COVID‐19 patient diagnosis and treatment data mining algorithm based on association rules

Association rules are used in different data mining applications, including Web mining, intrusion detection, and bioinformatics. This study mainly discusses the COVID‐19 patient diagnosis and treatment data mining algorithm based on association rules. General data The key time interval during the ma...

Full description

Saved in:
Bibliographic Details
Published inExpert systems Vol. 40; no. 4; pp. e12814 - n/a
Main Authors Shan, Zicheng, Miao, Wei
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.05.2023
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN0266-4720
1468-0394
1468-0394
DOI10.1111/exsy.12814

Cover

Abstract Association rules are used in different data mining applications, including Web mining, intrusion detection, and bioinformatics. This study mainly discusses the COVID‐19 patient diagnosis and treatment data mining algorithm based on association rules. General data The key time interval during the main diagnosis and treatment process (including onset to dyspnea, first diagnosis, admission, mechanical ventilation, death, and the time from first diagnosis to admission, etc.), the cause of death by laboratory examination, and so forth. The frequency of drug use was counted and association rule algorithm was used to analyse and study the effect of drug treatment. The results could provide reference for rational drug use in COVID‐19 patients. In this study, in order to improve the efficiency of data mining in data processing, it is necessary to pre‐process these data. Secondly, in the application of this data mining, the main objective is to extract association rules of COVID‐19 complications. So its properties for mining should be various diseases. Therefore, it is necessary to classify individual disease types. During the construction of association rules database, the data in the data warehouse is analysed online and the association rules data mining is analysed. The results are stored in the knowledge base for decision support. For example, the prediction results of the decision tree can be displayed at this level. After the construction of the mining model, the display interface can be mined, and the decision‐maker can input the corresponding attribute value and then predict it. 0.76% of people had both COVID‐19, CHD and hypertension, while 46.5% of people with COVID‐19 and CHD were likely to have hypertension. This study is helpful to analyse the imaging factors of COVID‐19 disease.
AbstractList Association rules are used in different data mining applications, including Web mining, intrusion detection, and bioinformatics. This study mainly discusses the COVID-19 patient diagnosis and treatment data mining algorithm based on association rules. General data The key time interval during the main diagnosis and treatment process (including onset to dyspnea, first diagnosis, admission, mechanical ventilation, death, and the time from first diagnosis to admission, etc.), the cause of death by laboratory examination, and so forth. The frequency of drug use was counted and association rule algorithm was used to analyse and study the effect of drug treatment. The results could provide reference for rational drug use in COVID-19 patients. In this study, in order to improve the efficiency of data mining in data processing, it is necessary to pre-process these data. Secondly, in the application of this data mining, the main objective is to extract association rules of COVID-19 complications. So its properties for mining should be various diseases. Therefore, it is necessary to classify individual disease types. During the construction of association rules database, the data in the data warehouse is analysed online and the association rules data mining is analysed. The results are stored in the knowledge base for decision support. For example, the prediction results of the decision tree can be displayed at this level. After the construction of the mining model, the display interface can be mined, and the decision-maker can input the corresponding attribute value and then predict it. 0.76% of people had both COVID-19, CHD and hypertension, while 46.5% of people with COVID-19 and CHD were likely to have hypertension. This study is helpful to analyse the imaging factors of COVID-19 disease.Association rules are used in different data mining applications, including Web mining, intrusion detection, and bioinformatics. This study mainly discusses the COVID-19 patient diagnosis and treatment data mining algorithm based on association rules. General data The key time interval during the main diagnosis and treatment process (including onset to dyspnea, first diagnosis, admission, mechanical ventilation, death, and the time from first diagnosis to admission, etc.), the cause of death by laboratory examination, and so forth. The frequency of drug use was counted and association rule algorithm was used to analyse and study the effect of drug treatment. The results could provide reference for rational drug use in COVID-19 patients. In this study, in order to improve the efficiency of data mining in data processing, it is necessary to pre-process these data. Secondly, in the application of this data mining, the main objective is to extract association rules of COVID-19 complications. So its properties for mining should be various diseases. Therefore, it is necessary to classify individual disease types. During the construction of association rules database, the data in the data warehouse is analysed online and the association rules data mining is analysed. The results are stored in the knowledge base for decision support. For example, the prediction results of the decision tree can be displayed at this level. After the construction of the mining model, the display interface can be mined, and the decision-maker can input the corresponding attribute value and then predict it. 0.76% of people had both COVID-19, CHD and hypertension, while 46.5% of people with COVID-19 and CHD were likely to have hypertension. This study is helpful to analyse the imaging factors of COVID-19 disease.
Association rules are used in different data mining applications, including Web mining, intrusion detection, and bioinformatics. This study mainly discusses the COVID‐19 patient diagnosis and treatment data mining algorithm based on association rules. General data The key time interval during the main diagnosis and treatment process (including onset to dyspnea, first diagnosis, admission, mechanical ventilation, death, and the time from first diagnosis to admission, etc.), the cause of death by laboratory examination, and so forth. The frequency of drug use was counted and association rule algorithm was used to analyse and study the effect of drug treatment. The results could provide reference for rational drug use in COVID‐19 patients. In this study, in order to improve the efficiency of data mining in data processing, it is necessary to pre‐process these data. Secondly, in the application of this data mining, the main objective is to extract association rules of COVID‐19 complications. So its properties for mining should be various diseases. Therefore, it is necessary to classify individual disease types. During the construction of association rules database, the data in the data warehouse is analysed online and the association rules data mining is analysed. The results are stored in the knowledge base for decision support. For example, the prediction results of the decision tree can be displayed at this level. After the construction of the mining model, the display interface can be mined, and the decision‐maker can input the corresponding attribute value and then predict it. 0.76% of people had both COVID‐19, CHD and hypertension, while 46.5% of people with COVID‐19 and CHD were likely to have hypertension. This study is helpful to analyse the imaging factors of COVID‐19 disease.
Author Shan, Zicheng
Miao, Wei
AuthorAffiliation 1 Artificial Intelligence Research Institute Donghua University Shanghai China
AuthorAffiliation_xml – name: 1 Artificial Intelligence Research Institute Donghua University Shanghai China
Author_xml – sequence: 1
  givenname: Zicheng
  surname: Shan
  fullname: Shan, Zicheng
  email: 271903995@qq.com
  organization: Donghua University
– sequence: 2
  givenname: Wei
  orcidid: 0000-0001-7055-4664
  surname: Miao
  fullname: Miao, Wei
  email: drmiaowei@163.com
  organization: Donghua University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34898798$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAUhS1URKcDGx4ARWKDQCm249jOBgkNBSpV6oIfgVhY144zdZXYg51QZscj8Iw8Ce6k_FWo3ti6_u7RueceoD0fvEXoPsGHJJ-n9mvaHhIqCbuFFoRxWeKqYXtogSnnJRMU76ODlM4xxkQIfgftV0w2UjRygT6tTt8fv_jx7Ttpig2MzvqxaB2sfUguFeDbYowWxmFXhxGKwXnn1wX06xDdeDYUGpJti-ALSCkYlzXyO069TXfR7Q76ZO9d3Uv07uXR29Xr8uT01fHq-UlpmOCsbCsmNKaCaFt1XGvdQAudAAOybjWR2DLaso6SuuaYGNOQ1gpJadXUwECbaomezLqT38D2AvpebaIbIG4VweoyInUZkdpFlOlnM72Z9GBbkyeL8KcjgFP__nh3ptbhi5Kc8boWWeDRlUAMnyebRjW4ZGzfg7dhSopygrGsKKky-vAaeh6m6HMYikqct9SQjC3Rg78d_bbya0sZwDNgYkgp2k4ZN-6CzgZd__8pH19ruTESMsMXrrfbG0h19OHNx7nnJ7jTxUU
CitedBy_id crossref_primary_10_3390_mca28010012
crossref_primary_10_1002_hsr2_1919
crossref_primary_10_1002_jcla_24862
crossref_primary_10_1002_hsr2_1257
crossref_primary_10_3390_ijerph21091164
Cites_doi 10.1111/emip.12115
10.1039/C5RP00144G
10.1080/1331677X.2016.1175729
10.21817/ijet/2018/v10i1/181001303
10.1007/s00521-017-3217-z
10.1007/s00521-020-04742-9
10.1007/s11036-016-0793-6
10.4018/jkss.2011070102
10.1515/ama-2016-0036
10.37418/amsj.9.11.52
10.1007/s11269-017-1589-6
10.1080/10255842.2015.1091887
10.1504/IJDMMM.2010.033535
10.1007/s11947-016-1853-4
10.1007/s10115-018-1206-x
10.14397/jals.2020.54.4.111
10.1002/sec.1442
10.25195/ijci.v42i1.79
10.1049/iet-smt.2015.0169
10.4018/ijkdb.2014010104
ContentType Journal Article
Copyright 2021 John Wiley & Sons Ltd.
2023 John Wiley & Sons, Ltd
Copyright_xml – notice: 2021 John Wiley & Sons Ltd.
– notice: 2023 John Wiley & Sons, Ltd
DBID AAYXX
CITATION
NPM
7SC
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
7X8
5PM
ADTOC
UNPAY
DOI 10.1111/exsy.12814
DatabaseName CrossRef
PubMed
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


PubMed
CrossRef
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitleAlternate Shan and Miao
EISSN 1468-0394
EndPage n/a
ExternalDocumentID 10.1111/exsy.12814
PMC8646557
34898798
10_1111_exsy_12814
EXSY12814
Genre article
Journal Article
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0B8
0R~
10A
1OB
1OC
29G
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6TJ
702
77K
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
9M8
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHC
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEMOZ
AENEX
AEQDE
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AHBTC
AHEFC
AHQJS
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TAE
TH9
TN5
TUS
UB1
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
ZL0
ZZTAW
~02
~IA
~WT
77I
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
NPM
7SC
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c4764-d347b0271be3f6bbb9adaf7aca85db180e42d4f2155601cc91de7822395a4abc3
IEDL.DBID UNPAY
ISSN 0266-4720
1468-0394
IngestDate Sun Oct 26 04:13:37 EDT 2025
Tue Sep 30 16:51:04 EDT 2025
Thu Sep 04 17:45:33 EDT 2025
Tue Aug 19 04:20:40 EDT 2025
Thu Apr 03 07:10:46 EDT 2025
Thu Apr 24 23:11:58 EDT 2025
Wed Oct 01 05:36:40 EDT 2025
Wed Mar 05 09:44:52 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords association rules
data warehouse
COVID‐19 patients
diagnosis treatment data mining
online analytical processing
Language English
License 2021 John Wiley & Sons Ltd.
This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4764-d347b0271be3f6bbb9adaf7aca85db180e42d4f2155601cc91de7822395a4abc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7055-4664
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/exsy.12814
PMID 34898798
PQID 2800399121
PQPubID 32130
PageCount 13
ParticipantIDs unpaywall_primary_10_1111_exsy_12814
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8646557
proquest_miscellaneous_2610083213
proquest_journals_2800399121
pubmed_primary_34898798
crossref_citationtrail_10_1111_exsy_12814
crossref_primary_10_1111_exsy_12814
wiley_primary_10_1111_exsy_12814_EXSY12814
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2023
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: May 2023
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
– name: Hoboken
PublicationTitle Expert systems
PublicationTitleAlternate Expert Syst
PublicationYear 2023
Publisher Blackwell Publishing Ltd
John Wiley and Sons Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley and Sons Inc
References 2017; 1
2017; 2
2017; 4
2016; 19
2019; 31
2019; 32
2017; 22
2019; 59
2019; 14
2016; 10
2016; 30
2020; 33
2016; 70
2020; 32
2020; 54
2016; 17
2016; 14
2016; 35
2017; 95
2017; 31
2019; 60
2017; 10
2020; 9
2016; 42
2018; 96
2016; 29
2018; 10
2016; 8
2016; 46
2016; 9
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
Samantaray S. D. (e_1_2_7_24_1) 2016; 70
e_1_2_7_19_1
e_1_2_7_18_1
Qiang Y. (e_1_2_7_21_1) 2016; 30
e_1_2_7_14_1
e_1_2_7_13_1
Jain D. K. (e_1_2_7_10_1) 2020; 33
e_1_2_7_12_1
e_1_2_7_26_1
e_1_2_7_28_1
e_1_2_7_29_1
Al‐Daher A. H. (e_1_2_7_2_1) 2017; 95
Sumangali K. (e_1_2_7_27_1) 2016; 8
Han B. (e_1_2_7_8_1) 2016; 46
Ma Z. (e_1_2_7_16_1) 2019; 14
Gayathiri P. (e_1_2_7_7_1) 2018; 96
Chinchuluun A. (e_1_2_7_4_1) 2017; 1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
Ma J. (e_1_2_7_15_1) 2016; 14
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
Meng X. (e_1_2_7_17_1) 2019; 60
e_1_2_7_20_1
Jain D. K. (e_1_2_7_11_1) 2019; 32
References_xml – volume: 31
  start-page: 1
  issue: 5
  year: 2017
  end-page: 15
  article-title: Identification of critical flood prone areas in data‐scarce and ungauged regions: A comparison of three data mining models
  publication-title: Water Resources Management
– volume: 10
  start-page: 1
  issue: 4
  year: 2017
  end-page: 9
  article-title: Caballero D, Antequera T. optimization of MRI acquisition and texture analysis to predict Physico‐chemical parameters of loins by data mining
  publication-title: Food & Bioprocess Technology
– volume: 59
  start-page: 167
  issue: 1
  year: 2019
  end-page: 195
  article-title: Expert deduction rules in data mining with association rules: A case study
  publication-title: Knowledge and Information Systems
– volume: 32
  start-page: 16073
  issue: 4
  year: 2020
  end-page: 16089
  article-title: Deep neural learning techniques with long short‐term memory for gesture recognition
  publication-title: Neural Computing and Applications
– volume: 14
  start-page: 1353
  year: 2019
  end-page: 1354
  article-title: A blockchain‐based trusted data management scheme in edge computing
  publication-title: IEEE Transactions on Industrial Informatics
– volume: 33
  start-page: 1
  issue: 3
  year: 2020
  end-page: 14
  article-title: Driver distraction detection using capsule network
  publication-title: Neural Computing and Applications
– volume: 2
  start-page: 14
  issue: 3
  year: 2017
  end-page: 25
  article-title: Association rules evaluation by a hybrid multiple criteria decision method
  publication-title: International Journal of Knowledge & Systems Science
– volume: 1
  start-page: 8
  issue: 1
  year: 2017
  end-page: 12
  article-title: Data mining techniques in agricultural and environmental sciences
  publication-title: International Journal of Agricultural & Environmental Information Systems
– volume: 9
  start-page: 9489
  issue: 11
  year: 2020
  end-page: 9508
  article-title: Selecting, sorting and ranking association rules with multiple criteria using dominance relation
  publication-title: Advances in Mathematics Scientific Journal
– volume: 35
  start-page: 38
  issue: 3
  year: 2016
  end-page: 54
  article-title: An NCME instructional module on data mining methods for classification and regression
  publication-title: Educational Measurement: Issues and Practice
– volume: 2
  start-page: 238
  issue: 3
  year: 2017
  end-page: 251
  article-title: A data mining approach for efficient selection bitmap join index
  publication-title: International Journal of Data Mining Modelling & Management
– volume: 22
  start-page: 1
  issue: 2
  year: 2017
  end-page: 8
  article-title: Comprehensive association rules Mining of Health Examination Data with an extended FP‐growth method
  publication-title: Mobile Networks & Applications
– volume: 96
  start-page: 3047
  issue: 10
  year: 2018
  end-page: 3060
  article-title: Gravitational search algorithm for effective selection of sensitive association rules
  publication-title: Journal of Theoretical and Applied Information Technology
– volume: 29
  start-page: 545
  issue: 1
  year: 2016
  end-page: 558
  article-title: A nonparametric data mining approach for risk prediction in car insurance: A case study from the Montenegrin market
  publication-title: Ekonomska Istraivanja
– volume: 31
  start-page: 2605
  issue: 7
  year: 2019
  end-page: 2619
  article-title: Kotaro, et al. evolving temporal association rules in recommender system
  publication-title: Neural Computing & Applications
– volume: 10
  start-page: 233
  issue: 3
  year: 2016
  end-page: 238
  article-title: Comparative evaluation of the different data mining techniques used for the medical database
  publication-title: Acta Mechanica Et Automatica
– volume: 42
  start-page: 10
  issue: 1
  year: 2016
  end-page: 22
  article-title: Combining the attribute oriented induction and graph visualization to enhancement association rules interpretation
  publication-title: Iraqi Journal for Computers and Informatics
– volume: 17
  start-page: 156
  issue: 1
  year: 2016
  end-page: 171
  article-title: A data mining approach to study the impact of the methodology followed in chemistry lab classes on the weight attributed by the students to the lab work on learning and motivation
  publication-title: Chemistry Education Research and Practice
– volume: 60
  start-page: 262
  issue: 6
  year: 2019
  end-page: 263
  article-title: Efficient method for updating class association rules in dynamic datasets with record deletion
  publication-title: Computing Reviews
– volume: 30
  start-page: 1
  issue: 9–10
  year: 2016
  end-page: 21
  article-title: The impact of hurricane Katrina on urban growth in Louisiana: An analysis using data mining and simulation approaches
  publication-title: International Journal of Geographical Information ence
– volume: 32
  start-page: 1839
  issue: 1
  year: 2019
  end-page: 1856
  article-title: Deep refinement: Capsule network with attention mechanism‐based system for text classification
  publication-title: Neural Computing and Applications
– volume: 95
  start-page: 2973
  issue: 13
  year: 2017
  end-page: 2980
  article-title: A proposed dynamic algorithm for association rules mining in big data
  publication-title: Journal of Theoretical and Applied Information Technology
– volume: 19
  start-page: 1053
  issue: 9–12
  year: 2016
  end-page: 1059
  article-title: Parametric analysis of the biomechanical response of head subjected to the primary blast loading – A data mining approach
  publication-title: Computer Methods in Biomechanics and Biomedical Engineering
– volume: 10
  start-page: 29
  issue: 1
  year: 2018
  end-page: 32
  article-title: A novel predictive data mining technique for predicting Sle using association rules and Kmeans clustering (Armkm)
  publication-title: International Journal of Engineering and Technology
– volume: 70
  start-page: 167
  issue: 2
  year: 2016
  end-page: 172
  article-title: Extracting association rules in spatial databases of agriculture domain for land use planning
  publication-title: Journal of the Indian Society of Agricultural Statistics
– volume: 10
  start-page: 130
  issue: 2
  year: 2016
  end-page: 139
  article-title: Data‐mining‐based fault during power swing identification in power transmission system
  publication-title: Iet ence Measurement & Technology
– volume: 4
  start-page: 42
  issue: 1
  year: 2017
  end-page: 56
  article-title: Biological and medical big data mining
  publication-title: International Journal of Knowledge Discovery in Bioinformatics
– volume: 9
  start-page: 1535
  issue: 11
  year: 2016
  end-page: 1546
  article-title: Efficient paillier cryptoprocessor for privacy‐preserving data mining
  publication-title: Security and Communications Networks
– volume: 8
  start-page: 26222
  issue: 4
  year: 2016
  end-page: 26227
  article-title: Determining association rules on optimized XML document
  publication-title: International Journal of Pharmacy and Technology
– volume: 14
  start-page: 1
  issue: 1
  year: 2016
  end-page: 12
  article-title: Identification of causal factors for the Majiagou landslide using modern data mining methods
  publication-title: Landslides
– volume: 54
  start-page: 111
  issue: 4
  year: 2020
  end-page: 122
  article-title: An analysis of consumers purchasing patterns for fresh food products using association rules
  publication-title: Journal of Agriculture & Life Science
– volume: 46
  start-page: 247
  issue: 3
  year: 2016
  end-page: 252
  article-title: An anomaly detection algorithm for taxis based on trajectory data mining and online real‐time monitoring
  publication-title: Journal of University of ence and Technology of China
– ident: e_1_2_7_26_1
  doi: 10.1111/emip.12115
– ident: e_1_2_7_6_1
  doi: 10.1039/C5RP00144G
– ident: e_1_2_7_13_1
  doi: 10.1080/1331677X.2016.1175729
– volume: 14
  start-page: 1353
  year: 2019
  ident: e_1_2_7_16_1
  article-title: A blockchain‐based trusted data management scheme in edge computing
  publication-title: IEEE Transactions on Industrial Informatics
– ident: e_1_2_7_18_1
  doi: 10.21817/ijet/2018/v10i1/181001303
– ident: e_1_2_7_9_1
  doi: 10.1007/s00521-017-3217-z
– volume: 95
  start-page: 2973
  issue: 13
  year: 2017
  ident: e_1_2_7_2_1
  article-title: A proposed dynamic algorithm for association rules mining in big data
  publication-title: Journal of Theoretical and Applied Information Technology
– volume: 96
  start-page: 3047
  issue: 10
  year: 2018
  ident: e_1_2_7_7_1
  article-title: Gravitational search algorithm for effective selection of sensitive association rules
  publication-title: Journal of Theoretical and Applied Information Technology
– ident: e_1_2_7_12_1
  doi: 10.1007/s00521-020-04742-9
– ident: e_1_2_7_30_1
  doi: 10.1007/s11036-016-0793-6
– volume: 70
  start-page: 167
  issue: 2
  year: 2016
  ident: e_1_2_7_24_1
  article-title: Extracting association rules in spatial databases of agriculture domain for land use planning
  publication-title: Journal of the Indian Society of Agricultural Statistics
– ident: e_1_2_7_32_1
  doi: 10.4018/jkss.2011070102
– volume: 32
  start-page: 1839
  issue: 1
  year: 2019
  ident: e_1_2_7_11_1
  article-title: Deep refinement: Capsule network with attention mechanism‐based system for text classification
  publication-title: Neural Computing and Applications
– volume: 14
  start-page: 1
  issue: 1
  year: 2016
  ident: e_1_2_7_15_1
  article-title: Identification of causal factors for the Majiagou landslide using modern data mining methods
  publication-title: Landslides
– ident: e_1_2_7_14_1
  doi: 10.1515/ama-2016-0036
– ident: e_1_2_7_5_1
  doi: 10.37418/amsj.9.11.52
– ident: e_1_2_7_22_1
  doi: 10.1007/s11269-017-1589-6
– ident: e_1_2_7_33_1
  doi: 10.1080/10255842.2015.1091887
– ident: e_1_2_7_19_1
  doi: 10.1504/IJDMMM.2010.033535
– ident: e_1_2_7_20_1
  doi: 10.1007/s11947-016-1853-4
– volume: 1
  start-page: 8
  issue: 1
  year: 2017
  ident: e_1_2_7_4_1
  article-title: Data mining techniques in agricultural and environmental sciences
  publication-title: International Journal of Agricultural & Environmental Information Systems
– ident: e_1_2_7_23_1
  doi: 10.1007/s10115-018-1206-x
– volume: 8
  start-page: 26222
  issue: 4
  year: 2016
  ident: e_1_2_7_27_1
  article-title: Determining association rules on optimized XML document
  publication-title: International Journal of Pharmacy and Technology
– ident: e_1_2_7_31_1
  doi: 10.14397/jals.2020.54.4.111
– ident: e_1_2_7_25_1
  doi: 10.1002/sec.1442
– ident: e_1_2_7_3_1
  doi: 10.25195/ijci.v42i1.79
– ident: e_1_2_7_28_1
  doi: 10.1049/iet-smt.2015.0169
– ident: e_1_2_7_29_1
  doi: 10.4018/ijkdb.2014010104
– volume: 33
  start-page: 1
  issue: 3
  year: 2020
  ident: e_1_2_7_10_1
  article-title: Driver distraction detection using capsule network
  publication-title: Neural Computing and Applications
– volume: 30
  start-page: 1
  issue: 9
  year: 2016
  ident: e_1_2_7_21_1
  article-title: The impact of hurricane Katrina on urban growth in Louisiana: An analysis using data mining and simulation approaches
  publication-title: International Journal of Geographical Information ence
– volume: 60
  start-page: 262
  issue: 6
  year: 2019
  ident: e_1_2_7_17_1
  article-title: Efficient method for updating class association rules in dynamic datasets with record deletion
  publication-title: Computing Reviews
– volume: 46
  start-page: 247
  issue: 3
  year: 2016
  ident: e_1_2_7_8_1
  article-title: An anomaly detection algorithm for taxis based on trajectory data mining and online real‐time monitoring
  publication-title: Journal of University of ence and Technology of China
SSID ssj0001776
Score 2.3440733
Snippet Association rules are used in different data mining applications, including Web mining, intrusion detection, and bioinformatics. This study mainly discusses...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e12814
SubjectTerms Algorithms
association rules
Bioinformatics
COVID-19
COVID‐19 patients
Data analysis
Data mining
Data processing
data warehouse
Data warehouses
Decision analysis
Decision trees
diagnosis treatment data mining
Drug use
Health services
Hypertension
Knowledge bases (artificial intelligence)
Medical diagnosis
online analytical processing
Original
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VvcCF8iZQkBG9gJRVHDu2I3FBpVXhABJQtAihyK-0K9JstdkIyomfwG_kl2A7j2UpqgS3SJ4ofsyMZ-LP3wDsCI25LHUWE1Gy2HlJHudpqWORJ0xwqamSAW3xih0c0pfTbLoBT4e7MB0_xPjDzVtG8NfewKVqfjNy-7U5m_hzIE8GigkL-dSbFXcU5qGynMsxXB94mvTcpB7Gs3p1fTc6F2KeR0peautTefZFVtV6NBu2o_0t-DQMpEOhfJ60SzXR3_7gePzfkV6FK32cip51inUNNmx9HbaGGhCodwk34OPu6_cvnv_8_gPnqOdoRaaD780aJGuDRig78mhUdBIqUiBZHc0Xs-XxCfL7qEHzGsmVpqBFW9nmJhzu773bPYj7gg2xppzR2BDKlctzsbKkZEqpXBpZuhWXIjMKi8TS1NDSRRk-D9Q6x8b6CIXkmaRSaXILNut5be8AUgk2iWWiJEZTz9FjSm6VczapzBKmZASPh4UrdM9m7otqVMWQ1fhZK8KsRfBolD3tODz-KrU9rH_R23FTpMJfXs5xiiN4ODY7C_THKrK289bJME-QRFJMIrjdqcv4GUJFLnguIuBrijQKeHbv9ZZ6dhxYvgXz1HY8gp1R5S7s_ZOgQheIFHvTtx_C091_Eb4Hl1MX2HUgz23YXC5ae98FYkv1IBjcL5NcMrM
  priority: 102
  providerName: Wiley-Blackwell
Title COVID‐19 patient diagnosis and treatment data mining algorithm based on association rules
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fexsy.12814
https://www.ncbi.nlm.nih.gov/pubmed/34898798
https://www.proquest.com/docview/2800399121
https://www.proquest.com/docview/2610083213
https://pubmed.ncbi.nlm.nih.gov/PMC8646557
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/exsy.12814
UnpaywallVersion publishedVersion
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1468-0394
  dateEnd: 20241031
  omitProxy: true
  ssIdentifier: ssj0001776
  issn: 0266-4720
  databaseCode: ABDBF
  dateStart: 19980201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Business Source Ultimate
  customDbUrl:
  eissn: 1468-0394
  dateEnd: 20241031
  omitProxy: false
  ssIdentifier: ssj0001776
  issn: 0266-4720
  databaseCode: AKVCP
  dateStart: 19980201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=bsu
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1468-0394
  dateEnd: 20241031
  omitProxy: false
  ssIdentifier: ssj0001776
  issn: 0266-4720
  databaseCode: ADMLS
  dateStart: 19980201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0266-4720
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1468-0394
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001776
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFH6CmQNcWnYCZWRELyBlyOJ4OY66qCAoiDJoKg6Rt9BR08xoFkE58RP4jfwS7GwQiiokbpH8Esf2e8_fs58_A2wzFVKRqcSPWUZ86yWpz6NM-YwHhFGhsBRltsUhORjjl5Nk8tsp_oofol1wc5ZR-mtn4HOdVX6-MfXn5svyfOj2gvBV6JPEovEe9MeHb0fH1dKKrZ2WzIzlAaMg5rhmKO2-3J2TLgDNi_mS19bFXJx_FnnexbTlpLS_CaJpTpWLcjpcr-RQff2D6fF_2nsDNmrEikaVit2EK6a4BZvNbRCodg634ePOmw8vdn98-x5yVLO1Il0l8k2XSBQatUntyOWlorPybgok8k-zxXR1cobcjKrRrEDil86gxTo3yzsw3t97v3Pg11c3-ApTgn0dYyptxBtKE2dESsmFFpkde8ESLUMWGBxpnFm84SJCpXiojcMqMU8EFlLFd6FXzApzH5AMQh0YwrJYK-zYenRGjbRuJxJJQKTw4GkzeKmqec3d9Rp52sQ3rtfSstc8eNLKzis2j79KbTU6kNYWvUwj5o4x8zAKPXjcFltbdBssojCztZUhjiopjsLYg3uVyrTVxJhxRjnzgHaUqRVwPN_dkmJ6UvJ9M-JI7qgH263aXfr3z0o1ukQk3ZscHZdPD_7tmw_hemTBXZXouQW91WJtHlkwtpID6I92X786Gthw5F00qK3vJ4Q_OUY
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELagHMqFlr8SKGBELyBlFSeO7RxRabWFUiRo0SIOkf9CV6TZarMRlFMfgWfkSfA42SxLUSW4RfJEceyZ8Yz9-RuEtoQmXBY6DRNRsNB5SR5mcaFDkUVMcKmpkh5tccCGR_TVKB112By4C9PyQ_QbbmAZ3l-DgcOG9G9Wbr_VZwM4CKJX0TXKXKICMdG7BXsU4b62nMsyXC94HHXspADkWby7vB5dCDIvYiVXm-pUnn2VZbkcz_oFaXetrbpaex5DwKF8GTQzNdDf_2B5_O9_XUc3ulAVv2h16ya6YqtbaG1eBgJ3XuE2-rT99sPey5_nP0iGO5pWbFoE37jGsjK4R7NjAKTiE1-UAsvy82Q6nh2fYFhKDZ5UWC6UBU-b0tZ30NHuzuH2MOxqNoSackZDk1CuXKpLlE0KppTKpJGFm3QpUqOIiCyNDS1coAGpoNYZMRaClCRLJZVKJ3fRSjWp7D2EVURMZJkoEqMp0PSYglvl_E0s04gpGaBn85nLdUdoDnU1ynye2MCo5X7UAvS0lz1taTz-KrU5V4C8M-U6jwXcX85ITAL0pG92RggnK7Kyk8bJMOBISmKSBGij1Zf-MwkVmeCZCBBf0qReAAi-l1uq8bEn-hYM2O14gLZ6nbu098-9Dl0iku-M3n_0T_f_RfgxWh0evtnP9_cOXj9A12MX57WYz020Mps29qGLy2bqkbe-X5-XNtQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELagSMCF8k-ggBG9gJRVnDixfUTdrlpABQFFizhE_gtdkWZXm42gnHgEnpEnweNksyxFleAWyRPFsWfGM_bnbxDa5powWeg0THiRhc5LslDEhQ65iDLOpKZKerTFQbZ3SJ-P03GHzYG7MC0_RL_hBpbh_TUYuJ2Z4jcrt1_rkwEcBNHz6AJNBQdE3_DNij2KMF9bzmUZrhcsjjp2UgDyrN5dX49OBZmnsZKXmmomT77IslyPZ_2CNNpsq67WnscQcCifB81CDfS3P1ge__tfr6IrXaiKn7W6dQ2ds9V1tLksA4E7r3ADfdx59X5_-PP7DyJwR9OKTYvgm9RYVgb3aHYMgFR87ItSYFl-ms4ni6NjDEupwdMKy5Wy4HlT2vomOhztvtvZC7uaDaGmLKOhSShTLtUlyiZFppQS0sjCTbrkqVGER5bGhhYu0IBUUGtBjIUgJRGppFLp5BbaqKaVvYOwioiJbMaLxGgKND2mYFY5fxPLNMqUDNCT5czluiM0h7oaZb5MbGDUcj9qAXrcy85aGo-_Sm0tFSDvTLnOYw73lwWJSYAe9c3OCOFkRVZ22jiZDDiSkpgkAbrd6kv_mYRywZngAWJrmtQLAMH3eks1OfJE3zwDdjsWoO1e587s_VOvQ2eI5Lvjtx_8091_EX6ILr4ejvKX-wcv7qHLsQvzWsjnFtpYzBt734VlC_XAG98vAH42WA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7B9gCXlncDBRnRC0hZkthx7GNVWhUOBQkWbcUh8it0RZpd7W4E5cRP4DfyS7CdB4SiColbJE_i2J4Zf7bH3wDsMhVnolBpiFlBQ-sls5AnhQoZjyjLhCJS-GiLY3o0Ia-m6fS3W_wNP0S_4eYsw_trZ-ALXTR-vjP15-bL6nzszoLIVdigqUXjI9iYHL_ZO2m2VmztmWdm9BeMIsxJy1A6fHk4J10AmhfjJa_V1UKcfxZlOcS0flI63ALRNaeJRfk0rtdyrL7-wfT4P-29AZstYkV7jYrdhCumugVbXTYI1DqH2_Bh__X7ly9-fPsec9SytSLdBPLNVkhUGvVB7cjFpaIzn5sCifLjfDlbn54hN6NqNK-Q-KUzaFmXZnUHJocH7_aPwjZ1Q6hIRkmoMcmkXfHG0uCCSim50KKwYy9YqmXMIkMSTQqLN9yKUCkea-OwCuapIEIqfBdG1bwy24BkFOvIUFZgrYhj69FFZqR1O4lIIypFAE-7wctVy2vu0muUebe-cb2W-14L4Ekvu2jYPP4qtdPpQN5a9CpPmLvGzOMkDuBxX2xt0R2wiMrMaytDHVUSTmIcwL1GZfpqMGGcZZwFkA2UqRdwPN_Dkmp26vm-GXUkd1kAu73aXfr3z7waXSKSH0zfnvin-__2zQdwPbHgrgn03IHRelmbhxaMreWj1t5-Ane9Nsk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=COVID-19+patient+diagnosis+and+treatment+data+mining+algorithm+based+on+association+rules&rft.jtitle=Expert+systems&rft.au=Shan%2C+Zicheng&rft.au=Miao%2C+Wei&rft.date=2023-05-01&rft.issn=1468-0394&rft.eissn=1468-0394&rft.spage=e12814&rft_id=info:doi/10.1111%2Fexsy.12814&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-4720&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-4720&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-4720&client=summon