Data Visualization, Regression, Applicability Domains and Inverse Analysis Based on Generative Topographic Mapping
This paper introduces two generative topographic mapping (GTM) methods that can be used for data visualization, regression analysis, inverse analysis, and the determination of applicability domains (ADs). In GTM‐multiple linear regression (GTM‐MLR), the prior probability distribution of the descript...
        Saved in:
      
    
          | Published in | Molecular informatics Vol. 38; no. 3; pp. e1800088 - n/a | 
|---|---|
| Main Author | |
| Format | Journal Article | 
| Language | English | 
| Published | 
        Germany
          Wiley Subscription Services, Inc
    
        01.03.2019
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1868-1743 1868-1751 1868-1751  | 
| DOI | 10.1002/minf.201800088 | 
Cover
| Abstract | This paper introduces two generative topographic mapping (GTM) methods that can be used for data visualization, regression analysis, inverse analysis, and the determination of applicability domains (ADs). In GTM‐multiple linear regression (GTM‐MLR), the prior probability distribution of the descriptors or explanatory variables (X) is calculated with GTM, and the posterior probability distribution of the property/activity or objective variable (y) given X is calculated with MLR; inverse analysis is then performed using the product rule and Bayes’ theorem. In GTM‐regression (GTMR), X and y are combined and GTM is performed to obtain the joint probability distribution of X and y; this leads to the posterior probability distributions of y given X and of X given y, which are used for regression and inverse analysis, respectively. Simulations using linear and nonlinear datasets and quantitative structure‐activity relationship (QSAR) and quantitative structure‐property relationship (QSPR) datasets confirm that GTM‐MLR and GTMR enable data visualization, regression analysis, and inverse analysis considering appropriate ADs. Python and MATLAB codes for the proposed algorithms are available at https://github.com/hkaneko1985/gtm‐generativetopographicmapping. | 
    
|---|---|
| AbstractList | This paper introduces two generative topographic mapping (GTM) methods that can be used for data visualization, regression analysis, inverse analysis, and the determination of applicability domains (ADs). In GTM-multiple linear regression (GTM-MLR), the prior probability distribution of the descriptors or explanatory variables (X) is calculated with GTM, and the posterior probability distribution of the property/activity or objective variable (y) given X is calculated with MLR; inverse analysis is then performed using the product rule and Bayes' theorem. In GTM-regression (GTMR), X and y are combined and GTM is performed to obtain the joint probability distribution of X and y; this leads to the posterior probability distributions of y given X and of X given y, which are used for regression and inverse analysis, respectively. Simulations using linear and nonlinear datasets and quantitative structure-activity relationship (QSAR) and quantitative structure-property relationship (QSPR) datasets confirm that GTM-MLR and GTMR enable data visualization, regression analysis, and inverse analysis considering appropriate ADs. Python and MATLAB codes for the proposed algorithms are available at https://github.com/hkaneko1985/gtm-generativetopographicmapping. This paper introduces two generative topographic mapping (GTM) methods that can be used for data visualization, regression analysis, inverse analysis, and the determination of applicability domains (ADs). In GTM-multiple linear regression (GTM-MLR), the prior probability distribution of the descriptors or explanatory variables (X) is calculated with GTM, and the posterior probability distribution of the property/activity or objective variable (y) given X is calculated with MLR; inverse analysis is then performed using the product rule and Bayes' theorem. In GTM-regression (GTMR), X and y are combined and GTM is performed to obtain the joint probability distribution of X and y; this leads to the posterior probability distributions of y given X and of X given y, which are used for regression and inverse analysis, respectively. Simulations using linear and nonlinear datasets and quantitative structure-activity relationship (QSAR) and quantitative structure-property relationship (QSPR) datasets confirm that GTM-MLR and GTMR enable data visualization, regression analysis, and inverse analysis considering appropriate ADs. Python and MATLAB codes for the proposed algorithms are available at https://github.com/hkaneko1985/gtm-generativetopographicmapping.This paper introduces two generative topographic mapping (GTM) methods that can be used for data visualization, regression analysis, inverse analysis, and the determination of applicability domains (ADs). In GTM-multiple linear regression (GTM-MLR), the prior probability distribution of the descriptors or explanatory variables (X) is calculated with GTM, and the posterior probability distribution of the property/activity or objective variable (y) given X is calculated with MLR; inverse analysis is then performed using the product rule and Bayes' theorem. In GTM-regression (GTMR), X and y are combined and GTM is performed to obtain the joint probability distribution of X and y; this leads to the posterior probability distributions of y given X and of X given y, which are used for regression and inverse analysis, respectively. Simulations using linear and nonlinear datasets and quantitative structure-activity relationship (QSAR) and quantitative structure-property relationship (QSPR) datasets confirm that GTM-MLR and GTMR enable data visualization, regression analysis, and inverse analysis considering appropriate ADs. Python and MATLAB codes for the proposed algorithms are available at https://github.com/hkaneko1985/gtm-generativetopographicmapping.  | 
    
| Author | Kaneko, Hiromasa | 
    
| Author_xml | – sequence: 1 givenname: Hiromasa orcidid: 0000-0001-8367-6476 surname: Kaneko fullname: Kaneko, Hiromasa email: hkaneko@meiji.ac.jp organization: Meiji University 1-1-1 Higashi-Mita, Tama-ku  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30259699$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqFkc1v1DAQxS1URD_olSOyxIVDd_FHsrGPS0vLSi1IqHC1Js5kcZXYqZ0ULX893m5bpEqI08zh955m3jskez54JOQNZ3POmPjQO9_OBeOKMabUC3LA1ULNeFXyvae9kPvkOKWbjDApFpXSr8i-ZKLUC60PSDyDEegPlybo3G8YXfAn9BuuI6Z0vy-HoXMWate5cUPPQg_OJwq-oSt_hzEhXXroNskl-hESNjR4eoEeY_a6Q3odhrCOMPx0ll7BMDi_fk1ettAlPH6YR-T7-afr08-zy68Xq9Pl5cwWVT5dC2sbW-qysroVTFWstlI0DIVlusVaaS0qrVhb10q2i6qWupASeFkqgIIX8oi83_kOMdxOmEbTu2Sx68BjmJIRnEuRoyt0Rt89Q2_CFPNfW0pLwcpKs0y9faCmusfGDNH1EDfmMc0MFDvAxpBSxNZYN95nOkZwneHMbHsz297MU29ZNn8me3T-p0DvBL9ch5v_0OZq9eX8r_YPVkiqVA | 
    
| CitedBy_id | crossref_primary_10_1002_minf_201900087 crossref_primary_10_1016_j_cscee_2023_100308 crossref_primary_10_3390_ijms22031086 crossref_primary_10_1021_acs_jcim_0c00998 crossref_primary_10_1002_ansa_202300019 crossref_primary_10_1021_acs_iecr_4c03669 crossref_primary_10_1038_s41428_022_00648_6 crossref_primary_10_1016_j_chemolab_2021_104325 crossref_primary_10_1051_jnwpu_20224040837 crossref_primary_10_1016_j_chemolab_2021_104437 crossref_primary_10_1021_acsomega_1c04826 crossref_primary_10_1016_j_compchemeng_2022_108072 crossref_primary_10_1380_vss_66_164 crossref_primary_10_1002_cem_3364 crossref_primary_10_2174_1381612825666191107092214 crossref_primary_10_1080_27660400_2021_2024101 crossref_primary_10_1016_j_jmr_2023_107438 crossref_primary_10_1021_acs_jcim_8b00528 crossref_primary_10_1016_j_chemolab_2024_105084 crossref_primary_10_1021_acs_jcim_2c01298  | 
    
| Cites_doi | 10.1371/journal.pcbi.1002380 10.1021/ci800151m 10.1016/0169-7439(87)80084-9 10.1016/j.compchemeng.2010.09.003 10.1021/ci200615h 10.1007/BF02294359 10.1002/minf.201000061 10.1021/ci034184n 10.1021/ci9000579 10.1016/j.chemolab.2005.03.003 10.1002/minf.201400153 10.1021/ci400418c 10.1016/S0003-2670(96)00438-2 10.1021/ci060164k 10.1109/JPROC.2015.2494218 10.1016/j.chemolab.2018.03.001 10.1007/s00122-012-1892-9 10.1016/j.chemolab.2015.01.001 10.1162/089976698300017953 10.1038/nmeth.3335 10.1007/978-0-387-45528-0 10.1016/S0169-7439(01)00155-1 10.2174/1573409912666160525112114 10.1002/minf.201000063 10.1021/ci0500381 10.1021/ci100253r 10.1038/nature14539 10.1021/ci6005646 10.1109/72.914517 10.1021/ci500364e 10.1002/minf.201400056 10.1021/ci050268f 10.1021/acs.jcim.5b00628 10.1021/acs.jcim.5b00398  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.  | 
    
| Copyright_xml | – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.  | 
    
| DBID | AAYXX CITATION NPM 7QO 7TM 7U7 8FD C1K FR3 JQ2 K9. P64 7X8  | 
    
| DOI | 10.1002/minf.201800088 | 
    
| DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Nucleic Acids Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef PubMed Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic  | 
    
| DatabaseTitleList | PubMed Biotechnology Research Abstracts CrossRef MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Pharmacy, Therapeutics, & Pharmacology | 
    
| EISSN | 1868-1751 | 
    
| EndPage | n/a | 
    
| ExternalDocumentID | 30259699 10_1002_minf_201800088 MINF201800088  | 
    
| Genre | article Journal Article  | 
    
| GroupedDBID | --- .3N .Y3 05W 0R~ 10A 1OC 31~ 33P 3SF 50Y 50Z 52S 52U 52W 53G 5VS 702 8-0 8-1 8-3 8-4 8-5 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE G-S G.N GODZA H.T H.X HGLYW HVGLF HZ~ J0M LATKE LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- P2W P2X PQQKQ Q.N QB0 R.K ROL RX1 SUPJJ UB1 V2E W8V W99 WBFHL WBKPD WIH WIK WOHZO WRC WXSBR WYISQ XG1 ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY CITATION NPM 7QO 7TM 7U7 8FD C1K FR3 JQ2 K9. P64 7X8  | 
    
| ID | FETCH-LOGICAL-c4768-92ccdc5957c9f20870bc32d0e2c09feb89927980fbb83f67b39433a1558aa4143 | 
    
| IEDL.DBID | DR2 | 
    
| ISSN | 1868-1743 1868-1751  | 
    
| IngestDate | Wed Oct 01 11:02:23 EDT 2025 Tue Oct 07 06:41:34 EDT 2025 Thu Apr 03 07:00:30 EDT 2025 Thu Apr 24 22:56:09 EDT 2025 Wed Oct 01 04:02:37 EDT 2025 Wed Jan 22 16:24:32 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Keywords | Regression Data Visualization Inverse Analysis Generative Topographic Mapping Applicability Domains  | 
    
| Language | English | 
    
| License | 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c4768-92ccdc5957c9f20870bc32d0e2c09feb89927980fbb83f67b39433a1558aa4143 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0001-8367-6476 | 
    
| PMID | 30259699 | 
    
| PQID | 2193205790 | 
    
| PQPubID | 2034649 | 
    
| PageCount | 14 | 
    
| ParticipantIDs | proquest_miscellaneous_2113280049 proquest_journals_2193205790 pubmed_primary_30259699 crossref_citationtrail_10_1002_minf_201800088 crossref_primary_10_1002_minf_201800088 wiley_primary_10_1002_minf_201800088_MINF201800088  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | March 2019 | 
    
| PublicationDateYYYYMMDD | 2019-03-01 | 
    
| PublicationDate_xml | – month: 03 year: 2019 text: March 2019  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Germany | 
    
| PublicationPlace_xml | – name: Germany – name: Weinheim  | 
    
| PublicationTitle | Molecular informatics | 
    
| PublicationTitleAlternate | Mol Inform | 
    
| PublicationYear | 2019 | 
    
| Publisher | Wiley Subscription Services, Inc | 
    
| Publisher_xml | – name: Wiley Subscription Services, Inc | 
    
| References | 2015; 12 2004; 44 2015; 34 1987; 2 1997; 339 1987; 52 2015; 521 2015; 55 2015; 142 2008; 9 2006 2011; 35 2016; 104 2012; 125 2009; 49 2005; 45 2016; 12 2016; 56 2012; 52 2018; 176 2006; 46 2010; 29 2008; 48 2001; 12 1998; 10 2001; 58 2007; 47 2014; 33 2005; 79 2010; 50 2014; 54 2012; 8 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 Brown N. (e_1_2_7_27_1) 2004; 44 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_28_1 e_1_2_7_29_1 van der Maaten L. (e_1_2_7_8_1) 2008; 9 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1  | 
    
| References_xml | – volume: 10 start-page: 215 year: 1998 end-page: 234 publication-title: Neural Comput. – volume: 45 start-page: 839 year: 2005 end-page: 849 publication-title: J. Chem. Inf. Model. – volume: 8 start-page: 1002380 year: 2012 publication-title: PLoS Comput. Biol. – volume: 55 start-page: 2403 year: 2015 end-page: 2410 publication-title: J. Chem. Inf. Model. – volume: 58 start-page: 109 year: 2001 end-page: 130 publication-title: Chemom. Intell. Lab. Syst. – volume: 50 start-page: 2094 year: 2010 end-page: 2111 publication-title: J. Chem. Inf. Model. – volume: 9 start-page: 2579 year: 2008 end-page: 2605 publication-title: JMLR. – volume: 54 start-page: 49 year: 2014 end-page: 56 publication-title: J. Chem. Inf. Model. – volume: 46 start-page: 231 year: 2006 end-page: 242 publication-title: J. Chem. Inf. Model. – volume: 52 start-page: 317 year: 1987 end-page: 332 publication-title: Psychometrika – volume: 79 start-page: 22 year: 2005 end-page: 30 publication-title: Chemom. Intell. Lab. Syst. – volume: 56 start-page: 286 year: 2016 end-page: 299 publication-title: J. Chem. Inf. Model. – volume: 44 start-page: 1079 year: 2004 end-page: 1087 publication-title: J. Chem. Inf. Model. – volume: 34 start-page: 348 year: 2015 end-page: 356 publication-title: Mol. Inf. – volume: 125 start-page: 419 year: 2012 end-page: 435 publication-title: Theor. Appl. Genet. – volume: 33 start-page: 779 year: 2014 end-page: 789 publication-title: Mol. Inf. – volume: 44 start-page: 266 year: 2004 end-page: 275 publication-title: J. Chem. Inf. Comput. Sci. – volume: 104 start-page: 148 year: 2016 end-page: 175 publication-title: P. IEEE – volume: 521 start-page: 436 year: 2015 end-page: 444 publication-title: Nature – volume: 47 start-page: 2462 year: 2007 end-page: 2474 publication-title: J. Chem. Inf. Model. – volume: 12 start-page: 277 year: 2015 end-page: 278 publication-title: Nat. Methods – year: 2006 – volume: 52 start-page: 792 year: 2012 end-page: 803 publication-title: J. Chem. Inf. Model. – volume: 2 start-page: 37 year: 1987 end-page: 52 publication-title: Chemom. Intell. Lab. Syst. – volume: 48 start-page: 1733 year: 2008 end-page: 1746 publication-title: J. Chem. Inf. Model. – volume: 49 start-page: 1762 year: 2009 end-page: 1776 publication-title: J. Chem. Inf. Model. – volume: 12 start-page: 181 year: 2001 end-page: 201 publication-title: IEEE T. Neural Networ. – volume: 339 start-page: 63 year: 1997 end-page: 77 publication-title: Anal. Chim. Acta – volume: 29 start-page: 476 year: 2010 end-page: 488 publication-title: Mol. Inf. – volume: 54 start-page: 2469 year: 2014 end-page: 2482 publication-title: J. Chem. Inf. Model. – volume: 29 start-page: 581 year: 2010 end-page: 587 publication-title: Mol. Inf. – volume: 35 start-page: 1135 year: 2011 end-page: 1142 publication-title: Comput. Chem. Eng. – volume: 176 start-page: 22 year: 2018 end-page: 33 publication-title: Chemom. Intell. Lab. Syst. – volume: 47 start-page: 150 year: 2007 end-page: 158 publication-title: J. Chem. Inf. Model. – volume: 142 start-page: 64 year: 2015 end-page: 69 publication-title: Chemom. Intell. Lab. Syst. – volume: 12 start-page: 181 year: 2016 end-page: 205 publication-title: Curr. Comput.-Aided Drug Des. – ident: e_1_2_7_28_1 doi: 10.1371/journal.pcbi.1002380 – ident: e_1_2_7_16_1 doi: 10.1021/ci800151m – ident: e_1_2_7_4_1 doi: 10.1016/0169-7439(87)80084-9 – ident: e_1_2_7_18_1 doi: 10.1016/j.compchemeng.2010.09.003 – ident: e_1_2_7_36_1 doi: 10.1021/ci200615h – ident: e_1_2_7_5_1 doi: 10.1007/BF02294359 – ident: e_1_2_7_2_1 doi: 10.1002/minf.201000061 – ident: e_1_2_7_38_1 doi: 10.1021/ci034184n – ident: e_1_2_7_17_1 doi: 10.1021/ci9000579 – ident: e_1_2_7_13_1 doi: 10.1016/j.chemolab.2005.03.003 – ident: e_1_2_7_31_1 doi: 10.1002/minf.201400153 – ident: e_1_2_7_33_1 – ident: e_1_2_7_29_1 doi: 10.1021/ci400418c – ident: e_1_2_7_40_1 doi: 10.1016/S0003-2670(96)00438-2 – ident: e_1_2_7_14_1 doi: 10.1021/ci060164k – ident: e_1_2_7_39_1 – ident: e_1_2_7_44_1 – ident: e_1_2_7_26_1 doi: 10.1109/JPROC.2015.2494218 – ident: e_1_2_7_9_1 doi: 10.1016/j.chemolab.2018.03.001 – ident: e_1_2_7_11_1 doi: 10.1007/s00122-012-1892-9 – ident: e_1_2_7_37_1 doi: 10.1016/j.chemolab.2015.01.001 – ident: e_1_2_7_7_1 doi: 10.1162/089976698300017953 – ident: e_1_2_7_41_1 – ident: e_1_2_7_25_1 doi: 10.1038/nmeth.3335 – ident: e_1_2_7_12_1 doi: 10.1007/978-0-387-45528-0 – volume: 9 start-page: 2579 year: 2008 ident: e_1_2_7_8_1 publication-title: JMLR. – ident: e_1_2_7_10_1 doi: 10.1016/S0169-7439(01)00155-1 – ident: e_1_2_7_3_1 doi: 10.2174/1573409912666160525112114 – ident: e_1_2_7_21_1 doi: 10.1002/minf.201000063 – ident: e_1_2_7_19_1 doi: 10.1021/ci0500381 – ident: e_1_2_7_20_1 doi: 10.1021/ci100253r – ident: e_1_2_7_43_1 – ident: e_1_2_7_15_1 doi: 10.1038/nature14539 – ident: e_1_2_7_24_1 doi: 10.1021/ci6005646 – ident: e_1_2_7_6_1 doi: 10.1109/72.914517 – ident: e_1_2_7_23_1 doi: 10.1021/ci500364e – ident: e_1_2_7_34_1 doi: 10.1002/minf.201400056 – ident: e_1_2_7_22_1 doi: 10.1016/S0169-7439(01)00155-1 – ident: e_1_2_7_35_1 doi: 10.1021/ci050268f – ident: e_1_2_7_42_1 – volume: 44 start-page: 1079 year: 2004 ident: e_1_2_7_27_1 publication-title: J. Chem. Inf. Model. – ident: e_1_2_7_30_1 doi: 10.1021/acs.jcim.5b00628 – ident: e_1_2_7_32_1 doi: 10.1021/acs.jcim.5b00398  | 
    
| SSID | ssj0000326789 | 
    
| Score | 2.3103867 | 
    
| Snippet | This paper introduces two generative topographic mapping (GTM) methods that can be used for data visualization, regression analysis, inverse analysis, and the... | 
    
| SourceID | proquest pubmed crossref wiley  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | e1800088 | 
    
| SubjectTerms | Algorithms Applicability Domains Bayesian analysis Computer simulation Conditional probability Data analysis Data processing Data Visualization Datasets Domains Generative Topographic Mapping Inverse Analysis Mapping Probability distribution Regression Regression analysis Scientific visualization Statistical analysis Structure-activity relationships Topographic mapping Topography Visualization  | 
    
| Title | Data Visualization, Regression, Applicability Domains and Inverse Analysis Based on Generative Topographic Mapping | 
    
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fminf.201800088 https://www.ncbi.nlm.nih.gov/pubmed/30259699 https://www.proquest.com/docview/2193205790 https://www.proquest.com/docview/2113280049  | 
    
| Volume | 38 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1868-1743 databaseCode: DR2 dateStart: 20100101 customDbUrl: isFulltext: true eissn: 1868-1751 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000326789 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT-MwELUQJy6wCywUWGQkBJcGUttJ7CNfFSAVIVRW3CLbSVAFJKhpD91fvzNxk1IQQmJvjmwnTjwzfuPMPBOyn6mOTqQG6yds6ImIc88AjvA6GfMN4AU_Mbjf0bsJL-_F9UPw8CaL3_FDNBtuqBmVvUYF16Y8npGGvsAMYGiWxGUMs307PKx8qjvWbLL4AE6i6hg8ZIX3EH3XxI0-O56_w_zC9AFtzoPXavXprhBdj9sFnTwdjUfmyP59R-n4Py_2gyxPoSk9cbL0kyyk-So5uHXc1pM27c9Stco2PaC3M9bryRoZnuuRpn8GJWZputzONr1LH12cLZRP3K_yKhh3Qs-LFz3IS6rzhCLXx7BMaU2QQk9haU1okVNHio0WmfaLV8euPbC0p5FV4nGd3Hcv-meX3vRAB88KcGs8xaxNbKCCyCqQBTAVxnKW-CmzvspSA74fi5T0M2Mkz8LIcCU41wB5pNYCkN0vspgXebpJqLQyC3mmI-gogiDQYIiYNdIIgaHttkW8ejZjO2U7x0M3nmPH08xi_Mxx85lb5LBp_-p4Pj5tuVMLRzzV9zJmiIMxr9dvkb2mGjQVf7_oPC3G2AY8f4kuWYtsOKFqHsUBeqpQQQ2rROOLMcS9q5tuc7X1nU7bZAnKyoXT7ZDF0XCc_gZ8NTK7lQ79A796G8s | 
    
| linkProvider | Wiley-Blackwell | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFH-CcYDLxjeFAUZC49Jsme0k9nEwqg7Wapo6xC2ynWSqxpKpaQ_dX897cZOqIIQEtyR2Eid5H7_nvPczwPtCH5pMGbR-0sWBTIQILOKI4LDgoUW8EGaW5jtG43h4Ib98j9psQqqF8fwQ3YQbaUZjr0nBaUL6YM0aeo2fgHKzFPkxdRfuyRiDFcJF57ybZgkRniTNQnjECx8Q_m6pG0N-sHmJTdf0G97chK-N_xnsgG1H7tNOrvYXc7vvbn8hdfyvR3sI2yt0yo68OD2CO3n5GPbOPL31ss8m62qtus_22Nma-Hr5BGbHZm7Yt2lNhZq-vLPPzvNLn2qL20f-b3mTj7tkx9W1mZY1M2XGiO5jVues5UhhH9G7ZqwqmefFJqPMJtWNJ9ieOjYyRCxx-RQuBp8nn4bBak2HwEmMbALNnctcpKPEaRQHtBbWCZ6FOXehLnKL4R9PtAoLa5Uo4sQKLYUwiHqUMRLB3TPYKqsyfwFMOVXEojAJniijKDJoi7izykpJ2e2uB0H7OVO3IjyndTd-pJ6qmaf0mtPuNffgQ9f_xlN9_LHnbisd6Url65QTFKbS3rAH77pmVFb6A2PKvFpQHwz-FUVlPXjupaq7lUD0qWONLbyRjb-MIR2djAfd3st_Oekt3B9ORqfp6cn46yt4gMe1z67bha35bJG_Rrg1t28ahfoJhuMf7A | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED7BkBAv_GYUBhgJjZdmy2wnsR8HpdqAVtXUId4i20mmCpZUTftQ_nru4iZVQQgJ3pLYThz77vzZvvsM8KbQJyZTBq2fdHEgEyECizgiOCl4aBEvhJml9Y7ROD67lB-_Rq03IcXCeH6IbsGNNKOx16Tg-TwrjresodfYBeSbpWgcUzfhloy0Iq--wQXvlllChCdJcxAe8cIHhL9b6saQH---Yndo-g1v7sLXZvwZ3gPb1ty7nXw7Wi3tkfvxC6njf_3afbi7Qafs1IvTA7iRlw_hcOLprdd9Nt1Ga9V9dsgmW-Lr9SNYDMzSsC-zmgI1fXhnn13kV97VFq9P_W5544-7ZoPq2szKmpkyY0T3sahz1nKksHc4umasKpnnxSajzKbV3BNszxwbGSKWuHoMl8MP0_dnweZMh8BJnNkEmjuXuUhHidMoDmgtrBM8C3PuQl3kFqd_PNEqLKxVoogTK7QUwiDqUcZIBHdPYK-syvwpMOVUEYvCJFhQRlFk0BZxZ5WVkrzbXQ-CtjtTtyE8p3M3vqeeqpmn1Mxp18w9eNvln3uqjz_mPGilI92ofJ1ygsIU2hv24HWXjMpKOzCmzKsV5cHJv6JZWQ_2vVR1nxKIPnWsMYU3svGXOqSj8_Gwu3v2L4Vewe3JYJh-Ph9_eg538LH2znUHsLdcrPIXiLaW9mWjTz8BAmEfcA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+Visualization%2C+Regression%2C+Applicability+Domains+and+Inverse+Analysis+Based+on+Generative+Topographic+Mapping&rft.jtitle=Molecular+informatics&rft.au=Kaneko%2C+Hiromasa&rft.date=2019-03-01&rft.eissn=1868-1751&rft.volume=38&rft.issue=3&rft.spage=e1800088&rft_id=info:doi/10.1002%2Fminf.201800088&rft_id=info%3Apmid%2F30259699&rft.externalDocID=30259699 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-1743&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-1743&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-1743&client=summon |