Process Modeling of Mineral Dissolution From Nano‐Scale Surface Topography Observations

We present an innovative approach that combines a unique real‐time data set documenting absolute dissolution rates of a calcite crystal with an original reactive transport model tailored to the analysis of the dynamics of nano‐scale mineral dissolution processes. Providing robust and physically base...

Full description

Saved in:
Bibliographic Details
Published inGeophysical research letters Vol. 51; no. 16
Main Authors Starnoni, M., Sanchez‐Vila, X., Recalcati, C., Riva, M., Guadagnini, A.
Format Journal Article
LanguageEnglish
Published Washington John Wiley & Sons, Inc 28.08.2024
Wiley
Subjects
Online AccessGet full text
ISSN0094-8276
1944-8007
1944-8007
DOI10.1029/2024GL110030

Cover

Abstract We present an innovative approach that combines a unique real‐time data set documenting absolute dissolution rates of a calcite crystal with an original reactive transport model tailored to the analysis of the dynamics of nano‐scale mineral dissolution processes. Providing robust and physically based fundamental understanding on the kinetics of mineral dissolution is at the core of various geo‐engineered strategies to quantify chemical weathering patterns across diverse spatial and temporal scales. Here, we rely on data obtained through Atomic Force Microscopy. We provide a mathematical framework to describe three‐dimensional dynamics of the mineral surface topography, and show convergence of the numerical approach for vertical grid spacing down to sub‐nm resolution. Plain Language Summary We focus on some fundamental aspects related to modeling of mechanisms underpinning chemical weathering of minerals. The latter is a ubiquitously active phenomenon driving the Earth system evolution. It underpins a variety of physico‐chemical processes that are at the core of various geo‐engineered strategies for sustainable development, including the assessment of the role of underground storage of carbon dioxide or geothermal energy in environmental stewardship. Here, we propose an innovative approach that combines for the first time a reactive transport model with a unique real‐time data set documenting absolute calcite dissolution rates. Experimental observations correspond to high‐resolution (i.e., horizontal and vertical resolution of 19.5 and ∼0.1 nm, respectively) in‐situ Atomic Force Microscopy data obtained across a calcite sample subject to dissolution. Our original reactive transport model is designed to assist quantitative appraisal of the ensuing mineral surface topography. To combine these two powerful techniques, we provide a mathematical framework for the representation of the evolution (in space and time) of the mineral surface topography, and document the robustness of the numerical approach through a convergence analysis for vertical grid spacing down to sub‐nm resolution. Key Points We propose a novel combination of an original reactive transport model with a unique data set documenting absolute calcite dissolution rates We provide a sound mathematical framework to describe three‐dimensional dynamics of mineral surface topography We document convergence of the numerical approach for vertical grid spacing down to sub‐nm resolution
AbstractList We present an innovative approach that combines a unique real‐time data set documenting absolute dissolution rates of a calcite crystal with an original reactive transport model tailored to the analysis of the dynamics of nano‐scale mineral dissolution processes. Providing robust and physically based fundamental understanding on the kinetics of mineral dissolution is at the core of various geo‐engineered strategies to quantify chemical weathering patterns across diverse spatial and temporal scales. Here, we rely on data obtained through Atomic Force Microscopy. We provide a mathematical framework to describe three‐dimensional dynamics of the mineral surface topography, and show convergence of the numerical approach for vertical grid spacing down to sub‐nm resolution. We focus on some fundamental aspects related to modeling of mechanisms underpinning chemical weathering of minerals. The latter is a ubiquitously active phenomenon driving the Earth system evolution. It underpins a variety of physico‐chemical processes that are at the core of various geo‐engineered strategies for sustainable development, including the assessment of the role of underground storage of carbon dioxide or geothermal energy in environmental stewardship. Here, we propose an innovative approach that combines for the first time a reactive transport model with a unique real‐time data set documenting absolute calcite dissolution rates. Experimental observations correspond to high‐resolution (i.e., horizontal and vertical resolution of 19.5 and ∼0.1 nm, respectively) in‐situ Atomic Force Microscopy data obtained across a calcite sample subject to dissolution. Our original reactive transport model is designed to assist quantitative appraisal of the ensuing mineral surface topography. To combine these two powerful techniques, we provide a mathematical framework for the representation of the evolution (in space and time) of the mineral surface topography, and document the robustness of the numerical approach through a convergence analysis for vertical grid spacing down to sub‐nm resolution. We propose a novel combination of an original reactive transport model with a unique data set documenting absolute calcite dissolution rates We provide a sound mathematical framework to describe three‐dimensional dynamics of mineral surface topography We document convergence of the numerical approach for vertical grid spacing down to sub‐nm resolution
We present an innovative approach that combines a unique real‐time data set documenting absolute dissolution rates of a calcite crystal with an original reactive transport model tailored to the analysis of the dynamics of nano‐scale mineral dissolution processes. Providing robust and physically based fundamental understanding on the kinetics of mineral dissolution is at the core of various geo‐engineered strategies to quantify chemical weathering patterns across diverse spatial and temporal scales. Here, we rely on data obtained through Atomic Force Microscopy. We provide a mathematical framework to describe three‐dimensional dynamics of the mineral surface topography, and show convergence of the numerical approach for vertical grid spacing down to sub‐nm resolution.
We present an innovative approach that combines a unique real‐time data set documenting absolute dissolution rates of a calcite crystal with an original reactive transport model tailored to the analysis of the dynamics of nano‐scale mineral dissolution processes. Providing robust and physically based fundamental understanding on the kinetics of mineral dissolution is at the core of various geo‐engineered strategies to quantify chemical weathering patterns across diverse spatial and temporal scales. Here, we rely on data obtained through Atomic Force Microscopy. We provide a mathematical framework to describe three‐dimensional dynamics of the mineral surface topography, and show convergence of the numerical approach for vertical grid spacing down to sub‐nm resolution. Plain Language Summary We focus on some fundamental aspects related to modeling of mechanisms underpinning chemical weathering of minerals. The latter is a ubiquitously active phenomenon driving the Earth system evolution. It underpins a variety of physico‐chemical processes that are at the core of various geo‐engineered strategies for sustainable development, including the assessment of the role of underground storage of carbon dioxide or geothermal energy in environmental stewardship. Here, we propose an innovative approach that combines for the first time a reactive transport model with a unique real‐time data set documenting absolute calcite dissolution rates. Experimental observations correspond to high‐resolution (i.e., horizontal and vertical resolution of 19.5 and ∼0.1 nm, respectively) in‐situ Atomic Force Microscopy data obtained across a calcite sample subject to dissolution. Our original reactive transport model is designed to assist quantitative appraisal of the ensuing mineral surface topography. To combine these two powerful techniques, we provide a mathematical framework for the representation of the evolution (in space and time) of the mineral surface topography, and document the robustness of the numerical approach through a convergence analysis for vertical grid spacing down to sub‐nm resolution. Key Points We propose a novel combination of an original reactive transport model with a unique data set documenting absolute calcite dissolution rates We provide a sound mathematical framework to describe three‐dimensional dynamics of mineral surface topography We document convergence of the numerical approach for vertical grid spacing down to sub‐nm resolution
Abstract We present an innovative approach that combines a unique real‐time data set documenting absolute dissolution rates of a calcite crystal with an original reactive transport model tailored to the analysis of the dynamics of nano‐scale mineral dissolution processes. Providing robust and physically based fundamental understanding on the kinetics of mineral dissolution is at the core of various geo‐engineered strategies to quantify chemical weathering patterns across diverse spatial and temporal scales. Here, we rely on data obtained through Atomic Force Microscopy. We provide a mathematical framework to describe three‐dimensional dynamics of the mineral surface topography, and show convergence of the numerical approach for vertical grid spacing down to sub‐nm resolution.
Author Guadagnini, A.
Riva, M.
Recalcati, C.
Sanchez‐Vila, X.
Starnoni, M.
Author_xml – sequence: 1
  givenname: M.
  orcidid: 0000-0002-8552-6997
  surname: Starnoni
  fullname: Starnoni, M.
  email: michele.starnoni@upc.edu
  organization: Universitat Politecnica de Catalunya
– sequence: 2
  givenname: X.
  orcidid: 0000-0002-1234-9897
  surname: Sanchez‐Vila
  fullname: Sanchez‐Vila, X.
  organization: Universitat Politecnica de Catalunya
– sequence: 3
  givenname: C.
  orcidid: 0000-0003-4134-3782
  surname: Recalcati
  fullname: Recalcati, C.
  organization: Politecnico di Milano
– sequence: 4
  givenname: M.
  orcidid: 0000-0002-7304-4114
  surname: Riva
  fullname: Riva, M.
  organization: Politecnico di Milano
– sequence: 5
  givenname: A.
  orcidid: 0000-0003-3959-9690
  surname: Guadagnini
  fullname: Guadagnini, A.
  organization: Politecnico di Milano
BookMark eNp9kcFu1DAURS1UJKaFHR9gqVtCbcdjx8uqMEOlKUW0LFhZL449eOTGwU5azY5P4Bv7JSRNQYAQK19Z595n33eIDtrYWoReUvKaEqZOGGF8vaGUkJI8QQuqOC8qQuQBWhCiRs2keIYOc96RCSnpAn3-kKKxOeOL2Njg2y2ODl_41iYI-I3POYah97HFqxRv8Hto4_2371cGgsVXQ3JgLL6OXdwm6L7s8WWdbbqFyZCfo6cOQrYvHs8j9Gn19vrsXbG5XJ-fnW4Kw6VQBVSGSkMaJiWplBLGVLbm1ilOG1WXckmkEUsAQSUXZWNG4UCRqpRWGXCsPELnc24TYae75G8g7XUErx8uYtpqSL03wWrGFeMG6FKYkoOpR8WtsUrWwgE4OmYVc9bQdrC_gxB-BVKip4711PE2zB2P_PHMdyl-HWzu9S4OqR2_q0uipKyUFBPFZsqkmHOyThvfP5TUJ_Dhj-if6xtNr_4y_eslv-GPM-58sPv_snr9cSMqslTlD9PXqjA
CitedBy_id crossref_primary_10_2465_gkk_250217
Cites_doi 10.1016/j.gsf.2018.02.013
10.1029/2023gl108080
10.1007/s11242‐021‐01624‐z
10.1016/s0016‐7037(03)00423‐x
10.1021/acs.chemrev.2c00130
10.1016/j.chemgeo.2013.11.002
10.1029/2023wr035908
10.1016/j.advwatres.2024.104641
10.1515/9781400864874
10.1016/0021‐9991(92)90240‐y
10.17632/gxwft86xvf.2
10.1016/j.gca.2024.02.008
10.1021/acsearthspacechem.1c00226
10.1016/j.chemgeo.2018.04.017
10.1007/s11242‐019‐01293‐z
10.1016/j.envsoft.2021.105199
10.1016/j.gca.2017.07.001
10.1017/CBO9781139051637
10.1073/pnas.1711254115
10.2138/rmg.2013.77.13
10.1017/jfm.2017.499
10.1016/j.chemgeo.2018.11.016
10.1021/acs.accounts.6b00654
10.1126/science.1058173
10.3390/min8080346
10.1016/j.apgeochem.2014.03.006
10.1021/acs.jpcc.5b10995
10.1007/s10596‐019‐09903‐x
10.1016/j.apgeochem.2014.02.002
10.2113/gselements.9.3.183
10.1016/j.geomorph.2017.10.027
10.1016/j.chemgeo.2016.09.038
10.1016/j.gca.2012.09.011
10.1127/0935‐1221/2003/0015‐0603
10.1038/s41529‐018‐0035‐4
10.1016/j.epsl.2016.10.019
10.1016/j.gca.2006.07.037
10.1021/acs.est.7b04727
10.1016/j.jhydrol.2022.128849
10.2475/01.2020.04
10.3390/min8060256
10.1016/j.gca.2022.08.003
10.1016/j.acags.2024.100166
10.5281/zenodo.13163722
10.1021/acs.accounts.7b00019
ContentType Journal Article
Copyright 2024. The Author(s).
2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. The Author(s).
– notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
ADTOC
UNPAY
DOA
DOI 10.1029/2024GL110030
DatabaseName Wiley Online Library Open Access
CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Unpaywall for CDI: Periodical Content
Unpaywall
Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList CrossRef
Aerospace Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
Mathematics
EISSN 1944-8007
EndPage n/a
ExternalDocumentID oai_doaj_org_article_24924ca156c34acba154ece97b6faaf1
10.1029/2024gl110030
10_1029_2024GL110030
GRL68059
Genre article
GrantInformation_xml – fundername: European Research Executive Agency
  funderid: 101063414
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
A00
AAESR
AAHHS
AAIHA
AAXRX
AAZKR
ABCUV
ABPPZ
ACAHQ
ACCFJ
ACCMX
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
AVUZU
AZFZN
AZVAB
BENPR
BMXJE
BRXPI
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GODZA
GROUPED_DOAJ
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIH
WIN
WXSBR
WYJ
XSW
ZZTAW
~02
~OA
~~A
88I
8G5
8R4
8R5
AAFWJ
AAMMB
AAYXX
ABJCF
ABUWG
ACTHY
AEFGJ
AEUYN
AFKRA
AFPKN
AGXDD
AIDQK
AIDYY
ARAPS
ATCPS
AZQEC
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
M7S
PATMY
PCBAR
PHGZM
PHGZT
PQGLB
PTHSS
PUEGO
PYCSY
Q2X
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
31~
6TJ
7XC
8FE
8FG
8FH
AANHP
AASGY
ABJNI
ACBWZ
ACRPL
ACYXJ
ADNMO
ADTOC
AFZJQ
AGQPQ
AI.
AIQQE
ASPBG
AVWKF
BDRZF
BFHJK
BPHCQ
D1K
DDYGU
EJD
FEDTE
HVGLF
K6-
L6V
LK5
M7R
MVM
P62
PALCI
PQQKQ
PROAC
RIWAO
RJQFR
SAMSI
UNPAY
UQL
VH1
VOH
ZCG
ID FETCH-LOGICAL-c4769-a8c17c0d27708996cc8eb4ef941d9b37507c65aa617463dca61fa90837e9caf23
IEDL.DBID UNPAY
ISSN 0094-8276
1944-8007
IngestDate Fri Oct 03 12:52:53 EDT 2025
Sun Oct 26 04:16:27 EDT 2025
Wed Aug 13 08:58:17 EDT 2025
Wed Oct 01 06:23:29 EDT 2025
Thu Apr 24 23:11:14 EDT 2025
Wed Jan 22 17:14:47 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License Attribution
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4769-a8c17c0d27708996cc8eb4ef941d9b37507c65aa617463dca61fa90837e9caf23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8552-6997
0000-0003-4134-3782
0000-0002-7304-4114
0000-0002-1234-9897
0000-0003-3959-9690
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2024GL110030
PQID 3097789760
PQPubID 54723
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_24924ca156c34acba154ece97b6faaf1
unpaywall_primary_10_1029_2024gl110030
proquest_journals_3097789760
crossref_citationtrail_10_1029_2024GL110030
crossref_primary_10_1029_2024GL110030
wiley_primary_10_1029_2024GL110030_GRL68059
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 28 August 2024
PublicationDateYYYYMMDD 2024-08-28
PublicationDate_xml – month: 08
  year: 2024
  text: 28 August 2024
  day: 28
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geophysical research letters
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2021; 25
2021; 5
2012
2021; 145
2024b; 51
1992; 100
2019; 10
2018; 487
2023; 123
2024; 60
2004; 68
2018; 301
1998
2024; 185
2003; 15
2021; 140
2007; 71
2019; 504
2016; 447
2020; 320
2019; 129
2024
2017; 213
2013; 6
2012; 98
2014; 45
2016; 120
2017; 457
2014; 43
2013; 9
2022; 334
2017; 50
2018; 8
2017; 827
2018; 2
2013; 77
2023
2001; 291
2018; 115
2024; 371
2018; 52
2024; 22
2024a
2014; 363
2023; 617
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_28_1
Parkhurst D. L. (e_1_2_7_29_1) 2013; 6
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
Recalcati C. (e_1_2_7_33_1) 2023
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 8
  issue: 8
  year: 2018
  article-title: Metal sequestration through coupled dissolution–precipitation at the brucite–water interface
  publication-title: Minerals
– volume: 320
  start-page: 53
  issue: 1
  year: 2020
  end-page: 71
  article-title: Temporal evolution of dissolution kinetics of polycrystalline calcite
  publication-title: American Journal of Science
– volume: 301
  start-page: 21
  year: 2018
  end-page: 27
  article-title: Predicting soil formation on the basis of transport‐limited chemical weathering
  publication-title: Geomorphology
– volume: 43
  start-page: 132
  year: 2014
  end-page: 157
  article-title: Variability of crystal surface reactivity: What do we know?
  publication-title: Applied Geochemistry
– volume: 51
  issue: 7
  year: 2024b
  article-title: Stochastic assessment of dissolution at fluid‐mineral interfaces
  publication-title: Geophysical Research Letters
– volume: 60
  issue: 2
  year: 2024
  article-title: Micro‐continuum modeling: An hybrid‐scale approach for solving coupled processes in porous media
  publication-title: Water Resources Research
– volume: 68
  start-page: 253
  issue: 2
  year: 2004
  end-page: 262
  article-title: Controls by saturation state on etch pit formation during calcite dissolution
  publication-title: Geochimica et Cosmochimica Acta
– volume: 52
  start-page: 107
  issue: 1
  year: 2018
  end-page: 113
  article-title: Sequestration of antimony on calcite observed by time‐resolved nanoscale imaging
  publication-title: Environmental Science & Technology
– volume: 447
  start-page: 79
  year: 2016
  end-page: 92
  article-title: Influence of etch pit development on the surface area and dissolution kinetics of the orthoclase (001) surface
  publication-title: Chemical Geology
– year: 2024
– volume: 100
  start-page: 335
  issue: 2
  year: 1992
  end-page: 354
  article-title: A continuum method for modeling surface tension
  publication-title: Journal of Computational Physics
– volume: 334
  start-page: 99
  year: 2022
  end-page: 118
  article-title: Improved kinetics for mineral dissolution reactions in pore‐scale reactive transport modeling
  publication-title: Geochimica et Cosmochimica Acta
– volume: 45
  start-page: 158
  year: 2014
  end-page: 190
  article-title: Reactivity of the calcite–water‐interface, from molecular scale processes to geochemical engineering
  publication-title: Applied Geochemistry
– volume: 185
  year: 2024
  article-title: Pore‐scale modelling of subsurface biomineralization for carbon mineral storage
  publication-title: Advances in Water Resources
– volume: 123
  start-page: 6413
  issue: 10
  year: 2023
  end-page: 6544
  article-title: Oxide–and silicate–water interfaces and their roles in technology and the environment
  publication-title: Chemical Reviews
– volume: 120
  start-page: 6482
  issue: 12
  year: 2016
  end-page: 6492
  article-title: Kinetic Monte Carlo approach to study carbonate dissolution
  publication-title: Journal of Physical Chemistry C
– volume: 145
  year: 2021
  article-title: porousmedia4foam: Multi‐scale open‐source platform for hydro‐geochemical simulations with openfoam®
  publication-title: Environmental Modelling and Software
– volume: 115
  start-page: 897
  issue: 5
  year: 2018
  end-page: 902
  article-title: Pulsating dissolution of crystalline matter
  publication-title: Proceedings of the National Academy of Sciences
– volume: 2
  start-page: 1
  issue: 1
  year: 2018
  end-page: 4
  article-title: Carbon dioxide sequestration through silicate degradation and carbon mineralisation: Promises and uncertainties
  publication-title: npj Materials Degradation
– volume: 50
  start-page: 1521
  issue: 7
  year: 2017
  end-page: 1529
  article-title: Nanoscale chemical processes affecting storage capacities and seals during geologic co2 sequestration
  publication-title: Accounts of Chemical Research
– volume: 10
  start-page: 17
  issue: 1
  year: 2019
  end-page: 27
  article-title: Timescales of interface‐coupled dissolution‐precipitation reactions on carbonates
  publication-title: Geoscience Frontiers
– year: 2024a
– year: 1998
– year: 2012
– volume: 98
  start-page: 177
  year: 2012
  end-page: 185
  article-title: How predictable are dissolution rates of crystalline material?
  publication-title: Geochimica et Cosmochimica Acta
– volume: 9
  start-page: 183
  issue: 3
  year: 2013
  end-page: 188
  article-title: A stochastic treatment of crystal dissolution kinetics
  publication-title: Elements
– volume: 22
  year: 2024
  article-title: Bioreactpy: An open‐source software for simulation of microbial‐mediated reactive processes in porous media
  publication-title: Applied Computing and Geosciences
– volume: 5
  start-page: 3115
  issue: 11
  year: 2021
  end-page: 3129
  article-title: Statistical description of calcite surface roughness resulting from dissolution at close‐to‐equilibrium conditions
  publication-title: ACS Earth and Space Chemistry
– volume: 827
  start-page: 457
  year: 2017
  end-page: 483
  article-title: Mineral dissolution and wormholing from a pore‐scale perspective
  publication-title: Journal of Fluid Mechanics
– volume: 617
  year: 2023
  article-title: A Gaussian‐mixture based stochastic framework for the interpretation of spatial heterogeneity in multimodal fields
  publication-title: Journal of Hydrology
– volume: 71
  start-page: 56
  issue: 1
  year: 2007
  end-page: 70
  article-title: Calcite dissolution: Effects of trace cations naturally present in Iceland spar calcites
  publication-title: Geochimica et Cosmochimica Acta
– volume: 8
  issue: 6
  year: 2018
  article-title: Temporal evolution of calcite surface dissolution kinetics
  publication-title: Minerals
– volume: 291
  start-page: 2400
  issue: 5512
  year: 2001
  end-page: 2404
  article-title: Variation of crystal dissolution rate based on a dissolution stepwave model
  publication-title: Science
– volume: 457
  start-page: 100
  year: 2017
  end-page: 105
  article-title: Beyond the conventional understanding of water–rock reactivity
  publication-title: Earth and Planetary Science Letters
– year: 2023
– volume: 15
  start-page: 603
  issue: 4
  year: 2003
  end-page: 615
  article-title: A model for crystal dissolution
  publication-title: European Journal of Mineralogy
– volume: 129
  start-page: 343
  issue: 1
  year: 2019
  end-page: 383
  article-title: An analytical algorithm of porosity–permeability for porous and fractured media: Extension to reactive transport conditions and fitting via flow‐through experiments within limestone and dolomite
  publication-title: Transport in Porous Media
– volume: 77
  start-page: 459
  issue: 1
  year: 2013
  end-page: 479
  article-title: Caprock fracture dissolution and co2 leakage
  publication-title: Reviews in Mineralogy and Geochemistry
– volume: 371
  start-page: 189
  year: 2024
  end-page: 198
  article-title: Pulsating dissolution of crystalline matter: A surface‐controlled process
  publication-title: Geochimica et Cosmochimica Acta
– volume: 25
  start-page: 1285
  issue: 4
  year: 2021
  end-page: 1318
  article-title: Simulation of mineral dissolution at the pore scale with evolving fluid‐solid interfaces: Review of approaches and benchmark problem set
  publication-title: Computational Geosciences
– volume: 6
  start-page: 497
  issue: A43
  year: 2013
  article-title: Description of input and examples for phreeqc version 3—A computer program for speciation, batch‐reaction, one‐dimensional transport, and inverse geochemical calculations
  publication-title: US Geological Survey Techniques and Methods
– volume: 487
  start-page: 63
  year: 2018
  end-page: 75
  article-title: From mixed flow reactor to column experiments and modeling: Upscaling of calcite dissolution rate
  publication-title: Chemical Geology
– volume: 213
  start-page: 317
  year: 2017
  end-page: 329
  article-title: Calcite dissolution rate spectra measured by in situ digital holographic microscopy
  publication-title: Geochimica et Cosmochimica Acta
– volume: 50
  start-page: 759
  issue: 4
  year: 2017
  end-page: 768
  article-title: Pore‐scale geochemical reactivity associated with co2 storage: New frontiers at the fluid–solid interface
  publication-title: Accounts of Chemical Research
– volume: 140
  start-page: 291
  issue: 1
  year: 2021
  end-page: 312
  article-title: Statistical characterization of heterogeneous dissolution rates of calcite from in situ and real‐time afm imaging
  publication-title: Transport in Porous Media
– volume: 363
  start-page: 262
  year: 2014
  end-page: 269
  article-title: Mechanisms influencing micron and nanometer‐scale reaction rate patterns during dolostone dissolution
  publication-title: Chemical Geology
– volume: 504
  start-page: 216
  year: 2019
  end-page: 235
  article-title: Kinetic concepts for quantitative prediction of fluid‐solid interactions
  publication-title: Chemical Geology
– ident: e_1_2_7_35_1
  doi: 10.1016/j.gsf.2018.02.013
– ident: e_1_2_7_32_1
  doi: 10.1029/2023gl108080
– ident: e_1_2_7_38_1
  doi: 10.1007/s11242‐021‐01624‐z
– ident: e_1_2_7_47_1
  doi: 10.1016/s0016‐7037(03)00423‐x
– ident: e_1_2_7_2_1
  doi: 10.1021/acs.chemrev.2c00130
– ident: e_1_2_7_10_1
  doi: 10.1016/j.chemgeo.2013.11.002
– ident: e_1_2_7_40_1
  doi: 10.1029/2023wr035908
– ident: e_1_2_7_44_1
  doi: 10.1016/j.advwatres.2024.104641
– ident: e_1_2_7_22_1
  doi: 10.1515/9781400864874
– ident: e_1_2_7_6_1
  doi: 10.1016/0021‐9991(92)90240‐y
– ident: e_1_2_7_31_1
  doi: 10.17632/gxwft86xvf.2
– ident: e_1_2_7_37_1
  doi: 10.1016/j.gca.2024.02.008
– ident: e_1_2_7_46_1
  doi: 10.1021/acsearthspacechem.1c00226
– ident: e_1_2_7_5_1
  doi: 10.1016/j.chemgeo.2018.04.017
– ident: e_1_2_7_11_1
  doi: 10.1007/s11242‐019‐01293‐z
– ident: e_1_2_7_41_1
  doi: 10.1016/j.envsoft.2021.105199
– ident: e_1_2_7_7_1
  doi: 10.1016/j.gca.2017.07.001
– ident: e_1_2_7_9_1
  doi: 10.1017/CBO9781139051637
– volume: 6
  start-page: 497
  issue: 43
  year: 2013
  ident: e_1_2_7_29_1
  article-title: Description of input and examples for phreeqc version 3—A computer program for speciation, batch‐reaction, one‐dimensional transport, and inverse geochemical calculations
  publication-title: US Geological Survey Techniques and Methods
– ident: e_1_2_7_15_1
  doi: 10.1073/pnas.1711254115
– ident: e_1_2_7_16_1
  doi: 10.2138/rmg.2013.77.13
– ident: e_1_2_7_42_1
  doi: 10.1017/jfm.2017.499
– ident: e_1_2_7_26_1
  doi: 10.1016/j.chemgeo.2018.11.016
– volume-title: In Reference module in chemistry, molecular sciences and chemical engineering
  year: 2023
  ident: e_1_2_7_33_1
– ident: e_1_2_7_20_1
  doi: 10.1021/acs.accounts.6b00654
– ident: e_1_2_7_23_1
  doi: 10.1126/science.1058173
– ident: e_1_2_7_19_1
  doi: 10.3390/min8080346
– ident: e_1_2_7_18_1
  doi: 10.1016/j.apgeochem.2014.03.006
– ident: e_1_2_7_21_1
  doi: 10.1021/acs.jpcc.5b10995
– ident: e_1_2_7_27_1
  doi: 10.1007/s10596‐019‐09903‐x
– ident: e_1_2_7_13_1
  doi: 10.1016/j.apgeochem.2014.02.002
– ident: e_1_2_7_25_1
  doi: 10.2113/gselements.9.3.183
– ident: e_1_2_7_48_1
  doi: 10.1016/j.geomorph.2017.10.027
– ident: e_1_2_7_30_1
  doi: 10.1016/j.chemgeo.2016.09.038
– ident: e_1_2_7_12_1
  doi: 10.1016/j.gca.2012.09.011
– ident: e_1_2_7_24_1
  doi: 10.1127/0935‐1221/2003/0015‐0603
– ident: e_1_2_7_8_1
  doi: 10.1038/s41529‐018‐0035‐4
– ident: e_1_2_7_14_1
  doi: 10.1016/j.epsl.2016.10.019
– ident: e_1_2_7_17_1
  doi: 10.1016/j.gca.2006.07.037
– ident: e_1_2_7_34_1
  doi: 10.1021/acs.est.7b04727
– ident: e_1_2_7_39_1
  doi: 10.1016/j.jhydrol.2022.128849
– ident: e_1_2_7_4_1
  doi: 10.2475/01.2020.04
– ident: e_1_2_7_3_1
  doi: 10.3390/min8060256
– ident: e_1_2_7_36_1
  doi: 10.1016/j.gca.2022.08.003
– ident: e_1_2_7_43_1
  doi: 10.1016/j.acags.2024.100166
– ident: e_1_2_7_45_1
  doi: 10.5281/zenodo.13163722
– ident: e_1_2_7_28_1
  doi: 10.1021/acs.accounts.7b00019
SSID ssj0003031
Score 2.4644027
Snippet We present an innovative approach that combines a unique real‐time data set documenting absolute dissolution rates of a calcite crystal with an original...
Abstract We present an innovative approach that combines a unique real‐time data set documenting absolute dissolution rates of a calcite crystal with an...
SourceID doaj
unpaywall
proquest
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Atomic force microscopy
Calcite
Calcite dissolution
Carbon dioxide
Chemical reactions
Chemical weathering
computational geophysics
Convergence
Datasets
Dissolution
Dissolving
Environmental stewardship
Evolution
Geothermal energy
Kinetics
Mathematics
Microscopy
mineral dissolution
Minerals
Modelling
reactive transport modeling
Stewardship
Sustainable development
Topography
Underground storage
Weathering
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA4iiF7EJ9YXOagXWWx30zyOvloRH-AD9LRkZxMRare0FvHmT_A3-kucZNOlgo-Lt-wyZIfM7ORLMvmGkC2cwxuSA48yYXjEJECEMY9FBtFJkmcNZpS7nHx-wU9u2eld826s1JfLCSvpgcuB23OMdgw0LjMgYRoybDEDRomMW62tX_jUpRotpkIMxsBc1spTLJKx4CHlvR4rt9pn7TPHlOYyn8cmI8_Z_wVoTg-7Pf36ojudr9DVzz2tOTIbQCPdL5WdJxOmu0Cm2r4o7yu2fBonDBbJfcj7p67EmbtoTgtLzx89szQ9eqwcjbb6xRPFyFp8vL1fo5kMvR72rQZDb4peYLGml1m1ZTtYIret45vDkygUT4iACa4iLaEhoJ7HQriTPQ4gTcaMVayRqyxBoCCAN7VGBMN4kgM2rFYIyARaR9s4WSaT3aJrVgg10OTYRW4B0YpGMWtNzASzicIHltfI7mgUUwjM4q7ARSf1J9yxSsfHvEa2K-leyajxg9yBM0gl43iw_Qv0jjR4R_qXd9TI-sicafg5B2lSR9ArEYfhN3YqE3-rzENnpMyut_-vGqftqzMuEa-u_ofqa2TGde72r2O5Tiaf-0OzgQDoOdv0vv4JRP3-Cg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fSxwxEA9iKfVFtFY8_5Q8VF9k0d2dSzaPtvZOin9KVdCnJZlNRDhvjzsP8c2P0M_YT9JJLrd4oIJv2WWyGzKZyS-T5DeMfaM5PC0EisRIKxIoEBPyeZBYQid5ZVKwyl9OPjkVR5fw66p9FQNu_i7MhB-iCbh5ywj-2hu4NqNINuA5MmnVDt1jz3iW05L9Q0pQxo_wDH43npjc8yRjnoKkyKSIB9-p_t7z2jNTUmDun4Gbn8b9gX580L3eLIANM1BniS1G6MgPJrpeZnO2_5l97IbUvI9UCoc5cbTCruPpf-4Tnfnr5rx2_OQ28Evzw9tmuPHOsL7j5F_rf09_z0lZlp-Ph06j5Rf1IHJZ8zPTBG5HX9hl5-fFj6MkplBIEKRQiS4wlbhfZVL6_T2BWFgD1ilIK2VyggsSRVtrwjEg8gqp4LQiWCZJR9pl-Sqb79d9u8a4xbagT1QOCbNoEnPOZiDB5YoeoGqx3Wkvlhj5xX2ai14Z9rkzVT7v8xbbbqQHE16NV-S-e4U0Mp4NO7yohzdlNK7Ssx4CalqKYg4aDZXAolXSCKe1S1tsc6rOMproqMz3CfoWhMboHzuNil9szE1v2pjdoP83W1x2_xyLglDr-rukN9iCf-_D1Vmxyebvh2O7RXjn3nwNg_o_JTH0jg
  priority: 102
  providerName: Wiley-Blackwell
Title Process Modeling of Mineral Dissolution From Nano‐Scale Surface Topography Observations
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024GL110030
https://www.proquest.com/docview/3097789760
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2024GL110030
https://doaj.org/article/24924ca156c34acba154ece97b6faaf1
UnpaywallVersion publishedVersion
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003031
  issn: 1944-8007
  databaseCode: DOA
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1944-8007
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0003031
  issn: 1944-8007
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003031
  issn: 1944-8007
  databaseCode: AVUZU
  dateStart: 19740101
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003031
  issn: 1944-8007
  databaseCode: 24P
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLagFYIX7hOFUfkBeEGZlsS1k8eOrZ3QVqptQRsvkX1iTxOlqXoRGk_8hP3G_ZIdO060IkBIPMWObMeOj8_5fPsOIW_QhocJBx4ooXnAEoAAdR4LNKKTuFAh06m9nHw44vsZ-3jaO711F6bih2gW3OzIcPraDvBZYSo97ykHUjtzZ8MDy3oW47S9zXuIx1uknY3G_bOKfpIFSeQ8zOFkHcNoEf3p9zr7-aTKvmaXHH3_Gua8v5rO5OV3OZmso1hnhgaPCNQNqE6ffN1aLdUW_PiF2_H_WviYPPQolfYrsXpC7ujpU3Jv6LwAX2LInRuFxTNy5i8aUOtTzd5sp6WhhxeOypruXjSSTQfz8htFVV5e_7w6RrnQ9Hg1NxI0PSlnnjabflLNGvHiOckGeycf9gPvrSEAJngayARCAdtFJITdSuQAiVZMm5SFRapiRCYCeE9KhEyMxwVgwMgUEaBAcZAmijdIa1pO9QtCNfQ4FlEYQHgkMZkxOmKCmTjFCCs65H3dVzl4KnPrUWOSuy31KM1v_7YOeduknlUUHn9It2O7vUljibfdi3J-nvtxnFuCRQYSZ70QMwkKQ0yDToXiRkoTdshmLTS51waLPN5GlJ0g8MNvvGsE6beVqcURm-hE4681zodHBzxBgPzyX4t9RR7YqF0Uj5JN0lrOV_o1oqql6pK7ERt3Sbv_OfuS4XNnbzQ-6ro1iq4fUjd_Oh7Z
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbhMxELZQK1QuFVAQKaX1AXqpVnR3J_b6CJQkQNJWNJXKyfLO2lWlNBsljareeASekSdh7DirRipI3Lyr8a7l8Yy_8c83jL2lOTwtBIqklFYkUCAm5PMgsYRO8qpMwSp_OXlwLHrn8PWifRHznPq7MAt-iGbBzVtG8NfewP2CdGQb8CSZFLZDt-8pz3KK2ddBpMJHXxmcNq6Y_PMiZZ6CpMikiCffqf77-7VX5qRA3b-CNzfm44m5uzWj0SqCDVNQ5ynbjNiRf1go-xl7ZMfP2eNuyM17R6VwmhNnW-xHPP7PfaYzf9-c144PrgLBND-6asYb70zra04Otv7989cZacvys_nUGbR8WE8imTU_KZuV29kLdt75PPzUS2IOhQRBCpWYAlOJh1Umpd_gE4iFLcE6BWmlypzwgkTRNoaADIi8Qio4owiXSVKScVn-kq2N67F9xbjFtqBPVA4JtBgSc85mIMHlih6garGDZS9qjATjPs_FSIeN7kzp-33eYu8a6cmCWOMvch-9QhoZT4cdXtTTSx2tS3vaQ0BDsSjmYLCkEli0SpbCGePSFttZqlNHG53p_JCwb0FwjP6x36j4wcZcjpaNOQj6_2eLdfd7XxQEW7f_S3qPbfSGg77ufzn-9po98TJ-7TordtjazXRu3xD4uSl3wwD_A2Nw9_o
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbhMxELaqVAUuFeVHBFrqA3CpVmR3J_b6WFqSAmlBtEGFi-WdtatKIRsljareeASekSdh7DirRgIkbt7VrNfyeMaff-Ybxl7QHJ4WAkVSSisSKBAT8nmQWEIneVWmYJUPTj4-EUdDeH_ePY95Tn0szIIfotlw85YR_LU3cDupXGQb8CSZtGyH_sBTnuW0Zl-nqbwDLba-_2X4bdg4Y_LQi6R5CpIikyLefacaXt_-fmVWCuT9K4jz7nw8MTfXZjRaxbBhEurdZ5sRPfL9hbq32JodP2Ab_ZCd94ZK4T4nzh6yrzEAgPtcZz7inNeOH18Giml-eNmMON6b1t85udj614-fp6Qvy0_nU2fQ8rN6Eums-cey2budPWLD3tuzg6MkZlFIEKRQiSkwldipMin9EZ9ALGwJ1ilIK1XmhBgkiq4xBGVA5BVSwRlFyEySmozL8sesNa7H9gnjFruCqqgcEmwxJOaczUCCyxU9QNVme8te1Bgpxn2mi5EOR92Z0rf7vM1eNtKTBbXGX-TeeIU0Mp4QO7yopxc62pf2xIeAhlajmIPBkkpg0SpZCmeMS9tse6lOHa10pvMOod-CABn941Wj4j825mK0bMxe0P8_W6z7nweiIOD69L-kd9mdT4c9PXh38uEZu-dF_OZ1Vmyz1tV0bncI_VyVz-MI_w3dXflO
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZQJwQvjKtW2JAfgBeUaUlcO37chbZCW0F0lbanyD6xp4nSVL0IbU_7CfuN-yU7dpyoRYCQeLOj48SOzzn-fPsOIe9wDI8zDjzSwvCIZQAR-jwWGUQnaaFjZqS7nHwy4P0R-3zWOVu5C1PxQzQLbs4yvL92Bj4tbOXnA-WAdDN31jt2rGcpTts3eAfxeItsjAZf988r-kkWZYmPMIeTdUzjiBhOv9fFL8ZV8bVxydP3r2HOR8vJVF39VOPxOor1w1B3k0DdgOr0yffd5ULvwvUv3I7_18Kn5ElAqXS_Uqtn5IGZPCcPez4K8BWm_LlRmL8g5-GiAXUx1dzNdlpaenLpqazp0WWj2bQ7K39QdOXl3c3tEPXC0OFyZhUYelpOA202_aKbNeL5SzLqfjo97EchWkMETHAZqQxiAXtFIoTbSuQAmdHMWMniQuoUkYkA3lEKIRPjaQGYsEoiAhSoDsom6SvSmpQTs0WogQ7HVxQWEB4pFLPWJEwwm0rMsKJNPtZ9lUOgMncRNca531JPZL7629rkfSM9rSg8_iB34Lq9kXHE2_5BObvIgx3njmCRgcJZL6RMgcYUM2Ck0NwqZeM22a6VJg_eYJ6ne4iyMwR--I0PjSL9tjK1OmITvWr8tcZ579sxzxAgv_7X174hj13WLYon2TZpLWZLs4OoaqHfBrO5B3FzGbU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Process+Modeling+of+Mineral+Dissolution+From+Nano%E2%80%90Scale+Surface+Topography+Observations&rft.jtitle=Geophysical+research+letters&rft.au=Starnoni%2C+M.&rft.au=Sanchez%E2%80%90Vila%2C+X.&rft.au=Recalcati%2C+C.&rft.au=Riva%2C+M.&rft.date=2024-08-28&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=51&rft.issue=16&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2024GL110030&rft.externalDBID=10.1029%252F2024GL110030&rft.externalDocID=GRL68059
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon