Identifying the Deep‐Inflow Mixing Features in Orographically‐Locked Diurnal Convection
Orographically‐locked diurnal convection involves interactions between local circulation and the thermodynamic environment of convection. Here, the relationships of convective updraft structures over orographic precipitation hotspots and their upstream environment in the TaiwanVVM large‐eddy simulat...
Saved in:
Published in | Geophysical research letters Vol. 50; no. 10 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Washington
John Wiley & Sons, Inc
28.05.2023
Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 0094-8276 1944-8007 |
DOI | 10.1029/2023GL103107 |
Cover
Abstract | Orographically‐locked diurnal convection involves interactions between local circulation and the thermodynamic environment of convection. Here, the relationships of convective updraft structures over orographic precipitation hotspots and their upstream environment in the TaiwanVVM large‐eddy simulations are analyzed for the occurrence of the orographic locking features. Strong convective updraft columns within heavily precipitating, organized systems exhibit a mass flux profile gradually increasing with height through a deep lower‐tropospheric inflow layer. Enhanced convective development is associated with higher upstream moist static energy (MSE) transport through this deep‐inflow layer via local circulation, augmenting the rain rate by 36% in precipitation hotspots. The simulations provide practical guidance for targeted observations within the most common deep‐inflow path. Preliminary field measurements support the presence of high MSE transport within the deep‐inflow layer when organized convection occurs at the hotspot. Orographically‐locked convection facilitate both modeling and field campaign design to examine the general properties of active deep convection.
Plain Language Summary
Under the weather regime that favors the development of local circulation in summer, diurnal convection occurs over specific areas of Taiwan. To investigate this orographic locking feature of diurnal convection, we performed a set of simulations with realistic complex Taiwan topography by TaiwanVVM and initiated with radiosonde observations to represent the variability of the background environment. In the simulations, strong updrafts are identified for orographically‐locked diurnal convection over precipitation hotspots. The vertical air mass transport of heavily‐precipitating updrafts increases with height throughout the lower atmosphere, implying a lateral inflow. The analysis of local circulation confirms the presence of the inflow layer, enhancing the development of orographically‐locked diurnal convection via rich energy transport from upstream. A field campaign, guided by the simulations, released the Storm Tracker mini‐radiosondes to quantify the upstream environment of the most common deep‐inflow path on 26 August 2022. The initial analysis supports the existence of high energy transport within the inflow layer when diurnal convection occurs over the precipitation hotspot. The results highlight the importance of non‐local inflow, transporting energy through the local circulation to supply the growth of orographically‐locked diurnal convection.
Key Points
In TaiwanVVM simulations, the convective updraft structure of orographically‐locked diurnal convection exhibits a deep layer of inflow
The terrain‐constrained path of coherent inflow layer by local circulation augments convection development over the precipitation hotspots
Initial field observations guided by TaiwanVVM detect high moist static energy transport upstream of the precipitation hotspots |
---|---|
AbstractList | Orographically‐locked diurnal convection involves interactions between local circulation and the thermodynamic environment of convection. Here, the relationships of convective updraft structures over orographic precipitation hotspots and their upstream environment in the TaiwanVVM large‐eddy simulations are analyzed for the occurrence of the orographic locking features. Strong convective updraft columns within heavily precipitating, organized systems exhibit a mass flux profile gradually increasing with height through a deep lower‐tropospheric inflow layer. Enhanced convective development is associated with higher upstream moist static energy (MSE) transport through this deep‐inflow layer via local circulation, augmenting the rain rate by 36% in precipitation hotspots. The simulations provide practical guidance for targeted observations within the most common deep‐inflow path. Preliminary field measurements support the presence of high MSE transport within the deep‐inflow layer when organized convection occurs at the hotspot. Orographically‐locked convection facilitate both modeling and field campaign design to examine the general properties of active deep convection.
Plain Language Summary
Under the weather regime that favors the development of local circulation in summer, diurnal convection occurs over specific areas of Taiwan. To investigate this orographic locking feature of diurnal convection, we performed a set of simulations with realistic complex Taiwan topography by TaiwanVVM and initiated with radiosonde observations to represent the variability of the background environment. In the simulations, strong updrafts are identified for orographically‐locked diurnal convection over precipitation hotspots. The vertical air mass transport of heavily‐precipitating updrafts increases with height throughout the lower atmosphere, implying a lateral inflow. The analysis of local circulation confirms the presence of the inflow layer, enhancing the development of orographically‐locked diurnal convection via rich energy transport from upstream. A field campaign, guided by the simulations, released the Storm Tracker mini‐radiosondes to quantify the upstream environment of the most common deep‐inflow path on 26 August 2022. The initial analysis supports the existence of high energy transport within the inflow layer when diurnal convection occurs over the precipitation hotspot. The results highlight the importance of non‐local inflow, transporting energy through the local circulation to supply the growth of orographically‐locked diurnal convection.
Key Points
In TaiwanVVM simulations, the convective updraft structure of orographically‐locked diurnal convection exhibits a deep layer of inflow
The terrain‐constrained path of coherent inflow layer by local circulation augments convection development over the precipitation hotspots
Initial field observations guided by TaiwanVVM detect high moist static energy transport upstream of the precipitation hotspots Orographically‐locked diurnal convection involves interactions between local circulation and the thermodynamic environment of convection. Here, the relationships of convective updraft structures over orographic precipitation hotspots and their upstream environment in the TaiwanVVM large‐eddy simulations are analyzed for the occurrence of the orographic locking features. Strong convective updraft columns within heavily precipitating, organized systems exhibit a mass flux profile gradually increasing with height through a deep lower‐tropospheric inflow layer. Enhanced convective development is associated with higher upstream moist static energy (MSE) transport through this deep‐inflow layer via local circulation, augmenting the rain rate by 36% in precipitation hotspots. The simulations provide practical guidance for targeted observations within the most common deep‐inflow path. Preliminary field measurements support the presence of high MSE transport within the deep‐inflow layer when organized convection occurs at the hotspot. Orographically‐locked convection facilitate both modeling and field campaign design to examine the general properties of active deep convection. Abstract Orographically‐locked diurnal convection involves interactions between local circulation and the thermodynamic environment of convection. Here, the relationships of convective updraft structures over orographic precipitation hotspots and their upstream environment in the TaiwanVVM large‐eddy simulations are analyzed for the occurrence of the orographic locking features. Strong convective updraft columns within heavily precipitating, organized systems exhibit a mass flux profile gradually increasing with height through a deep lower‐tropospheric inflow layer. Enhanced convective development is associated with higher upstream moist static energy (MSE) transport through this deep‐inflow layer via local circulation, augmenting the rain rate by 36% in precipitation hotspots. The simulations provide practical guidance for targeted observations within the most common deep‐inflow path. Preliminary field measurements support the presence of high MSE transport within the deep‐inflow layer when organized convection occurs at the hotspot. Orographically‐locked convection facilitate both modeling and field campaign design to examine the general properties of active deep convection. Orographically‐locked diurnal convection involves interactions between local circulation and the thermodynamic environment of convection. Here, the relationships of convective updraft structures over orographic precipitation hotspots and their upstream environment in the TaiwanVVM large‐eddy simulations are analyzed for the occurrence of the orographic locking features. Strong convective updraft columns within heavily precipitating, organized systems exhibit a mass flux profile gradually increasing with height through a deep lower‐tropospheric inflow layer. Enhanced convective development is associated with higher upstream moist static energy (MSE) transport through this deep‐inflow layer via local circulation, augmenting the rain rate by 36% in precipitation hotspots. The simulations provide practical guidance for targeted observations within the most common deep‐inflow path. Preliminary field measurements support the presence of high MSE transport within the deep‐inflow layer when organized convection occurs at the hotspot. Orographically‐locked convection facilitate both modeling and field campaign design to examine the general properties of active deep convection. Under the weather regime that favors the development of local circulation in summer, diurnal convection occurs over specific areas of Taiwan. To investigate this orographic locking feature of diurnal convection, we performed a set of simulations with realistic complex Taiwan topography by TaiwanVVM and initiated with radiosonde observations to represent the variability of the background environment. In the simulations, strong updrafts are identified for orographically‐locked diurnal convection over precipitation hotspots. The vertical air mass transport of heavily‐precipitating updrafts increases with height throughout the lower atmosphere, implying a lateral inflow. The analysis of local circulation confirms the presence of the inflow layer, enhancing the development of orographically‐locked diurnal convection via rich energy transport from upstream. A field campaign, guided by the simulations, released the Storm Tracker mini‐radiosondes to quantify the upstream environment of the most common deep‐inflow path on 26 August 2022. The initial analysis supports the existence of high energy transport within the inflow layer when diurnal convection occurs over the precipitation hotspot. The results highlight the importance of non‐local inflow, transporting energy through the local circulation to supply the growth of orographically‐locked diurnal convection. In TaiwanVVM simulations, the convective updraft structure of orographically‐locked diurnal convection exhibits a deep layer of inflow The terrain‐constrained path of coherent inflow layer by local circulation augments convection development over the precipitation hotspots Initial field observations guided by TaiwanVVM detect high moist static energy transport upstream of the precipitation hotspots |
Author | Kuo, Yi‐Hung Wu, Chien‐Ming Neelin, J. David Chang, Yu‐Hung Chen, Wei‐Ting |
Author_xml | – sequence: 1 givenname: Yu‐Hung orcidid: 0000-0002-5324-1217 surname: Chang fullname: Chang, Yu‐Hung organization: National Taiwan University – sequence: 2 givenname: Wei‐Ting orcidid: 0000-0002-9292-0933 surname: Chen fullname: Chen, Wei‐Ting email: weitingc@ntu.edu.tw organization: National Taiwan University – sequence: 3 givenname: Chien‐Ming orcidid: 0000-0001-9295-7181 surname: Wu fullname: Wu, Chien‐Ming organization: National Taiwan University – sequence: 4 givenname: Yi‐Hung orcidid: 0000-0001-7924-4398 surname: Kuo fullname: Kuo, Yi‐Hung organization: University of California, Los Angeles – sequence: 5 givenname: J. David orcidid: 0000-0001-9414-9962 surname: Neelin fullname: Neelin, J. David organization: University of California, Los Angeles |
BookMark | eNp9kc1OGzEQx62KSg20tz7ASlxJGX-svT5WoYRIi5CqcuJgOd7Z4LDYqXcD5NZH4Bl5EhwCUlWJnmY085v_fO2TvRADEvKVwjcKTB8zYHxaU-AU1AcyolqIcQWg9sgIQGefKfmJ7Pf9EgB4xkbkatZgGHy78WFRDNdYnCCunv48zkLbxfvi3D9sE6doh3XCvvChuEhxkezq2jvbdZuM1tHdYFOc-HUKtismMdyhG3wMn8nH1nY9fnm1B-Ty9Mevydm4vpjOJt_rsRNKirFs-JxxirxqnYSqZJUCJixiyUpbSseVnmMJqLXFeaVlU7mWZ0BjyxQXlh-Q2U63iXZpVsnf2rQx0XrzEohpYWwavOvQQMPKMgtxJXRuQa3QSgiQiFwqrUXWOtxprVL8vcZ-MMv4sldvWJUPKkEpmim2o1yKfZ-wNc4PdrvzkKzvDAWzfYj5-yG56OifordR38Ffe9z7Djf_Zc30Zy3LSgr-DMTHnBI |
CitedBy_id | crossref_primary_10_1038_s41612_024_00884_y crossref_primary_10_1088_2752_5295_ad557d |
Cites_doi | 10.1175/2007mwr2095.1 10.1007/s00382-021-05899-2 10.1002/asl.861 10.1002/2015JD023872 10.1017/CBO9780511754753.003 10.1029/2021GL092733 10.1175/2010jas3366.1 10.1175/2008jas2806.1 10.2151/jmsj.2022-033 10.1007/s00382-018-04607-x 10.1002/qj.809 10.1175/1520-0442(2003)016<1456:TDCORA>2.0.CO;2 10.1175/AMSMONOGRAPHS-D-18-0001.1 10.1175/2009jcli2890.1 10.1175/jhm-d-12-0182.1 10.1175/BAMS-85-3-381 10.1038/s41598-020-65743-1 10.1256/qj.04.147 10.1029/2004RG000150 10.1029/95JD02165 10.2151/jmsj.2021-013 10.1175/jas-d-16-0119.1 10.1029/2021JD034910 10.1175/jcli-d-18-0660.1 10.1175/2010JHM1289.1 10.1029/2018JD029474 10.1175/1520-0493(2001)129<0784:TDCITT>2.0.CO;2 10.2151/jmsj.2022-028 10.1029/2020JD033766 10.1002/qj.4271 10.2151/jmsj.2019-031 10.1175/jamc-d-22-0102.1 10.5194/amt-13-5395-2020 10.1175/MWR-D-20-0013.1 10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2 10.1007/s00382-011-1127-9 10.1175/jas-d-17-0333.1 10.1038/s41598-021-93173-0 10.1002/2016JD025643 10.1073/pnas.1719842115 10.1007/s13143-019-00116-x 10.1029/2011RG000365 10.1175/JAS-D-21-0218.1 10.1175/jcli-d-12-00119.1 10.5194/gmd-14-73-2021 10.1175/2007jamc1821.1 10.5194/acp-21-16709-2021 10.1002/2013JD020149 10.1175/2010waf2222386.1 10.1256/qj.03.130 |
ContentType | Journal Article |
Copyright | 2023. The Authors. 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023. The Authors. – notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M DOA |
DOI | 10.1029/2023GL103107 |
DatabaseName | Wiley Online Library Open Access CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Aerospace Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Physics |
EISSN | 1944-8007 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_0d25599a37494ae1a4974406ee367994 10_1029_2023GL103107 GRL65864 |
Genre | article |
GeographicLocations | Taiwan |
GeographicLocations_xml | – name: Taiwan |
GrantInformation_xml | – fundername: National Science Foundation funderid: AGS‐1936810 – fundername: National Oceanic and Atmospheric Administration funderid: NA21OAR4310354; NA18OAR4320123 – fundername: National Taiwan University funderid: NTU‐112L7832; NTU‐112L7858 – fundername: National Science and Technology Council funderid: NSTC‐110‐2123‐M‐002‐007; NSTC‐109‐2628‐M‐002‐003‐MY3; NSTC‐111‐2111‐M‐002‐012 |
GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 88I 8G5 8R4 8R5 AAESR AAFWJ AAIHA AAMMB AAXRX AAZKR ABCUV ABJCF ABPPZ ABUWG ACAHQ ACCMX ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACTHY ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AENEX AEUYN AFBPY AFGKR AFKRA AFRAH AGXDD AIDQK AIDYY AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB ARAPS ATCPS AVUZU AZFZN AZQEC AZVAB BENPR BGLVJ BHPHI BKSAR BMXJE BRXPI CCPQU CS3 DCZOG DPXWK DRFUL DRSTM DU5 DWQXO EBS F5P G-S GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES M2O M2P M7S MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W PATMY PCBAR PHGZM PHGZT PTHSS PYCSY Q2X R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIN WXSBR XSW ZZTAW ~02 ~OA ~~A AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION 7TG 7TN 8FD AFPKN F1W FR3 H8D H96 KL. KR7 L.G L7M PQGLB PUEGO |
ID | FETCH-LOGICAL-c4764-6d3b231e38fc6085287024aee525a56c379be50e99aeb896d8cf324a9ef2734a3 |
IEDL.DBID | DOA |
ISSN | 0094-8276 |
IngestDate | Wed Aug 27 01:31:46 EDT 2025 Fri Jul 25 18:57:07 EDT 2025 Tue Jul 01 01:05:20 EDT 2025 Thu Apr 24 23:09:01 EDT 2025 Sun Jul 06 04:45:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4764-6d3b231e38fc6085287024aee525a56c379be50e99aeb896d8cf324a9ef2734a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9292-0933 0000-0001-9295-7181 0000-0001-7924-4398 0000-0002-5324-1217 0000-0001-9414-9962 |
OpenAccessLink | https://doaj.org/article/0d25599a37494ae1a4974406ee367994 |
PQID | 2819460771 |
PQPubID | 54723 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0d25599a37494ae1a4974406ee367994 proquest_journals_2819460771 crossref_citationtrail_10_1029_2023GL103107 crossref_primary_10_1029_2023GL103107 wiley_primary_10_1029_2023GL103107_GRL65864 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 28 May 2023 |
PublicationDateYYYYMMDD | 2023-05-28 |
PublicationDate_xml | – month: 05 year: 2023 text: 28 May 2023 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Geophysical research letters |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2014; 119 2009; 66 2011; 137 2009; 22 2004; 85 2021; 48 2004; 42 2021; 21 2013; 26 2019; 97 2019; 53 2021; 126 2019; 55 2019; 32 2015; 120 2020; 148 2008 2019; 124 2006; 132 2016; 121 2003; 16 2016; 73 2020; 13 2012; 39 2011; 12 2020; 10 2001; 129 1996; 101 2012; 50 2022; 100 2021; 14 2010; 67 2018; 19 2023; 62 2013; 14 2021; 99 2021; 11 2023 2004; 130 2018; 115 2008; 47 2022; 79 2022; 58 2008; 136 2011; 26 2018; 75 2022; 148 2018; 59 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 120 start-page: 12557 issue: 24 year: 2015 end-page: 12575 article-title: Radar‐observed diurnal cycle and propagation of convection over the Pearl River Delta during Mei‐Yu season publication-title: Journal of Geophysical Research: Atmospheres – volume: 22 start-page: 4809 issue: 18 year: 2009 end-page: 4826 article-title: Diurnal cycle of precipitation in the tropics simulated in a global cloud‐resolving model publication-title: Journal of Climate – volume: 132 start-page: 317 issue: 615 year: 2006 end-page: 344 article-title: Daytime convective development over land: A model intercomparison based on LBA observations publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 115 start-page: 4577 issue: 18 year: 2018 end-page: 4582 article-title: GoAmazon2014/5 campaign points to deep‐inflow approach to deep convection across scales publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 99 start-page: 269 issue: 2 year: 2021 end-page: 285 article-title: The synoptically‐influenced extreme precipitation systems over Asian‐Australian monsoon region observed by TRMM precipitation radar publication-title: Journal of the Meteorological Society of Japan – volume: 16 start-page: 1456 issue: 10 year: 2003 end-page: 1475 article-title: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements publication-title: Journal of Climate – volume: 67 start-page: 2943 issue: 9 year: 2010 end-page: 2959 article-title: Mechanisms affecting the transition from shallow to deep convection over land: Inferences from observations of the diurnal cycle collected at the ARM Southern Great Plains site publication-title: Journal of the Atmospheric Sciences – volume: 32 start-page: 4491 issue: 14 year: 2019 end-page: 4507 article-title: Evaluating the bias of South China Sea summer monsoon precipitation associated with fast physical processes using a climate model hindcast approach publication-title: Journal of Climate – volume: 13 start-page: 5395 issue: 10 year: 2020 end-page: 5406 article-title: The development of the “Storm Tracker” and its applications for atmospheric high‐resolution upper‐air observations publication-title: Atmospheric Measurement Techniques – volume: 14 start-page: 1463 issue: 5 year: 2013 end-page: 1482 article-title: Comparison of precipitation derived from the ECMWF operational forecast model and satellite precipitation datasets publication-title: Journal of Hydrometeorology – volume: 79 start-page: 1761 issue: 7 year: 2022 end-page: 1779 article-title: A theory for the response of tropical mist convection to mechanical orographic forcing publication-title: Journal of the Atmospheric Sciences – volume: 137 start-page: 934 issue: 657 year: 2011 end-page: 947 article-title: The diurnal cycle of precipitation over the Maritime Continent in a high‐resolution atmospheric model publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 75 start-page: 1587 issue: 5 year: 2018 end-page: 1608 article-title: Reverse engineering the tropical precipitation–buoyancy relationship publication-title: Journal of the Atmospheric Sciences – volume: 66 start-page: 1665 issue: 6 year: 2009 end-page: 1683 article-title: Moisture vertical structure, column water vapor, and tropical deep convection publication-title: Journal of the Atmospheric Sciences – volume: 26 start-page: 3159 issue: 10 year: 2013 end-page: 3172 article-title: Diurnal cycle of summer precipitation over subtropical East Asia in CAM5 publication-title: Journal of Climate – volume: 19 issue: 12 year: 2018 article-title: Identification of synoptic weather types over Taiwan area with multiple classifiers publication-title: Atmospheric Science Letters – volume: 47 start-page: 2068 issue: 7 year: 2008 end-page: 2080 article-title: Measuring East Asian summer monsoon rainfall contributions by different weather systems over Taiwan publication-title: Journal of Applied Meteorology and Climatology – volume: 148 start-page: 3507 issue: 8 year: 2020 end-page: 3532 article-title: Evaluating the effective inflow layer of simulated supercell updrafts publication-title: Monthly Weather Review – volume: 55 start-page: 701 issue: 4 year: 2019 end-page: 717 article-title: Implementation of the land surface processes into a vector vorticity equation model (VVM) to study its impact on afternoon thunderstorms over complex topography in Taiwan publication-title: Asia‐Pacific Journal of Atmospheric Sciences – volume: 121 start-page: 13973 issue: 23 year: 2016 end-page: 13988 article-title: Dynamical downscaling simulation and future projection of summer rainfall in Taiwan: Contributions from different types of rain events publication-title: Journal of Geophysical Research: Atmospheres – volume: 148 start-page: 1663 issue: 745 year: 2022 end-page: 1682 article-title: Observing severe precipitation near complex topography during the Yilan Experiment of Severe Rainfall in 2020 (YESR2020) publication-title: Quarterly Journal of the Royal Meteorological Society – start-page: 24 year: 2008 end-page: 124 – volume: 62 start-page: 427 issue: 3 year: 2023 end-page: 439 article-title: The observation‐based index to investigate the role of the lee vortex in enhancing air pollution over northwestern Taiwan publication-title: Journal of Applied Meteorology and Climatology – volume: 97 start-page: 501 issue: 2 year: 2019 end-page: 517 article-title: The precipitation hotspots of afternoon thunderstorms over the Taipei Basin: Idealized numerical simulations publication-title: Journal of the Meteorological Society of Japan – volume: 14 start-page: 73 issue: 1 year: 2021 end-page: 90 article-title: A multi‐year short‐range hindcast experiment with CESM1 for evaluating climate model moist processes from diurnal to interannual timescales publication-title: Geoscientific Model Development – volume: 53 start-page: 617 issue: 1 year: 2019 end-page: 630 article-title: Object‐based precipitation system bias in grey zone simulation: The 2016 South China Sea summer monsoon onset publication-title: Climate Dynamics – volume: 59 start-page: 17.1 year: 2018 end-page: 17.54 article-title: 100 years of research on mesoscale convective systems publication-title: Meteorological Monographs – volume: 124 start-page: 747 issue: 2 year: 2019 end-page: 769 article-title: Contemporary GCM fidelity in representing the diurnal cycle of precipitation over the Maritime Continent publication-title: Journal of Geophysical Research: Atmospheres – volume: 100 start-page: 647 issue: 4 year: 2022 end-page: 659 article-title: Object‐Based evaluation of tropical precipitation systems in DYAMOND simulations over the Maritime Continent publication-title: Journal of the Meteorological Society of Japan – volume: 126 issue: 5 year: 2021 article-title: Interpreting the diurnal cycle of clouds and precipitation in the ARM GoAmazon observations: Shallow to deep convection transition publication-title: Journal of Geophysical Research: Atmospheres – volume: 48 issue: 10 year: 2021 article-title: Convective cloud regimes from a classification of object‐based CloudSat observations over Asian‐Australian monsoon areas publication-title: Geophysical Research Letters – volume: 85 start-page: 381 issue: 3 year: 2004 end-page: 394 article-title: The global land data assimilation system publication-title: Bulletin of the American Meteorological Society – volume: 12 start-page: 3 issue: 1 year: 2011 end-page: 26 article-title: Characteristics of precipitating convective systems in the South Asian monsoon publication-title: Journal of Hydrometeorology – volume: 21 start-page: 16709 issue: 22 year: 2021 end-page: 16725 article-title: Tracking the influence of cloud condensation nuclei on summer diurnal precipitating systems over complex topography in Taiwan publication-title: Atmospheric Chemistry and Physics – volume: 11 issue: 1 year: 2021 article-title: Physical processes controlling the diurnal cycle of convective storms in the Western Ghats publication-title: Scientific Reports – volume: 58 start-page: 223 issue: 1 year: 2022 end-page: 233 article-title: The effects of the unified parameterization in the CWBGFS: The diurnal cycle of precipitation over land in the Maritime Continent publication-title: Climate Dynamics – volume: 129 start-page: 784 issue: 4 year: 2001 end-page: 801 article-title: The diurnal cycle in the tropics publication-title: Monthly Weather Review – volume: 101 start-page: 7251 issue: D3 year: 1996 end-page: 7268 article-title: Modeling of land surface evaporation by four schemes and comparison with FIFE observations publication-title: Journal of Geophysical Research – volume: 42 issue: 4 year: 2004 article-title: Mesoscale convective systems publication-title: Reviews of Geophysics – volume: 50 issue: 1 year: 2012 article-title: Orographic effects on precipitating clouds publication-title: Reviews of Geophysics – volume: 126 issue: 19 year: 2021 article-title: Convective mass‐flux from long term radar reflectivities over Darwin, Australia publication-title: Journal of Geophysical Research: Atmospheres – volume: 129 start-page: 569 issue: 4 year: 2001 end-page: 585 article-title: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity publication-title: Monthly Weather Review – volume: 26 start-page: 44 issue: 1 year: 2011 end-page: 60 article-title: Warm season afternoon thunderstorm characteristics under weak synoptic‐scale forcing over Taiwan Island publication-title: Weather and Forecasting – volume: 73 start-page: 4043 issue: 10 year: 2016 end-page: 4063 article-title: Deep convection and column water vapor over tropical land versus tropical ocean: A comparison between the Amazon and the tropical Western Pacific publication-title: Journal of the Atmospheric Sciences – year: 2023 – volume: 119 start-page: 2113 issue: 5 year: 2014 end-page: 2130 article-title: A simple way to improve the diurnal cycle in convective rainfall over land in climate models publication-title: Journal of Geophysical Research: Atmospheres – volume: 100 start-page: 555 issue: 3 year: 2022 end-page: 573 article-title: The roles of local circulation and boundary layer development in tracer transport over complex topography in central Taiwan publication-title: Journal of the Meteorological Society of Japan – volume: 130 start-page: 3055 issue: 604 year: 2004 end-page: 3079 article-title: Sensitivity of moist convection to environmental humidity publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 39 start-page: 399 issue: 1 year: 2012 end-page: 418 article-title: Simulating the diurnal cycle of rainfall in global climate models: Resolution versus parameterization publication-title: Climate Dynamics – volume: 136 start-page: 276 issue: 1 year: 2008 end-page: 294 article-title: A three‐dimensional anelastic model based on the vorticity equation publication-title: Monthly Weather Review – volume: 10 issue: 1 year: 2020 article-title: Diurnal variations of summer precipitation linking to the topographical conditions over the Beijing‐Tianjin‐Hebei region publication-title: Scientific Reports – ident: e_1_2_8_25_1 doi: 10.1175/2007mwr2095.1 – ident: e_1_2_8_44_1 doi: 10.1007/s00382-021-05899-2 – ident: e_1_2_8_46_1 doi: 10.1002/asl.861 – ident: e_1_2_8_10_1 doi: 10.1002/2015JD023872 – ident: e_1_2_8_4_1 doi: 10.1017/CBO9780511754753.003 – ident: e_1_2_8_8_1 doi: 10.1029/2021GL092733 – ident: e_1_2_8_52_1 doi: 10.1175/2010jas3366.1 – ident: e_1_2_8_16_1 doi: 10.1175/2008jas2806.1 – ident: e_1_2_8_42_1 doi: 10.2151/jmsj.2022-033 – ident: e_1_2_8_43_1 doi: 10.1007/s00382-018-04607-x – ident: e_1_2_8_30_1 doi: 10.1002/qj.809 – ident: e_1_2_8_32_1 doi: 10.1175/1520-0442(2003)016<1456:TDCORA>2.0.CO;2 – ident: e_1_2_8_19_1 doi: 10.1175/AMSMONOGRAPHS-D-18-0001.1 – ident: e_1_2_8_37_1 doi: 10.1175/2009jcli2890.1 – ident: e_1_2_8_26_1 doi: 10.1175/jhm-d-12-0182.1 – ident: e_1_2_8_35_1 doi: 10.1175/BAMS-85-3-381 – ident: e_1_2_8_41_1 doi: 10.1038/s41598-020-65743-1 – ident: e_1_2_8_15_1 doi: 10.1256/qj.04.147 – ident: e_1_2_8_17_1 doi: 10.1029/2004RG000150 – ident: e_1_2_8_7_1 doi: 10.1029/95JD02165 – ident: e_1_2_8_24_1 doi: 10.2151/jmsj.2021-013 – ident: e_1_2_8_40_1 doi: 10.1175/jas-d-16-0119.1 – ident: e_1_2_8_38_1 doi: 10.1029/2021JD034910 – ident: e_1_2_8_9_1 doi: 10.1175/jcli-d-18-0660.1 – ident: e_1_2_8_36_1 doi: 10.1175/2010JHM1289.1 – ident: e_1_2_8_3_1 doi: 10.1029/2018JD029474 – ident: e_1_2_8_11_1 – ident: e_1_2_8_50_1 doi: 10.1175/1520-0493(2001)129<0784:TDCITT>2.0.CO;2 – ident: e_1_2_8_20_1 doi: 10.2151/jmsj.2022-028 – ident: e_1_2_8_47_1 doi: 10.1029/2020JD033766 – ident: e_1_2_8_45_1 doi: 10.1002/qj.4271 – ident: e_1_2_8_28_1 doi: 10.2151/jmsj.2019-031 – ident: e_1_2_8_21_1 doi: 10.1175/jamc-d-22-0102.1 – ident: e_1_2_8_23_1 doi: 10.5194/amt-13-5395-2020 – ident: e_1_2_8_34_1 doi: 10.1175/MWR-D-20-0013.1 – ident: e_1_2_8_6_1 doi: 10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2 – ident: e_1_2_8_13_1 doi: 10.1007/s00382-011-1127-9 – ident: e_1_2_8_2_1 doi: 10.1175/jas-d-17-0333.1 – ident: e_1_2_8_27_1 doi: 10.1038/s41598-021-93173-0 – ident: e_1_2_8_22_1 doi: 10.1002/2016JD025643 – ident: e_1_2_8_39_1 doi: 10.1073/pnas.1719842115 – ident: e_1_2_8_49_1 doi: 10.1007/s13143-019-00116-x – ident: e_1_2_8_18_1 doi: 10.1029/2011RG000365 – ident: e_1_2_8_33_1 doi: 10.1175/JAS-D-21-0218.1 – ident: e_1_2_8_51_1 doi: 10.1175/jcli-d-12-00119.1 – ident: e_1_2_8_31_1 doi: 10.5194/gmd-14-73-2021 – ident: e_1_2_8_48_1 doi: 10.1175/2007jamc1821.1 – ident: e_1_2_8_5_1 doi: 10.5194/acp-21-16709-2021 – ident: e_1_2_8_14_1 doi: 10.1002/2013JD020149 – ident: e_1_2_8_29_1 doi: 10.1175/2010waf2222386.1 – ident: e_1_2_8_12_1 doi: 10.1256/qj.03.130 |
SSID | ssj0003031 |
Score | 2.4455817 |
Snippet | Orographically‐locked diurnal convection involves interactions between local circulation and the thermodynamic environment of convection. Here, the... Abstract Orographically‐locked diurnal convection involves interactions between local circulation and the thermodynamic environment of convection. Here, the... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Air mass transport Air masses Atmospheric circulation Circulation Columns (structural) Convection Convective development deep inflow Diurnal diurnal convection Energy Energy transfer Energy transport Height Hot spots Inflow Large eddy simulation Locking features Lower atmosphere Mass flux Mass transport Moist static energy moist static energy transport orographic locking Orographic precipitation Precipitation Radiosondes Simulation Storm tracks Storms Summer circulation TaiwanVVM Updraft Upstream |
SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kIngRn1hf5KAnCabZzW726Kut0qqIQsFD2E0mUiiptIp68yf4G_0lzmzSUg8K3pbNLElmdna_fcw3jO2HadxIuQ2J6BYXKFxp30os0REYBylN7uIruleyfS8ue1Gv2nCjWJiSH2K64Uae4cZrcnBjxxXZAHFkUt7vVoeyFFAw-Tziek49PBQ305EYh-cyY54WfhwqWV18x_ZHs61_TEmOuf8H3JwFrW7WaS6zpQoueselfVfYHBSrbKHl0vG-Y8ld4EzHa-yhjLh1UUsegjrvDODp6-PzosgHw1ev23-jBwT4XnCB7fUL73pUslWTlQbvKNrBoREy76xfvvOU7qO7qId1dt88vztt-1XiBD8VSgpfZqh93gAe56lETEWHmaEwAFEYmUimaBELUQBaG7Cxllmc5gisjIac2G4M32C1YljAJvMCi4qykVKWg8htZnABhohKBRmuowKp6-xworskrVjFKbnFIHGn26FOZjVdZwdT6aeSTeMXuRMyw1SGOLBdxXD0mFQulQSZo0szXAmNP9cwQhPboQTgUmkt6mxnYsSkcsxxQueGQgZKNfDLnWH__JCkddtBjCbF1r-kt9ki1dMtgzDeYbXn0QvsInh5tnuuh34DxUbicQ priority: 102 providerName: Wiley-Blackwell |
Title | Identifying the Deep‐Inflow Mixing Features in Orographically‐Locked Diurnal Convection |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023GL103107 https://www.proquest.com/docview/2819460771 https://doaj.org/article/0d25599a37494ae1a4974406ee367994 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4-ELyIT1wfSw96kmI2SZPm6HNV1gfiiuihNO0UFpYqPlBv_gR_o7_EmbQr60G9eGpoh3aYSZNvmMk3jK2JLG5l0gkiusUARRobOo0jSoFJ0Dot_PmK4xN90FVHV9HVUKsvqgmr6IErw23y3JNipdIoq1JopcoSp50GkNpY65lAueWDYKpeg3FhrnrlWRXGwui65J0LS9G-bHeouwG1kB3ajDxn_zegOQxX_X6zP82maqAYbFUKzrARKGfZRNs34n3FkS_dzB7m2E111tafVwoQzgW7AHcfb--HZdG_fQ6Oey_0gKDeE4bWQa8MTu8rnmryT_8VRTu4KEIe7Paqb-5QJbo_7zDPuvt7FzsHYd0yIcyU0SrUOdpdtkDGRaYRTVEaU6DZIBJRGukMfeEg4oAGBRdbncdZgZAqtVAQz00qF9hYeVvCIgu4Q0O5yBgnQRUuTzH0QixleI4RFNe2wTYGtkuymk-c2lr0E5_XFjYZtnSDrX9J31U8Gj_IbZMbvmSI_drfwDmR1HMi-WtONNjKwIlJ_Us-JJQxVJob00LNvWN_VSRpn3cQnWm19B8aLbNJejmVHYh4hY093j_BKqKZR9dko0KdNdn41mX3uovX7b2Ts_Omn86fmJvtVA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9swELYmqom9oG2AVmAjD_A0RaSxY8ePHYyWLQVpogixB8tOLqhSlaIC2njbT9hv3C_ZnWOq8sCkvVnJJXF8PvuzffcdY3tpmfdK7lIiusUFClc6dhJLdATGQUpb-_iK0akcjsWXy-wy5DmlWJiWH2Kx4UaW4cdrMnDakA5sA0SSSYm_BwWlKaBo8k6Gkyl28U7_Ynw1XgzGOEK3SfO0iPNUyeD7jm84WH7-yazkyfufIM5l3OonnuPXbC0gxqjfqvgNewHNW_Zy4DPyPmDJ-3CWt-vsext06wOXIsR10RHAzZ9fv0-aejr7EY0mP-kGYb57XGNHkyY6m7eE1aSo6QOKFjg6QhUdTdpvHpJLug982GDj48_nh8M45E6IS6GkiGWFCuA94HldSoRVdJ6ZCguQpZnNZIlKcZAloLUFl2tZ5WWN2MpqqInwxvJNttLMGnjHosRhQ7lMKcdB1K6yuAZDUKWSCpdSidRd9vGx7UwZiMUpv8XU-APuVJvllu6y_YX0TUuo8YzcJ1LDQoZosP2F2fzaBKsySeUZ0yxXQuPP9azQRHgoAbhUWosu23lUogm2eWvo6FDIRKke1twr9p8VMYNvBcI0Kbb-S3qXrQ7PR4UpTk6_brNXJENOB2m-w1bu5vfwHrHMnfsQ-utfl9vnrg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYQCNRLRQtVt4U2BzihiGzs2PER2O7y2F0QAgmpB8tOJmilVXa1DxVu_Qn9jfwSZpywWg4g9WYlY8WZ8difH_MNY3txljYz7mIiusUFClc6dBJLdATGQUpb-PiKXl-e3orzu-Su3nCjWJiKH2Kx4Uae4cdrcvBxXtRkA8SRSXm_O13KUkDB5GsCux718FhcLUZiHJ6rjHlahGmsZH3xHesfLtd-NSV55v5XcHMZtPpZp73JPtZwMTiq7PuJrUD5ma13fDreRyz5C5zZdIv9riJufdRSgKAuaAGMn_7-OyuL4ehP0Bs80AsCfHNcYAeDMricVGzVZKXhI4p2cWiEPGgNqm-e0H10H_WwzW7bv25OTsM6cUKYCSVFKHPUPm8CT4tMIqaiw8xYWIAkTmwiM7SIgyQCrS24VMs8zQoEVlZDQWw3ln9hq-WohK8siBwqyiVKOQ6icLnFBRgiKhXluI6KpG6wgxfdmaxmFafkFkPjT7djbZY13WD7C-lxxabxhtwxmWEhQxzY_sFocm9qlzJR7unSLFdC4881rdDEdigBuFRaiwbbeTGiqR1zaujcUMhIqSa23Bv23YaYznUXMZoU3_5L-ifbuGq1Tfesf_GdfSARunAQpztsdTaZwy7imJn74TvrM86f5RI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+the+Deep%E2%80%90Inflow+Mixing+Features+in+Orographically%E2%80%90Locked+Diurnal+Convection&rft.jtitle=Geophysical+research+letters&rft.au=Yu%E2%80%90Hung+Chang&rft.au=Wei%E2%80%90Ting+Chen&rft.au=Chien%E2%80%90Ming+Wu&rft.au=Yi%E2%80%90Hung+Kuo&rft.date=2023-05-28&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=50&rft.issue=10&rft_id=info:doi/10.1029%2F2023GL103107&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |