Interpreting meta-regression: application to recent controversies in antidepressants' efficacy

A recent meta‐regression of antidepressant efficacy on baseline depression severity has caused considerable controversy in the popular media. A central source of the controversy is a lack of clarity about the relation of meta‐regression parameters to corresponding parameters in models for subject‐le...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 32; no. 17; pp. 2875 - 2892
Main Authors Petkova, Eva, Tarpey, Thaddeus, Huang, Lei, Deng, Liping
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 30.07.2013
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0277-6715
1097-0258
1097-0258
DOI10.1002/sim.5766

Cover

Abstract A recent meta‐regression of antidepressant efficacy on baseline depression severity has caused considerable controversy in the popular media. A central source of the controversy is a lack of clarity about the relation of meta‐regression parameters to corresponding parameters in models for subject‐level data. This paper focuses on a linear regression with continuous outcome and predictor, a case that is often considered less problematic. We frame meta‐regression in a general mixture setting that encompasses both finite and infinite mixture models. In many applications of meta‐analysis, the goal is to evaluate the efficacy of a treatment from several studies, and authors use meta‐regression on grouped data to explain variations in the treatment efficacy by study features. When the study feature is a characteristic that has been averaged over subjects, it is difficult not to interpret the meta‐regression results on a subject level, a practice that is still widespread in medical research. Although much of the attention in the literature is on methods of estimating meta‐regression model parameters, our results illustrate that estimation methods cannot protect against erroneous interpretations of meta‐regression on grouped data. We derive relations between meta‐regression parameters and within‐study model parameters and show that the conditions under which slopes from these models are equal cannot be verified on the basis of group‐level information only. The effects of these model violations cannot be known without subject‐level data. We conclude that interpretations of meta‐regression results are highly problematic when the predictor is a subject‐level characteristic that has been averaged over study subjects. Copyright © 2013 John Wiley & Sons, Ltd.
AbstractList A recent meta‐regression of antidepressant efficacy on baseline depression severity has caused considerable controversy in the popular media. A central source of the controversy is a lack of clarity about the relation of meta‐regression parameters to corresponding parameters in models for subject‐level data. This paper focuses on a linear regression with continuous outcome and predictor, a case that is often considered less problematic. We frame meta‐regression in a general mixture setting that encompasses both finite and infinite mixture models. In many applications of meta‐analysis, the goal is to evaluate the efficacy of a treatment from several studies, and authors use meta‐regression on grouped data to explain variations in the treatment efficacy by study features. When the study feature is a characteristic that has been averaged over subjects, it is difficult not to interpret the meta‐regression results on a subject level, a practice that is still widespread in medical research. Although much of the attention in the literature is on methods of estimating meta‐regression model parameters, our results illustrate that estimation methods cannot protect against erroneous interpretations of meta‐regression on grouped data. We derive relations between meta‐regression parameters and within‐study model parameters and show that the conditions under which slopes from these models are equal cannot be verified on the basis of group‐level information only. The effects of these model violations cannot be known without subject‐level data. We conclude that interpretations of meta‐regression results are highly problematic when the predictor is a subject‐level characteristic that has been averaged over study subjects. Copyright © 2013 John Wiley & Sons, Ltd.
A recent meta-regression of antidepressant efficacy on baseline depression severity has caused considerable controversy in the popular media. A central source of the controversy is a lack of clarity about the relation of meta-regression parameters to corresponding parameters in models for subject-level data. This paper focuses on a linear regression with continuous outcome and predictor, a case that is often considered less problematic. We frame meta-regression in a general mixture setting that encompasses both finite and infinite mixture models. In many applications of meta-analysis the goal is to evaluate the efficacy of a treatment from several studies and meta-regression on grouped data is used to explain variations in the treatment efficacy by study features. When the study feature is a characteristic that has been averaged over subjects, it is difficult not to interpret the meta-regression results on a subject level, a practice that is still widespread in medical research. While much of the attention in the literature is on methods of estimating meta-regression model parameters, our results illustrate that estimation methods cannot protect against erroneous interpretations of meta-regression on grouped data. We derive relations between meta-regression parameters and within-study model parameters and show that the conditions under which slopes from these models are equal cannot be verified based on group-level information only. The effects of these model violations cannot be known without subject level data. We conclude that interpretations of meta-regression results are highly problematic when the predictor is a subject level characteristic that has been averaged over study subjects.
A recent meta-regression of antidepressant efficacy on baseline depression severity has caused considerable controversy in the popular media. A central source of the controversy is a lack of clarity about the relation of meta-regression parameters to corresponding parameters in models for subject-level data. This paper focuses on a linear regression with continuous outcome and predictor, a case that is often considered less problematic. We frame meta-regression in a general mixture setting that encompasses both finite and infinite mixture models. In many applications of meta-analysis, the goal is to evaluate the efficacy of a treatment from several studies, and authors use meta-regression on grouped data to explain variations in the treatment efficacy by study features. When the study feature is a characteristic that has been averaged over subjects, it is difficult not to interpret the meta-regression results on a subject level, a practice that is still widespread in medical research. Although much of the attention in the literature is on methods of estimating meta-regression model parameters, our results illustrate that estimation methods cannot protect against erroneous interpretations of meta-regression on grouped data. We derive relations between meta-regression parameters and within-study model parameters and show that the conditions under which slopes from these models are equal cannot be verified on the basis of group-level information only. The effects of these model violations cannot be known without subject-level data. We conclude that interpretations of meta-regression results are highly problematic when the predictor is a subject-level characteristic that has been averaged over study subjects.A recent meta-regression of antidepressant efficacy on baseline depression severity has caused considerable controversy in the popular media. A central source of the controversy is a lack of clarity about the relation of meta-regression parameters to corresponding parameters in models for subject-level data. This paper focuses on a linear regression with continuous outcome and predictor, a case that is often considered less problematic. We frame meta-regression in a general mixture setting that encompasses both finite and infinite mixture models. In many applications of meta-analysis, the goal is to evaluate the efficacy of a treatment from several studies, and authors use meta-regression on grouped data to explain variations in the treatment efficacy by study features. When the study feature is a characteristic that has been averaged over subjects, it is difficult not to interpret the meta-regression results on a subject level, a practice that is still widespread in medical research. Although much of the attention in the literature is on methods of estimating meta-regression model parameters, our results illustrate that estimation methods cannot protect against erroneous interpretations of meta-regression on grouped data. We derive relations between meta-regression parameters and within-study model parameters and show that the conditions under which slopes from these models are equal cannot be verified on the basis of group-level information only. The effects of these model violations cannot be known without subject-level data. We conclude that interpretations of meta-regression results are highly problematic when the predictor is a subject-level characteristic that has been averaged over study subjects.
A recent meta-regression of antidepressant efficacy on baseline depression severity has caused considerable controversy in the popular media. A central source of the controversy is a lack of clarity about the relation of meta-regression parameters to corresponding parameters in models for subject-level data. This paper focuses on a linear regression with continuous outcome and predictor, a case that is often considered less problematic. We frame meta-regression in a general mixture setting that encompasses both finite and infinite mixture models. In many applications of meta-analysis, the goal is to evaluate the efficacy of a treatment from several studies, and authors use meta-regression on grouped data to explain variations in the treatment efficacy by study features. When the study feature is a characteristic that has been averaged over subjects, it is difficult not to interpret the meta-regression results on a subject level, a practice that is still widespread in medical research. Although much of the attention in the literature is on methods of estimating meta-regression model parameters, our results illustrate that estimation methods cannot protect against erroneous interpretations of meta-regression on grouped data. We derive relations between meta-regression parameters and within-study model parameters and show that the conditions under which slopes from these models are equal cannot be verified on the basis of group-level information only. The effects of these model violations cannot be known without subject-level data. We conclude that interpretations of meta-regression results are highly problematic when the predictor is a subject-level characteristic that has been averaged over study subjects.
A recent meta-regression of antidepressant efficacy on baseline depression severity has caused considerable controversy in the popular media. A central source of the controversy is a lack of clarity about the relation of meta-regression parameters to corresponding parameters in models for subject-level data. This paper focuses on a linear regression with continuous outcome and predictor, a case that is often considered less problematic. We frame meta-regression in a general mixture setting that encompasses both finite and infinite mixture models. In many applications of meta-analysis, the goal is to evaluate the efficacy of a treatment from several studies, and authors use meta-regression on grouped data to explain variations in the treatment efficacy by study features. When the study feature is a characteristic that has been averaged over subjects, it is difficult not to interpret the meta-regression results on a subject level, a practice that is still widespread in medical research. Although much of the attention in the literature is on methods of estimating meta-regression model parameters, our results illustrate that estimation methods cannot protect against erroneous interpretations of meta-regression on grouped data. We derive relations between meta-regression parameters and within-study model parameters and show that the conditions under which slopes from these models are equal cannot be verified on the basis of group-level information only. The effects of these model violations cannot be known without subject-level data. We conclude that interpretations of meta-regression results are highly problematic when the predictor is a subject-level characteristic that has been averaged over study subjects. [PUBLICATION ABSTRACT]
Author Tarpey, Thaddeus
Huang, Lei
Deng, Liping
Petkova, Eva
AuthorAffiliation a Department of Mathematics and Statistics, Wright State University, Dayton, OH 45435
c Providence LLC, Baton Rouge, LA 70802
b Biostatistics PhD program of Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
AuthorAffiliation_xml – name: a Department of Mathematics and Statistics, Wright State University, Dayton, OH 45435
– name: c Providence LLC, Baton Rouge, LA 70802
– name: b Biostatistics PhD program of Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
Author_xml – sequence: 1
  givenname: Eva
  surname: Petkova
  fullname: Petkova, Eva
  email: Correspondence to: Eva Petkova, Department of Child and Adolescent Psychiatry, New York University, One Park Ave. 7th floor, New York, NY 10016-6023, U.S.A., eva.petkova@nyu.edu
  organization: Department of Child and Adolescent Psychiatry, New York University, New York, NY 10016-6023, U.S.A
– sequence: 2
  givenname: Thaddeus
  surname: Tarpey
  fullname: Tarpey, Thaddeus
  organization: Department of Mathematics and Statistics, Wright State University, OH 45435, Dayton, U.S.A
– sequence: 3
  givenname: Lei
  surname: Huang
  fullname: Huang, Lei
  organization: Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, MD 21205, Baltimore, U.S.A
– sequence: 4
  givenname: Liping
  surname: Deng
  fullname: Deng, Liping
  organization: Providence LLC, LA 70802, Baton Rouge, U.S.A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23440635$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFv1DAQhS1URLcFiV-AInGgHLLYcRw7HJDQCspKbREURE9YjneyuCR2sJ2W_fc4bCm0AuSDPfI3T2_e7KEd6ywg9JDgOcG4eBZMP2e8qu6gGcE1z3HBxA6a4YLzvOKE7aK9EM4xJoQV_B7aLWhZ4oqyGfq8tBH84CEau856iCr3sPYQgnH2eaaGoTNaxVRk0WUeNNiYaWejdxfgg4GQGZspG80KhqktPcOTDNo2tenNfXS3VV2AB1f3Pvr4-tWHxZv86O3hcvHyKNdlsp2XnBVCcaBVmw5UtRA1ZbQpSY1Fzaoa143Wq5YpQbhYUc1JowRWrClIyzSh--jpVne0g9pcqq6Tgze98htJsJwykikjOWWU2BdbdhibHlbTRF795p0y8uaPNV_k2l1IKjDGJU4CB1cC3n0bIUTZm6Ch65QFNwZJaC3KIiUtEvr4FnruRm9TFBNVc0wrXiTq0Z-Orq38WlMC5ltAexeCh1ZqE39uJRk03d9mPLjV8J848i16aTrY_JOTp8vjm7wJEb5f88p_lRWnnMlPJ4fy_btTWi3qM3lGfwAkVNES
CODEN SMEDDA
CitedBy_id crossref_primary_10_1007_s11121_016_0737_1
crossref_primary_10_1007_s11121_022_01425_w
crossref_primary_10_1002_jrsm_1338
crossref_primary_10_1080_16506073_2018_1522371
crossref_primary_10_1016_S2215_0366_19_30216_0
crossref_primary_10_1192_j_eurpsy_2024_16
crossref_primary_10_1155_2016_2643625
crossref_primary_10_5334_gh_1159
crossref_primary_10_1111_obr_12686
crossref_primary_10_1186_1744_859X_12_26
crossref_primary_10_1111_ijpo_12692
crossref_primary_10_1016_j_neubiorev_2020_10_026
crossref_primary_10_1016_j_lungcan_2022_01_018
crossref_primary_10_1161_JAHA_116_003231
crossref_primary_10_1016_j_ajp_2016_02_001
crossref_primary_10_1097_PEP_0000000000000046
crossref_primary_10_1111_obr_12682
crossref_primary_10_1007_s11065_019_09405_8
crossref_primary_10_1007_s11336_016_9507_z
crossref_primary_10_1002_wps_20822
crossref_primary_10_1007_s11065_018_9369_5
crossref_primary_10_1007_s40279_014_0180_z
Cites_doi 10.1002/sim.918
10.1002/(SICI)1097-0258(19980430)17:8<841::AID-SIM781>3.0.CO;2-D
10.1002/sim.3165
10.1016/S0895-4356(01)00414-0
10.1017/S1461145710000957
10.1002/(SICI)1097-0258(19960830)15:16<1713::AID-SIM331>3.0.CO;2-D
10.1080/00031305.1992.10475844
10.1001/jama.2009.1943
10.1002/sim.1187
10.18637/jss.v036.i03
10.1002/sim.4780081106
10.1191/0962280204sm368ra
10.1007/s00406-009-0070-9
10.1002/sim.4780140406
10.1002/sim.2370
10.1002/(SICI)1097-0258(19991030)18:20<2693::AID-SIM235>3.0.CO;2-V
10.1093/oxfordjournals.aje.a117069
10.1002/sim.2768
10.1001/archgenpsychiatry.2011.2044
10.1002/sim.1482
10.1002/jrsm.4
10.1016/0197-2456(86)90046-2
10.1111/j.1467-985X.2007.00511.x
10.1016/j.euroneuro.2008.06.003
ContentType Journal Article
Copyright Copyright © 2013 John Wiley & Sons, Ltd.
Copyright Wiley Subscription Services, Inc. Jul 30, 2013
Copyright © 0000 JohnWiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2013 John Wiley & Sons, Ltd.
– notice: Copyright Wiley Subscription Services, Inc. Jul 30, 2013
– notice: Copyright © 0000 JohnWiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
5PM
ADTOC
UNPAY
DOI 10.1002/sim.5766
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList

CrossRef
MEDLINE - Academic
MEDLINE
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 2892
ExternalDocumentID oai:pubmedcentral.nih.gov:3800040
PMC3800040
3018538841
23440635
10_1002_sim_5766
SIM5766
ark_67375_WNG_RQS36C9X_X
Genre article
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIMH
  funderid: R01 MH68401
– fundername: NIMH NIH HHS
  grantid: R01 MH68401
– fundername: NIMH NIH HHS
  grantid: R01 MH068401
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMVHM
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
SV3
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWI
WRC
WUP
WWH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
5PM
31~
ABEML
ACSCC
ADTOC
AFFNX
AGHNM
AIQQE
DUUFO
EX3
FEDTE
HF~
HVGLF
M67
RIWAO
RJQFR
SAMSI
UNPAY
WOW
YHZ
ZGI
ZXP
ID FETCH-LOGICAL-c4766-47528a7e36f6f6e69889353b41908956909bccdf5a8178d3c71ba80a5b21f5c13
IEDL.DBID UNPAY
ISSN 0277-6715
1097-0258
IngestDate Wed Oct 29 12:14:02 EDT 2025
Thu Aug 21 18:36:17 EDT 2025
Fri Jul 11 09:45:19 EDT 2025
Mon Oct 06 18:39:13 EDT 2025
Thu Apr 03 06:58:39 EDT 2025
Wed Oct 01 04:08:54 EDT 2025
Thu Apr 24 23:05:49 EDT 2025
Wed Jan 22 16:22:22 EST 2025
Sun Sep 21 06:29:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords ecological fallacy
infinite mixtures
mixed-effects models
finite mixture
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2013 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4766-47528a7e36f6f6e69889353b41908956909bccdf5a8178d3c71ba80a5b21f5c13
Notes NIMH - No. R01 MH68401
ArticleID:SIM5766
ark:/67375/WNG-RQS36C9X-X
Supporting Information
istex:E3BEB547FE5A62368D92790FCB7AD57F22991484
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=http://doi.org/10.1002/sim.5766
PMID 23440635
PQID 1399703672
PQPubID 48361
PageCount 18
ParticipantIDs unpaywall_primary_10_1002_sim_5766
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3800040
proquest_miscellaneous_1398425278
proquest_journals_1399703672
pubmed_primary_23440635
crossref_citationtrail_10_1002_sim_5766
crossref_primary_10_1002_sim_5766
wiley_primary_10_1002_sim_5766_SIM5766
istex_primary_ark_67375_WNG_RQS36C9X_X
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 30 July 2013
PublicationDateYYYYMMDD 2013-07-30
PublicationDate_xml – month: 07
  year: 2013
  text: 30 July 2013
  day: 30
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: New York
PublicationTitle Statistics in medicine
PublicationTitleAlternate Statist. Med
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Higgins JPT, Whitehead A, Turner RM, Omar RZ, Thompson SG. Meta-analysis of continuous outcome data from individual patients. Statistics in Medicine 2001; 20:2219-2241.
Berkey C, Hoaglin D, Mosteller F, Colditz G. A random-effects regression model for meta-analysis. Statistics in Medicine 1995; 14:395-411.
Knapp G, Hartung J. Improved tests for a random effects meta-regression with a single covariate. Statistics in Medicine 2003; 22:2693-2710.
Flury BD, Narayanan A. A mixture approach to multivariate analysis of variance. The American Statistician 1992; 46:31-34.
Thompson SG, Sharp SJ. Explaining heterogeneity in meta-analysis: a comparison of methods. Statistics in Medicine 1999; 18:2693-2708.
Riley RD, Steyerberg EW. Meta-analysis of binary outcome using individual participant data and aggregate data. Research Synthesis Methods 2010; 1:2-16. DOI: 10.1002/jrsm.4.
Hedges LV, Olkin I. Statistical Methods for Meta-Analysis. Academic Press Inc.: San Diego, CA, 1985.
Lambert PC, Sutton AJ, Abrams K, Jones DR. A comparison of summary patient-level covariates in meta-regression with individual patient data meta-analysis. Journal of Clinical Epidemiology 2002; 55(1):86-94.
Thompson SG, Higgins JPT. How should meta-regression analyses be undertaken and interpreted? Statistics in Medicine 2002; 21:1559-1573.
Fountoulakis KN, Moller HJ. Efficacy of antidepressants: a re-analysis and re-interpretation of the Kirsch data. International Journal of Neuropsychopharmacology 2011; 14:405-412. DOI: 10.1017/S1461145710000957.
Greenland S, Robins J. Invited commentary: ecologic studies - biases, misconceptions, and counterexamples. American Journal of Epidemiology 1994; 139(8):747-760.
Glynn AN, Wakefield J, Handcock MS, Richardson TS. Alleviating linear ecological bias and optimal design with subsample data. Journal of the Royal Statistical Society. Series A 2008; 171:179-202.
Moller HJ, Maier W. Evidence-based medicine in psychopharmacology: possibilities, problems and limitations. European Archives of Psychiatry and Clinical Neuroscience 2010; 260:25-39.
Gibbons RD, Hur K, Brown CH, Davis JM, Mann JJ. Benefits from antidepressants synthesis of 6-week patient-level outcomes from double-blind placebo-controlled randomized trials of fluoxetine and venlafaxine. Archives of General Psychiatry 2012; 69(6):572-579.
Fournier JC, DeRubeis RJ, Hollon SD, Dimidjian S, Amsterdam JD, Shelton RC, Fawcett J. Antidepressant drug effects and depression severity: a patient-level meta-analysis. Journal of the American Medical Association 2010; 303:47-53.
Melander H, Salmonson T, Abadie E, van Zwieten-Boot B. A regulatory apologia - a review of placebo-controlled studies in regulatory submissions of new-generation antidepressants. European Neuropsychopharmacology 2008; 18:623-627.
Cleveland WS, Grosse E, Shyu MJ. Local Regression Models. Chapman and Hall: New York, 1992; 309-376.
Riley RD, Lambert P, Staessen JA, Wang J, Gueyffer F, Thijs L, Boutitie F. Meta-analysis of continuous outcomes combining individual patient data and aggregate data. Statistics in Medicine 2008; 27:1870-1893. DOI: 10.1002/sim.3165.
Jackson C, Best N, Richardson S. Improving ecological inference using individual-level data. Statistics in Medicine 2006; 25:2136-2159.
McIntosh MW. The population risk as an explanatory variable in research synthesis of clinical trials. Statistics in Medicine 1996; 16(16):1713-1728.
Hardy RJ, Thompson SG. Detecting and describing heterogeneity in meta-analysis. Statistics in Medicine 1998; 17(8):841-856.
Kirsch I, Deacon BJ, Huedo-Medina TB, Scoboria A, Moore TJ, Johnson BT. Initial severity and antidepressant benefits: a meta-analysis of data submitted to the food and drug administration. Public Library of Science Medicine 2008; 5:e45.
Senn SJ. The use of baselines in clinical trials of bronchodilators. Statistics in Medicine 1989; 8(11):1339-1350.
DerSimonian R, Laird N. Meta-analysis in clinical trials. Controlled Clinical Trials 1986; 7:177-188.
Viechtbauer W. Conducting meta-analyses in R with the metafor package. Journal of Statistical Software 2010; 36(3):1-48. URL http://www.jstatsoft.org/v36/i03/.
Simmonds MC, Higgins JPT. Covariate heterogeneity in meta-analysis: criteria for deciding between meta-regression and individual patient data. Statistics in Medicine 2007; 26:2982-2999. DOI: 10.1002/sim.2768.
Ritz J, Spiegelman D. Equivalence of conditional and marginal regression models for clustered and longitudinal data. Statistical Methods in Medical Research 2004; 13:309-323.
Tarpey T. On the meaning of parameters in approximation models. Journal of Probability and Statistical Science 2011; 9(2):139-151.
1994; 139
2010; 36
2010; 303
1995; 14
2008; 18
1989; 8
2002; 55
2008; 5
2010; 260
1992
2011; 14
1996; 16
2001; 20
2011; 9
1998; 17
2010; 1
1986; 7
1999; 18
2002; 21
2006; 25
2008; 27
2004; 13
1985
1992; 46
2012; 69
2007; 26
2003; 22
2008; 171
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_3_1
e_1_2_8_5_1
Tarpey T (e_1_2_8_25_1) 2011; 9
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
Hedges LV (e_1_2_8_27_1) 1985
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
Kirsch I (e_1_2_8_2_1) 2008; 5
Cleveland WS (e_1_2_8_26_1) 1992
e_1_2_8_10_1
e_1_2_8_11_1
e_1_2_8_12_1
12111920 - Stat Med. 2002 Jun 15;21(11):1559-73
20052294 - J R Stat Soc Ser A Stat Soc. 2008 Jan 1;171(1):179-202
18303940 - PLoS Med. 2008 Feb;5(2):e45
19838763 - Eur Arch Psychiatry Clin Neurosci. 2010 Feb;260(1):25-39
16217847 - Stat Med. 2006 Jun 30;25(12):2136-59
18621509 - Eur Neuropsychopharmacol. 2008 Sep;18(9):623-7
8870154 - Stat Med. 1996 Aug 30;15(16):1713-28
20051569 - JAMA. 2010 Jan 6;303(1):47-53
11468761 - Stat Med. 2001 Aug 15;20(15):2219-41
22393205 - Arch Gen Psychiatry. 2012 Jun;69(6):572-9
9595615 - Stat Med. 1998 Apr 30;17(8):841-56
3802833 - Control Clin Trials. 1986 Sep;7(3):177-88
8178788 - Am J Epidemiol. 1994 Apr 15;139(8):747-60
17195960 - Stat Med. 2007 Jul 10;26(15):2982-99
18069721 - Stat Med. 2008 May 20;27(11):1870-93
11781126 - J Clin Epidemiol. 2002 Jan;55(1):86-94
7746979 - Stat Med. 1995 Feb 28;14(4):395-411
20800012 - Int J Neuropsychopharmacol. 2011 Apr;14(3):405-12
2692110 - Stat Med. 1989 Nov;8(11):1339-50
26056090 - Res Synth Methods. 2010 Jan;1(1):2-19
10521860 - Stat Med. 1999 Oct 30;18(20):2693-708
12939780 - Stat Med. 2003 Sep 15;22(17):2693-710
References_xml – reference: Kirsch I, Deacon BJ, Huedo-Medina TB, Scoboria A, Moore TJ, Johnson BT. Initial severity and antidepressant benefits: a meta-analysis of data submitted to the food and drug administration. Public Library of Science Medicine 2008; 5:e45.
– reference: Thompson SG, Higgins JPT. How should meta-regression analyses be undertaken and interpreted? Statistics in Medicine 2002; 21:1559-1573.
– reference: Knapp G, Hartung J. Improved tests for a random effects meta-regression with a single covariate. Statistics in Medicine 2003; 22:2693-2710.
– reference: Glynn AN, Wakefield J, Handcock MS, Richardson TS. Alleviating linear ecological bias and optimal design with subsample data. Journal of the Royal Statistical Society. Series A 2008; 171:179-202.
– reference: Viechtbauer W. Conducting meta-analyses in R with the metafor package. Journal of Statistical Software 2010; 36(3):1-48. URL http://www.jstatsoft.org/v36/i03/.
– reference: Gibbons RD, Hur K, Brown CH, Davis JM, Mann JJ. Benefits from antidepressants synthesis of 6-week patient-level outcomes from double-blind placebo-controlled randomized trials of fluoxetine and venlafaxine. Archives of General Psychiatry 2012; 69(6):572-579.
– reference: Greenland S, Robins J. Invited commentary: ecologic studies - biases, misconceptions, and counterexamples. American Journal of Epidemiology 1994; 139(8):747-760.
– reference: Fournier JC, DeRubeis RJ, Hollon SD, Dimidjian S, Amsterdam JD, Shelton RC, Fawcett J. Antidepressant drug effects and depression severity: a patient-level meta-analysis. Journal of the American Medical Association 2010; 303:47-53.
– reference: DerSimonian R, Laird N. Meta-analysis in clinical trials. Controlled Clinical Trials 1986; 7:177-188.
– reference: Tarpey T. On the meaning of parameters in approximation models. Journal of Probability and Statistical Science 2011; 9(2):139-151.
– reference: Riley RD, Lambert P, Staessen JA, Wang J, Gueyffer F, Thijs L, Boutitie F. Meta-analysis of continuous outcomes combining individual patient data and aggregate data. Statistics in Medicine 2008; 27:1870-1893. DOI: 10.1002/sim.3165.
– reference: Hardy RJ, Thompson SG. Detecting and describing heterogeneity in meta-analysis. Statistics in Medicine 1998; 17(8):841-856.
– reference: Berkey C, Hoaglin D, Mosteller F, Colditz G. A random-effects regression model for meta-analysis. Statistics in Medicine 1995; 14:395-411.
– reference: Jackson C, Best N, Richardson S. Improving ecological inference using individual-level data. Statistics in Medicine 2006; 25:2136-2159.
– reference: Lambert PC, Sutton AJ, Abrams K, Jones DR. A comparison of summary patient-level covariates in meta-regression with individual patient data meta-analysis. Journal of Clinical Epidemiology 2002; 55(1):86-94.
– reference: Flury BD, Narayanan A. A mixture approach to multivariate analysis of variance. The American Statistician 1992; 46:31-34.
– reference: Hedges LV, Olkin I. Statistical Methods for Meta-Analysis. Academic Press Inc.: San Diego, CA, 1985.
– reference: McIntosh MW. The population risk as an explanatory variable in research synthesis of clinical trials. Statistics in Medicine 1996; 16(16):1713-1728.
– reference: Simmonds MC, Higgins JPT. Covariate heterogeneity in meta-analysis: criteria for deciding between meta-regression and individual patient data. Statistics in Medicine 2007; 26:2982-2999. DOI: 10.1002/sim.2768.
– reference: Melander H, Salmonson T, Abadie E, van Zwieten-Boot B. A regulatory apologia - a review of placebo-controlled studies in regulatory submissions of new-generation antidepressants. European Neuropsychopharmacology 2008; 18:623-627.
– reference: Fountoulakis KN, Moller HJ. Efficacy of antidepressants: a re-analysis and re-interpretation of the Kirsch data. International Journal of Neuropsychopharmacology 2011; 14:405-412. DOI: 10.1017/S1461145710000957.
– reference: Thompson SG, Sharp SJ. Explaining heterogeneity in meta-analysis: a comparison of methods. Statistics in Medicine 1999; 18:2693-2708.
– reference: Higgins JPT, Whitehead A, Turner RM, Omar RZ, Thompson SG. Meta-analysis of continuous outcome data from individual patients. Statistics in Medicine 2001; 20:2219-2241.
– reference: Ritz J, Spiegelman D. Equivalence of conditional and marginal regression models for clustered and longitudinal data. Statistical Methods in Medical Research 2004; 13:309-323.
– reference: Moller HJ, Maier W. Evidence-based medicine in psychopharmacology: possibilities, problems and limitations. European Archives of Psychiatry and Clinical Neuroscience 2010; 260:25-39.
– reference: Senn SJ. The use of baselines in clinical trials of bronchodilators. Statistics in Medicine 1989; 8(11):1339-1350.
– reference: Cleveland WS, Grosse E, Shyu MJ. Local Regression Models. Chapman and Hall: New York, 1992; 309-376.
– reference: Riley RD, Steyerberg EW. Meta-analysis of binary outcome using individual participant data and aggregate data. Research Synthesis Methods 2010; 1:2-16. DOI: 10.1002/jrsm.4.
– volume: 36
  start-page: 1
  issue: 3
  year: 2010
  end-page: 48
  article-title: Conducting meta‐analyses in R with the metafor package
  publication-title: Journal of Statistical Software
– year: 1985
– volume: 14
  start-page: 395
  year: 1995
  end-page: 411
  article-title: A random‐effects regression model for meta‐analysis
  publication-title: Statistics in Medicine
– volume: 46
  start-page: 31
  year: 1992
  end-page: 34
  article-title: A mixture approach to multivariate analysis of variance
  publication-title: The American Statistician
– volume: 9
  start-page: 139
  issue: 2
  year: 2011
  end-page: 151
  article-title: On the meaning of parameters in approximation models
  publication-title: Journal of Probability and Statistical Science
– volume: 17
  start-page: 841
  issue: 8
  year: 1998
  end-page: 856
  article-title: Detecting and describing heterogeneity in meta‐analysis
  publication-title: Statistics in Medicine
– volume: 1
  start-page: 2
  year: 2010
  end-page: 16
  article-title: Meta‐analysis of binary outcome using individual participant data and aggregate data
  publication-title: Research Synthesis Methods
– volume: 18
  start-page: 623
  year: 2008
  end-page: 627
  article-title: A regulatory apologia – a review of placebo‐controlled studies in regulatory submissions of new‐generation antidepressants
  publication-title: European Neuropsychopharmacology
– volume: 7
  start-page: 177
  year: 1986
  end-page: 188
  article-title: Meta‐analysis in clinical trials
  publication-title: Controlled Clinical Trials
– volume: 303
  start-page: 47
  year: 2010
  end-page: 53
  article-title: Antidepressant drug effects and depression severity: a patient‐level meta‐analysis
  publication-title: Journal of the American Medical Association
– volume: 26
  start-page: 2982
  year: 2007
  end-page: 2999
  article-title: Covariate heterogeneity in meta‐analysis: criteria for deciding between meta‐regression and individual patient data
  publication-title: Statistics in Medicine
– volume: 20
  start-page: 2219
  year: 2001
  end-page: 2241
  article-title: Meta‐analysis of continuous outcome data from individual patients
  publication-title: Statistics in Medicine
– volume: 16
  start-page: 1713
  issue: 16
  year: 1996
  end-page: 1728
  article-title: The population risk as an explanatory variable in research synthesis of clinical trials
  publication-title: Statistics in Medicine
– volume: 55
  start-page: 86
  issue: 1
  year: 2002
  end-page: 94
  article-title: A comparison of summary patient‐level covariates in meta‐regression with individual patient data meta‐analysis
  publication-title: Journal of Clinical Epidemiology
– volume: 27
  start-page: 1870
  year: 2008
  end-page: 1893
  article-title: Meta‐analysis of continuous outcomes combining individual patient data and aggregate data
  publication-title: Statistics in Medicine
– volume: 171
  start-page: 179
  year: 2008
  end-page: 202
  article-title: Alleviating linear ecological bias and optimal design with subsample data
  publication-title: Journal of the Royal Statistical Society. Series A
– volume: 69
  start-page: 572
  issue: 6
  year: 2012
  end-page: 579
  article-title: Benefits from antidepressants synthesis of 6‐week patient‐level outcomes from double‐blind placebo‐controlled randomized trials of fluoxetine and venlafaxine
  publication-title: Archives of General Psychiatry
– volume: 25
  start-page: 2136
  year: 2006
  end-page: 2159
  article-title: Improving ecological inference using individual‐level data
  publication-title: Statistics in Medicine
– volume: 22
  start-page: 2693
  year: 2003
  end-page: 2710
  article-title: Improved tests for a random effects meta‐regression with a single covariate
  publication-title: Statistics in Medicine
– volume: 5
  year: 2008
  article-title: Initial severity and antidepressant benefits: a meta‐analysis of data submitted to the food and drug administration
  publication-title: Public Library of Science Medicine
– volume: 13
  start-page: 309
  year: 2004
  end-page: 323
  article-title: Equivalence of conditional and marginal regression models for clustered and longitudinal data
  publication-title: Statistical Methods in Medical Research
– volume: 139
  start-page: 747
  issue: 8
  year: 1994
  end-page: 760
  article-title: Invited commentary: ecologic studies – biases, misconceptions, and counterexamples
  publication-title: American Journal of Epidemiology
– volume: 18
  start-page: 2693
  year: 1999
  end-page: 2708
  article-title: Explaining heterogeneity in meta‐analysis: a comparison of methods
  publication-title: Statistics in Medicine
– start-page: 309
  year: 1992
  end-page: 376
– volume: 21
  start-page: 1559
  year: 2002
  end-page: 1573
  article-title: How should meta‐regression analyses be undertaken and interpreted?
  publication-title: Statistics in Medicine
– volume: 260
  start-page: 25
  year: 2010
  end-page: 39
  article-title: Evidence‐based medicine in psychopharmacology: possibilities, problems and limitations
  publication-title: European Archives of Psychiatry and Clinical Neuroscience
– volume: 8
  start-page: 1339
  issue: 11
  year: 1989
  end-page: 1350
  article-title: The use of baselines in clinical trials of bronchodilators
  publication-title: Statistics in Medicine
– volume: 14
  start-page: 405
  year: 2011
  end-page: 412
  article-title: Efficacy of antidepressants: a re‐analysis and re‐interpretation of the Kirsch data
  publication-title: International Journal of Neuropsychopharmacology
– ident: e_1_2_8_11_1
  doi: 10.1002/sim.918
– start-page: 309
  volume-title: Local Regression Models
  year: 1992
  ident: e_1_2_8_26_1
– ident: e_1_2_8_28_1
  doi: 10.1002/(SICI)1097-0258(19980430)17:8<841::AID-SIM781>3.0.CO;2-D
– ident: e_1_2_8_14_1
  doi: 10.1002/sim.3165
– ident: e_1_2_8_13_1
  doi: 10.1016/S0895-4356(01)00414-0
– ident: e_1_2_8_3_1
  doi: 10.1017/S1461145710000957
– ident: e_1_2_8_8_1
  doi: 10.1002/(SICI)1097-0258(19960830)15:16<1713::AID-SIM331>3.0.CO;2-D
– ident: e_1_2_8_20_1
  doi: 10.1080/00031305.1992.10475844
– ident: e_1_2_8_5_1
  doi: 10.1001/jama.2009.1943
– ident: e_1_2_8_10_1
  doi: 10.1002/sim.1187
– ident: e_1_2_8_24_1
  doi: 10.18637/jss.v036.i03
– ident: e_1_2_8_7_1
  doi: 10.1002/sim.4780081106
– ident: e_1_2_8_23_1
  doi: 10.1191/0962280204sm368ra
– ident: e_1_2_8_6_1
  doi: 10.1007/s00406-009-0070-9
– ident: e_1_2_8_18_1
  doi: 10.1002/sim.4780140406
– ident: e_1_2_8_12_1
  doi: 10.1002/sim.2370
– ident: e_1_2_8_19_1
  doi: 10.1002/(SICI)1097-0258(19991030)18:20<2693::AID-SIM235>3.0.CO;2-V
– ident: e_1_2_8_9_1
  doi: 10.1093/oxfordjournals.aje.a117069
– ident: e_1_2_8_16_1
  doi: 10.1002/sim.2768
– volume: 9
  start-page: 139
  issue: 2
  year: 2011
  ident: e_1_2_8_25_1
  article-title: On the meaning of parameters in approximation models
  publication-title: Journal of Probability and Statistical Science
– ident: e_1_2_8_29_1
  doi: 10.1001/archgenpsychiatry.2011.2044
– ident: e_1_2_8_22_1
  doi: 10.1002/sim.1482
– ident: e_1_2_8_15_1
  doi: 10.1002/jrsm.4
– ident: e_1_2_8_17_1
  doi: 10.1016/0197-2456(86)90046-2
– volume-title: Statistical Methods for Meta‐Analysis
  year: 1985
  ident: e_1_2_8_27_1
– ident: e_1_2_8_21_1
  doi: 10.1111/j.1467-985X.2007.00511.x
– volume: 5
  year: 2008
  ident: e_1_2_8_2_1
  article-title: Initial severity and antidepressant benefits: a meta‐analysis of data submitted to the food and drug administration
  publication-title: Public Library of Science Medicine
– ident: e_1_2_8_4_1
  doi: 10.1016/j.euroneuro.2008.06.003
– reference: 3802833 - Control Clin Trials. 1986 Sep;7(3):177-88
– reference: 8178788 - Am J Epidemiol. 1994 Apr 15;139(8):747-60
– reference: 11468761 - Stat Med. 2001 Aug 15;20(15):2219-41
– reference: 18069721 - Stat Med. 2008 May 20;27(11):1870-93
– reference: 2692110 - Stat Med. 1989 Nov;8(11):1339-50
– reference: 26056090 - Res Synth Methods. 2010 Jan;1(1):2-19
– reference: 11781126 - J Clin Epidemiol. 2002 Jan;55(1):86-94
– reference: 12111920 - Stat Med. 2002 Jun 15;21(11):1559-73
– reference: 12939780 - Stat Med. 2003 Sep 15;22(17):2693-710
– reference: 16217847 - Stat Med. 2006 Jun 30;25(12):2136-59
– reference: 20800012 - Int J Neuropsychopharmacol. 2011 Apr;14(3):405-12
– reference: 19838763 - Eur Arch Psychiatry Clin Neurosci. 2010 Feb;260(1):25-39
– reference: 20051569 - JAMA. 2010 Jan 6;303(1):47-53
– reference: 8870154 - Stat Med. 1996 Aug 30;15(16):1713-28
– reference: 9595615 - Stat Med. 1998 Apr 30;17(8):841-56
– reference: 7746979 - Stat Med. 1995 Feb 28;14(4):395-411
– reference: 20052294 - J R Stat Soc Ser A Stat Soc. 2008 Jan 1;171(1):179-202
– reference: 10521860 - Stat Med. 1999 Oct 30;18(20):2693-708
– reference: 18621509 - Eur Neuropsychopharmacol. 2008 Sep;18(9):623-7
– reference: 17195960 - Stat Med. 2007 Jul 10;26(15):2982-99
– reference: 22393205 - Arch Gen Psychiatry. 2012 Jun;69(6):572-9
– reference: 18303940 - PLoS Med. 2008 Feb;5(2):e45
SSID ssj0011527
Score 2.2134047
Snippet A recent meta‐regression of antidepressant efficacy on baseline depression severity has caused considerable controversy in the popular media. A central source...
A recent meta-regression of antidepressant efficacy on baseline depression severity has caused considerable controversy in the popular media. A central source...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2875
SubjectTerms Antidepressants
Antidepressive Agents - therapeutic use
Biostatistics
Controlled Clinical Trials as Topic - statistics & numerical data
Depression - drug therapy
ecological fallacy
finite mixture
Humans
infinite mixtures
Linear Models
Medical research
Medical treatment
Mental depression
Meta-analysis
Meta-Analysis as Topic
mixed-effects models
Treatment Outcome
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFL1CRYJKFY-BlkBBBiFYZRo7ceywQxWlIE0lWipGYmHZjgOjTjPVPARl1U9gy-_1S_AjCQwUhFAWWeRGiZ1r33N9T44BHjNu454kZYx1UcUZKU3My0zZrFUVOcuMTbpcRXewl-8eZq-HdNiwKt2_MEEfoltwcyPDz9dugEs12_ohGjobHfctWHZq2zjNfTa13ylH4Xa3VlehzBmmre5sQrbaG5ci0WXXqZ8vgpm_syWvLuoTefpJjsfLiNaHpJ3r8L5tTGCiHPUXc9XXX37Refy_1t6Aaw1SRc-Da92ES6buwZVBU4vvwVpY8UPhR6YerDrcGmSfb4HqyIw2NKJjM5fnZ1-n5kNg3dbP0E-FczSfIDvv2najQJz3TBEzQ6Ma2e8-asi6jrBzfvYNGSd6IfXpbTjcefF2ezdutnOIdWbfPM4YJVwyk-aVPUxecIuVaKoy7GqP1KbphdK6rKjkmPEy1QwryRNJFcEV1Thdh5V6Ups7gIxOikSpKqeG2nwWyzzXnBVFpRjXCZcRPG0_rdCN1rnbcmMsgkozEbY_hevPCB52lidB3-MCmyfeOzoDOT1yfDhGxbu9l2L_zUGabxdDMYxgs3Uf0UwFM2EhduFUzhixz-ou20HsKjOyNpOFt3HlUMJ4BBvB27qHkTSzoCulEbAlP-wMnED48pV69NELhafcQfYkgkedx_6tkd7__mggDl4N3Pnuvxreg1Xi9w6xUSzZhJX5dGHuWwQ3Vw_8WP0OKmdGIQ
  priority: 102
  providerName: Wiley-Blackwell
Title Interpreting meta-regression: application to recent controversies in antidepressants' efficacy
URI https://api.istex.fr/ark:/67375/WNG-RQS36C9X-X/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.5766
https://www.ncbi.nlm.nih.gov/pubmed/23440635
https://www.proquest.com/docview/1399703672
https://www.proquest.com/docview/1398425278
https://pubmed.ncbi.nlm.nih.gov/PMC3800040
http://doi.org/10.1002/sim.5766
UnpaywallVersion submittedVersion
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1097-0258
  dateEnd: 20241103
  omitProxy: false
  ssIdentifier: ssj0011527
  issn: 1097-0258
  databaseCode: AMVHM
  dateStart: 20120220
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1097-0258
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1097-0258
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011527
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6VRIJKiEd4GUq1IAQnB3vtfZhbVVEKUiJoiUhP1u56DVFTp8pDUE79CVz5e_0lzNqOadQWIR9y8CT2rmc93-x8-QbghZAY9xTN_NAkuR_TzPoyizVmrTrhIraYdLmKbq_PdwfxhyEbrsGye9tq-Z6-no2OuoiI-TVoc4ZguwXtQf_j1kG5cyKEz0XZo8CVUX2M3nIpL3vuqysBp-3m7sdlaPIiKfLGojhWJ9_VeLwKXMvIs3P7r_JARTg57C7mumt-XpRzvGpQd-BWjTrJVuUmd2HNFh243qvr6h24We3ekepPSR1Ydxi0knC-B7ohJmKYI0d2rs5Of03t14pBW7wh54rgZD4h-A7FwZGKBF-yPuyMjAqCz3BUE28d-ebs9DexTsBCmZP7MNh5-3l7169bM_gmxjv3Y8GoVMJGPMfD8kQi7mGRjkNXR2SYcifamCxnSoZCZpERoVYyUEzTMGcmjB5Aq5gU9hEQa4Ik0DrnzDLMTUPFuZEiSXItpAmk8uDV8vmlptYtd-0zxmmluExTnM_UzacHzxrL40qr4xKbl6ULNAZqeui4bYKlX_rv0r1P-xHfTobp0IONpY-k9bKepQiXE6dYJiheqzmNC9JVWVRhJ4vSxpU2qZAePKxcqrkYjWIEUBHzQKw4W2PgxL5XzxSjb6XodyQd_A48eN645b8GWfrrlQbp_vue-3z8P7_2BNZp2QMEo1GwAa35dGGfIhKb603MQfboZr0m_wAPUDLQ
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFL0qrUQrIR7DK1DAIASrTPPyI7BCFWUKnZHoQ8wCybIdB0adZqqZjKCs-gls-b1-CXacBAYKQiiLLHKjxM6177m-J8cAjykzcU9EmR-qNPeTKNM-yxJpslaZEppok3TZim5_QHoHyeshHi7B8-ZfGKcP0S642ZFRzdd2gNsF6Y0fqqGz0VHXoGVyAVYSYtIUi4h2W-2osNmv1dYoCQ1xozwbRBvNnQuxaMV26-fzgObvfMnVeXEsTj6J8XgR01ZBaesKvG-a47goh915Kbvqyy9Kj__Z3qtwuQar6IXzrmuwpIsOXOzX5fgOXHKLfsj9y9SBNQtdnfLzdZAtn9FER3SkS3F2-nWqPzjibfEM_VQ7R-UEmanXNBw57nxFFtEzNCqQ-fSjmq9rOTtnp9-QtroXQp3cgIOtl_ubPb_e0cFXiXlzP6E4YoLqmOTm0CRlBi7hWCahLT9ik6mnUqksx4KFlGWxoqEULBBYRmGOVRjfhOViUujbgLQK0kDKnGCNTUobCkIUo2maS8pUwIQHT5tvy1Utd2533RhzJ9QccdOf3PanBw9by2Mn8XGOzZPKPVoDMT20lDiK-bvBK777di8mm-mQDz1Yb_yH17PBjBuUnVqhMxqZZ7WXzTi2xRlR6Mm8srEV0YgyD245d2sfFsWJwV0x9oAuOGJrYDXCF68Uo4-VVnjMLGoPPHjUuuzfGlk54B8N-N52357v_KvhA1jt7fd3-M724M1dWIuqrURMUAvWYbmczvU9A-hKeb8auN8BYzVKQg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFL0qrVQqIR7DK1DAIASrTBMnjh1YoZahBWYEfYhZIFm248Co08xoHoKy6iew5ff6JdhxEhgoCKEssvCNHDvXvse-J8cADykzcU_gzA9VmvsxzrTPsliaVatMExprs-iyGd1uL9k-iF_2SX8Jntb_wjh9iGbDzY6Mcr62A1yPs3zjh2rodHDUNmg5OQcrMUmZ5fNt7TbaUWF9XqvNUSY0JLXybIA36icXYtGK7dbPZwHN3_mS5-fFWBx_EsPhIqYtg1LnEryvm-O4KIft-Uy21ZdflB7_s72X4WIFVtEz511XYEkXLVjtVun4Flxwm37I_cvUgjULXZ3y81WQDZ_RREd0pGfi9OTrRH9wxNviCfopd45mI2SmXtNw5LjzJVlET9GgQObTDyq-ruXsnJ58Q9rqXgh1fA0OOs_3N7f96kQHX8Xmzf2YEswE1VGSm0snKTNwiUQyDm36kZiVeiqVynIiWEhZFikaSsECQSQOc6LC6DosF6NC3wSkVZAGUuYJ0cQsaUORJIrRNM0lZSpgwoPH9bflqpI7t6duDLkTasbc9Ce3_enB_cZy7CQ-zrB5VLpHYyAmh5YSRwl_13vBd9_uRclm2ud9D9Zr_-HVbDDlBmWnVuiMYlNXU2zGsU3OiEKP5qWNzYhiyjy44dytqQxHscFdEfGALjhiY2A1whdLisHHUis8Yha1Bx48aFz2b40sHfCPBnxvp2vvt_7V8B6svtnq8Nc7vVe3YQ2XJ4mYmBasw_JsMtd3DJ6bybvluP0OqeJJxg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6VRIJKiEeAYihoQQhODn7tw9yqilKQEgElIj1Zu-s1jZo6VeIIyqk_gSt_r7-EWdsxtdoi5IMPHj92Pev5dufzNwAvuMC4J4PU9XWcuVGQGlekkcJZq4oZjwxOumxGdzBku6Pow5iO12BVva2dvg9eLyZHfUTE7Bp0GUWw3YHuaPhxa79cOeHcZbysUWDTqC5Gb7GSlz13aivgdG3f_bgMTV4kRd5Y5sfy5LucTtvAtYw8O7f_Kg9UhJPD_rJQff3zopzjVY26A7dq1Em2Kje5C2sm78H1QZ1X78HNavWOVD8l9WDdYtBKwvkeqIaYiGGOHJlCnp3-mptvFYM2f0POJcFJMSP4DcXGkYoEX7I-zIJMcoLvcFITby355uz0NzFWwELqk_sw2nn7ZXvXrUszuDrCJ3cjTgMhuQlZhpthsUDcQ0MV-TaPSHHKHSut04xK4XORhpr7SgpPUhX4GdV--AA6-Sw3D4EY7cWeUhmjhuLc1JeMacHjOFNcaE9IB16t3l-ia91yWz5jmlSKy0GC_ZnY_nTgWWN5XGl1XGLzsnSBxkDODy23jdPk6_Bd8vnTXsi243EydmBz5SNJPawXCcLl2CqW8QDv1RzGAWmzLDI3s2VpY1ObARcObFQu1dwsCCMEUCF1gLecrTGwYt_tI_nkoBT9DoWF354Dzxu3_FcjS3-90iDZez-w-0f_c7XHsB6UNUAwGnmb0CnmS_MEkVihntaj8Q_kPjHn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interpreting+meta%E2%80%90regression%3A+application+to+recent+controversies+in+antidepressants%E2%80%99+efficacy&rft.jtitle=Statistics+in+medicine&rft.au=Petkova%2C+Eva&rft.au=Tarpey%2C+Thaddeus&rft.au=Huang%2C+Lei&rft.au=Deng%2C+Liping&rft.date=2013-07-30&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=32&rft.issue=17&rft.spage=2875&rft.epage=2892&rft_id=info:doi/10.1002%2Fsim.5766&rft.externalDBID=10.1002%252Fsim.5766&rft.externalDocID=SIM5766
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon