Encapsulation and Polymerization of White Phosphorus Inside Single‐Wall Carbon Nanotubes

Elemental phosphorus displays an impressive number of allotropes with highly diverse chemical and physical properties. White phosphorus has now been filled into single‐wall carbon nanotubes (SWCNTs) from the liquid and thereby stabilized against the highly exothermic reaction with atmospheric oxygen...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 56; no. 28; pp. 8144 - 8148
Main Authors Hart, Martin, White, Edward R., Chen, Ji, McGilvery, Catriona M., Pickard, Chris J., Michaelides, Angelos, Sella, Andrea, Shaffer, Milo S. P., Salzmann, Christoph G.
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 03.07.2017
EditionInternational ed. in English
Subjects
Online AccessGet full text
ISSN1433-7851
1521-3773
1521-3773
DOI10.1002/anie.201703585

Cover

Abstract Elemental phosphorus displays an impressive number of allotropes with highly diverse chemical and physical properties. White phosphorus has now been filled into single‐wall carbon nanotubes (SWCNTs) from the liquid and thereby stabilized against the highly exothermic reaction with atmospheric oxygen. The encapsulated tetraphosphorus molecules were visualized with transmission electron microscopy, but found to convert readily into chain structures inside the SWCNT “nanoreactors”. The energies of the possible chain structures were determined computationally, highlighting a delicate balance between the extent of polymerization and the SWCNT diameter. Experimentally, a single‐stranded zig‐zag chain of phosphorus atoms was observed, which is the lowest energy structure at small confinement diameters. These one‐dimensional chains provide a glimpse into the very first steps of the transformation from white to red phosphorus. Putting peas into a pod: Tetrahedral P4 molecules can be assembled inside single wall carbon nanotubes to give air‐stable constructs. The encapsulated molecules show a tendency to polymerize, giving rise to range of possible chain structures, including a zig‐zag chain of individual atoms. These one‐dimensional allotropes provide the first direct glimpse into the transformation from white to red phosphorus.
AbstractList Elemental phosphorus displays an impressive number of allotropes with highly diverse chemical and physical properties. White phosphorus has now been filled into single-wall carbon nanotubes (SWCNTs) from the liquid and thereby stabilized against the highly exothermic reaction with atmospheric oxygen. The encapsulated tetraphosphorus molecules were visualized with transmission electron microscopy, but found to convert readily into chain structures inside the SWCNT "nanoreactors". The energies of the possible chain structures were determined computationally, highlighting a delicate balance between the extent of polymerization and the SWCNT diameter. Experimentally, a single-stranded zig-zag chain of phosphorus atoms was observed, which is the lowest energy structure at small confinement diameters. These one-dimensional chains provide a glimpse into the very first steps of the transformation from white to red phosphorus.Elemental phosphorus displays an impressive number of allotropes with highly diverse chemical and physical properties. White phosphorus has now been filled into single-wall carbon nanotubes (SWCNTs) from the liquid and thereby stabilized against the highly exothermic reaction with atmospheric oxygen. The encapsulated tetraphosphorus molecules were visualized with transmission electron microscopy, but found to convert readily into chain structures inside the SWCNT "nanoreactors". The energies of the possible chain structures were determined computationally, highlighting a delicate balance between the extent of polymerization and the SWCNT diameter. Experimentally, a single-stranded zig-zag chain of phosphorus atoms was observed, which is the lowest energy structure at small confinement diameters. These one-dimensional chains provide a glimpse into the very first steps of the transformation from white to red phosphorus.
Elemental phosphorus displays an impressive number of allotropes with highly diverse chemical and physical properties. White phosphorus has now been filled into single-wall carbon nanotubes (SWCNTs) from the liquid and thereby stabilized against the highly exothermic reaction with atmospheric oxygen. The encapsulated tetraphosphorus molecules were visualized with transmission electron microscopy, but found to convert readily into chain structures inside the SWCNT "nanoreactors". The energies of the possible chain structures were determined computationally, highlighting a delicate balance between the extent of polymerization and the SWCNT diameter. Experimentally, a single-stranded zig-zag chain of phosphorus atoms was observed, which is the lowest energy structure at small confinement diameters. These one-dimensional chains provide a glimpse into the very first steps of the transformation from white to red phosphorus.
Elemental phosphorus displays an impressive number of allotropes with highly diverse chemical and physical properties. White phosphorus has now been filled into single‐wall carbon nanotubes (SWCNTs) from the liquid and thereby stabilized against the highly exothermic reaction with atmospheric oxygen. The encapsulated tetraphosphorus molecules were visualized with transmission electron microscopy, but found to convert readily into chain structures inside the SWCNT “nanoreactors”. The energies of the possible chain structures were determined computationally, highlighting a delicate balance between the extent of polymerization and the SWCNT diameter. Experimentally, a single‐stranded zig‐zag chain of phosphorus atoms was observed, which is the lowest energy structure at small confinement diameters. These one‐dimensional chains provide a glimpse into the very first steps of the transformation from white to red phosphorus. Putting peas into a pod: Tetrahedral P4 molecules can be assembled inside single wall carbon nanotubes to give air‐stable constructs. The encapsulated molecules show a tendency to polymerize, giving rise to range of possible chain structures, including a zig‐zag chain of individual atoms. These one‐dimensional allotropes provide the first direct glimpse into the transformation from white to red phosphorus.
Author Shaffer, Milo S. P.
White, Edward R.
Salzmann, Christoph G.
Chen, Ji
Sella, Andrea
Pickard, Chris J.
McGilvery, Catriona M.
Michaelides, Angelos
Hart, Martin
Author_xml – sequence: 1
  givenname: Martin
  surname: Hart
  fullname: Hart, Martin
  organization: University College London
– sequence: 2
  givenname: Edward R.
  surname: White
  fullname: White, Edward R.
  organization: Imperial College London
– sequence: 3
  givenname: Ji
  surname: Chen
  fullname: Chen, Ji
  organization: University College London
– sequence: 4
  givenname: Catriona M.
  surname: McGilvery
  fullname: McGilvery, Catriona M.
  organization: Imperial College London
– sequence: 5
  givenname: Chris J.
  orcidid: 0000-0002-9684-5432
  surname: Pickard
  fullname: Pickard, Chris J.
  organization: University of Cambridge
– sequence: 6
  givenname: Angelos
  surname: Michaelides
  fullname: Michaelides, Angelos
  organization: University College London
– sequence: 7
  givenname: Andrea
  surname: Sella
  fullname: Sella, Andrea
  organization: University College London
– sequence: 8
  givenname: Milo S. P.
  surname: Shaffer
  fullname: Shaffer, Milo S. P.
  organization: Imperial College London
– sequence: 9
  givenname: Christoph G.
  orcidid: 0000-0002-0714-7342
  surname: Salzmann
  fullname: Salzmann, Christoph G.
  email: c.salzmann@ucl.ac.uk
  organization: University College London
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28520181$$D View this record in MEDLINE/PubMed
BookMark eNqFkctq3DAUhkVJaC7ttsti6KYbT3WxbHkZhmk6ENJAWwLdiGP5uKOgkaaSTZis8gh5xj5JlU7SQKB0dcTh-w7i_4_Ing8eCXnD6IxRyj-AtzjjlDVUSCVfkEMmOStF04i9_K6EKBsl2QE5Sukq80rR-iU54EpmR7FD8n3hDWzS5GC0wRfg--IiuO0ao73ZrcJQXK7siMXFKqTNKsQpFUufbI_FF-t_OPx1e3cJzhVziF3mz8GHceowvSL7A7iErx_mMfn2cfF1_qk8-3y6nJ-claZqallKCaYzrANoOkFRKVUz04meI6AUQplBCA4trXsz8IojFQPjXPZ1LYFVXIhj8n53dxPDzwnTqNc2GXQOPIYpadZSynjdijaj756hV2GKPv8uUywn2MqqztTbB2rq1tjrTbRriFv9mFoGqh1gYkgp4qCNHf-kNUawTjOq78vR9-Xov-VkbfZMe7z8T6HdCdfW4fY_tD45Xy6e3N8BNqI7
CitedBy_id crossref_primary_10_1016_j_ica_2019_04_004
crossref_primary_10_1021_acs_nanolett_9b04741
crossref_primary_10_1021_acsanm_2c05266
crossref_primary_10_1039_D1NR06530K
crossref_primary_10_1021_acsnano_1c11349
crossref_primary_10_1002_ange_201708246
crossref_primary_10_1039_D0NH00506A
crossref_primary_10_1134_S0022476623040133
crossref_primary_10_1002_ange_201705258
crossref_primary_10_1002_anie_201811152
crossref_primary_10_1021_jacs_4c09102
crossref_primary_10_1002_adfm_201900233
crossref_primary_10_1002_smll_202105866
crossref_primary_10_1186_s40580_024_00460_3
crossref_primary_10_1007_s00339_019_2626_5
crossref_primary_10_31857_S2686953523600022
crossref_primary_10_1039_D2CS01018F
crossref_primary_10_1021_acsnano_9b04898
crossref_primary_10_1002_anie_202005031
crossref_primary_10_1002_anie_201805856
crossref_primary_10_1021_acs_jpcc_2c03017
crossref_primary_10_1103_PhysRevB_109_195413
crossref_primary_10_1246_cl_210644
crossref_primary_10_1002_anie_201902534
crossref_primary_10_1016_j_dyepig_2018_09_057
crossref_primary_10_1002_ange_201902534
crossref_primary_10_1002_anie_201705258
crossref_primary_10_1016_j_apmt_2021_101345
crossref_primary_10_1002_anie_201708246
crossref_primary_10_1002_ange_201811152
crossref_primary_10_3390_nano13020314
crossref_primary_10_7498_aps_71_20220035
crossref_primary_10_1016_j_rinp_2021_104960
crossref_primary_10_1002_ange_202005031
crossref_primary_10_1021_acsami_3c12660
crossref_primary_10_1002_aenm_202000288
crossref_primary_10_1002_anie_202503979
crossref_primary_10_1021_acs_chemrev_2c00155
crossref_primary_10_1039_C8CP07159D
crossref_primary_10_1002_anie_202016257
crossref_primary_10_1021_acs_jpcc_0c02079
crossref_primary_10_1016_j_chemosphere_2021_129793
crossref_primary_10_1038_s41467_020_16077_z
crossref_primary_10_1002_chem_201703876
crossref_primary_10_1021_acsnano_7b08778
crossref_primary_10_1002_adfm_202411472
crossref_primary_10_1002_aenm_201702267
crossref_primary_10_1021_acs_jpca_9b05315
crossref_primary_10_1002_celc_202300706
crossref_primary_10_1016_j_ceramint_2022_05_352
crossref_primary_10_1002_ange_202307102
crossref_primary_10_1016_j_carbon_2021_12_079
crossref_primary_10_1016_j_carbon_2018_10_006
crossref_primary_10_1134_S0022476624020112
crossref_primary_10_1039_D3CP00059A
crossref_primary_10_1021_acs_nanolett_9b00133
crossref_primary_10_1134_S0012500823600670
crossref_primary_10_1021_acsnanoscienceau_1c00023
crossref_primary_10_1039_C7NR07054C
crossref_primary_10_2139_ssrn_3936388
crossref_primary_10_1002_ange_202016257
crossref_primary_10_1021_acsnano_3c05819
crossref_primary_10_1002_ange_202503979
crossref_primary_10_1039_D1CP02636D
crossref_primary_10_1021_acs_langmuir_2c03234
crossref_primary_10_1039_D2NR06696C
crossref_primary_10_1039_D0NR01748E
crossref_primary_10_1002_cctc_202200685
crossref_primary_10_1039_D3CS00467H
crossref_primary_10_1002_adma_202107515
crossref_primary_10_1021_acs_inorgchem_9b02190
crossref_primary_10_3390_nano13040640
crossref_primary_10_1002_ange_201805856
crossref_primary_10_1038_s41524_020_00420_5
crossref_primary_10_1002_anie_202307102
crossref_primary_10_1021_acsnano_1c03705
Cites_doi 10.1002/cber.19971300911
10.1063/1.4868132
10.1002/ange.200805222
10.1002/anie.198510561
10.1039/tf9625801916
10.1002/anie.199113531
10.1063/1.1700191
10.1002/ange.201608615
10.1021/acs.nanolett.6b01459
10.1002/ange.200503017
10.1088/0953-8984/23/5/053201
10.1021/nn501226z
10.1002/ange.201504904
10.1016/j.ccr.2010.12.016
10.1038/ncomms3162
10.1038/nmat2290
10.1126/science.1175313
10.1038/170629a0
10.1002/anie.201608615
10.1021/jacs.7b01890
10.1103/PhysRevLett.84.4621
10.1002/anie.200503017
10.1126/science.289.5483.1324
10.1038/nmat4617
10.1002/ange.19850971211
10.1021/cr000039m
10.1002/anie.201504904
10.1002/anie.201611740
10.1038/nnano.2014.35
10.1002/andp.18652021002
10.1002/adfm.201502902
10.1021/acs.nanolett.5b05068
10.1002/anie.200460244
10.1063/1.1329672
10.1021/nn4019703
10.1039/c3ra20847h
10.1021/jacs.6b03633
10.1002/ange.201306146
10.1039/J19700002071
10.1002/ange.201611740
10.1002/anie.200805222
10.1088/2053-1583/1/2/025001
10.1002/ange.200460244
10.1002/ange.19911031043
10.1063/1.1749671
10.1002/anie.201306146
10.1021/jp906056n
10.1021/acsnano.5b02599
10.1038/ncomms5458
10.1021/ja036622c
ContentType Journal Article
Copyright 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.201703585
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)

CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 8148
ExternalDocumentID 28520181
10_1002_anie_201703585
ANIE201703585
Genre shortCommunication
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: European Research Council
  funderid: 616121
– fundername: Royal Society
  funderid: UF150665; Wolfson Research Merit Award
– fundername: Engineering and Physical Sciences Research Council
  funderid: Advanced Characterization of Materials CDT; EP/P022596/; EP/P022103/1
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AETEA
AEYWJ
AGHNM
AGYGG
CITATION
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c4765-55acbc1baa7b30e88861cb3d2eae5338cf332a906dcf242e03f1225d665a14233
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 09:28:18 EDT 2025
Fri Jul 25 10:17:49 EDT 2025
Wed Feb 19 02:32:21 EST 2025
Tue Jul 01 02:26:02 EDT 2025
Thu Apr 24 23:12:55 EDT 2025
Wed Jan 22 16:20:12 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 28
Keywords density functional calculations
nanotubes
polymerization
allotropy
phosphorus
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4765-55acbc1baa7b30e88861cb3d2eae5338cf332a906dcf242e03f1225d665a14233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9684-5432
0000-0002-0714-7342
PMID 28520181
PQID 1913589546
PQPubID 946352
PageCount 5
ParticipantIDs proquest_miscellaneous_1900126939
proquest_journals_1913589546
pubmed_primary_28520181
crossref_citationtrail_10_1002_anie_201703585
crossref_primary_10_1002_anie_201703585
wiley_primary_10_1002_anie_201703585_ANIE201703585
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 3, 2017
PublicationDateYYYYMMDD 2017-07-03
PublicationDate_xml – month: 07
  year: 2017
  text: July 3, 2017
  day: 03
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1865; 202
2004 2004; 43 116
2013; 3
2013; 4
1952; 170
2000; 113
2009 2009; 48 121
1997; 130
1985 1985; 24 97
2008; 7
1962; 58
2009; 113
1970
2017 2017; 56 129
2013; 7
2015; 9
2016; 16
2016; 15
2011; 255
2013 2013; 52 125
2017; 139
2014; 1
1952; 20
1991 1991; 30 103
2015; 25
2014; 5
2016 2016; 55 128
2000; 289
2002; 102
2000; 84
2015 2015; 54 127
2005 2005; 44 117
2016; 138
2011; 23
2014; 9
2014; 8
1935; 3
2003; 125
2014; 104
2009; 324
e_1_2_2_4_2
e_1_2_2_22_3
e_1_2_2_24_1
e_1_2_2_6_1
e_1_2_2_22_2
e_1_2_2_49_2
e_1_2_2_49_3
e_1_2_2_20_1
e_1_2_2_2_2
e_1_2_2_41_1
e_1_2_2_28_3
e_1_2_2_8_2
e_1_2_2_28_2
e_1_2_2_43_2
e_1_2_2_45_1
e_1_2_2_26_1
e_1_2_2_47_1
e_1_2_2_13_2
e_1_2_2_36_2
e_1_2_2_36_3
e_1_2_2_38_1
e_1_2_2_11_1
e_1_2_2_51_2
e_1_2_2_30_1
e_1_2_2_19_2
e_1_2_2_51_3
e_1_2_2_32_2
e_1_2_2_17_1
e_1_2_2_15_2
e_1_2_2_34_2
e_1_2_2_3_2
e_1_2_2_25_1
e_1_2_2_23_2
e_1_2_2_48_2
e_1_2_2_5_2
e_1_2_2_21_3
e_1_2_2_23_1
e_1_2_2_48_3
e_1_2_2_21_2
e_1_2_2_1_1
e_1_2_2_40_1
e_1_2_2_29_2
e_1_2_2_42_2
e_1_2_2_7_2
e_1_2_2_9_1
e_1_2_2_44_1
e_1_2_2_27_2
e_1_2_2_46_1
e_1_2_2_14_1
e_1_2_2_37_1
e_1_2_2_12_2
e_1_2_2_39_1
e_1_2_2_10_2
e_1_2_2_10_1
e_1_2_2_50_2
e_1_2_2_18_2
e_1_2_2_31_2
e_1_2_2_16_2
e_1_2_2_33_2
e_1_2_2_35_2
References_xml – volume: 1
  start-page: 025001
  year: 2014
  publication-title: 2D Mater.
– volume: 4
  start-page: 2162
  year: 2013
  publication-title: Nat. Commun.
– volume: 43 116
  start-page: 4228 4324
  year: 2004 2004
  end-page: 4231 4327
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 113
  start-page: 9901
  year: 2000
  end-page: 9904
  publication-title: J. Chem. Phys.
– volume: 16
  start-page: 4903
  year: 2016
  end-page: 4908
  publication-title: Nano Lett.
– volume: 23
  start-page: 053201
  year: 2011
  publication-title: J. Phys. Condens. Matter
– volume: 255
  start-page: 1342
  year: 2011
  end-page: 1359
  publication-title: Coord. Chem. Rev.
– volume: 7
  start-page: 5607
  year: 2013
  end-page: 5613
  publication-title: ACS Nano
– volume: 44 117
  start-page: 7616 7788
  year: 2005 2005
  end-page: 7619 7792
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 55 128
  start-page: 14798 15018
  year: 2016 2016
  end-page: 14801 15021
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 113
  start-page: 15099
  year: 2009
  end-page: 15101
  publication-title: J. Phys. Chem. C
– volume: 139
  start-page: 5946
  year: 2017
  end-page: 5951
  publication-title: J. Am. Chem. Soc.
– volume: 84
  start-page: 4621
  year: 2000
  end-page: 4624
  publication-title: Phys. Rev. Lett.
– volume: 7
  start-page: 890
  year: 2008
  end-page: 899
  publication-title: Nat. Mater.
– volume: 20
  start-page: 29
  year: 1952
  end-page: 34
  publication-title: J. Chem. Phys.
– volume: 52 125
  start-page: 10896 11097
  year: 2013 2013
  end-page: 10899 11100
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 130
  start-page: 1235
  year: 1997
  end-page: 1240
  publication-title: Chem. Ber.
– volume: 3
  start-page: 5577
  year: 2013
  end-page: 5582
  publication-title: RSC Adv.
– volume: 25
  start-page: 6996
  year: 2015
  end-page: 7002
  publication-title: Adv. Funct. Mater.
– volume: 58
  start-page: 1916
  year: 1962
  end-page: 1925
  publication-title: Trans. Faraday Soc.
– volume: 138
  start-page: 8175
  year: 2016
  end-page: 8183
  publication-title: J. Am. Chem. Soc.
– volume: 56 129
  start-page: 1850 1876
  year: 2017 2017
  end-page: 1854 1880
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 324
  start-page: 1697
  year: 2009
  end-page: 1699
  publication-title: Science
– start-page: 2071
  year: 1970
  end-page: 2074
  publication-title: J. Chem. Soc. A
– volume: 170
  start-page: 629
  year: 1952
  end-page: 629
  publication-title: Nature
– volume: 54 127
  start-page: 10802 10952
  year: 2015 2015
  end-page: 10806 10956
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 16
  start-page: 2975
  year: 2016
  end-page: 2980
  publication-title: Nano Lett.
– volume: 125
  start-page: 11186
  year: 2003
  end-page: 11187
  publication-title: J. Am. Chem. Soc.
– volume: 202
  start-page: 193
  year: 1865
  end-page: 228
  publication-title: Ann. Phys.
– volume: 104
  start-page: 103106
  year: 2014
  publication-title: Appl. Phys. Lett.
– volume: 30 103
  start-page: 1353 1403
  year: 1991 1991
  end-page: 1354 1404
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 5
  start-page: 4458
  year: 2014
  publication-title: Nat. Commun.
– volume: 3
  start-page: 351
  year: 1935
  end-page: 355
  publication-title: J. Chem. Phys.
– volume: 289
  start-page: 1324
  year: 2000
  end-page: 1326
  publication-title: Science
– volume: 24 97
  start-page: 1056 1050
  year: 1985 1985
  end-page: 1057 1050
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 15
  start-page: 634
  year: 2016
  end-page: 639
  publication-title: Nat. Mater.
– volume: 48 121
  start-page: 3616 3670
  year: 2009 2009
  end-page: 3621 3675
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 9
  start-page: 8869
  year: 2015
  end-page: 8884
  publication-title: ACS Nano
– volume: 8
  start-page: 4033
  year: 2014
  end-page: 4041
  publication-title: ACS Nano
– volume: 9
  start-page: 372
  year: 2014
  end-page: 377
  publication-title: Nat. Nanotechnol.
– volume: 102
  start-page: 4267
  year: 2002
  end-page: 4302
  publication-title: Chem. Rev.
– ident: e_1_2_2_13_2
  doi: 10.1002/cber.19971300911
– ident: e_1_2_2_4_2
  doi: 10.1063/1.4868132
– ident: e_1_2_2_23_2
  doi: 10.1002/ange.200805222
– ident: e_1_2_2_48_2
  doi: 10.1002/anie.198510561
– ident: e_1_2_2_39_1
  doi: 10.1039/tf9625801916
– ident: e_1_2_2_49_2
  doi: 10.1002/anie.199113531
– ident: e_1_2_2_45_1
  doi: 10.1063/1.1700191
– ident: e_1_2_2_51_3
  doi: 10.1002/ange.201608615
– ident: e_1_2_2_9_1
  doi: 10.1021/acs.nanolett.6b01459
– ident: e_1_2_2_21_3
  doi: 10.1002/ange.200503017
– ident: e_1_2_2_44_1
  doi: 10.1088/0953-8984/23/5/053201
– ident: e_1_2_2_2_2
  doi: 10.1021/nn501226z
– ident: e_1_2_2_36_3
  doi: 10.1002/ange.201504904
– ident: e_1_2_2_50_2
  doi: 10.1016/j.ccr.2010.12.016
– ident: e_1_2_2_33_2
  doi: 10.1038/ncomms3162
– ident: e_1_2_2_16_2
  doi: 10.1038/nmat2290
– ident: e_1_2_2_27_2
  doi: 10.1126/science.1175313
– ident: e_1_2_2_11_1
– ident: e_1_2_2_12_2
  doi: 10.1038/170629a0
– ident: e_1_2_2_51_2
  doi: 10.1002/anie.201608615
– ident: e_1_2_2_29_2
  doi: 10.1021/jacs.7b01890
– ident: e_1_2_2_31_2
  doi: 10.1103/PhysRevLett.84.4621
– ident: e_1_2_2_17_1
– ident: e_1_2_2_14_1
– ident: e_1_2_2_21_2
  doi: 10.1002/anie.200503017
– ident: e_1_2_2_32_2
  doi: 10.1126/science.289.5483.1324
– ident: e_1_2_2_30_1
– ident: e_1_2_2_35_2
  doi: 10.1038/nmat4617
– ident: e_1_2_2_41_1
– ident: e_1_2_2_48_3
  doi: 10.1002/ange.19850971211
– ident: e_1_2_2_25_1
  doi: 10.1021/cr000039m
– ident: e_1_2_2_6_1
– ident: e_1_2_2_36_2
  doi: 10.1002/anie.201504904
– ident: e_1_2_2_10_1
  doi: 10.1002/anie.201611740
– ident: e_1_2_2_3_2
  doi: 10.1038/nnano.2014.35
– ident: e_1_2_2_47_1
– ident: e_1_2_2_18_2
  doi: 10.1002/andp.18652021002
– ident: e_1_2_2_8_2
  doi: 10.1002/adfm.201502902
– ident: e_1_2_2_19_2
  doi: 10.1021/acs.nanolett.5b05068
– ident: e_1_2_2_1_1
– ident: e_1_2_2_22_2
  doi: 10.1002/anie.200460244
– ident: e_1_2_2_46_1
  doi: 10.1063/1.1329672
– ident: e_1_2_2_34_2
  doi: 10.1021/nn4019703
– ident: e_1_2_2_43_2
  doi: 10.1039/c3ra20847h
– ident: e_1_2_2_37_1
  doi: 10.1021/jacs.6b03633
– ident: e_1_2_2_28_3
  doi: 10.1002/ange.201306146
– ident: e_1_2_2_20_1
– ident: e_1_2_2_40_1
  doi: 10.1039/J19700002071
– ident: e_1_2_2_10_2
  doi: 10.1002/ange.201611740
– ident: e_1_2_2_23_1
  doi: 10.1002/anie.200805222
– ident: e_1_2_2_5_2
  doi: 10.1088/2053-1583/1/2/025001
– ident: e_1_2_2_26_1
– ident: e_1_2_2_22_3
  doi: 10.1002/ange.200460244
– ident: e_1_2_2_49_3
  doi: 10.1002/ange.19911031043
– ident: e_1_2_2_15_2
  doi: 10.1063/1.1749671
– ident: e_1_2_2_28_2
  doi: 10.1002/anie.201306146
– ident: e_1_2_2_42_2
  doi: 10.1021/jp906056n
– ident: e_1_2_2_24_1
  doi: 10.1021/acsnano.5b02599
– ident: e_1_2_2_7_2
  doi: 10.1038/ncomms5458
– ident: e_1_2_2_38_1
  doi: 10.1021/ja036622c
SSID ssj0028806
Score 2.5001705
Snippet Elemental phosphorus displays an impressive number of allotropes with highly diverse chemical and physical properties. White phosphorus has now been filled...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8144
SubjectTerms Allotropy
Atomic structure
Chains (polymeric)
density functional calculations
Electron microscopy
Encapsulation
Exothermic reactions
Nanotechnology
Nanotubes
Phosphorus
Physical properties
Polymerization
Single wall carbon nanotubes
Transmission electron microscopy
Title Encapsulation and Polymerization of White Phosphorus Inside Single‐Wall Carbon Nanotubes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201703585
https://www.ncbi.nlm.nih.gov/pubmed/28520181
https://www.proquest.com/docview/1913589546
https://www.proquest.com/docview/1900126939
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1521-3773
  dateEnd: 20240930
  omitProxy: true
  ssIdentifier: ssj0028806
  issn: 1433-7851
  databaseCode: ABDBF
  dateStart: 20120604
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1433-7851
  databaseCode: DR2
  dateStart: 19980101
  customDbUrl:
  isFulltext: true
  eissn: 1521-3773
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028806
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hXsqF9yO0RUZC4pQ2sWNnfaxWW7UcqgqoVHGJ_IoqsUqqzeYAJ34Cv7G_hJl4E1gQQoJboowTxx7b39gz3wC89jqzpeeUgFhnaRGcSHUZZqnSOXGFeMr1QN4W5-r0snh7Ja9-iuKP_BDThhuNjGG-pgFubHf0gzSUIrDJNQtVFiEvTsK5kMM57buJP4qjcsbwIiFSykI_sjZm_Gi7-Paq9BvU3Eauw9Jzch_MWOnocfLpsF_bQ_flFz7H__mrB3Bvg0vZcVSkh3AnNI9gdz6mg3sMHxeNM2hSR985ZhrPLtrlZzrwiZGcrK3ZkG6PXVy33c11u-o7djakA2XvcYFchtuv32jfns3NyqI8TuzturehewKXJ4sP89N0k5ghdUWpZCqlcdbl1pjSiiygEa1yZ4XnwQSEjzNXC8GNzpR3NUKAkIk6x3nDKyVNjvhNPIWdpm3Cc2DC5xTKW5YZmprkT5Y5H4S0xUzX-DabQDp2TOU2rOWUPGNZRb5lXlGLVVOLJfBmkr-JfB1_lNwf-7najNuuQusVn2lZqAReTY-xpekYxTSh7UmGMKLSQifwLOrH9Ck-k5wo0BLgQy__pQ7V8fnZYrp78S-F9uAuXQ8exGIfdtarPhwgTlrbl8NY-A7-kwkx
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOZQL70eggJGQOKVN7MRZH6tlq10oqwpaCXGJ_IoqsUqq3c2hPfET-I38EmbiTdCCEBIck4wTx_bY39gz3wC8cioxheOUgFglceatiFXhR7FUKXGFOMr1QN4Wczk9y95-yntvQoqFCfwQw4YbaUY3X5OC04b0wU_WUArBJt8sHLOIea_DDTqkI91882FgkOI4PEOAkRAx5aHveRsTfrBdfntd-g1sbmPXbvE5ug2mr3bwOfmy367Nvr36hdHxv_7rDtzaQFN2GMbSXbjm63uwO-4zwt2Hz5PaarSqg_sc07VjJ83iks58QjAnayrWZdxjJ-fN6uK8WbYrNusygrKPuEYu_Pev32jrno310qA8zu3NujV-9QDOjian42m8yc0Q26yQeZzn2hqbGq0LIxKPdrRMrRGOe-0RQY5sJQTXKpHOVogCfCKqFKcOJ2WuU4Rw4iHs1E3tHwMTLqVo3qJI0Nokl7LEOi9yk41UhW8zEcR9z5R2Q1xO-TMWZaBc5iW1WDm0WASvB_mLQNnxR8m9vqPLjequSjRg8ZnKMxnBy-ExtjSdpOjaNy3JEEyUSqgIHoUBMnyKj3JOLGgR8K6b_1KH8nA-mwxXT_6l0AvYnZ6-Py6PZ_N3T-Em3e8cisUe7KyXrX-GsGltnneK8QOSGg1N
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BkYBLy18htICRkDilTeLEWR-rZVddQKsVUKniEvkvqsQqWe1uDu2pj8Az8iTMxJvAghASHJOME8ce29_YM98AvLIy0rlNKAGxjMLUGR7K3A1CIWPiCrGU64G8Labi9Cx9e56d_xTF7_kh-g03GhntfE0DfGHL4x-koRSBTa5ZqLIIeW_CrVSgiUWw6ENPIJWgdvr4Is5DSkPf0TZGyfF2-e1l6TesuQ1d27VnvAeqq7V3Ofly1Kz1kbn6hdDxf37rHuxugCk78Zp0H2646gHcGXb54B7C51FlFNrU3nmOqcqyWT2_pBMfH8rJ6pK1-fbY7KJeLS7qZbNikzYfKPuIK-Tcfbv-Shv3bKiWGuVxZq_XjXarR3A2Hn0anoabzAyhSXORhVmmjDaxVirXPHJoRYvYaG4Tpxzix4EpOU-UjIQ1JWIAF_EyxonDCpGpGAEc34edqq7cE2DcxhTLm-cR2prkUBYZ63im04Es8W06gLDrmMJsaMspe8a88ITLSUEtVvQtFsDrXn7hCTv-KHnY9XOxGbirAs1XfCazVATwsn-MLU3nKKpydUMyBBKF5DKAx14_-k8lgywhDrQAkraX_1KH4mQ6GfVXT_-l0Au4PXszLt5Ppu8O4C7dbr2J-SHsrJeNe4aYaa2ft8PiO1pFC_w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Encapsulation+and+Polymerization+of+White+Phosphorus+Inside+Single-Wall+Carbon+Nanotubes&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Hart%2C+Martin&rft.au=White%2C+Edward+R&rft.au=Chen%2C+Ji&rft.au=McGilvery%2C+Catriona+M&rft.date=2017-07-03&rft.eissn=1521-3773&rft.volume=56&rft.issue=28&rft.spage=8144&rft_id=info:doi/10.1002%2Fanie.201703585&rft_id=info%3Apmid%2F28520181&rft.externalDocID=28520181
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon