraisal of the ensuing mineral surface topography. To combine these two powerful techniques, we provide a mathematical framework for the representation of the evolution (in space and time) of the mineral surface topography, and document the robustness of the numerical approach through a convergence analysis for vertical grid spacing down to sub‐nm resolution. Key Points We propose a novel combination of an original reactive transport model with a unique data set documenting absolute calcite dissolution rates We provide a sound mathematical framework to describe three‐dimensional dynamics of mineral surface topography We document convergence of the numerical approach for vertical grid spacing down to sub‐nm resolution Abstract We present an innovative approach that combines a unique real‐time data set documenting absolute dissolution rates of a calcite crystal with an original reactive transport model tailored to the analysis of the dynamics of nano‐scale mineral dissolution processes. Providing robust and physically based fundamental understanding on the kinetics of mineral dissolution is at the core of various geo‐engineered strategies to quantify chemical weathering patterns across diverse spatial and temporal scales. Here, we rely on data obtained through Atomic Force Microscopy. We provide a mathematical framework to describe three‐dimensional dynamics of the mineral surface topography, and show convergence of the numerical approach for vertical grid spacing down to sub‐nm resolution. |
| Author | Guadagnini, A. Riva, M. Recalcati, C. Sanchez‐Vila, X. Starnoni, M. |
| Author_xml | – sequence: 1 givenname: M. orcidid: 0000-0002-8552-6997 surname: Starnoni fullname: Starnoni, M. email: michele.starnoni@upc.edu organization: Universitat Politecnica de Catalunya – sequence: 2 givenname: X. orcidid: 0000-0002-1234-9897 surname: Sanchez‐Vila fullname: Sanchez‐Vila, X. organization: Universitat Politecnica de Catalunya – sequence: 3 givenname: C. orcidid: 0000-0003-4134-3782 surname: Recalcati fullname: Recalcati, C. organization: Politecnico di Milano – sequence: 4 givenname: M. orcidid: 0000-0002-7304-4114 surname: Riva fullname: Riva, M. organization: Politecnico di Milano – sequence: 5 givenname: A. orcidid: 0000-0003-3959-9690 surname: Guadagnini fullname: Guadagnini, A. organization: Politecnico di Milano |
| BookMark | eNp9kcFu1DAURS1UJKaFHR9gqVtCbcdjx8uqMEOlKUW0LFhZL449eOTGwU5azY5P4Bv7JSRNQYAQK19Z595n33eIDtrYWoReUvKaEqZOGGF8vaGUkJI8QQuqOC8qQuQBWhCiRs2keIYOc96RCSnpAn3-kKKxOeOL2Njg2y2ODl_41iYI-I3POYah97HFqxRv8Hto4_2371cGgsVXQ3JgLL6OXdwm6L7s8WWdbbqFyZCfo6cOQrYvHs8j9Gn19vrsXbG5XJ-fnW4Kw6VQBVSGSkMaJiWplBLGVLbm1ilOG1WXckmkEUsAQSUXZWNG4UCRqpRWGXCsPELnc24TYae75G8g7XUErx8uYtpqSL03wWrGFeMG6FKYkoOpR8WtsUrWwgE4OmYVc9bQdrC_gxB-BVKip4711PE2zB2P_PHMdyl-HWzu9S4OqR2_q0uipKyUFBPFZsqkmHOyThvfP5TUJ_Dhj-if6xtNr_4y_eslv-GPM-58sPv_snr9cSMqslTlD9PXqjA |
| CitedBy_id | crossref_primary_10_2465_gkk_250217 |
| Cites_doi | 10.1016/j.gsf.2018.02.013 10.1029/2023gl108080 10.1007/s11242‐021‐01624‐z 10.1016/s0016‐7037(03)00423‐x 10.1021/acs.chemrev.2c00130 10.1016/j.chemgeo.2013.11.002 10.1029/2023wr035908 10.1016/j.advwatres.2024.104641 10.1515/9781400864874 10.1016/0021‐9991(92)90240‐y 10.17632/gxwft86xvf.2 10.1016/j.gca.2024.02.008 10.1021/acsearthspacechem.1c00226 10.1016/j.chemgeo.2018.04.017 10.1007/s11242‐019‐01293‐z 10.1016/j.envsoft.2021.105199 10.1016/j.gca.2017.07.001 10.1017/CBO9781139051637 10.1073/pnas.1711254115 10.2138/rmg.2013.77.13 10.1017/jfm.2017.499 10.1016/j.chemgeo.2018.11.016 10.1021/acs.accounts.6b00654 10.1126/science.1058173 10.3390/min8080346 10.1016/j.apgeochem.2014.03.006 10.1021/acs.jpcc.5b10995 10.1007/s10596‐019‐09903‐x 10.1016/j.apgeochem.2014.02.002 10.2113/gselements.9.3.183 10.1016/j.geomorph.2017.10.027 10.1016/j.chemgeo.2016.09.038 10.1016/j.gca.2012.09.011 10.1127/0935‐1221/2003/0015‐0603 10.1038/s41529‐018‐0035‐4 10.1016/j.epsl.2016.10.019 10.1016/j.gca.2006.07.037 10.1021/acs.est.7b04727 10.1016/j.jhydrol.2022.128849 10.2475/01.2020.04 10.3390/min8060256 10.1016/j.gca.2022.08.003 10.1016/j.acags.2024.100166 10.5281/zenodo.13163722 10.1021/acs.accounts.7b00019 |
| ContentType | Journal Article |
| Copyright | 2024. The Author(s). 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024. The Author(s). – notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M ADTOC UNPAY DOA |
| DOI | 10.1029/2024GL110030 |
| DatabaseName | Wiley Online Library Open Access CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Unpaywall for CDI: Periodical Content Unpaywall Directory of Open Access Journals |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
| DatabaseTitleList | CrossRef Aerospace Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology Physics Mathematics |
| EISSN | 1944-8007 |
| EndPage | n/a |
| ExternalDocumentID | oai_doaj_org_article_24924ca156c34acba154ece97b6faaf1 10.1029/2024gl110030 10_1029_2024GL110030 GRL68059 |
| Genre | article |
| GrantInformation_xml | – fundername: European Research Executive Agency funderid: 101063414 |
| GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 A00 AAESR AAHHS AAIHA AAXRX AAZKR ABCUV ABPPZ ACAHQ ACCFJ ACCMX ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFRAH AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB AVUZU AZFZN AZVAB BENPR BMXJE BRXPI CS3 DCZOG DPXWK DRFUL DRSTM DU5 EBS F5P G-S GODZA GROUPED_DOAJ HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIH WIN WXSBR WYJ XSW ZZTAW ~02 ~OA ~~A 88I 8G5 8R4 8R5 AAFWJ AAMMB AAYXX ABJCF ABUWG ACTHY AEFGJ AEUYN AFKRA AFPKN AGXDD AIDQK AIDYY ARAPS ATCPS AZQEC BGLVJ BHPHI BKSAR CCPQU CITATION DWQXO GNUQQ GUQSH HCIFZ M2O M2P M7S PATMY PCBAR PHGZM PHGZT PQGLB PTHSS PUEGO PYCSY Q2X 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M 31~ 6TJ 7XC 8FE 8FG 8FH AANHP AASGY ABJNI ACBWZ ACRPL ACYXJ ADNMO ADTOC AFZJQ AGQPQ AI. AIQQE ASPBG AVWKF BDRZF BFHJK BPHCQ D1K DDYGU EJD FEDTE HVGLF K6- L6V LK5 M7R MVM P62 PALCI PQQKQ PROAC RIWAO RJQFR SAMSI UNPAY UQL VH1 VOH ZCG |
| ID | FETCH-LOGICAL-c4769-a8c17c0d27708996cc8eb4ef941d9b37507c65aa617463dca61fa90837e9caf23 |
| IEDL.DBID | UNPAY |
| ISSN | 0094-8276 1944-8007 |
| IngestDate | Fri Oct 03 12:52:53 EDT 2025 Sun Oct 26 04:16:27 EDT 2025 Wed Aug 13 08:58:17 EDT 2025 Wed Oct 01 06:23:29 EDT 2025 Thu Apr 24 23:11:14 EDT 2025 Wed Jan 22 17:14:47 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 16 |
| Language | English |
| License | Attribution cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4769-a8c17c0d27708996cc8eb4ef941d9b37507c65aa617463dca61fa90837e9caf23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8552-6997 0000-0003-4134-3782 0000-0002-7304-4114 0000-0002-1234-9897 0000-0003-3959-9690 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2024GL110030 |
| PQID | 3097789760 |
| PQPubID | 54723 |
| PageCount | 8 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_24924ca156c34acba154ece97b6faaf1 unpaywall_primary_10_1029_2024gl110030 proquest_journals_3097789760 crossref_citationtrail_10_1029_2024GL110030 crossref_primary_10_1029_2024GL110030 wiley_primary_10_1029_2024GL110030_GRL68059 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 28 August 2024 |
| PublicationDateYYYYMMDD | 2024-08-28 |
| PublicationDate_xml | – month: 08 year: 2024 text: 28 August 2024 day: 28 |
| PublicationDecade | 2020 |
| PublicationPlace | Washington |
| PublicationPlace_xml | – name: Washington |
| PublicationTitle | Geophysical research letters |
| PublicationYear | 2024 |
| Publisher | John Wiley & Sons, Inc Wiley |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
| References | 2021; 25 2021; 5 2012 2021; 145 2024b; 51 1992; 100 2019; 10 2018; 487 2023; 123 2024; 60 2004; 68 2018; 301 1998 2024; 185 2003; 15 2021; 140 2007; 71 2019; 504 2016; 447 2020; 320 2019; 129 2024 2017; 213 2013; 6 2012; 98 2014; 45 2016; 120 2017; 457 2014; 43 2013; 9 2022; 334 2017; 50 2018; 8 2017; 827 2018; 2 2013; 77 2023 2001; 291 2018; 115 2024; 371 2018; 52 2024; 22 2024a 2014; 363 2023; 617 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_28_1 Parkhurst D. L. (e_1_2_7_29_1) 2013; 6 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 Recalcati C. (e_1_2_7_33_1) 2023 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
| References_xml | – volume: 8 issue: 8 year: 2018 article-title: Metal sequestration through coupled dissolution–precipitation at the brucite–water interface publication-title: Minerals – volume: 320 start-page: 53 issue: 1 year: 2020 end-page: 71 article-title: Temporal evolution of dissolution kinetics of polycrystalline calcite publication-title: American Journal of Science – volume: 301 start-page: 21 year: 2018 end-page: 27 article-title: Predicting soil formation on the basis of transport‐limited chemical weathering publication-title: Geomorphology – volume: 43 start-page: 132 year: 2014 end-page: 157 article-title: Variability of crystal surface reactivity: What do we know? publication-title: Applied Geochemistry – volume: 51 issue: 7 year: 2024b article-title: Stochastic assessment of dissolution at fluid‐mineral interfaces publication-title: Geophysical Research Letters – volume: 60 issue: 2 year: 2024 article-title: Micro‐continuum modeling: An hybrid‐scale approach for solving coupled processes in porous media publication-title: Water Resources Research – volume: 68 start-page: 253 issue: 2 year: 2004 end-page: 262 article-title: Controls by saturation state on etch pit formation during calcite dissolution publication-title: Geochimica et Cosmochimica Acta – volume: 52 start-page: 107 issue: 1 year: 2018 end-page: 113 article-title: Sequestration of antimony on calcite observed by time‐resolved nanoscale imaging publication-title: Environmental Science & Technology – volume: 447 start-page: 79 year: 2016 end-page: 92 article-title: Influence of etch pit development on the surface area and dissolution kinetics of the orthoclase (001) surface publication-title: Chemical Geology – year: 2024 – volume: 100 start-page: 335 issue: 2 year: 1992 end-page: 354 article-title: A continuum method for modeling surface tension publication-title: Journal of Computational Physics – volume: 334 start-page: 99 year: 2022 end-page: 118 article-title: Improved kinetics for mineral dissolution reactions in pore‐scale reactive transport modeling publication-title: Geochimica et Cosmochimica Acta – volume: 45 start-page: 158 year: 2014 end-page: 190 article-title: Reactivity of the calcite–water‐interface, from molecular scale processes to geochemical engineering publication-title: Applied Geochemistry – volume: 185 year: 2024 article-title: Pore‐scale modelling of subsurface biomineralization for carbon mineral storage publication-title: Advances in Water Resources – volume: 123 start-page: 6413 issue: 10 year: 2023 end-page: 6544 article-title: Oxide–and silicate–water interfaces and their roles in technology and the environment publication-title: Chemical Reviews – volume: 120 start-page: 6482 issue: 12 year: 2016 end-page: 6492 article-title: Kinetic Monte Carlo approach to study carbonate dissolution publication-title: Journal of Physical Chemistry C – volume: 145 year: 2021 article-title: porousmedia4foam: Multi‐scale open‐source platform for hydro‐geochemical simulations with openfoam® publication-title: Environmental Modelling and Software – volume: 115 start-page: 897 issue: 5 year: 2018 end-page: 902 article-title: Pulsating dissolution of crystalline matter publication-title: Proceedings of the National Academy of Sciences – volume: 2 start-page: 1 issue: 1 year: 2018 end-page: 4 article-title: Carbon dioxide sequestration through silicate degradation and carbon mineralisation: Promises and uncertainties publication-title: npj Materials Degradation – volume: 50 start-page: 1521 issue: 7 year: 2017 end-page: 1529 article-title: Nanoscale chemical processes affecting storage capacities and seals during geologic co2 sequestration publication-title: Accounts of Chemical Research – volume: 10 start-page: 17 issue: 1 year: 2019 end-page: 27 article-title: Timescales of interface‐coupled dissolution‐precipitation reactions on carbonates publication-title: Geoscience Frontiers – year: 2024a – year: 1998 – year: 2012 – volume: 98 start-page: 177 year: 2012 end-page: 185 article-title: How predictable are dissolution rates of crystalline material? publication-title: Geochimica et Cosmochimica Acta – volume: 9 start-page: 183 issue: 3 year: 2013 end-page: 188 article-title: A stochastic treatment of crystal dissolution kinetics publication-title: Elements – volume: 22 year: 2024 article-title: Bioreactpy: An open‐source software for simulation of microbial‐mediated reactive processes in porous media publication-title: Applied Computing and Geosciences – volume: 5 start-page: 3115 issue: 11 year: 2021 end-page: 3129 article-title: Statistical description of calcite surface roughness resulting from dissolution at close‐to‐equilibrium conditions publication-title: ACS Earth and Space Chemistry – volume: 827 start-page: 457 year: 2017 end-page: 483 article-title: Mineral dissolution and wormholing from a pore‐scale perspective publication-title: Journal of Fluid Mechanics – volume: 617 year: 2023 article-title: A Gaussian‐mixture based stochastic framework for the interpretation of spatial heterogeneity in multimodal fields publication-title: Journal of Hydrology – volume: 71 start-page: 56 issue: 1 year: 2007 end-page: 70 article-title: Calcite dissolution: Effects of trace cations naturally present in Iceland spar calcites publication-title: Geochimica et Cosmochimica Acta – volume: 8 issue: 6 year: 2018 article-title: Temporal evolution of calcite surface dissolution kinetics publication-title: Minerals – volume: 291 start-page: 2400 issue: 5512 year: 2001 end-page: 2404 article-title: Variation of crystal dissolution rate based on a dissolution stepwave model publication-title: Science – volume: 457 start-page: 100 year: 2017 end-page: 105 article-title: Beyond the conventional understanding of water–rock reactivity publication-title: Earth and Planetary Science Letters – year: 2023 – volume: 15 start-page: 603 issue: 4 year: 2003 end-page: 615 article-title: A model for crystal dissolution publication-title: European Journal of Mineralogy – volume: 129 start-page: 343 issue: 1 year: 2019 end-page: 383 article-title: An analytical algorithm of porosity–permeability for porous and fractured media: Extension to reactive transport conditions and fitting via flow‐through experiments within limestone and dolomite publication-title: Transport in Porous Media – volume: 77 start-page: 459 issue: 1 year: 2013 end-page: 479 article-title: Caprock fracture dissolution and co2 leakage publication-title: Reviews in Mineralogy and Geochemistry – volume: 371 start-page: 189 year: 2024 end-page: 198 article-title: Pulsating dissolution of crystalline matter: A surface‐controlled process publication-title: Geochimica et Cosmochimica Acta – volume: 25 start-page: 1285 issue: 4 year: 2021 end-page: 1318 article-title: Simulation of mineral dissolution at the pore scale with evolving fluid‐solid interfaces: Review of approaches and benchmark problem set publication-title: Computational Geosciences – volume: 6 start-page: 497 issue: A43 year: 2013 article-title: Description of input and examples for phreeqc version 3—A computer program for speciation, batch‐reaction, one‐dimensional transport, and inverse geochemical calculations publication-title: US Geological Survey Techniques and Methods – volume: 487 start-page: 63 year: 2018 end-page: 75 article-title: From mixed flow reactor to column experiments and modeling: Upscaling of calcite dissolution rate publication-title: Chemical Geology – volume: 213 start-page: 317 year: 2017 end-page: 329 article-title: Calcite dissolution rate spectra measured by in situ digital holographic microscopy publication-title: Geochimica et Cosmochimica Acta – volume: 50 start-page: 759 issue: 4 year: 2017 end-page: 768 article-title: Pore‐scale geochemical reactivity associated with co2 storage: New frontiers at the fluid–solid interface publication-title: Accounts of Chemical Research – volume: 140 start-page: 291 issue: 1 year: 2021 end-page: 312 article-title: Statistical characterization of heterogeneous dissolution rates of calcite from in situ and real‐time afm imaging publication-title: Transport in Porous Media – volume: 363 start-page: 262 year: 2014 end-page: 269 article-title: Mechanisms influencing micron and nanometer‐scale reaction rate patterns during dolostone dissolution publication-title: Chemical Geology – volume: 504 start-page: 216 year: 2019 end-page: 235 article-title: Kinetic concepts for quantitative prediction of fluid‐solid interactions publication-title: Chemical Geology – ident: e_1_2_7_35_1 doi: 10.1016/j.gsf.2018.02.013 – ident: e_1_2_7_32_1 doi: 10.1029/2023gl108080 – ident: e_1_2_7_38_1 doi: 10.1007/s11242‐021‐01624‐z – ident: e_1_2_7_47_1 doi: 10.1016/s0016‐7037(03)00423‐x – ident: e_1_2_7_2_1 doi: 10.1021/acs.chemrev.2c00130 – ident: e_1_2_7_10_1 doi: 10.1016/j.chemgeo.2013.11.002 – ident: e_1_2_7_40_1 doi: 10.1029/2023wr035908 – ident: e_1_2_7_44_1 doi: 10.1016/j.advwatres.2024.104641 – ident: e_1_2_7_22_1 doi: 10.1515/9781400864874 – ident: e_1_2_7_6_1 doi: 10.1016/0021‐9991(92)90240‐y – ident: e_1_2_7_31_1 doi: 10.17632/gxwft86xvf.2 – ident: e_1_2_7_37_1 doi: 10.1016/j.gca.2024.02.008 – ident: e_1_2_7_46_1 doi: 10.1021/acsearthspacechem.1c00226 – ident: e_1_2_7_5_1 doi: 10.1016/j.chemgeo.2018.04.017 – ident: e_1_2_7_11_1 doi: 10.1007/s11242‐019‐01293‐z – ident: e_1_2_7_41_1 doi: 10.1016/j.envsoft.2021.105199 – ident: e_1_2_7_7_1 doi: 10.1016/j.gca.2017.07.001 – ident: e_1_2_7_9_1 doi: 10.1017/CBO9781139051637 – volume: 6 start-page: 497 issue: 43 year: 2013 ident: e_1_2_7_29_1 article-title: Description of input and examples for phreeqc version 3—A computer program for speciation, batch‐reaction, one‐dimensional transport, and inverse geochemical calculations publication-title: US Geological Survey Techniques and Methods – ident: e_1_2_7_15_1 doi: 10.1073/pnas.1711254115 – ident: e_1_2_7_16_1 doi: 10.2138/rmg.2013.77.13 – ident: e_1_2_7_42_1 doi: 10.1017/jfm.2017.499 – ident: e_1_2_7_26_1 doi: 10.1016/j.chemgeo.2018.11.016 – volume-title: In Reference module in chemistry, molecular sciences and chemical engineering year: 2023 ident: e_1_2_7_33_1 – ident: e_1_2_7_20_1 doi: 10.1021/acs.accounts.6b00654 – ident: e_1_2_7_23_1 doi: 10.1126/science.1058173 – ident: e_1_2_7_19_1 doi: 10.3390/min8080346 – ident: e_1_2_7_18_1 doi: 10.1016/j.apgeochem.2014.03.006 – ident: e_1_2_7_21_1 doi: 10.1021/acs.jpcc.5b10995 – ident: e_1_2_7_27_1 doi: 10.1007/s10596‐019‐09903‐x – ident: e_1_2_7_13_1 doi: 10.1016/j.apgeochem.2014.02.002 – ident: e_1_2_7_25_1 doi: 10.2113/gselements.9.3.183 – ident: e_1_2_7_48_1 doi: 10.1016/j.geomorph.2017.10.027 – ident: e_1_2_7_30_1 doi: 10.1016/j.chemgeo.2016.09.038 – ident: e_1_2_7_12_1 doi: 10.1016/j.gca.2012.09.011 – ident: e_1_2_7_24_1 doi: 10.1127/0935‐1221/2003/0015‐0603 – ident: e_1_2_7_8_1 doi: 10.1038/s41529‐018‐0035‐4 – ident: e_1_2_7_14_1 doi: 10.1016/j.epsl.2016.10.019 – ident: e_1_2_7_17_1 doi: 10.1016/j.gca.2006.07.037 – ident: e_1_2_7_34_1 doi: 10.1021/acs.est.7b04727 – ident: e_1_2_7_39_1 doi: 10.1016/j.jhydrol.2022.128849 – ident: e_1_2_7_4_1 doi: 10.2475/01.2020.04 – ident: e_1_2_7_3_1 doi: 10.3390/min8060256 – ident: e_1_2_7_36_1 doi: 10.1016/j.gca.2022.08.003 – ident: e_1_2_7_43_1 doi: 10.1016/j.acags.2024.100166 – ident: e_1_2_7_45_1 doi: 10.5281/zenodo.13163722 – ident: e_1_2_7_28_1 doi: 10.1021/acs.accounts.7b00019 |
| SSID | ssj0003031 |
| Score | 2.4644027 |
| Snippet | We present an innovative approach that combines a unique real‐time data set documenting absolute dissolution rates of a calcite crystal with an original... Abstract We present an innovative approach that combines a unique real‐time data set documenting absolute dissolution rates of a calcite crystal with an... |
| SourceID | doaj unpaywall proquest crossref wiley |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Atomic force microscopy Calcite Calcite dissolution Carbon dioxide Chemical reactions Chemical weathering computational geophysics Convergence Datasets Dissolution Dissolving Environmental stewardship Evolution Geothermal energy Kinetics Mathematics Microscopy mineral dissolution Minerals Modelling reactive transport modeling Stewardship Sustainable development Topography Underground storage Weathering |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA4iiF7EJ9YXOagXWWx30zyOvloRH-AD9LRkZxMRare0FvHmT_A3-kucZNOlgo-Lt-wyZIfM7ORLMvmGkC2cwxuSA48yYXjEJECEMY9FBtFJkmcNZpS7nHx-wU9u2eld826s1JfLCSvpgcuB23OMdgw0LjMgYRoybDEDRomMW62tX_jUpRotpkIMxsBc1spTLJKx4CHlvR4rt9pn7TPHlOYyn8cmI8_Z_wVoTg-7Pf36ojudr9DVzz2tOTIbQCPdL5WdJxOmu0Cm2r4o7yu2fBonDBbJfcj7p67EmbtoTgtLzx89szQ9eqwcjbb6xRPFyFp8vL1fo5kMvR72rQZDb4peYLGml1m1ZTtYIret45vDkygUT4iACa4iLaEhoJ7HQriTPQ4gTcaMVayRqyxBoCCAN7VGBMN4kgM2rFYIyARaR9s4WSaT3aJrVgg10OTYRW4B0YpGMWtNzASzicIHltfI7mgUUwjM4q7ARSf1J9yxSsfHvEa2K-leyajxg9yBM0gl43iw_Qv0jjR4R_qXd9TI-sicafg5B2lSR9ArEYfhN3YqE3-rzENnpMyut_-vGqftqzMuEa-u_ofqa2TGde72r2O5Tiaf-0OzgQDoOdv0vv4JRP3-Cg priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fSxwxEA9iKfVFtFY8_5Q8VF9k0d2dSzaPtvZOin9KVdCnJZlNRDhvjzsP8c2P0M_YT9JJLrd4oIJv2WWyGzKZyS-T5DeMfaM5PC0EisRIKxIoEBPyeZBYQid5ZVKwyl9OPjkVR5fw66p9FQNu_i7MhB-iCbh5ywj-2hu4NqNINuA5MmnVDt1jz3iW05L9Q0pQxo_wDH43npjc8yRjnoKkyKSIB9-p_t7z2jNTUmDun4Gbn8b9gX580L3eLIANM1BniS1G6MgPJrpeZnO2_5l97IbUvI9UCoc5cbTCruPpf-4Tnfnr5rx2_OQ28Evzw9tmuPHOsL7j5F_rf09_z0lZlp-Ph06j5Rf1IHJZ8zPTBG5HX9hl5-fFj6MkplBIEKRQiS4wlbhfZVL6_T2BWFgD1ilIK2VyggsSRVtrwjEg8gqp4LQiWCZJR9pl-Sqb79d9u8a4xbagT1QOCbNoEnPOZiDB5YoeoGqx3Wkvlhj5xX2ai14Z9rkzVT7v8xbbbqQHE16NV-S-e4U0Mp4NO7yohzdlNK7Ssx4CalqKYg4aDZXAolXSCKe1S1tsc6rOMproqMz3CfoWhMboHzuNil9szE1v2pjdoP83W1x2_xyLglDr-rukN9iCf-_D1Vmxyebvh2O7RXjn3nwNg_o_JTH0jg priority: 102 providerName: Wiley-Blackwell |
| Title | Process Modeling of Mineral Dissolution From Nano‐Scale Surface Topography Observations |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024GL110030 https://www.proquest.com/docview/3097789760 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2024GL110030 https://doaj.org/article/24924ca156c34acba154ece97b6faaf1 |
| UnpaywallVersion | publishedVersion |
| Volume | 51 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1944-8007 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003031 issn: 1944-8007 databaseCode: DOA dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1944-8007 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0003031 issn: 1944-8007 databaseCode: BENPR dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 1944-8007 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003031 issn: 1944-8007 databaseCode: AVUZU dateStart: 19740101 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1944-8007 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003031 issn: 1944-8007 databaseCode: 24P dateStart: 20230101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLagFYIX7hOFUfkBeEGZlsS1k8eOrZ3QVqptQRsvkX1iTxOlqXoRGk_8hP3G_ZIdO060IkBIPMWObMeOj8_5fPsOIW_QhocJBx4ooXnAEoAAdR4LNKKTuFAh06m9nHw44vsZ-3jaO711F6bih2gW3OzIcPraDvBZYSo97ykHUjtzZ8MDy3oW47S9zXuIx1uknY3G_bOKfpIFSeQ8zOFkHcNoEf3p9zr7-aTKvmaXHH3_Gua8v5rO5OV3OZmso1hnhgaPCNQNqE6ffN1aLdUW_PiF2_H_WviYPPQolfYrsXpC7ujpU3Jv6LwAX2LInRuFxTNy5i8aUOtTzd5sp6WhhxeOypruXjSSTQfz8htFVV5e_7w6RrnQ9Hg1NxI0PSlnnjabflLNGvHiOckGeycf9gPvrSEAJngayARCAdtFJITdSuQAiVZMm5SFRapiRCYCeE9KhEyMxwVgwMgUEaBAcZAmijdIa1pO9QtCNfQ4FlEYQHgkMZkxOmKCmTjFCCs65H3dVzl4KnPrUWOSuy31KM1v_7YOeduknlUUHn9It2O7vUljibfdi3J-nvtxnFuCRQYSZ70QMwkKQ0yDToXiRkoTdshmLTS51waLPN5GlJ0g8MNvvGsE6beVqcURm-hE4681zodHBzxBgPzyX4t9RR7YqF0Uj5JN0lrOV_o1oqql6pK7ERt3Sbv_OfuS4XNnbzQ-6ro1iq4fUjd_Oh7Z |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbhMxELZQK1QuFVAQKaX1AXqpVnR3J_b6CJQkQNJWNJXKyfLO2lWlNBsljareeASekSdh7DirRipI3Lyr8a7l8Yy_8c83jL2lOTwtBIqklFYkUCAm5PMgsYRO8qpMwSp_OXlwLHrn8PWifRHznPq7MAt-iGbBzVtG8NfewP2CdGQb8CSZFLZDt-8pz3KK2ddBpMJHXxmcNq6Y_PMiZZ6CpMikiCffqf77-7VX5qRA3b-CNzfm44m5uzWj0SqCDVNQ5ynbjNiRf1go-xl7ZMfP2eNuyM17R6VwmhNnW-xHPP7PfaYzf9-c144PrgLBND-6asYb70zra04Otv7989cZacvys_nUGbR8WE8imTU_KZuV29kLdt75PPzUS2IOhQRBCpWYAlOJh1Umpd_gE4iFLcE6BWmlypzwgkTRNoaADIi8Qio4owiXSVKScVn-kq2N67F9xbjFtqBPVA4JtBgSc85mIMHlih6garGDZS9qjATjPs_FSIeN7kzp-33eYu8a6cmCWOMvch-9QhoZT4cdXtTTSx2tS3vaQ0BDsSjmYLCkEli0SpbCGePSFttZqlNHG53p_JCwb0FwjP6x36j4wcZcjpaNOQj6_2eLdfd7XxQEW7f_S3qPbfSGg77ufzn-9po98TJ-7TordtjazXRu3xD4uSl3wwD_A2Nw9_o |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbhMxELaqVAUuFeVHBFrqA3CpVmR3J_b6WFqSAmlBtEGFi-WdtatKIRsljareeASekSdh7DirRgIkbt7VrNfyeMaff-Ybxl7QHJ4WAkVSSisSKBAT8nmQWEIneVWmYJUPTj4-EUdDeH_ePY95Tn0szIIfotlw85YR_LU3cDupXGQb8CSZtGyH_sBTnuW0Zl-nqbwDLba-_2X4bdg4Y_LQi6R5CpIikyLefacaXt_-fmVWCuT9K4jz7nw8MTfXZjRaxbBhEurdZ5sRPfL9hbq32JodP2Ab_ZCd94ZK4T4nzh6yrzEAgPtcZz7inNeOH18Giml-eNmMON6b1t85udj614-fp6Qvy0_nU2fQ8rN6Eums-cey2budPWLD3tuzg6MkZlFIEKRQiSkwldipMin9EZ9ALGwJ1ilIK1XmhBgkiq4xBGVA5BVSwRlFyEySmozL8sesNa7H9gnjFruCqqgcEmwxJOaczUCCyxU9QNVme8te1Bgpxn2mi5EOR92Z0rf7vM1eNtKTBbXGX-TeeIU0Mp4QO7yopxc62pf2xIeAhlajmIPBkkpg0SpZCmeMS9tse6lOHa10pvMOod-CABn941Wj4j825mK0bMxe0P8_W6z7nweiIOD69L-kd9mdT4c9PXh38uEZu-dF_OZ1Vmyz1tV0bncI_VyVz-MI_w3dXflO |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZQJwQvjKtW2JAfgBeUaUlcO37chbZCW0F0lbanyD6xp4nSVL0IbU_7CfuN-yU7dpyoRYCQeLOj48SOzzn-fPsOIe9wDI8zDjzSwvCIZQAR-jwWGUQnaaFjZqS7nHwy4P0R-3zWOVu5C1PxQzQLbs4yvL92Bj4tbOXnA-WAdDN31jt2rGcpTts3eAfxeItsjAZf988r-kkWZYmPMIeTdUzjiBhOv9fFL8ZV8bVxydP3r2HOR8vJVF39VOPxOor1w1B3k0DdgOr0yffd5ULvwvUv3I7_18Kn5ElAqXS_Uqtn5IGZPCcPez4K8BWm_LlRmL8g5-GiAXUx1dzNdlpaenLpqazp0WWj2bQ7K39QdOXl3c3tEPXC0OFyZhUYelpOA202_aKbNeL5SzLqfjo97EchWkMETHAZqQxiAXtFIoTbSuQAmdHMWMniQuoUkYkA3lEKIRPjaQGYsEoiAhSoDsom6SvSmpQTs0WogQ7HVxQWEB4pFLPWJEwwm0rMsKJNPtZ9lUOgMncRNca531JPZL7629rkfSM9rSg8_iB34Lq9kXHE2_5BObvIgx3njmCRgcJZL6RMgcYUM2Ck0NwqZeM22a6VJg_eYJ6ne4iyMwR--I0PjSL9tjK1OmITvWr8tcZ579sxzxAgv_7X174hj13WLYon2TZpLWZLs4OoaqHfBrO5B3FzGbU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Process+Modeling+of+Mineral+Dissolution+From+Nano%E2%80%90Scale+Surface+Topography+Observations&rft.jtitle=Geophysical+research+letters&rft.au=Starnoni%2C+M.&rft.au=Sanchez%E2%80%90Vila%2C+X.&rft.au=Recalcati%2C+C.&rft.au=Riva%2C+M.&rft.date=2024-08-28&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=51&rft.issue=16&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2024GL110030&rft.externalDBID=10.1029%252F2024GL110030&rft.externalDocID=GRL68059 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |