Encapsulation and Polymerization of White Phosphorus Inside Single‐Wall Carbon Nanotubes
Elemental phosphorus displays an impressive number of allotropes with highly diverse chemical and physical properties. White phosphorus has now been filled into single‐wall carbon nanotubes (SWCNTs) from the liquid and thereby stabilized against the highly exothermic reaction with atmospheric oxygen...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 56; no. 28; pp. 8144 - 8148 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
03.07.2017
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
ISSN | 1433-7851 1521-3773 1521-3773 |
DOI | 10.1002/anie.201703585 |
Cover
Abstract | Elemental phosphorus displays an impressive number of allotropes with highly diverse chemical and physical properties. White phosphorus has now been filled into single‐wall carbon nanotubes (SWCNTs) from the liquid and thereby stabilized against the highly exothermic reaction with atmospheric oxygen. The encapsulated tetraphosphorus molecules were visualized with transmission electron microscopy, but found to convert readily into chain structures inside the SWCNT “nanoreactors”. The energies of the possible chain structures were determined computationally, highlighting a delicate balance between the extent of polymerization and the SWCNT diameter. Experimentally, a single‐stranded zig‐zag chain of phosphorus atoms was observed, which is the lowest energy structure at small confinement diameters. These one‐dimensional chains provide a glimpse into the very first steps of the transformation from white to red phosphorus.
Putting peas into a pod: Tetrahedral P4 molecules can be assembled inside single wall carbon nanotubes to give air‐stable constructs. The encapsulated molecules show a tendency to polymerize, giving rise to range of possible chain structures, including a zig‐zag chain of individual atoms. These one‐dimensional allotropes provide the first direct glimpse into the transformation from white to red phosphorus. |
---|---|
AbstractList | Elemental phosphorus displays an impressive number of allotropes with highly diverse chemical and physical properties. White phosphorus has now been filled into single-wall carbon nanotubes (SWCNTs) from the liquid and thereby stabilized against the highly exothermic reaction with atmospheric oxygen. The encapsulated tetraphosphorus molecules were visualized with transmission electron microscopy, but found to convert readily into chain structures inside the SWCNT "nanoreactors". The energies of the possible chain structures were determined computationally, highlighting a delicate balance between the extent of polymerization and the SWCNT diameter. Experimentally, a single-stranded zig-zag chain of phosphorus atoms was observed, which is the lowest energy structure at small confinement diameters. These one-dimensional chains provide a glimpse into the very first steps of the transformation from white to red phosphorus.Elemental phosphorus displays an impressive number of allotropes with highly diverse chemical and physical properties. White phosphorus has now been filled into single-wall carbon nanotubes (SWCNTs) from the liquid and thereby stabilized against the highly exothermic reaction with atmospheric oxygen. The encapsulated tetraphosphorus molecules were visualized with transmission electron microscopy, but found to convert readily into chain structures inside the SWCNT "nanoreactors". The energies of the possible chain structures were determined computationally, highlighting a delicate balance between the extent of polymerization and the SWCNT diameter. Experimentally, a single-stranded zig-zag chain of phosphorus atoms was observed, which is the lowest energy structure at small confinement diameters. These one-dimensional chains provide a glimpse into the very first steps of the transformation from white to red phosphorus. Elemental phosphorus displays an impressive number of allotropes with highly diverse chemical and physical properties. White phosphorus has now been filled into single-wall carbon nanotubes (SWCNTs) from the liquid and thereby stabilized against the highly exothermic reaction with atmospheric oxygen. The encapsulated tetraphosphorus molecules were visualized with transmission electron microscopy, but found to convert readily into chain structures inside the SWCNT "nanoreactors". The energies of the possible chain structures were determined computationally, highlighting a delicate balance between the extent of polymerization and the SWCNT diameter. Experimentally, a single-stranded zig-zag chain of phosphorus atoms was observed, which is the lowest energy structure at small confinement diameters. These one-dimensional chains provide a glimpse into the very first steps of the transformation from white to red phosphorus. Elemental phosphorus displays an impressive number of allotropes with highly diverse chemical and physical properties. White phosphorus has now been filled into single‐wall carbon nanotubes (SWCNTs) from the liquid and thereby stabilized against the highly exothermic reaction with atmospheric oxygen. The encapsulated tetraphosphorus molecules were visualized with transmission electron microscopy, but found to convert readily into chain structures inside the SWCNT “nanoreactors”. The energies of the possible chain structures were determined computationally, highlighting a delicate balance between the extent of polymerization and the SWCNT diameter. Experimentally, a single‐stranded zig‐zag chain of phosphorus atoms was observed, which is the lowest energy structure at small confinement diameters. These one‐dimensional chains provide a glimpse into the very first steps of the transformation from white to red phosphorus. Putting peas into a pod: Tetrahedral P4 molecules can be assembled inside single wall carbon nanotubes to give air‐stable constructs. The encapsulated molecules show a tendency to polymerize, giving rise to range of possible chain structures, including a zig‐zag chain of individual atoms. These one‐dimensional allotropes provide the first direct glimpse into the transformation from white to red phosphorus. |
Author | Shaffer, Milo S. P. White, Edward R. Salzmann, Christoph G. Chen, Ji Sella, Andrea Pickard, Chris J. McGilvery, Catriona M. Michaelides, Angelos Hart, Martin |
Author_xml | – sequence: 1 givenname: Martin surname: Hart fullname: Hart, Martin organization: University College London – sequence: 2 givenname: Edward R. surname: White fullname: White, Edward R. organization: Imperial College London – sequence: 3 givenname: Ji surname: Chen fullname: Chen, Ji organization: University College London – sequence: 4 givenname: Catriona M. surname: McGilvery fullname: McGilvery, Catriona M. organization: Imperial College London – sequence: 5 givenname: Chris J. orcidid: 0000-0002-9684-5432 surname: Pickard fullname: Pickard, Chris J. organization: University of Cambridge – sequence: 6 givenname: Angelos surname: Michaelides fullname: Michaelides, Angelos organization: University College London – sequence: 7 givenname: Andrea surname: Sella fullname: Sella, Andrea organization: University College London – sequence: 8 givenname: Milo S. P. surname: Shaffer fullname: Shaffer, Milo S. P. organization: Imperial College London – sequence: 9 givenname: Christoph G. orcidid: 0000-0002-0714-7342 surname: Salzmann fullname: Salzmann, Christoph G. email: c.salzmann@ucl.ac.uk organization: University College London |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28520181$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctq3DAUhkVJaC7ttsti6KYbT3WxbHkZhmk6ENJAWwLdiGP5uKOgkaaSTZis8gh5xj5JlU7SQKB0dcTh-w7i_4_Ing8eCXnD6IxRyj-AtzjjlDVUSCVfkEMmOStF04i9_K6EKBsl2QE5Sukq80rR-iU54EpmR7FD8n3hDWzS5GC0wRfg--IiuO0ao73ZrcJQXK7siMXFKqTNKsQpFUufbI_FF-t_OPx1e3cJzhVziF3mz8GHceowvSL7A7iErx_mMfn2cfF1_qk8-3y6nJ-claZqallKCaYzrANoOkFRKVUz04meI6AUQplBCA4trXsz8IojFQPjXPZ1LYFVXIhj8n53dxPDzwnTqNc2GXQOPIYpadZSynjdijaj756hV2GKPv8uUywn2MqqztTbB2rq1tjrTbRriFv9mFoGqh1gYkgp4qCNHf-kNUawTjOq78vR9-Xov-VkbfZMe7z8T6HdCdfW4fY_tD45Xy6e3N8BNqI7 |
CitedBy_id | crossref_primary_10_1016_j_ica_2019_04_004 crossref_primary_10_1021_acs_nanolett_9b04741 crossref_primary_10_1021_acsanm_2c05266 crossref_primary_10_1039_D1NR06530K crossref_primary_10_1021_acsnano_1c11349 crossref_primary_10_1002_ange_201708246 crossref_primary_10_1039_D0NH00506A crossref_primary_10_1134_S0022476623040133 crossref_primary_10_1002_ange_201705258 crossref_primary_10_1002_anie_201811152 crossref_primary_10_1021_jacs_4c09102 crossref_primary_10_1002_adfm_201900233 crossref_primary_10_1002_smll_202105866 crossref_primary_10_1186_s40580_024_00460_3 crossref_primary_10_1007_s00339_019_2626_5 crossref_primary_10_31857_S2686953523600022 crossref_primary_10_1039_D2CS01018F crossref_primary_10_1021_acsnano_9b04898 crossref_primary_10_1002_anie_202005031 crossref_primary_10_1002_anie_201805856 crossref_primary_10_1021_acs_jpcc_2c03017 crossref_primary_10_1103_PhysRevB_109_195413 crossref_primary_10_1246_cl_210644 crossref_primary_10_1002_anie_201902534 crossref_primary_10_1016_j_dyepig_2018_09_057 crossref_primary_10_1002_ange_201902534 crossref_primary_10_1002_anie_201705258 crossref_primary_10_1016_j_apmt_2021_101345 crossref_primary_10_1002_anie_201708246 crossref_primary_10_1002_ange_201811152 crossref_primary_10_3390_nano13020314 crossref_primary_10_7498_aps_71_20220035 crossref_primary_10_1016_j_rinp_2021_104960 crossref_primary_10_1002_ange_202005031 crossref_primary_10_1021_acsami_3c12660 crossref_primary_10_1002_aenm_202000288 crossref_primary_10_1002_anie_202503979 crossref_primary_10_1021_acs_chemrev_2c00155 crossref_primary_10_1039_C8CP07159D crossref_primary_10_1002_anie_202016257 crossref_primary_10_1021_acs_jpcc_0c02079 crossref_primary_10_1016_j_chemosphere_2021_129793 crossref_primary_10_1038_s41467_020_16077_z crossref_primary_10_1002_chem_201703876 crossref_primary_10_1021_acsnano_7b08778 crossref_primary_10_1002_adfm_202411472 crossref_primary_10_1002_aenm_201702267 crossref_primary_10_1021_acs_jpca_9b05315 crossref_primary_10_1002_celc_202300706 crossref_primary_10_1016_j_ceramint_2022_05_352 crossref_primary_10_1002_ange_202307102 crossref_primary_10_1016_j_carbon_2021_12_079 crossref_primary_10_1016_j_carbon_2018_10_006 crossref_primary_10_1134_S0022476624020112 crossref_primary_10_1039_D3CP00059A crossref_primary_10_1021_acs_nanolett_9b00133 crossref_primary_10_1134_S0012500823600670 crossref_primary_10_1021_acsnanoscienceau_1c00023 crossref_primary_10_1039_C7NR07054C crossref_primary_10_2139_ssrn_3936388 crossref_primary_10_1002_ange_202016257 crossref_primary_10_1021_acsnano_3c05819 crossref_primary_10_1002_ange_202503979 crossref_primary_10_1039_D1CP02636D crossref_primary_10_1021_acs_langmuir_2c03234 crossref_primary_10_1039_D2NR06696C crossref_primary_10_1039_D0NR01748E crossref_primary_10_1002_cctc_202200685 crossref_primary_10_1039_D3CS00467H crossref_primary_10_1002_adma_202107515 crossref_primary_10_1021_acs_inorgchem_9b02190 crossref_primary_10_3390_nano13040640 crossref_primary_10_1002_ange_201805856 crossref_primary_10_1038_s41524_020_00420_5 crossref_primary_10_1002_anie_202307102 crossref_primary_10_1021_acsnano_1c03705 |
Cites_doi | 10.1002/cber.19971300911 10.1063/1.4868132 10.1002/ange.200805222 10.1002/anie.198510561 10.1039/tf9625801916 10.1002/anie.199113531 10.1063/1.1700191 10.1002/ange.201608615 10.1021/acs.nanolett.6b01459 10.1002/ange.200503017 10.1088/0953-8984/23/5/053201 10.1021/nn501226z 10.1002/ange.201504904 10.1016/j.ccr.2010.12.016 10.1038/ncomms3162 10.1038/nmat2290 10.1126/science.1175313 10.1038/170629a0 10.1002/anie.201608615 10.1021/jacs.7b01890 10.1103/PhysRevLett.84.4621 10.1002/anie.200503017 10.1126/science.289.5483.1324 10.1038/nmat4617 10.1002/ange.19850971211 10.1021/cr000039m 10.1002/anie.201504904 10.1002/anie.201611740 10.1038/nnano.2014.35 10.1002/andp.18652021002 10.1002/adfm.201502902 10.1021/acs.nanolett.5b05068 10.1002/anie.200460244 10.1063/1.1329672 10.1021/nn4019703 10.1039/c3ra20847h 10.1021/jacs.6b03633 10.1002/ange.201306146 10.1039/J19700002071 10.1002/ange.201611740 10.1002/anie.200805222 10.1088/2053-1583/1/2/025001 10.1002/ange.200460244 10.1002/ange.19911031043 10.1063/1.1749671 10.1002/anie.201306146 10.1021/jp906056n 10.1021/acsnano.5b02599 10.1038/ncomms5458 10.1021/ja036622c |
ContentType | Journal Article |
Copyright | 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.201703585 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 8148 |
ExternalDocumentID | 28520181 10_1002_anie_201703585 ANIE201703585 |
Genre | shortCommunication Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: European Research Council funderid: 616121 – fundername: Royal Society funderid: UF150665; Wolfson Research Merit Award – fundername: Engineering and Physical Sciences Research Council funderid: Advanced Characterization of Materials CDT; EP/P022596/; EP/P022103/1 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AETEA AEYWJ AGHNM AGYGG CITATION NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4765-55acbc1baa7b30e88861cb3d2eae5338cf332a906dcf242e03f1225d665a14233 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 09:28:18 EDT 2025 Fri Jul 25 10:17:49 EDT 2025 Wed Feb 19 02:32:21 EST 2025 Tue Jul 01 02:26:02 EDT 2025 Thu Apr 24 23:12:55 EDT 2025 Wed Jan 22 16:20:12 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 28 |
Keywords | density functional calculations nanotubes polymerization allotropy phosphorus |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4765-55acbc1baa7b30e88861cb3d2eae5338cf332a906dcf242e03f1225d665a14233 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9684-5432 0000-0002-0714-7342 |
PMID | 28520181 |
PQID | 1913589546 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_1900126939 proquest_journals_1913589546 pubmed_primary_28520181 crossref_citationtrail_10_1002_anie_201703585 crossref_primary_10_1002_anie_201703585 wiley_primary_10_1002_anie_201703585_ANIE201703585 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 3, 2017 |
PublicationDateYYYYMMDD | 2017-07-03 |
PublicationDate_xml | – month: 07 year: 2017 text: July 3, 2017 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1865; 202 2004 2004; 43 116 2013; 3 2013; 4 1952; 170 2000; 113 2009 2009; 48 121 1997; 130 1985 1985; 24 97 2008; 7 1962; 58 2009; 113 1970 2017 2017; 56 129 2013; 7 2015; 9 2016; 16 2016; 15 2011; 255 2013 2013; 52 125 2017; 139 2014; 1 1952; 20 1991 1991; 30 103 2015; 25 2014; 5 2016 2016; 55 128 2000; 289 2002; 102 2000; 84 2015 2015; 54 127 2005 2005; 44 117 2016; 138 2011; 23 2014; 9 2014; 8 1935; 3 2003; 125 2014; 104 2009; 324 e_1_2_2_4_2 e_1_2_2_22_3 e_1_2_2_24_1 e_1_2_2_6_1 e_1_2_2_22_2 e_1_2_2_49_2 e_1_2_2_49_3 e_1_2_2_20_1 e_1_2_2_2_2 e_1_2_2_41_1 e_1_2_2_28_3 e_1_2_2_8_2 e_1_2_2_28_2 e_1_2_2_43_2 e_1_2_2_45_1 e_1_2_2_26_1 e_1_2_2_47_1 e_1_2_2_13_2 e_1_2_2_36_2 e_1_2_2_36_3 e_1_2_2_38_1 e_1_2_2_11_1 e_1_2_2_51_2 e_1_2_2_30_1 e_1_2_2_19_2 e_1_2_2_51_3 e_1_2_2_32_2 e_1_2_2_17_1 e_1_2_2_15_2 e_1_2_2_34_2 e_1_2_2_3_2 e_1_2_2_25_1 e_1_2_2_23_2 e_1_2_2_48_2 e_1_2_2_5_2 e_1_2_2_21_3 e_1_2_2_23_1 e_1_2_2_48_3 e_1_2_2_21_2 e_1_2_2_1_1 e_1_2_2_40_1 e_1_2_2_29_2 e_1_2_2_42_2 e_1_2_2_7_2 e_1_2_2_9_1 e_1_2_2_44_1 e_1_2_2_27_2 e_1_2_2_46_1 e_1_2_2_14_1 e_1_2_2_37_1 e_1_2_2_12_2 e_1_2_2_39_1 e_1_2_2_10_2 e_1_2_2_10_1 e_1_2_2_50_2 e_1_2_2_18_2 e_1_2_2_31_2 e_1_2_2_16_2 e_1_2_2_33_2 e_1_2_2_35_2 |
References_xml | – volume: 1 start-page: 025001 year: 2014 publication-title: 2D Mater. – volume: 4 start-page: 2162 year: 2013 publication-title: Nat. Commun. – volume: 43 116 start-page: 4228 4324 year: 2004 2004 end-page: 4231 4327 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 113 start-page: 9901 year: 2000 end-page: 9904 publication-title: J. Chem. Phys. – volume: 16 start-page: 4903 year: 2016 end-page: 4908 publication-title: Nano Lett. – volume: 23 start-page: 053201 year: 2011 publication-title: J. Phys. Condens. Matter – volume: 255 start-page: 1342 year: 2011 end-page: 1359 publication-title: Coord. Chem. Rev. – volume: 7 start-page: 5607 year: 2013 end-page: 5613 publication-title: ACS Nano – volume: 44 117 start-page: 7616 7788 year: 2005 2005 end-page: 7619 7792 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 55 128 start-page: 14798 15018 year: 2016 2016 end-page: 14801 15021 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 113 start-page: 15099 year: 2009 end-page: 15101 publication-title: J. Phys. Chem. C – volume: 139 start-page: 5946 year: 2017 end-page: 5951 publication-title: J. Am. Chem. Soc. – volume: 84 start-page: 4621 year: 2000 end-page: 4624 publication-title: Phys. Rev. Lett. – volume: 7 start-page: 890 year: 2008 end-page: 899 publication-title: Nat. Mater. – volume: 20 start-page: 29 year: 1952 end-page: 34 publication-title: J. Chem. Phys. – volume: 52 125 start-page: 10896 11097 year: 2013 2013 end-page: 10899 11100 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 130 start-page: 1235 year: 1997 end-page: 1240 publication-title: Chem. Ber. – volume: 3 start-page: 5577 year: 2013 end-page: 5582 publication-title: RSC Adv. – volume: 25 start-page: 6996 year: 2015 end-page: 7002 publication-title: Adv. Funct. Mater. – volume: 58 start-page: 1916 year: 1962 end-page: 1925 publication-title: Trans. Faraday Soc. – volume: 138 start-page: 8175 year: 2016 end-page: 8183 publication-title: J. Am. Chem. Soc. – volume: 56 129 start-page: 1850 1876 year: 2017 2017 end-page: 1854 1880 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 324 start-page: 1697 year: 2009 end-page: 1699 publication-title: Science – start-page: 2071 year: 1970 end-page: 2074 publication-title: J. Chem. Soc. A – volume: 170 start-page: 629 year: 1952 end-page: 629 publication-title: Nature – volume: 54 127 start-page: 10802 10952 year: 2015 2015 end-page: 10806 10956 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 16 start-page: 2975 year: 2016 end-page: 2980 publication-title: Nano Lett. – volume: 125 start-page: 11186 year: 2003 end-page: 11187 publication-title: J. Am. Chem. Soc. – volume: 202 start-page: 193 year: 1865 end-page: 228 publication-title: Ann. Phys. – volume: 104 start-page: 103106 year: 2014 publication-title: Appl. Phys. Lett. – volume: 30 103 start-page: 1353 1403 year: 1991 1991 end-page: 1354 1404 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 5 start-page: 4458 year: 2014 publication-title: Nat. Commun. – volume: 3 start-page: 351 year: 1935 end-page: 355 publication-title: J. Chem. Phys. – volume: 289 start-page: 1324 year: 2000 end-page: 1326 publication-title: Science – volume: 24 97 start-page: 1056 1050 year: 1985 1985 end-page: 1057 1050 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 15 start-page: 634 year: 2016 end-page: 639 publication-title: Nat. Mater. – volume: 48 121 start-page: 3616 3670 year: 2009 2009 end-page: 3621 3675 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 9 start-page: 8869 year: 2015 end-page: 8884 publication-title: ACS Nano – volume: 8 start-page: 4033 year: 2014 end-page: 4041 publication-title: ACS Nano – volume: 9 start-page: 372 year: 2014 end-page: 377 publication-title: Nat. Nanotechnol. – volume: 102 start-page: 4267 year: 2002 end-page: 4302 publication-title: Chem. Rev. – ident: e_1_2_2_13_2 doi: 10.1002/cber.19971300911 – ident: e_1_2_2_4_2 doi: 10.1063/1.4868132 – ident: e_1_2_2_23_2 doi: 10.1002/ange.200805222 – ident: e_1_2_2_48_2 doi: 10.1002/anie.198510561 – ident: e_1_2_2_39_1 doi: 10.1039/tf9625801916 – ident: e_1_2_2_49_2 doi: 10.1002/anie.199113531 – ident: e_1_2_2_45_1 doi: 10.1063/1.1700191 – ident: e_1_2_2_51_3 doi: 10.1002/ange.201608615 – ident: e_1_2_2_9_1 doi: 10.1021/acs.nanolett.6b01459 – ident: e_1_2_2_21_3 doi: 10.1002/ange.200503017 – ident: e_1_2_2_44_1 doi: 10.1088/0953-8984/23/5/053201 – ident: e_1_2_2_2_2 doi: 10.1021/nn501226z – ident: e_1_2_2_36_3 doi: 10.1002/ange.201504904 – ident: e_1_2_2_50_2 doi: 10.1016/j.ccr.2010.12.016 – ident: e_1_2_2_33_2 doi: 10.1038/ncomms3162 – ident: e_1_2_2_16_2 doi: 10.1038/nmat2290 – ident: e_1_2_2_27_2 doi: 10.1126/science.1175313 – ident: e_1_2_2_11_1 – ident: e_1_2_2_12_2 doi: 10.1038/170629a0 – ident: e_1_2_2_51_2 doi: 10.1002/anie.201608615 – ident: e_1_2_2_29_2 doi: 10.1021/jacs.7b01890 – ident: e_1_2_2_31_2 doi: 10.1103/PhysRevLett.84.4621 – ident: e_1_2_2_17_1 – ident: e_1_2_2_14_1 – ident: e_1_2_2_21_2 doi: 10.1002/anie.200503017 – ident: e_1_2_2_32_2 doi: 10.1126/science.289.5483.1324 – ident: e_1_2_2_30_1 – ident: e_1_2_2_35_2 doi: 10.1038/nmat4617 – ident: e_1_2_2_41_1 – ident: e_1_2_2_48_3 doi: 10.1002/ange.19850971211 – ident: e_1_2_2_25_1 doi: 10.1021/cr000039m – ident: e_1_2_2_6_1 – ident: e_1_2_2_36_2 doi: 10.1002/anie.201504904 – ident: e_1_2_2_10_1 doi: 10.1002/anie.201611740 – ident: e_1_2_2_3_2 doi: 10.1038/nnano.2014.35 – ident: e_1_2_2_47_1 – ident: e_1_2_2_18_2 doi: 10.1002/andp.18652021002 – ident: e_1_2_2_8_2 doi: 10.1002/adfm.201502902 – ident: e_1_2_2_19_2 doi: 10.1021/acs.nanolett.5b05068 – ident: e_1_2_2_1_1 – ident: e_1_2_2_22_2 doi: 10.1002/anie.200460244 – ident: e_1_2_2_46_1 doi: 10.1063/1.1329672 – ident: e_1_2_2_34_2 doi: 10.1021/nn4019703 – ident: e_1_2_2_43_2 doi: 10.1039/c3ra20847h – ident: e_1_2_2_37_1 doi: 10.1021/jacs.6b03633 – ident: e_1_2_2_28_3 doi: 10.1002/ange.201306146 – ident: e_1_2_2_20_1 – ident: e_1_2_2_40_1 doi: 10.1039/J19700002071 – ident: e_1_2_2_10_2 doi: 10.1002/ange.201611740 – ident: e_1_2_2_23_1 doi: 10.1002/anie.200805222 – ident: e_1_2_2_5_2 doi: 10.1088/2053-1583/1/2/025001 – ident: e_1_2_2_26_1 – ident: e_1_2_2_22_3 doi: 10.1002/ange.200460244 – ident: e_1_2_2_49_3 doi: 10.1002/ange.19911031043 – ident: e_1_2_2_15_2 doi: 10.1063/1.1749671 – ident: e_1_2_2_28_2 doi: 10.1002/anie.201306146 – ident: e_1_2_2_42_2 doi: 10.1021/jp906056n – ident: e_1_2_2_24_1 doi: 10.1021/acsnano.5b02599 – ident: e_1_2_2_7_2 doi: 10.1038/ncomms5458 – ident: e_1_2_2_38_1 doi: 10.1021/ja036622c |
SSID | ssj0028806 |
Score | 2.5001705 |
Snippet | Elemental phosphorus displays an impressive number of allotropes with highly diverse chemical and physical properties. White phosphorus has now been filled... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8144 |
SubjectTerms | Allotropy Atomic structure Chains (polymeric) density functional calculations Electron microscopy Encapsulation Exothermic reactions Nanotechnology Nanotubes Phosphorus Physical properties Polymerization Single wall carbon nanotubes Transmission electron microscopy |
Title | Encapsulation and Polymerization of White Phosphorus Inside Single‐Wall Carbon Nanotubes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201703585 https://www.ncbi.nlm.nih.gov/pubmed/28520181 https://www.proquest.com/docview/1913589546 https://www.proquest.com/docview/1900126939 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1521-3773 dateEnd: 20240930 omitProxy: true ssIdentifier: ssj0028806 issn: 1433-7851 databaseCode: ABDBF dateStart: 20120604 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1433-7851 databaseCode: DR2 dateStart: 19980101 customDbUrl: isFulltext: true eissn: 1521-3773 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028806 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hXsqF9yO0RUZC4pQ2sWNnfaxWW7UcqgqoVHGJ_IoqsUqqzeYAJ34Cv7G_hJl4E1gQQoJboowTxx7b39gz3wC89jqzpeeUgFhnaRGcSHUZZqnSOXGFeMr1QN4W5-r0snh7Ja9-iuKP_BDThhuNjGG-pgFubHf0gzSUIrDJNQtVFiEvTsK5kMM57buJP4qjcsbwIiFSykI_sjZm_Gi7-Paq9BvU3Eauw9Jzch_MWOnocfLpsF_bQ_flFz7H__mrB3Bvg0vZcVSkh3AnNI9gdz6mg3sMHxeNM2hSR985ZhrPLtrlZzrwiZGcrK3ZkG6PXVy33c11u-o7djakA2XvcYFchtuv32jfns3NyqI8TuzturehewKXJ4sP89N0k5ghdUWpZCqlcdbl1pjSiiygEa1yZ4XnwQSEjzNXC8GNzpR3NUKAkIk6x3nDKyVNjvhNPIWdpm3Cc2DC5xTKW5YZmprkT5Y5H4S0xUzX-DabQDp2TOU2rOWUPGNZRb5lXlGLVVOLJfBmkr-JfB1_lNwf-7najNuuQusVn2lZqAReTY-xpekYxTSh7UmGMKLSQifwLOrH9Ck-k5wo0BLgQy__pQ7V8fnZYrp78S-F9uAuXQ8exGIfdtarPhwgTlrbl8NY-A7-kwkx |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOZQL70eggJGQOKVN7MRZH6tlq10oqwpaCXGJ_IoqsUqq3c2hPfET-I38EmbiTdCCEBIck4wTx_bY39gz3wC8cioxheOUgFglceatiFXhR7FUKXGFOMr1QN4Wczk9y95-yntvQoqFCfwQw4YbaUY3X5OC04b0wU_WUArBJt8sHLOIea_DDTqkI91882FgkOI4PEOAkRAx5aHveRsTfrBdfntd-g1sbmPXbvE5ug2mr3bwOfmy367Nvr36hdHxv_7rDtzaQFN2GMbSXbjm63uwO-4zwt2Hz5PaarSqg_sc07VjJ83iks58QjAnayrWZdxjJ-fN6uK8WbYrNusygrKPuEYu_Pev32jrno310qA8zu3NujV-9QDOjian42m8yc0Q26yQeZzn2hqbGq0LIxKPdrRMrRGOe-0RQY5sJQTXKpHOVogCfCKqFKcOJ2WuU4Rw4iHs1E3tHwMTLqVo3qJI0Nokl7LEOi9yk41UhW8zEcR9z5R2Q1xO-TMWZaBc5iW1WDm0WASvB_mLQNnxR8m9vqPLjequSjRg8ZnKMxnBy-ExtjSdpOjaNy3JEEyUSqgIHoUBMnyKj3JOLGgR8K6b_1KH8nA-mwxXT_6l0AvYnZ6-Py6PZ_N3T-Em3e8cisUe7KyXrX-GsGltnneK8QOSGg1N |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BkYBLy18htICRkDilTeLEWR-rZVddQKsVUKniEvkvqsQqWe1uDu2pj8Az8iTMxJvAghASHJOME8ce29_YM98AvLIy0rlNKAGxjMLUGR7K3A1CIWPiCrGU64G8Labi9Cx9e56d_xTF7_kh-g03GhntfE0DfGHL4x-koRSBTa5ZqLIIeW_CrVSgiUWw6ENPIJWgdvr4Is5DSkPf0TZGyfF2-e1l6TesuQ1d27VnvAeqq7V3Ofly1Kz1kbn6hdDxf37rHuxugCk78Zp0H2646gHcGXb54B7C51FlFNrU3nmOqcqyWT2_pBMfH8rJ6pK1-fbY7KJeLS7qZbNikzYfKPuIK-Tcfbv-Shv3bKiWGuVxZq_XjXarR3A2Hn0anoabzAyhSXORhVmmjDaxVirXPHJoRYvYaG4Tpxzix4EpOU-UjIQ1JWIAF_EyxonDCpGpGAEc34edqq7cE2DcxhTLm-cR2prkUBYZ63im04Es8W06gLDrmMJsaMspe8a88ITLSUEtVvQtFsDrXn7hCTv-KHnY9XOxGbirAs1XfCazVATwsn-MLU3nKKpydUMyBBKF5DKAx14_-k8lgywhDrQAkraX_1KH4mQ6GfVXT_-l0Au4PXszLt5Ppu8O4C7dbr2J-SHsrJeNe4aYaa2ft8PiO1pFC_w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Encapsulation+and+Polymerization+of+White+Phosphorus+Inside+Single-Wall+Carbon+Nanotubes&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Hart%2C+Martin&rft.au=White%2C+Edward+R&rft.au=Chen%2C+Ji&rft.au=McGilvery%2C+Catriona+M&rft.date=2017-07-03&rft.eissn=1521-3773&rft.volume=56&rft.issue=28&rft.spage=8144&rft_id=info:doi/10.1002%2Fanie.201703585&rft_id=info%3Apmid%2F28520181&rft.externalDocID=28520181 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |