Data Visualization, Regression, Applicability Domains and Inverse Analysis Based on Generative Topographic Mapping

This paper introduces two generative topographic mapping (GTM) methods that can be used for data visualization, regression analysis, inverse analysis, and the determination of applicability domains (ADs). In GTM‐multiple linear regression (GTM‐MLR), the prior probability distribution of the descript...

Full description

Saved in:
Bibliographic Details
Published inMolecular informatics Vol. 38; no. 3; pp. e1800088 - n/a
Main Author Kaneko, Hiromasa
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.03.2019
Subjects
Online AccessGet full text
ISSN1868-1743
1868-1751
1868-1751
DOI10.1002/minf.201800088

Cover

Abstract This paper introduces two generative topographic mapping (GTM) methods that can be used for data visualization, regression analysis, inverse analysis, and the determination of applicability domains (ADs). In GTM‐multiple linear regression (GTM‐MLR), the prior probability distribution of the descriptors or explanatory variables (X) is calculated with GTM, and the posterior probability distribution of the property/activity or objective variable (y) given X is calculated with MLR; inverse analysis is then performed using the product rule and Bayes’ theorem. In GTM‐regression (GTMR), X and y are combined and GTM is performed to obtain the joint probability distribution of X and y; this leads to the posterior probability distributions of y given X and of X given y, which are used for regression and inverse analysis, respectively. Simulations using linear and nonlinear datasets and quantitative structure‐activity relationship (QSAR) and quantitative structure‐property relationship (QSPR) datasets confirm that GTM‐MLR and GTMR enable data visualization, regression analysis, and inverse analysis considering appropriate ADs. Python and MATLAB codes for the proposed algorithms are available at https://github.com/hkaneko1985/gtm‐generativetopographicmapping.
AbstractList This paper introduces two generative topographic mapping (GTM) methods that can be used for data visualization, regression analysis, inverse analysis, and the determination of applicability domains (ADs). In GTM-multiple linear regression (GTM-MLR), the prior probability distribution of the descriptors or explanatory variables (X) is calculated with GTM, and the posterior probability distribution of the property/activity or objective variable (y) given X is calculated with MLR; inverse analysis is then performed using the product rule and Bayes' theorem. In GTM-regression (GTMR), X and y are combined and GTM is performed to obtain the joint probability distribution of X and y; this leads to the posterior probability distributions of y given X and of X given y, which are used for regression and inverse analysis, respectively. Simulations using linear and nonlinear datasets and quantitative structure-activity relationship (QSAR) and quantitative structure-property relationship (QSPR) datasets confirm that GTM-MLR and GTMR enable data visualization, regression analysis, and inverse analysis considering appropriate ADs. Python and MATLAB codes for the proposed algorithms are available at https://github.com/hkaneko1985/gtm-generativetopographicmapping.
This paper introduces two generative topographic mapping (GTM) methods that can be used for data visualization, regression analysis, inverse analysis, and the determination of applicability domains (ADs). In GTM-multiple linear regression (GTM-MLR), the prior probability distribution of the descriptors or explanatory variables (X) is calculated with GTM, and the posterior probability distribution of the property/activity or objective variable (y) given X is calculated with MLR; inverse analysis is then performed using the product rule and Bayes' theorem. In GTM-regression (GTMR), X and y are combined and GTM is performed to obtain the joint probability distribution of X and y; this leads to the posterior probability distributions of y given X and of X given y, which are used for regression and inverse analysis, respectively. Simulations using linear and nonlinear datasets and quantitative structure-activity relationship (QSAR) and quantitative structure-property relationship (QSPR) datasets confirm that GTM-MLR and GTMR enable data visualization, regression analysis, and inverse analysis considering appropriate ADs. Python and MATLAB codes for the proposed algorithms are available at https://github.com/hkaneko1985/gtm-generativetopographicmapping.This paper introduces two generative topographic mapping (GTM) methods that can be used for data visualization, regression analysis, inverse analysis, and the determination of applicability domains (ADs). In GTM-multiple linear regression (GTM-MLR), the prior probability distribution of the descriptors or explanatory variables (X) is calculated with GTM, and the posterior probability distribution of the property/activity or objective variable (y) given X is calculated with MLR; inverse analysis is then performed using the product rule and Bayes' theorem. In GTM-regression (GTMR), X and y are combined and GTM is performed to obtain the joint probability distribution of X and y; this leads to the posterior probability distributions of y given X and of X given y, which are used for regression and inverse analysis, respectively. Simulations using linear and nonlinear datasets and quantitative structure-activity relationship (QSAR) and quantitative structure-property relationship (QSPR) datasets confirm that GTM-MLR and GTMR enable data visualization, regression analysis, and inverse analysis considering appropriate ADs. Python and MATLAB codes for the proposed algorithms are available at https://github.com/hkaneko1985/gtm-generativetopographicmapping.
Author Kaneko, Hiromasa
Author_xml – sequence: 1
  givenname: Hiromasa
  orcidid: 0000-0001-8367-6476
  surname: Kaneko
  fullname: Kaneko, Hiromasa
  email: hkaneko@meiji.ac.jp
  organization: Meiji University 1-1-1 Higashi-Mita, Tama-ku
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30259699$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1v1DAQxS1URD_olSOyxIVDd_FHsrGPS0vLSi1IqHC1Js5kcZXYqZ0ULX893m5bpEqI08zh955m3jskez54JOQNZ3POmPjQO9_OBeOKMabUC3LA1ULNeFXyvae9kPvkOKWbjDApFpXSr8i-ZKLUC60PSDyDEegPlybo3G8YXfAn9BuuI6Z0vy-HoXMWate5cUPPQg_OJwq-oSt_hzEhXXroNskl-hESNjR4eoEeY_a6Q3odhrCOMPx0ll7BMDi_fk1ettAlPH6YR-T7-afr08-zy68Xq9Pl5cwWVT5dC2sbW-qysroVTFWstlI0DIVlusVaaS0qrVhb10q2i6qWupASeFkqgIIX8oi83_kOMdxOmEbTu2Sx68BjmJIRnEuRoyt0Rt89Q2_CFPNfW0pLwcpKs0y9faCmusfGDNH1EDfmMc0MFDvAxpBSxNZYN95nOkZwneHMbHsz297MU29ZNn8me3T-p0DvBL9ch5v_0OZq9eX8r_YPVkiqVA
CitedBy_id crossref_primary_10_1002_minf_201900087
crossref_primary_10_1016_j_cscee_2023_100308
crossref_primary_10_3390_ijms22031086
crossref_primary_10_1021_acs_jcim_0c00998
crossref_primary_10_1002_ansa_202300019
crossref_primary_10_1021_acs_iecr_4c03669
crossref_primary_10_1038_s41428_022_00648_6
crossref_primary_10_1016_j_chemolab_2021_104325
crossref_primary_10_1051_jnwpu_20224040837
crossref_primary_10_1016_j_chemolab_2021_104437
crossref_primary_10_1021_acsomega_1c04826
crossref_primary_10_1016_j_compchemeng_2022_108072
crossref_primary_10_1380_vss_66_164
crossref_primary_10_1002_cem_3364
crossref_primary_10_2174_1381612825666191107092214
crossref_primary_10_1080_27660400_2021_2024101
crossref_primary_10_1016_j_jmr_2023_107438
crossref_primary_10_1021_acs_jcim_8b00528
crossref_primary_10_1016_j_chemolab_2024_105084
crossref_primary_10_1021_acs_jcim_2c01298
Cites_doi 10.1371/journal.pcbi.1002380
10.1021/ci800151m
10.1016/0169-7439(87)80084-9
10.1016/j.compchemeng.2010.09.003
10.1021/ci200615h
10.1007/BF02294359
10.1002/minf.201000061
10.1021/ci034184n
10.1021/ci9000579
10.1016/j.chemolab.2005.03.003
10.1002/minf.201400153
10.1021/ci400418c
10.1016/S0003-2670(96)00438-2
10.1021/ci060164k
10.1109/JPROC.2015.2494218
10.1016/j.chemolab.2018.03.001
10.1007/s00122-012-1892-9
10.1016/j.chemolab.2015.01.001
10.1162/089976698300017953
10.1038/nmeth.3335
10.1007/978-0-387-45528-0
10.1016/S0169-7439(01)00155-1
10.2174/1573409912666160525112114
10.1002/minf.201000063
10.1021/ci0500381
10.1021/ci100253r
10.1038/nature14539
10.1021/ci6005646
10.1109/72.914517
10.1021/ci500364e
10.1002/minf.201400056
10.1021/ci050268f
10.1021/acs.jcim.5b00628
10.1021/acs.jcim.5b00398
ContentType Journal Article
Copyright 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7QO
7TM
7U7
8FD
C1K
FR3
JQ2
K9.
P64
7X8
DOI 10.1002/minf.201800088
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Nucleic Acids Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList PubMed
Biotechnology Research Abstracts
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1868-1751
EndPage n/a
ExternalDocumentID 30259699
10_1002_minf_201800088
MINF201800088
Genre article
Journal Article
GroupedDBID ---
.3N
.Y3
05W
0R~
10A
1OC
31~
33P
3SF
50Y
50Z
52S
52U
52W
53G
5VS
702
8-0
8-1
8-3
8-4
8-5
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
G-S
G.N
GODZA
H.T
H.X
HGLYW
HVGLF
HZ~
J0M
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
P2W
P2X
PQQKQ
Q.N
QB0
R.K
ROL
RX1
SUPJJ
UB1
V2E
W8V
W99
WBFHL
WBKPD
WIH
WIK
WOHZO
WRC
WXSBR
WYISQ
XG1
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
NPM
7QO
7TM
7U7
8FD
C1K
FR3
JQ2
K9.
P64
7X8
ID FETCH-LOGICAL-c4768-92ccdc5957c9f20870bc32d0e2c09feb89927980fbb83f67b39433a1558aa4143
IEDL.DBID DR2
ISSN 1868-1743
1868-1751
IngestDate Wed Oct 01 11:02:23 EDT 2025
Tue Oct 07 06:41:34 EDT 2025
Thu Apr 03 07:00:30 EDT 2025
Thu Apr 24 22:56:09 EDT 2025
Wed Oct 01 04:02:37 EDT 2025
Wed Jan 22 16:24:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Regression
Data Visualization
Inverse Analysis
Generative Topographic Mapping
Applicability Domains
Language English
License 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4768-92ccdc5957c9f20870bc32d0e2c09feb89927980fbb83f67b39433a1558aa4143
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8367-6476
PMID 30259699
PQID 2193205790
PQPubID 2034649
PageCount 14
ParticipantIDs proquest_miscellaneous_2113280049
proquest_journals_2193205790
pubmed_primary_30259699
crossref_citationtrail_10_1002_minf_201800088
crossref_primary_10_1002_minf_201800088
wiley_primary_10_1002_minf_201800088_MINF201800088
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2019
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: March 2019
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Molecular informatics
PublicationTitleAlternate Mol Inform
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 12
2004; 44
2015; 34
1987; 2
1997; 339
1987; 52
2015; 521
2015; 55
2015; 142
2008; 9
2006
2011; 35
2016; 104
2012; 125
2009; 49
2005; 45
2016; 12
2016; 56
2012; 52
2018; 176
2006; 46
2010; 29
2008; 48
2001; 12
1998; 10
2001; 58
2007; 47
2014; 33
2005; 79
2010; 50
2014; 54
2012; 8
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
Brown N. (e_1_2_7_27_1) 2004; 44
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_28_1
e_1_2_7_29_1
van der Maaten L. (e_1_2_7_8_1) 2008; 9
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 10
  start-page: 215
  year: 1998
  end-page: 234
  publication-title: Neural Comput.
– volume: 45
  start-page: 839
  year: 2005
  end-page: 849
  publication-title: J. Chem. Inf. Model.
– volume: 8
  start-page: 1002380
  year: 2012
  publication-title: PLoS Comput. Biol.
– volume: 55
  start-page: 2403
  year: 2015
  end-page: 2410
  publication-title: J. Chem. Inf. Model.
– volume: 58
  start-page: 109
  year: 2001
  end-page: 130
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 50
  start-page: 2094
  year: 2010
  end-page: 2111
  publication-title: J. Chem. Inf. Model.
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  publication-title: JMLR.
– volume: 54
  start-page: 49
  year: 2014
  end-page: 56
  publication-title: J. Chem. Inf. Model.
– volume: 46
  start-page: 231
  year: 2006
  end-page: 242
  publication-title: J. Chem. Inf. Model.
– volume: 52
  start-page: 317
  year: 1987
  end-page: 332
  publication-title: Psychometrika
– volume: 79
  start-page: 22
  year: 2005
  end-page: 30
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 56
  start-page: 286
  year: 2016
  end-page: 299
  publication-title: J. Chem. Inf. Model.
– volume: 44
  start-page: 1079
  year: 2004
  end-page: 1087
  publication-title: J. Chem. Inf. Model.
– volume: 34
  start-page: 348
  year: 2015
  end-page: 356
  publication-title: Mol. Inf.
– volume: 125
  start-page: 419
  year: 2012
  end-page: 435
  publication-title: Theor. Appl. Genet.
– volume: 33
  start-page: 779
  year: 2014
  end-page: 789
  publication-title: Mol. Inf.
– volume: 44
  start-page: 266
  year: 2004
  end-page: 275
  publication-title: J. Chem. Inf. Comput. Sci.
– volume: 104
  start-page: 148
  year: 2016
  end-page: 175
  publication-title: P. IEEE
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  publication-title: Nature
– volume: 47
  start-page: 2462
  year: 2007
  end-page: 2474
  publication-title: J. Chem. Inf. Model.
– volume: 12
  start-page: 277
  year: 2015
  end-page: 278
  publication-title: Nat. Methods
– year: 2006
– volume: 52
  start-page: 792
  year: 2012
  end-page: 803
  publication-title: J. Chem. Inf. Model.
– volume: 2
  start-page: 37
  year: 1987
  end-page: 52
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 48
  start-page: 1733
  year: 2008
  end-page: 1746
  publication-title: J. Chem. Inf. Model.
– volume: 49
  start-page: 1762
  year: 2009
  end-page: 1776
  publication-title: J. Chem. Inf. Model.
– volume: 12
  start-page: 181
  year: 2001
  end-page: 201
  publication-title: IEEE T. Neural Networ.
– volume: 339
  start-page: 63
  year: 1997
  end-page: 77
  publication-title: Anal. Chim. Acta
– volume: 29
  start-page: 476
  year: 2010
  end-page: 488
  publication-title: Mol. Inf.
– volume: 54
  start-page: 2469
  year: 2014
  end-page: 2482
  publication-title: J. Chem. Inf. Model.
– volume: 29
  start-page: 581
  year: 2010
  end-page: 587
  publication-title: Mol. Inf.
– volume: 35
  start-page: 1135
  year: 2011
  end-page: 1142
  publication-title: Comput. Chem. Eng.
– volume: 176
  start-page: 22
  year: 2018
  end-page: 33
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 47
  start-page: 150
  year: 2007
  end-page: 158
  publication-title: J. Chem. Inf. Model.
– volume: 142
  start-page: 64
  year: 2015
  end-page: 69
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 12
  start-page: 181
  year: 2016
  end-page: 205
  publication-title: Curr. Comput.-Aided Drug Des.
– ident: e_1_2_7_28_1
  doi: 10.1371/journal.pcbi.1002380
– ident: e_1_2_7_16_1
  doi: 10.1021/ci800151m
– ident: e_1_2_7_4_1
  doi: 10.1016/0169-7439(87)80084-9
– ident: e_1_2_7_18_1
  doi: 10.1016/j.compchemeng.2010.09.003
– ident: e_1_2_7_36_1
  doi: 10.1021/ci200615h
– ident: e_1_2_7_5_1
  doi: 10.1007/BF02294359
– ident: e_1_2_7_2_1
  doi: 10.1002/minf.201000061
– ident: e_1_2_7_38_1
  doi: 10.1021/ci034184n
– ident: e_1_2_7_17_1
  doi: 10.1021/ci9000579
– ident: e_1_2_7_13_1
  doi: 10.1016/j.chemolab.2005.03.003
– ident: e_1_2_7_31_1
  doi: 10.1002/minf.201400153
– ident: e_1_2_7_33_1
– ident: e_1_2_7_29_1
  doi: 10.1021/ci400418c
– ident: e_1_2_7_40_1
  doi: 10.1016/S0003-2670(96)00438-2
– ident: e_1_2_7_14_1
  doi: 10.1021/ci060164k
– ident: e_1_2_7_39_1
– ident: e_1_2_7_44_1
– ident: e_1_2_7_26_1
  doi: 10.1109/JPROC.2015.2494218
– ident: e_1_2_7_9_1
  doi: 10.1016/j.chemolab.2018.03.001
– ident: e_1_2_7_11_1
  doi: 10.1007/s00122-012-1892-9
– ident: e_1_2_7_37_1
  doi: 10.1016/j.chemolab.2015.01.001
– ident: e_1_2_7_7_1
  doi: 10.1162/089976698300017953
– ident: e_1_2_7_41_1
– ident: e_1_2_7_25_1
  doi: 10.1038/nmeth.3335
– ident: e_1_2_7_12_1
  doi: 10.1007/978-0-387-45528-0
– volume: 9
  start-page: 2579
  year: 2008
  ident: e_1_2_7_8_1
  publication-title: JMLR.
– ident: e_1_2_7_10_1
  doi: 10.1016/S0169-7439(01)00155-1
– ident: e_1_2_7_3_1
  doi: 10.2174/1573409912666160525112114
– ident: e_1_2_7_21_1
  doi: 10.1002/minf.201000063
– ident: e_1_2_7_19_1
  doi: 10.1021/ci0500381
– ident: e_1_2_7_20_1
  doi: 10.1021/ci100253r
– ident: e_1_2_7_43_1
– ident: e_1_2_7_15_1
  doi: 10.1038/nature14539
– ident: e_1_2_7_24_1
  doi: 10.1021/ci6005646
– ident: e_1_2_7_6_1
  doi: 10.1109/72.914517
– ident: e_1_2_7_23_1
  doi: 10.1021/ci500364e
– ident: e_1_2_7_34_1
  doi: 10.1002/minf.201400056
– ident: e_1_2_7_22_1
  doi: 10.1016/S0169-7439(01)00155-1
– ident: e_1_2_7_35_1
  doi: 10.1021/ci050268f
– ident: e_1_2_7_42_1
– volume: 44
  start-page: 1079
  year: 2004
  ident: e_1_2_7_27_1
  publication-title: J. Chem. Inf. Model.
– ident: e_1_2_7_30_1
  doi: 10.1021/acs.jcim.5b00628
– ident: e_1_2_7_32_1
  doi: 10.1021/acs.jcim.5b00398
SSID ssj0000326789
Score 2.3103867
Snippet This paper introduces two generative topographic mapping (GTM) methods that can be used for data visualization, regression analysis, inverse analysis, and the...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1800088
SubjectTerms Algorithms
Applicability Domains
Bayesian analysis
Computer simulation
Conditional probability
Data analysis
Data processing
Data Visualization
Datasets
Domains
Generative Topographic Mapping
Inverse Analysis
Mapping
Probability distribution
Regression
Regression analysis
Scientific visualization
Statistical analysis
Structure-activity relationships
Topographic mapping
Topography
Visualization
Title Data Visualization, Regression, Applicability Domains and Inverse Analysis Based on Generative Topographic Mapping
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fminf.201800088
https://www.ncbi.nlm.nih.gov/pubmed/30259699
https://www.proquest.com/docview/2193205790
https://www.proquest.com/docview/2113280049
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1868-1743
  databaseCode: DR2
  dateStart: 20100101
  customDbUrl:
  isFulltext: true
  eissn: 1868-1751
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000326789
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT-MwELUQJy6wCywUWGQkBJcGUttJ7CNfFSAVIVRW3CLbSVAFJKhpD91fvzNxk1IQQmJvjmwnTjwzfuPMPBOyn6mOTqQG6yds6ImIc88AjvA6GfMN4AU_Mbjf0bsJL-_F9UPw8CaL3_FDNBtuqBmVvUYF16Y8npGGvsAMYGiWxGUMs307PKx8qjvWbLL4AE6i6hg8ZIX3EH3XxI0-O56_w_zC9AFtzoPXavXprhBdj9sFnTwdjUfmyP59R-n4Py_2gyxPoSk9cbL0kyyk-So5uHXc1pM27c9Stco2PaC3M9bryRoZnuuRpn8GJWZputzONr1LH12cLZRP3K_yKhh3Qs-LFz3IS6rzhCLXx7BMaU2QQk9haU1okVNHio0WmfaLV8euPbC0p5FV4nGd3Hcv-meX3vRAB88KcGs8xaxNbKCCyCqQBTAVxnKW-CmzvspSA74fi5T0M2Mkz8LIcCU41wB5pNYCkN0vspgXebpJqLQyC3mmI-gogiDQYIiYNdIIgaHttkW8ejZjO2U7x0M3nmPH08xi_Mxx85lb5LBp_-p4Pj5tuVMLRzzV9zJmiIMxr9dvkb2mGjQVf7_oPC3G2AY8f4kuWYtsOKFqHsUBeqpQQQ2rROOLMcS9q5tuc7X1nU7bZAnKyoXT7ZDF0XCc_gZ8NTK7lQ79A796G8s
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFH-CcYDLxjeFAUZC49Jsme0k9nEwqg7Wapo6xC2ynWSqxpKpaQ_dX897cZOqIIQEtyR2Eid5H7_nvPczwPtCH5pMGbR-0sWBTIQILOKI4LDgoUW8EGaW5jtG43h4Ib98j9psQqqF8fwQ3YQbaUZjr0nBaUL6YM0aeo2fgHKzFPkxdRfuyRiDFcJF57ybZgkRniTNQnjECx8Q_m6pG0N-sHmJTdf0G97chK-N_xnsgG1H7tNOrvYXc7vvbn8hdfyvR3sI2yt0yo68OD2CO3n5GPbOPL31ss8m62qtus_22Nma-Hr5BGbHZm7Yt2lNhZq-vLPPzvNLn2qL20f-b3mTj7tkx9W1mZY1M2XGiO5jVues5UhhH9G7ZqwqmefFJqPMJtWNJ9ieOjYyRCxx-RQuBp8nn4bBak2HwEmMbALNnctcpKPEaRQHtBbWCZ6FOXehLnKL4R9PtAoLa5Uo4sQKLYUwiHqUMRLB3TPYKqsyfwFMOVXEojAJniijKDJoi7izykpJ2e2uB0H7OVO3IjyndTd-pJ6qmaf0mtPuNffgQ9f_xlN9_LHnbisd6Url65QTFKbS3rAH77pmVFb6A2PKvFpQHwz-FUVlPXjupaq7lUD0qWONLbyRjb-MIR2djAfd3st_Oekt3B9ORqfp6cn46yt4gMe1z67bha35bJG_Rrg1t28ahfoJhuMf7A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED7BkBAv_GYUBhgJjZdmy2wnsR8HpdqAVtXUId4i20mmCpZUTftQ_nru4iZVQQgJ3pLYThz77vzZvvsM8KbQJyZTBq2fdHEgEyECizgiOCl4aBEvhJml9Y7ROD67lB-_Rq03IcXCeH6IbsGNNKOx16Tg-TwrjresodfYBeSbpWgcUzfhloy0Iq--wQXvlllChCdJcxAe8cIHhL9b6saQH---Yndo-g1v7sLXZvwZ3gPb1ty7nXw7Wi3tkfvxC6njf_3afbi7Qafs1IvTA7iRlw_hcOLprdd9Nt1Ga9V9dsgmW-Lr9SNYDMzSsC-zmgI1fXhnn13kV97VFq9P_W5544-7ZoPq2szKmpkyY0T3sahz1nKksHc4umasKpnnxSajzKbV3BNszxwbGSKWuHoMl8MP0_dnweZMh8BJnNkEmjuXuUhHidMoDmgtrBM8C3PuQl3kFqd_PNEqLKxVoogTK7QUwiDqUcZIBHdPYK-syvwpMOVUEYvCJFhQRlFk0BZxZ5WVkrzbXQ-CtjtTtyE8p3M3vqeeqpmn1Mxp18w9eNvln3uqjz_mPGilI92ofJ1ygsIU2hv24HWXjMpKOzCmzKsV5cHJv6JZWQ_2vVR1nxKIPnWsMYU3svGXOqSj8_Gwu3v2L4Vewe3JYJh-Ph9_eg538LH2znUHsLdcrPIXiLaW9mWjTz8BAmEfcA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+Visualization%2C+Regression%2C+Applicability+Domains+and+Inverse+Analysis+Based+on+Generative+Topographic+Mapping&rft.jtitle=Molecular+informatics&rft.au=Kaneko%2C+Hiromasa&rft.date=2019-03-01&rft.eissn=1868-1751&rft.volume=38&rft.issue=3&rft.spage=e1800088&rft_id=info:doi/10.1002%2Fminf.201800088&rft_id=info%3Apmid%2F30259699&rft.externalDocID=30259699
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-1743&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-1743&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-1743&client=summon