Direct Synthesis of a Covalent Triazine‐Based Framework from Aromatic Amides

There have been extensive efforts to synthesize crystalline covalent triazine‐based frameworks (CTFs) for practical applications and to realize their potential. The phosphorus pentoxide (P2O5)‐catalyzed direct condensation of aromatic amide instead of aromatic nitrile to form triazine rings. P2O5‐ca...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 57; no. 28; pp. 8438 - 8442
Main Authors Yu, Soo‐Young, Mahmood, Javeed, Noh, Hyuk‐Jun, Seo, Jeong‐Min, Jung, Sun‐Min, Shin, Sun‐Hee, Im, Yoon‐Kwang, Jeon, In‐Yup, Baek, Jong‐Beom
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 09.07.2018
EditionInternational ed. in English
Subjects
Online AccessGet full text
ISSN1433-7851
1521-3773
1521-3773
DOI10.1002/anie.201801128

Cover

More Information
Summary:There have been extensive efforts to synthesize crystalline covalent triazine‐based frameworks (CTFs) for practical applications and to realize their potential. The phosphorus pentoxide (P2O5)‐catalyzed direct condensation of aromatic amide instead of aromatic nitrile to form triazine rings. P2O5‐catalyzed condensation was applied on terephthalamide to construct a covalent triazine‐based framework (pCTF‐1). This approach yielded highly crystalline pCTF‐1 with high specific surface area (2034.1 m2 g−1). At low pressure, the pCTF‐1 showed high CO2 (21.9 wt % at 273 K) and H2 (1.75 wt % at 77 K) uptake capacities. The direct formation of a triazine‐based COF was also confirmed by model reactions, with the P2O5‐catalyzed condensation reaction of both benzamide and benzonitrile to form 1,3,5‐triphenyl‐2,4,6‐triazine in high yield. A covalent triazine‐based framework was synthesized by phosphorus pentoxide (P2O5)‐catalyzed direct condensation of aromatic amides to form a triazine ring. Highly crystalline covalent triazine frameworks (pCTF‐1) were produced with high specific surface area (2034.1 m2 g−1). At low pressure, pCTF‐1 shows a high carbon dioxide (CO2) uptake capacity of 21.9 wt % at 273 K and a hydrogen (H2) uptake capacity of 1.75 wt % at 77 K.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1433-7851
1521-3773
1521-3773
DOI:10.1002/anie.201801128