Interpreting meta-regression: application to recent controversies in antidepressants' efficacy
A recent meta‐regression of antidepressant efficacy on baseline depression severity has caused considerable controversy in the popular media. A central source of the controversy is a lack of clarity about the relation of meta‐regression parameters to corresponding parameters in models for subject‐le...
        Saved in:
      
    
          | Published in | Statistics in medicine Vol. 32; no. 17; pp. 2875 - 2892 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        England
          Blackwell Publishing Ltd
    
        30.07.2013
     Wiley Subscription Services, Inc  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0277-6715 1097-0258 1097-0258  | 
| DOI | 10.1002/sim.5766 | 
Cover
| Abstract | A recent meta‐regression of antidepressant efficacy on baseline depression severity has caused considerable controversy in the popular media. A central source of the controversy is a lack of clarity about the relation of meta‐regression parameters to corresponding parameters in models for subject‐level data. This paper focuses on a linear regression with continuous outcome and predictor, a case that is often considered less problematic. We frame meta‐regression in a general mixture setting that encompasses both finite and infinite mixture models. In many applications of meta‐analysis, the goal is to evaluate the efficacy of a treatment from several studies, and authors use meta‐regression on grouped data to explain variations in the treatment efficacy by study features. When the study feature is a characteristic that has been averaged over subjects, it is difficult not to interpret the meta‐regression results on a subject level, a practice that is still widespread in medical research. Although much of the attention in the literature is on methods of estimating meta‐regression model parameters, our results illustrate that estimation methods cannot protect against erroneous interpretations of meta‐regression on grouped data. We derive relations between meta‐regression parameters and within‐study model parameters and show that the conditions under which slopes from these models are equal cannot be verified on the basis of group‐level information only. The effects of these model violations cannot be known without subject‐level data. We conclude that interpretations of meta‐regression results are highly problematic when the predictor is a subject‐level characteristic that has been averaged over study subjects. Copyright © 2013 John Wiley & Sons, Ltd. | 
    
|---|---|
| AbstractList | A recent meta‐regression of antidepressant efficacy on baseline depression severity has caused considerable controversy in the popular media. A central source of the controversy is a lack of clarity about the relation of meta‐regression parameters to corresponding parameters in models for subject‐level data. This paper focuses on a linear regression with continuous outcome and predictor, a case that is often considered less problematic. We frame meta‐regression in a general mixture setting that encompasses both finite and infinite mixture models. In many applications of meta‐analysis, the goal is to evaluate the efficacy of a treatment from several studies, and authors use meta‐regression on grouped data to explain variations in the treatment efficacy by study features. When the study feature is a characteristic that has been averaged over subjects, it is difficult not to interpret the meta‐regression results on a subject level, a practice that is still widespread in medical research. Although much of the attention in the literature is on methods of estimating meta‐regression model parameters, our results illustrate that estimation methods cannot protect against erroneous interpretations of meta‐regression on grouped data. We derive relations between meta‐regression parameters and within‐study model parameters and show that the conditions under which slopes from these models are equal cannot be verified on the basis of group‐level information only. The effects of these model violations cannot be known without subject‐level data. We conclude that interpretations of meta‐regression results are highly problematic when the predictor is a subject‐level characteristic that has been averaged over study subjects. Copyright © 2013 John Wiley & Sons, Ltd. A recent meta-regression of antidepressant efficacy on baseline depression severity has caused considerable controversy in the popular media. A central source of the controversy is a lack of clarity about the relation of meta-regression parameters to corresponding parameters in models for subject-level data. This paper focuses on a linear regression with continuous outcome and predictor, a case that is often considered less problematic. We frame meta-regression in a general mixture setting that encompasses both finite and infinite mixture models. In many applications of meta-analysis the goal is to evaluate the efficacy of a treatment from several studies and meta-regression on grouped data is used to explain variations in the treatment efficacy by study features. When the study feature is a characteristic that has been averaged over subjects, it is difficult not to interpret the meta-regression results on a subject level, a practice that is still widespread in medical research. While much of the attention in the literature is on methods of estimating meta-regression model parameters, our results illustrate that estimation methods cannot protect against erroneous interpretations of meta-regression on grouped data. We derive relations between meta-regression parameters and within-study model parameters and show that the conditions under which slopes from these models are equal cannot be verified based on group-level information only. The effects of these model violations cannot be known without subject level data. We conclude that interpretations of meta-regression results are highly problematic when the predictor is a subject level characteristic that has been averaged over study subjects. A recent meta-regression of antidepressant efficacy on baseline depression severity has caused considerable controversy in the popular media. A central source of the controversy is a lack of clarity about the relation of meta-regression parameters to corresponding parameters in models for subject-level data. This paper focuses on a linear regression with continuous outcome and predictor, a case that is often considered less problematic. We frame meta-regression in a general mixture setting that encompasses both finite and infinite mixture models. In many applications of meta-analysis, the goal is to evaluate the efficacy of a treatment from several studies, and authors use meta-regression on grouped data to explain variations in the treatment efficacy by study features. When the study feature is a characteristic that has been averaged over subjects, it is difficult not to interpret the meta-regression results on a subject level, a practice that is still widespread in medical research. Although much of the attention in the literature is on methods of estimating meta-regression model parameters, our results illustrate that estimation methods cannot protect against erroneous interpretations of meta-regression on grouped data. We derive relations between meta-regression parameters and within-study model parameters and show that the conditions under which slopes from these models are equal cannot be verified on the basis of group-level information only. The effects of these model violations cannot be known without subject-level data. We conclude that interpretations of meta-regression results are highly problematic when the predictor is a subject-level characteristic that has been averaged over study subjects.A recent meta-regression of antidepressant efficacy on baseline depression severity has caused considerable controversy in the popular media. A central source of the controversy is a lack of clarity about the relation of meta-regression parameters to corresponding parameters in models for subject-level data. This paper focuses on a linear regression with continuous outcome and predictor, a case that is often considered less problematic. We frame meta-regression in a general mixture setting that encompasses both finite and infinite mixture models. In many applications of meta-analysis, the goal is to evaluate the efficacy of a treatment from several studies, and authors use meta-regression on grouped data to explain variations in the treatment efficacy by study features. When the study feature is a characteristic that has been averaged over subjects, it is difficult not to interpret the meta-regression results on a subject level, a practice that is still widespread in medical research. Although much of the attention in the literature is on methods of estimating meta-regression model parameters, our results illustrate that estimation methods cannot protect against erroneous interpretations of meta-regression on grouped data. We derive relations between meta-regression parameters and within-study model parameters and show that the conditions under which slopes from these models are equal cannot be verified on the basis of group-level information only. The effects of these model violations cannot be known without subject-level data. We conclude that interpretations of meta-regression results are highly problematic when the predictor is a subject-level characteristic that has been averaged over study subjects. A recent meta-regression of antidepressant efficacy on baseline depression severity has caused considerable controversy in the popular media. A central source of the controversy is a lack of clarity about the relation of meta-regression parameters to corresponding parameters in models for subject-level data. This paper focuses on a linear regression with continuous outcome and predictor, a case that is often considered less problematic. We frame meta-regression in a general mixture setting that encompasses both finite and infinite mixture models. In many applications of meta-analysis, the goal is to evaluate the efficacy of a treatment from several studies, and authors use meta-regression on grouped data to explain variations in the treatment efficacy by study features. When the study feature is a characteristic that has been averaged over subjects, it is difficult not to interpret the meta-regression results on a subject level, a practice that is still widespread in medical research. Although much of the attention in the literature is on methods of estimating meta-regression model parameters, our results illustrate that estimation methods cannot protect against erroneous interpretations of meta-regression on grouped data. We derive relations between meta-regression parameters and within-study model parameters and show that the conditions under which slopes from these models are equal cannot be verified on the basis of group-level information only. The effects of these model violations cannot be known without subject-level data. We conclude that interpretations of meta-regression results are highly problematic when the predictor is a subject-level characteristic that has been averaged over study subjects. A recent meta-regression of antidepressant efficacy on baseline depression severity has caused considerable controversy in the popular media. A central source of the controversy is a lack of clarity about the relation of meta-regression parameters to corresponding parameters in models for subject-level data. This paper focuses on a linear regression with continuous outcome and predictor, a case that is often considered less problematic. We frame meta-regression in a general mixture setting that encompasses both finite and infinite mixture models. In many applications of meta-analysis, the goal is to evaluate the efficacy of a treatment from several studies, and authors use meta-regression on grouped data to explain variations in the treatment efficacy by study features. When the study feature is a characteristic that has been averaged over subjects, it is difficult not to interpret the meta-regression results on a subject level, a practice that is still widespread in medical research. Although much of the attention in the literature is on methods of estimating meta-regression model parameters, our results illustrate that estimation methods cannot protect against erroneous interpretations of meta-regression on grouped data. We derive relations between meta-regression parameters and within-study model parameters and show that the conditions under which slopes from these models are equal cannot be verified on the basis of group-level information only. The effects of these model violations cannot be known without subject-level data. We conclude that interpretations of meta-regression results are highly problematic when the predictor is a subject-level characteristic that has been averaged over study subjects. [PUBLICATION ABSTRACT]  | 
    
| Author | Tarpey, Thaddeus Huang, Lei Deng, Liping Petkova, Eva  | 
    
| AuthorAffiliation | a Department of Mathematics and Statistics, Wright State University, Dayton, OH 45435 c Providence LLC, Baton Rouge, LA 70802 b Biostatistics PhD program of Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205  | 
    
| AuthorAffiliation_xml | – name: a Department of Mathematics and Statistics, Wright State University, Dayton, OH 45435 – name: c Providence LLC, Baton Rouge, LA 70802 – name: b Biostatistics PhD program of Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205  | 
    
| Author_xml | – sequence: 1 givenname: Eva surname: Petkova fullname: Petkova, Eva email: Correspondence to: Eva Petkova, Department of Child and Adolescent Psychiatry, New York University, One Park Ave. 7th floor, New York, NY 10016-6023, U.S.A., eva.petkova@nyu.edu organization: Department of Child and Adolescent Psychiatry, New York University, New York, NY 10016-6023, U.S.A – sequence: 2 givenname: Thaddeus surname: Tarpey fullname: Tarpey, Thaddeus organization: Department of Mathematics and Statistics, Wright State University, OH 45435, Dayton, U.S.A – sequence: 3 givenname: Lei surname: Huang fullname: Huang, Lei organization: Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, MD 21205, Baltimore, U.S.A – sequence: 4 givenname: Liping surname: Deng fullname: Deng, Liping organization: Providence LLC, LA 70802, Baton Rouge, U.S.A  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23440635$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp9kUFv1DAQhS1URLcFiV-AInGgHLLYcRw7HJDQCspKbREURE9YjneyuCR2sJ2W_fc4bCm0AuSDPfI3T2_e7KEd6ywg9JDgOcG4eBZMP2e8qu6gGcE1z3HBxA6a4YLzvOKE7aK9EM4xJoQV_B7aLWhZ4oqyGfq8tBH84CEau856iCr3sPYQgnH2eaaGoTNaxVRk0WUeNNiYaWejdxfgg4GQGZspG80KhqktPcOTDNo2tenNfXS3VV2AB1f3Pvr4-tWHxZv86O3hcvHyKNdlsp2XnBVCcaBVmw5UtRA1ZbQpSY1Fzaoa143Wq5YpQbhYUc1JowRWrClIyzSh--jpVne0g9pcqq6Tgze98htJsJwykikjOWWU2BdbdhibHlbTRF795p0y8uaPNV_k2l1IKjDGJU4CB1cC3n0bIUTZm6Ch65QFNwZJaC3KIiUtEvr4FnruRm9TFBNVc0wrXiTq0Z-Orq38WlMC5ltAexeCh1ZqE39uJRk03d9mPLjV8J848i16aTrY_JOTp8vjm7wJEb5f88p_lRWnnMlPJ4fy_btTWi3qM3lGfwAkVNES | 
    
| CODEN | SMEDDA | 
    
| CitedBy_id | crossref_primary_10_1007_s11121_016_0737_1 crossref_primary_10_1007_s11121_022_01425_w crossref_primary_10_1002_jrsm_1338 crossref_primary_10_1080_16506073_2018_1522371 crossref_primary_10_1016_S2215_0366_19_30216_0 crossref_primary_10_1192_j_eurpsy_2024_16 crossref_primary_10_1155_2016_2643625 crossref_primary_10_5334_gh_1159 crossref_primary_10_1111_obr_12686 crossref_primary_10_1186_1744_859X_12_26 crossref_primary_10_1111_ijpo_12692 crossref_primary_10_1016_j_neubiorev_2020_10_026 crossref_primary_10_1016_j_lungcan_2022_01_018 crossref_primary_10_1161_JAHA_116_003231 crossref_primary_10_1016_j_ajp_2016_02_001 crossref_primary_10_1097_PEP_0000000000000046 crossref_primary_10_1111_obr_12682 crossref_primary_10_1007_s11065_019_09405_8 crossref_primary_10_1007_s11336_016_9507_z crossref_primary_10_1002_wps_20822 crossref_primary_10_1007_s11065_018_9369_5 crossref_primary_10_1007_s40279_014_0180_z  | 
    
| Cites_doi | 10.1002/sim.918 10.1002/(SICI)1097-0258(19980430)17:8<841::AID-SIM781>3.0.CO;2-D 10.1002/sim.3165 10.1016/S0895-4356(01)00414-0 10.1017/S1461145710000957 10.1002/(SICI)1097-0258(19960830)15:16<1713::AID-SIM331>3.0.CO;2-D 10.1080/00031305.1992.10475844 10.1001/jama.2009.1943 10.1002/sim.1187 10.18637/jss.v036.i03 10.1002/sim.4780081106 10.1191/0962280204sm368ra 10.1007/s00406-009-0070-9 10.1002/sim.4780140406 10.1002/sim.2370 10.1002/(SICI)1097-0258(19991030)18:20<2693::AID-SIM235>3.0.CO;2-V 10.1093/oxfordjournals.aje.a117069 10.1002/sim.2768 10.1001/archgenpsychiatry.2011.2044 10.1002/sim.1482 10.1002/jrsm.4 10.1016/0197-2456(86)90046-2 10.1111/j.1467-985X.2007.00511.x 10.1016/j.euroneuro.2008.06.003  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright © 2013 John Wiley & Sons, Ltd. Copyright Wiley Subscription Services, Inc. Jul 30, 2013 Copyright © 0000 JohnWiley & Sons, Ltd.  | 
    
| Copyright_xml | – notice: Copyright © 2013 John Wiley & Sons, Ltd. – notice: Copyright Wiley Subscription Services, Inc. Jul 30, 2013 – notice: Copyright © 0000 JohnWiley & Sons, Ltd.  | 
    
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1002/sim.5766 | 
    
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE ProQuest Health & Medical Complete (Alumni)  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine Statistics Public Health  | 
    
| EISSN | 1097-0258 | 
    
| EndPage | 2892 | 
    
| ExternalDocumentID | oai:pubmedcentral.nih.gov:3800040 PMC3800040 3018538841 23440635 10_1002_sim_5766 SIM5766 ark_67375_WNG_RQS36C9X_X  | 
    
| Genre | article Journal Article Research Support, N.I.H., Extramural Feature  | 
    
| GrantInformation_xml | – fundername: NIMH funderid: R01 MH68401 – fundername: NIMH NIH HHS grantid: R01 MH68401 – fundername: NIMH NIH HHS grantid: R01 MH068401  | 
    
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5RE 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABOCM ABPVW ACAHQ ACBWZ ACCZN ACGFS ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGQPQ AGXDD AGYGG AHBTC AHMBA AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMVHM AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ SV3 TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XBAML XG1 XV2 ZZTAW ~IA ~WT AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RWI WRC WUP WWH AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 5PM 31~ ABEML ACSCC ADTOC AFFNX AGHNM AIQQE DUUFO EX3 FEDTE HF~ HVGLF M67 RIWAO RJQFR SAMSI UNPAY WOW YHZ ZGI ZXP  | 
    
| ID | FETCH-LOGICAL-c4766-47528a7e36f6f6e69889353b41908956909bccdf5a8178d3c71ba80a5b21f5c13 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 0277-6715 1097-0258  | 
    
| IngestDate | Wed Oct 29 12:14:02 EDT 2025 Thu Aug 21 18:36:17 EDT 2025 Fri Jul 11 09:45:19 EDT 2025 Mon Oct 06 18:39:13 EDT 2025 Thu Apr 03 06:58:39 EDT 2025 Wed Oct 01 04:08:54 EDT 2025 Thu Apr 24 23:05:49 EDT 2025 Wed Jan 22 16:22:22 EST 2025 Sun Sep 21 06:29:10 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 17 | 
    
| Keywords | ecological fallacy infinite mixtures mixed-effects models finite mixture  | 
    
| Language | English | 
    
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2013 John Wiley & Sons, Ltd.  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c4766-47528a7e36f6f6e69889353b41908956909bccdf5a8178d3c71ba80a5b21f5c13 | 
    
| Notes | NIMH - No. R01 MH68401 ArticleID:SIM5766 ark:/67375/WNG-RQS36C9X-X Supporting Information istex:E3BEB547FE5A62368D92790FCB7AD57F22991484 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://doi.org/10.1002/sim.5766 | 
    
| PMID | 23440635 | 
    
| PQID | 1399703672 | 
    
| PQPubID | 48361 | 
    
| PageCount | 18 | 
    
| ParticipantIDs | unpaywall_primary_10_1002_sim_5766 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3800040 proquest_miscellaneous_1398425278 proquest_journals_1399703672 pubmed_primary_23440635 crossref_citationtrail_10_1002_sim_5766 crossref_primary_10_1002_sim_5766 wiley_primary_10_1002_sim_5766_SIM5766 istex_primary_ark_67375_WNG_RQS36C9X_X  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 30 July 2013 | 
    
| PublicationDateYYYYMMDD | 2013-07-30 | 
    
| PublicationDate_xml | – month: 07 year: 2013 text: 30 July 2013 day: 30  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | England | 
    
| PublicationPlace_xml | – name: England – name: New York  | 
    
| PublicationTitle | Statistics in medicine | 
    
| PublicationTitleAlternate | Statist. Med | 
    
| PublicationYear | 2013 | 
    
| Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc  | 
    
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc  | 
    
| References | Higgins JPT, Whitehead A, Turner RM, Omar RZ, Thompson SG. Meta-analysis of continuous outcome data from individual patients. Statistics in Medicine 2001; 20:2219-2241. Berkey C, Hoaglin D, Mosteller F, Colditz G. A random-effects regression model for meta-analysis. Statistics in Medicine 1995; 14:395-411. Knapp G, Hartung J. Improved tests for a random effects meta-regression with a single covariate. Statistics in Medicine 2003; 22:2693-2710. Flury BD, Narayanan A. A mixture approach to multivariate analysis of variance. The American Statistician 1992; 46:31-34. Thompson SG, Sharp SJ. Explaining heterogeneity in meta-analysis: a comparison of methods. Statistics in Medicine 1999; 18:2693-2708. Riley RD, Steyerberg EW. Meta-analysis of binary outcome using individual participant data and aggregate data. Research Synthesis Methods 2010; 1:2-16. DOI: 10.1002/jrsm.4. Hedges LV, Olkin I. Statistical Methods for Meta-Analysis. Academic Press Inc.: San Diego, CA, 1985. Lambert PC, Sutton AJ, Abrams K, Jones DR. A comparison of summary patient-level covariates in meta-regression with individual patient data meta-analysis. Journal of Clinical Epidemiology 2002; 55(1):86-94. Thompson SG, Higgins JPT. How should meta-regression analyses be undertaken and interpreted? Statistics in Medicine 2002; 21:1559-1573. Fountoulakis KN, Moller HJ. Efficacy of antidepressants: a re-analysis and re-interpretation of the Kirsch data. International Journal of Neuropsychopharmacology 2011; 14:405-412. DOI: 10.1017/S1461145710000957. Greenland S, Robins J. Invited commentary: ecologic studies - biases, misconceptions, and counterexamples. American Journal of Epidemiology 1994; 139(8):747-760. Glynn AN, Wakefield J, Handcock MS, Richardson TS. Alleviating linear ecological bias and optimal design with subsample data. Journal of the Royal Statistical Society. Series A 2008; 171:179-202. Moller HJ, Maier W. Evidence-based medicine in psychopharmacology: possibilities, problems and limitations. European Archives of Psychiatry and Clinical Neuroscience 2010; 260:25-39. Gibbons RD, Hur K, Brown CH, Davis JM, Mann JJ. Benefits from antidepressants synthesis of 6-week patient-level outcomes from double-blind placebo-controlled randomized trials of fluoxetine and venlafaxine. Archives of General Psychiatry 2012; 69(6):572-579. Fournier JC, DeRubeis RJ, Hollon SD, Dimidjian S, Amsterdam JD, Shelton RC, Fawcett J. Antidepressant drug effects and depression severity: a patient-level meta-analysis. Journal of the American Medical Association 2010; 303:47-53. Melander H, Salmonson T, Abadie E, van Zwieten-Boot B. A regulatory apologia - a review of placebo-controlled studies in regulatory submissions of new-generation antidepressants. European Neuropsychopharmacology 2008; 18:623-627. Cleveland WS, Grosse E, Shyu MJ. Local Regression Models. Chapman and Hall: New York, 1992; 309-376. Riley RD, Lambert P, Staessen JA, Wang J, Gueyffer F, Thijs L, Boutitie F. Meta-analysis of continuous outcomes combining individual patient data and aggregate data. Statistics in Medicine 2008; 27:1870-1893. DOI: 10.1002/sim.3165. Jackson C, Best N, Richardson S. Improving ecological inference using individual-level data. Statistics in Medicine 2006; 25:2136-2159. McIntosh MW. The population risk as an explanatory variable in research synthesis of clinical trials. Statistics in Medicine 1996; 16(16):1713-1728. Hardy RJ, Thompson SG. Detecting and describing heterogeneity in meta-analysis. Statistics in Medicine 1998; 17(8):841-856. Kirsch I, Deacon BJ, Huedo-Medina TB, Scoboria A, Moore TJ, Johnson BT. Initial severity and antidepressant benefits: a meta-analysis of data submitted to the food and drug administration. Public Library of Science Medicine 2008; 5:e45. Senn SJ. The use of baselines in clinical trials of bronchodilators. Statistics in Medicine 1989; 8(11):1339-1350. DerSimonian R, Laird N. Meta-analysis in clinical trials. Controlled Clinical Trials 1986; 7:177-188. Viechtbauer W. Conducting meta-analyses in R with the metafor package. Journal of Statistical Software 2010; 36(3):1-48. URL http://www.jstatsoft.org/v36/i03/. Simmonds MC, Higgins JPT. Covariate heterogeneity in meta-analysis: criteria for deciding between meta-regression and individual patient data. Statistics in Medicine 2007; 26:2982-2999. DOI: 10.1002/sim.2768. Ritz J, Spiegelman D. Equivalence of conditional and marginal regression models for clustered and longitudinal data. Statistical Methods in Medical Research 2004; 13:309-323. Tarpey T. On the meaning of parameters in approximation models. Journal of Probability and Statistical Science 2011; 9(2):139-151. 1994; 139 2010; 36 2010; 303 1995; 14 2008; 18 1989; 8 2002; 55 2008; 5 2010; 260 1992 2011; 14 1996; 16 2001; 20 2011; 9 1998; 17 2010; 1 1986; 7 1999; 18 2002; 21 2006; 25 2008; 27 2004; 13 1985 1992; 46 2012; 69 2007; 26 2003; 22 2008; 171 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_3_1 e_1_2_8_5_1 Tarpey T (e_1_2_8_25_1) 2011; 9 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 Hedges LV (e_1_2_8_27_1) 1985 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_16_1 Kirsch I (e_1_2_8_2_1) 2008; 5 Cleveland WS (e_1_2_8_26_1) 1992 e_1_2_8_10_1 e_1_2_8_11_1 e_1_2_8_12_1 12111920 - Stat Med. 2002 Jun 15;21(11):1559-73 20052294 - J R Stat Soc Ser A Stat Soc. 2008 Jan 1;171(1):179-202 18303940 - PLoS Med. 2008 Feb;5(2):e45 19838763 - Eur Arch Psychiatry Clin Neurosci. 2010 Feb;260(1):25-39 16217847 - Stat Med. 2006 Jun 30;25(12):2136-59 18621509 - Eur Neuropsychopharmacol. 2008 Sep;18(9):623-7 8870154 - Stat Med. 1996 Aug 30;15(16):1713-28 20051569 - JAMA. 2010 Jan 6;303(1):47-53 11468761 - Stat Med. 2001 Aug 15;20(15):2219-41 22393205 - Arch Gen Psychiatry. 2012 Jun;69(6):572-9 9595615 - Stat Med. 1998 Apr 30;17(8):841-56 3802833 - Control Clin Trials. 1986 Sep;7(3):177-88 8178788 - Am J Epidemiol. 1994 Apr 15;139(8):747-60 17195960 - Stat Med. 2007 Jul 10;26(15):2982-99 18069721 - Stat Med. 2008 May 20;27(11):1870-93 11781126 - J Clin Epidemiol. 2002 Jan;55(1):86-94 7746979 - Stat Med. 1995 Feb 28;14(4):395-411 20800012 - Int J Neuropsychopharmacol. 2011 Apr;14(3):405-12 2692110 - Stat Med. 1989 Nov;8(11):1339-50 26056090 - Res Synth Methods. 2010 Jan;1(1):2-19 10521860 - Stat Med. 1999 Oct 30;18(20):2693-708 12939780 - Stat Med. 2003 Sep 15;22(17):2693-710  | 
    
| References_xml | – reference: Kirsch I, Deacon BJ, Huedo-Medina TB, Scoboria A, Moore TJ, Johnson BT. Initial severity and antidepressant benefits: a meta-analysis of data submitted to the food and drug administration. Public Library of Science Medicine 2008; 5:e45. – reference: Thompson SG, Higgins JPT. How should meta-regression analyses be undertaken and interpreted? Statistics in Medicine 2002; 21:1559-1573. – reference: Knapp G, Hartung J. Improved tests for a random effects meta-regression with a single covariate. Statistics in Medicine 2003; 22:2693-2710. – reference: Glynn AN, Wakefield J, Handcock MS, Richardson TS. Alleviating linear ecological bias and optimal design with subsample data. Journal of the Royal Statistical Society. Series A 2008; 171:179-202. – reference: Viechtbauer W. Conducting meta-analyses in R with the metafor package. Journal of Statistical Software 2010; 36(3):1-48. URL http://www.jstatsoft.org/v36/i03/. – reference: Gibbons RD, Hur K, Brown CH, Davis JM, Mann JJ. Benefits from antidepressants synthesis of 6-week patient-level outcomes from double-blind placebo-controlled randomized trials of fluoxetine and venlafaxine. Archives of General Psychiatry 2012; 69(6):572-579. – reference: Greenland S, Robins J. Invited commentary: ecologic studies - biases, misconceptions, and counterexamples. American Journal of Epidemiology 1994; 139(8):747-760. – reference: Fournier JC, DeRubeis RJ, Hollon SD, Dimidjian S, Amsterdam JD, Shelton RC, Fawcett J. Antidepressant drug effects and depression severity: a patient-level meta-analysis. Journal of the American Medical Association 2010; 303:47-53. – reference: DerSimonian R, Laird N. Meta-analysis in clinical trials. Controlled Clinical Trials 1986; 7:177-188. – reference: Tarpey T. On the meaning of parameters in approximation models. Journal of Probability and Statistical Science 2011; 9(2):139-151. – reference: Riley RD, Lambert P, Staessen JA, Wang J, Gueyffer F, Thijs L, Boutitie F. Meta-analysis of continuous outcomes combining individual patient data and aggregate data. Statistics in Medicine 2008; 27:1870-1893. DOI: 10.1002/sim.3165. – reference: Hardy RJ, Thompson SG. Detecting and describing heterogeneity in meta-analysis. Statistics in Medicine 1998; 17(8):841-856. – reference: Berkey C, Hoaglin D, Mosteller F, Colditz G. A random-effects regression model for meta-analysis. Statistics in Medicine 1995; 14:395-411. – reference: Jackson C, Best N, Richardson S. Improving ecological inference using individual-level data. Statistics in Medicine 2006; 25:2136-2159. – reference: Lambert PC, Sutton AJ, Abrams K, Jones DR. A comparison of summary patient-level covariates in meta-regression with individual patient data meta-analysis. Journal of Clinical Epidemiology 2002; 55(1):86-94. – reference: Flury BD, Narayanan A. A mixture approach to multivariate analysis of variance. The American Statistician 1992; 46:31-34. – reference: Hedges LV, Olkin I. Statistical Methods for Meta-Analysis. Academic Press Inc.: San Diego, CA, 1985. – reference: McIntosh MW. The population risk as an explanatory variable in research synthesis of clinical trials. Statistics in Medicine 1996; 16(16):1713-1728. – reference: Simmonds MC, Higgins JPT. Covariate heterogeneity in meta-analysis: criteria for deciding between meta-regression and individual patient data. Statistics in Medicine 2007; 26:2982-2999. DOI: 10.1002/sim.2768. – reference: Melander H, Salmonson T, Abadie E, van Zwieten-Boot B. A regulatory apologia - a review of placebo-controlled studies in regulatory submissions of new-generation antidepressants. European Neuropsychopharmacology 2008; 18:623-627. – reference: Fountoulakis KN, Moller HJ. Efficacy of antidepressants: a re-analysis and re-interpretation of the Kirsch data. International Journal of Neuropsychopharmacology 2011; 14:405-412. DOI: 10.1017/S1461145710000957. – reference: Thompson SG, Sharp SJ. Explaining heterogeneity in meta-analysis: a comparison of methods. Statistics in Medicine 1999; 18:2693-2708. – reference: Higgins JPT, Whitehead A, Turner RM, Omar RZ, Thompson SG. Meta-analysis of continuous outcome data from individual patients. Statistics in Medicine 2001; 20:2219-2241. – reference: Ritz J, Spiegelman D. Equivalence of conditional and marginal regression models for clustered and longitudinal data. Statistical Methods in Medical Research 2004; 13:309-323. – reference: Moller HJ, Maier W. Evidence-based medicine in psychopharmacology: possibilities, problems and limitations. European Archives of Psychiatry and Clinical Neuroscience 2010; 260:25-39. – reference: Senn SJ. The use of baselines in clinical trials of bronchodilators. Statistics in Medicine 1989; 8(11):1339-1350. – reference: Cleveland WS, Grosse E, Shyu MJ. Local Regression Models. Chapman and Hall: New York, 1992; 309-376. – reference: Riley RD, Steyerberg EW. Meta-analysis of binary outcome using individual participant data and aggregate data. Research Synthesis Methods 2010; 1:2-16. DOI: 10.1002/jrsm.4. – volume: 36 start-page: 1 issue: 3 year: 2010 end-page: 48 article-title: Conducting meta‐analyses in R with the metafor package publication-title: Journal of Statistical Software – year: 1985 – volume: 14 start-page: 395 year: 1995 end-page: 411 article-title: A random‐effects regression model for meta‐analysis publication-title: Statistics in Medicine – volume: 46 start-page: 31 year: 1992 end-page: 34 article-title: A mixture approach to multivariate analysis of variance publication-title: The American Statistician – volume: 9 start-page: 139 issue: 2 year: 2011 end-page: 151 article-title: On the meaning of parameters in approximation models publication-title: Journal of Probability and Statistical Science – volume: 17 start-page: 841 issue: 8 year: 1998 end-page: 856 article-title: Detecting and describing heterogeneity in meta‐analysis publication-title: Statistics in Medicine – volume: 1 start-page: 2 year: 2010 end-page: 16 article-title: Meta‐analysis of binary outcome using individual participant data and aggregate data publication-title: Research Synthesis Methods – volume: 18 start-page: 623 year: 2008 end-page: 627 article-title: A regulatory apologia – a review of placebo‐controlled studies in regulatory submissions of new‐generation antidepressants publication-title: European Neuropsychopharmacology – volume: 7 start-page: 177 year: 1986 end-page: 188 article-title: Meta‐analysis in clinical trials publication-title: Controlled Clinical Trials – volume: 303 start-page: 47 year: 2010 end-page: 53 article-title: Antidepressant drug effects and depression severity: a patient‐level meta‐analysis publication-title: Journal of the American Medical Association – volume: 26 start-page: 2982 year: 2007 end-page: 2999 article-title: Covariate heterogeneity in meta‐analysis: criteria for deciding between meta‐regression and individual patient data publication-title: Statistics in Medicine – volume: 20 start-page: 2219 year: 2001 end-page: 2241 article-title: Meta‐analysis of continuous outcome data from individual patients publication-title: Statistics in Medicine – volume: 16 start-page: 1713 issue: 16 year: 1996 end-page: 1728 article-title: The population risk as an explanatory variable in research synthesis of clinical trials publication-title: Statistics in Medicine – volume: 55 start-page: 86 issue: 1 year: 2002 end-page: 94 article-title: A comparison of summary patient‐level covariates in meta‐regression with individual patient data meta‐analysis publication-title: Journal of Clinical Epidemiology – volume: 27 start-page: 1870 year: 2008 end-page: 1893 article-title: Meta‐analysis of continuous outcomes combining individual patient data and aggregate data publication-title: Statistics in Medicine – volume: 171 start-page: 179 year: 2008 end-page: 202 article-title: Alleviating linear ecological bias and optimal design with subsample data publication-title: Journal of the Royal Statistical Society. Series A – volume: 69 start-page: 572 issue: 6 year: 2012 end-page: 579 article-title: Benefits from antidepressants synthesis of 6‐week patient‐level outcomes from double‐blind placebo‐controlled randomized trials of fluoxetine and venlafaxine publication-title: Archives of General Psychiatry – volume: 25 start-page: 2136 year: 2006 end-page: 2159 article-title: Improving ecological inference using individual‐level data publication-title: Statistics in Medicine – volume: 22 start-page: 2693 year: 2003 end-page: 2710 article-title: Improved tests for a random effects meta‐regression with a single covariate publication-title: Statistics in Medicine – volume: 5 year: 2008 article-title: Initial severity and antidepressant benefits: a meta‐analysis of data submitted to the food and drug administration publication-title: Public Library of Science Medicine – volume: 13 start-page: 309 year: 2004 end-page: 323 article-title: Equivalence of conditional and marginal regression models for clustered and longitudinal data publication-title: Statistical Methods in Medical Research – volume: 139 start-page: 747 issue: 8 year: 1994 end-page: 760 article-title: Invited commentary: ecologic studies – biases, misconceptions, and counterexamples publication-title: American Journal of Epidemiology – volume: 18 start-page: 2693 year: 1999 end-page: 2708 article-title: Explaining heterogeneity in meta‐analysis: a comparison of methods publication-title: Statistics in Medicine – start-page: 309 year: 1992 end-page: 376 – volume: 21 start-page: 1559 year: 2002 end-page: 1573 article-title: How should meta‐regression analyses be undertaken and interpreted? publication-title: Statistics in Medicine – volume: 260 start-page: 25 year: 2010 end-page: 39 article-title: Evidence‐based medicine in psychopharmacology: possibilities, problems and limitations publication-title: European Archives of Psychiatry and Clinical Neuroscience – volume: 8 start-page: 1339 issue: 11 year: 1989 end-page: 1350 article-title: The use of baselines in clinical trials of bronchodilators publication-title: Statistics in Medicine – volume: 14 start-page: 405 year: 2011 end-page: 412 article-title: Efficacy of antidepressants: a re‐analysis and re‐interpretation of the Kirsch data publication-title: International Journal of Neuropsychopharmacology – ident: e_1_2_8_11_1 doi: 10.1002/sim.918 – start-page: 309 volume-title: Local Regression Models year: 1992 ident: e_1_2_8_26_1 – ident: e_1_2_8_28_1 doi: 10.1002/(SICI)1097-0258(19980430)17:8<841::AID-SIM781>3.0.CO;2-D – ident: e_1_2_8_14_1 doi: 10.1002/sim.3165 – ident: e_1_2_8_13_1 doi: 10.1016/S0895-4356(01)00414-0 – ident: e_1_2_8_3_1 doi: 10.1017/S1461145710000957 – ident: e_1_2_8_8_1 doi: 10.1002/(SICI)1097-0258(19960830)15:16<1713::AID-SIM331>3.0.CO;2-D – ident: e_1_2_8_20_1 doi: 10.1080/00031305.1992.10475844 – ident: e_1_2_8_5_1 doi: 10.1001/jama.2009.1943 – ident: e_1_2_8_10_1 doi: 10.1002/sim.1187 – ident: e_1_2_8_24_1 doi: 10.18637/jss.v036.i03 – ident: e_1_2_8_7_1 doi: 10.1002/sim.4780081106 – ident: e_1_2_8_23_1 doi: 10.1191/0962280204sm368ra – ident: e_1_2_8_6_1 doi: 10.1007/s00406-009-0070-9 – ident: e_1_2_8_18_1 doi: 10.1002/sim.4780140406 – ident: e_1_2_8_12_1 doi: 10.1002/sim.2370 – ident: e_1_2_8_19_1 doi: 10.1002/(SICI)1097-0258(19991030)18:20<2693::AID-SIM235>3.0.CO;2-V – ident: e_1_2_8_9_1 doi: 10.1093/oxfordjournals.aje.a117069 – ident: e_1_2_8_16_1 doi: 10.1002/sim.2768 – volume: 9 start-page: 139 issue: 2 year: 2011 ident: e_1_2_8_25_1 article-title: On the meaning of parameters in approximation models publication-title: Journal of Probability and Statistical Science – ident: e_1_2_8_29_1 doi: 10.1001/archgenpsychiatry.2011.2044 – ident: e_1_2_8_22_1 doi: 10.1002/sim.1482 – ident: e_1_2_8_15_1 doi: 10.1002/jrsm.4 – ident: e_1_2_8_17_1 doi: 10.1016/0197-2456(86)90046-2 – volume-title: Statistical Methods for Meta‐Analysis year: 1985 ident: e_1_2_8_27_1 – ident: e_1_2_8_21_1 doi: 10.1111/j.1467-985X.2007.00511.x – volume: 5 year: 2008 ident: e_1_2_8_2_1 article-title: Initial severity and antidepressant benefits: a meta‐analysis of data submitted to the food and drug administration publication-title: Public Library of Science Medicine – ident: e_1_2_8_4_1 doi: 10.1016/j.euroneuro.2008.06.003 – reference: 3802833 - Control Clin Trials. 1986 Sep;7(3):177-88 – reference: 8178788 - Am J Epidemiol. 1994 Apr 15;139(8):747-60 – reference: 11468761 - Stat Med. 2001 Aug 15;20(15):2219-41 – reference: 18069721 - Stat Med. 2008 May 20;27(11):1870-93 – reference: 2692110 - Stat Med. 1989 Nov;8(11):1339-50 – reference: 26056090 - Res Synth Methods. 2010 Jan;1(1):2-19 – reference: 11781126 - J Clin Epidemiol. 2002 Jan;55(1):86-94 – reference: 12111920 - Stat Med. 2002 Jun 15;21(11):1559-73 – reference: 12939780 - Stat Med. 2003 Sep 15;22(17):2693-710 – reference: 16217847 - Stat Med. 2006 Jun 30;25(12):2136-59 – reference: 20800012 - Int J Neuropsychopharmacol. 2011 Apr;14(3):405-12 – reference: 19838763 - Eur Arch Psychiatry Clin Neurosci. 2010 Feb;260(1):25-39 – reference: 20051569 - JAMA. 2010 Jan 6;303(1):47-53 – reference: 8870154 - Stat Med. 1996 Aug 30;15(16):1713-28 – reference: 9595615 - Stat Med. 1998 Apr 30;17(8):841-56 – reference: 7746979 - Stat Med. 1995 Feb 28;14(4):395-411 – reference: 20052294 - J R Stat Soc Ser A Stat Soc. 2008 Jan 1;171(1):179-202 – reference: 10521860 - Stat Med. 1999 Oct 30;18(20):2693-708 – reference: 18621509 - Eur Neuropsychopharmacol. 2008 Sep;18(9):623-7 – reference: 17195960 - Stat Med. 2007 Jul 10;26(15):2982-99 – reference: 22393205 - Arch Gen Psychiatry. 2012 Jun;69(6):572-9 – reference: 18303940 - PLoS Med. 2008 Feb;5(2):e45  | 
    
| SSID | ssj0011527 | 
    
| Score | 2.2134047 | 
    
| Snippet | A recent meta‐regression of antidepressant efficacy on baseline depression severity has caused considerable controversy in the popular media. A central source... A recent meta-regression of antidepressant efficacy on baseline depression severity has caused considerable controversy in the popular media. A central source...  | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref wiley istex  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 2875 | 
    
| SubjectTerms | Antidepressants Antidepressive Agents - therapeutic use Biostatistics Controlled Clinical Trials as Topic - statistics & numerical data Depression - drug therapy ecological fallacy finite mixture Humans infinite mixtures Linear Models Medical research Medical treatment Mental depression Meta-analysis Meta-Analysis as Topic mixed-effects models Treatment Outcome  | 
    
| SummonAdditionalLinks | – databaseName: Wiley Online Library - Core collection (SURFmarket) dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFL1CRYJKFY-BlkBBBiFYZRo7ceywQxWlIE0lWipGYmHZjgOjTjPVPARl1U9gy-_1S_AjCQwUhFAWWeRGiZ1r33N9T44BHjNu454kZYx1UcUZKU3My0zZrFUVOcuMTbpcRXewl-8eZq-HdNiwKt2_MEEfoltwcyPDz9dugEs12_ohGjobHfctWHZq2zjNfTa13ylH4Xa3VlehzBmmre5sQrbaG5ci0WXXqZ8vgpm_syWvLuoTefpJjsfLiNaHpJ3r8L5tTGCiHPUXc9XXX37Refy_1t6Aaw1SRc-Da92ES6buwZVBU4vvwVpY8UPhR6YerDrcGmSfb4HqyIw2NKJjM5fnZ1-n5kNg3dbP0E-FczSfIDvv2najQJz3TBEzQ6Ma2e8-asi6jrBzfvYNGSd6IfXpbTjcefF2ezdutnOIdWbfPM4YJVwyk-aVPUxecIuVaKoy7GqP1KbphdK6rKjkmPEy1QwryRNJFcEV1Thdh5V6Ups7gIxOikSpKqeG2nwWyzzXnBVFpRjXCZcRPG0_rdCN1rnbcmMsgkozEbY_hevPCB52lidB3-MCmyfeOzoDOT1yfDhGxbu9l2L_zUGabxdDMYxgs3Uf0UwFM2EhduFUzhixz-ou20HsKjOyNpOFt3HlUMJ4BBvB27qHkTSzoCulEbAlP-wMnED48pV69NELhafcQfYkgkedx_6tkd7__mggDl4N3Pnuvxreg1Xi9w6xUSzZhJX5dGHuWwQ3Vw_8WP0OKmdGIQ priority: 102 providerName: Wiley-Blackwell  | 
    
| Title | Interpreting meta-regression: application to recent controversies in antidepressants' efficacy | 
    
| URI | https://api.istex.fr/ark:/67375/WNG-RQS36C9X-X/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.5766 https://www.ncbi.nlm.nih.gov/pubmed/23440635 https://www.proquest.com/docview/1399703672 https://www.proquest.com/docview/1398425278 https://pubmed.ncbi.nlm.nih.gov/PMC3800040 http://doi.org/10.1002/sim.5766  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 32 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Mathematics Source customDbUrl: eissn: 1097-0258 dateEnd: 20241103 omitProxy: false ssIdentifier: ssj0011527 issn: 1097-0258 databaseCode: AMVHM dateStart: 20120220 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1097-0258 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1097-0258 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011527 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6VRIJKiEd4GUq1IAQnB3vtfZhbVVEKUiJoiUhP1u56DVFTp8pDUE79CVz5e_0lzNqOadQWIR9y8CT2rmc93-x8-QbghZAY9xTN_NAkuR_TzPoyizVmrTrhIraYdLmKbq_PdwfxhyEbrsGye9tq-Z6-no2OuoiI-TVoc4ZguwXtQf_j1kG5cyKEz0XZo8CVUX2M3nIpL3vuqysBp-3m7sdlaPIiKfLGojhWJ9_VeLwKXMvIs3P7r_JARTg57C7mumt-XpRzvGpQd-BWjTrJVuUmd2HNFh243qvr6h24We3ekepPSR1Ydxi0knC-B7ohJmKYI0d2rs5Of03t14pBW7wh54rgZD4h-A7FwZGKBF-yPuyMjAqCz3BUE28d-ebs9DexTsBCmZP7MNh5-3l7169bM_gmxjv3Y8GoVMJGPMfD8kQi7mGRjkNXR2SYcifamCxnSoZCZpERoVYyUEzTMGcmjB5Aq5gU9hEQa4Ik0DrnzDLMTUPFuZEiSXItpAmk8uDV8vmlptYtd-0zxmmluExTnM_UzacHzxrL40qr4xKbl6ULNAZqeui4bYKlX_rv0r1P-xHfTobp0IONpY-k9bKepQiXE6dYJiheqzmNC9JVWVRhJ4vSxpU2qZAePKxcqrkYjWIEUBHzQKw4W2PgxL5XzxSjb6XodyQd_A48eN645b8GWfrrlQbp_vue-3z8P7_2BNZp2QMEo1GwAa35dGGfIhKb603MQfboZr0m_wAPUDLQ | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFL0qrUQrIR7DK1DAIASrTPPyI7BCFWUKnZHoQ8wCybIdB0adZqqZjKCs-gls-b1-CXacBAYKQiiLLHKjxM6177m-J8cAjykzcU9EmR-qNPeTKNM-yxJpslaZEppok3TZim5_QHoHyeshHi7B8-ZfGKcP0S642ZFRzdd2gNsF6Y0fqqGz0VHXoGVyAVYSYtIUi4h2W-2osNmv1dYoCQ1xozwbRBvNnQuxaMV26-fzgObvfMnVeXEsTj6J8XgR01ZBaesKvG-a47goh915Kbvqyy9Kj__Z3qtwuQar6IXzrmuwpIsOXOzX5fgOXHKLfsj9y9SBNQtdnfLzdZAtn9FER3SkS3F2-nWqPzjibfEM_VQ7R-UEmanXNBw57nxFFtEzNCqQ-fSjmq9rOTtnp9-QtroXQp3cgIOtl_ubPb_e0cFXiXlzP6E4YoLqmOTm0CRlBi7hWCahLT9ik6mnUqksx4KFlGWxoqEULBBYRmGOVRjfhOViUujbgLQK0kDKnGCNTUobCkIUo2maS8pUwIQHT5tvy1Utd2533RhzJ9QccdOf3PanBw9by2Mn8XGOzZPKPVoDMT20lDiK-bvBK777di8mm-mQDz1Yb_yH17PBjBuUnVqhMxqZZ7WXzTi2xRlR6Mm8srEV0YgyD245d2sfFsWJwV0x9oAuOGJrYDXCF68Uo4-VVnjMLGoPPHjUuuzfGlk54B8N-N52357v_KvhA1jt7fd3-M724M1dWIuqrURMUAvWYbmczvU9A-hKeb8auN8BYzVKQg | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFL0qrVQqIR7DK1DAIASrTBMnjh1YoZahBWYEfYhZIFm248Co08xoHoKy6iew5ff6JdhxEhgoCKEssvCNHDvXvse-J8cADykzcU_gzA9VmvsxzrTPsliaVatMExprs-iyGd1uL9k-iF_2SX8Jntb_wjh9iGbDzY6Mcr62A1yPs3zjh2rodHDUNmg5OQcrMUmZ5fNt7TbaUWF9XqvNUSY0JLXybIA36icXYtGK7dbPZwHN3_mS5-fFWBx_EsPhIqYtg1LnEryvm-O4KIft-Uy21ZdflB7_s72X4WIFVtEz511XYEkXLVjtVun4Flxwm37I_cvUgjULXZ3y81WQDZ_RREd0pGfi9OTrRH9wxNviCfopd45mI2SmXtNw5LjzJVlET9GgQObTDyq-ruXsnJ58Q9rqXgh1fA0OOs_3N7f96kQHX8Xmzf2YEswE1VGSm0snKTNwiUQyDm36kZiVeiqVynIiWEhZFikaSsECQSQOc6LC6DosF6NC3wSkVZAGUuYJ0cQsaUORJIrRNM0lZSpgwoPH9bflqpI7t6duDLkTasbc9Ce3_enB_cZy7CQ-zrB5VLpHYyAmh5YSRwl_13vBd9_uRclm2ud9D9Zr_-HVbDDlBmWnVuiMYlNXU2zGsU3OiEKP5qWNzYhiyjy44dytqQxHscFdEfGALjhiY2A1whdLisHHUis8Yha1Bx48aFz2b40sHfCPBnxvp2vvt_7V8B6svtnq8Nc7vVe3YQ2XJ4mYmBasw_JsMtd3DJ6bybvluP0OqeJJxg | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6VRIJKiEeAYihoQQhODn7tw9yqilKQEgElIj1Zu-s1jZo6VeIIyqk_gSt_r7-EWdsxtdoi5IMPHj92Pev5dufzNwAvuMC4J4PU9XWcuVGQGlekkcJZq4oZjwxOumxGdzBku6Pow5iO12BVva2dvg9eLyZHfUTE7Bp0GUWw3YHuaPhxa79cOeHcZbysUWDTqC5Gb7GSlz13aivgdG3f_bgMTV4kRd5Y5sfy5LucTtvAtYw8O7f_Kg9UhJPD_rJQff3zopzjVY26A7dq1Em2Kje5C2sm78H1QZ1X78HNavWOVD8l9WDdYtBKwvkeqIaYiGGOHJlCnp3-mptvFYM2f0POJcFJMSP4DcXGkYoEX7I-zIJMcoLvcFITby355uz0NzFWwELqk_sw2nn7ZXvXrUszuDrCJ3cjTgMhuQlZhpthsUDcQ0MV-TaPSHHKHSut04xK4XORhpr7SgpPUhX4GdV--AA6-Sw3D4EY7cWeUhmjhuLc1JeMacHjOFNcaE9IB16t3l-ia91yWz5jmlSKy0GC_ZnY_nTgWWN5XGl1XGLzsnSBxkDODy23jdPk6_Bd8vnTXsi243EydmBz5SNJPawXCcLl2CqW8QDv1RzGAWmzLDI3s2VpY1ObARcObFQu1dwsCCMEUCF1gLecrTGwYt_tI_nkoBT9DoWF354Dzxu3_FcjS3-90iDZez-w-0f_c7XHsB6UNUAwGnmb0CnmS_MEkVihntaj8Q_kPjHn | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interpreting+meta%E2%80%90regression%3A+application+to+recent+controversies+in+antidepressants%E2%80%99+efficacy&rft.jtitle=Statistics+in+medicine&rft.au=Petkova%2C+Eva&rft.au=Tarpey%2C+Thaddeus&rft.au=Huang%2C+Lei&rft.au=Deng%2C+Liping&rft.date=2013-07-30&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=32&rft.issue=17&rft.spage=2875&rft.epage=2892&rft_id=info:doi/10.1002%2Fsim.5766&rft.externalDBID=10.1002%252Fsim.5766&rft.externalDocID=SIM5766 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon |