Prevalence dependence in model goodness measures with special emphasis on true skill statistics

It has long been a concern that performance measures of species distribution models react to attributes of the modeled entity arising from the input data structure rather than to model performance. Thus, the study of Allouche et al. (Journal of Applied Ecology, 43, 1223, 2006) identifying the true s...

Full description

Saved in:
Bibliographic Details
Published inEcology and evolution Vol. 7; no. 3; pp. 863 - 872
Main Authors Somodi, Imelda, Lepesi, Nikolett, Botta‐Dukát, Zoltán
Format Journal Article
LanguageEnglish
Published England John Wiley & Sons, Inc 01.02.2017
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN2045-7758
2045-7758
DOI10.1002/ece3.2654

Cover

Abstract It has long been a concern that performance measures of species distribution models react to attributes of the modeled entity arising from the input data structure rather than to model performance. Thus, the study of Allouche et al. (Journal of Applied Ecology, 43, 1223, 2006) identifying the true skill statistics (TSS) as being independent of prevalence had a great impact. However, empirical experience questioned the validity of the statement. We searched for technical reasons behind these observations. We explored possible sources of prevalence dependence in TSS including sampling constraints and species characteristics, which influence the calculation of TSS. We also examined whether the widespread solution of using the maximum of TSS for comparison among species introduces a prevalence effect. We found that the design of Allouche et al. (Journal of Applied Ecology, 43, 1223, 2006) was flawed, but TSS is indeed independent of prevalence if model predictions are binary and under the strict set of assumptions methodological studies usually apply. However, if we take realistic sources of prevalence dependence, effects appear even in binary calculations. Furthermore, in the widespread approach of using maximum TSS for continuous predictions, the use of the maximum alone induces prevalence dependence for small, but realistic samples. Thus, prevalence differences need to be taken into account when model comparisons are carried out based on discrimination capacity. The sources we identified can serve as a checklist to safely control comparisons, so that true discrimination capacity is compared as opposed to artefacts arising from data structure, species characteristics, or the calculation of the comparison measure (here TSS). It has long been a concern that performance measures of species distribution models (SDM) react to attributes of the modeled entity arising from the input data structure (including the ratio of presences and absences known as prevalence) rather than to model performance. The true skill statistics (TSS) has been propagated as unaffected by prevalence changes; however, experience questioned this. Therefore, we examined possible causes of observed prevalence dependence for TSS, while also extending the theory of prevalence dependence in general.
AbstractList It has long been a concern that performance measures of species distribution models react to attributes of the modeled entity arising from the input data structure rather than to model performance. Thus, the study of Allouche et al. (Journal of Applied Ecology, 43, 1223, 2006) identifying the true skill statistics (TSS) as being independent of prevalence had a great impact. However, empirical experience questioned the validity of the statement. We searched for technical reasons behind these observations. We explored possible sources of prevalence dependence in TSS including sampling constraints and species characteristics, which influence the calculation of TSS. We also examined whether the widespread solution of using the maximum of TSS for comparison among species introduces a prevalence effect. We found that the design of Allouche et al. (Journal of Applied Ecology, 43, 1223, 2006) was flawed, but TSS is indeed independent of prevalence if model predictions are binary and under the strict set of assumptions methodological studies usually apply. However, if we take realistic sources of prevalence dependence, effects appear even in binary calculations. Furthermore, in the widespread approach of using maximum TSS for continuous predictions, the use of the maximum alone induces prevalence dependence for small, but realistic samples. Thus, prevalence differences need to be taken into account when model comparisons are carried out based on discrimination capacity. The sources we identified can serve as a checklist to safely control comparisons, so that true discrimination capacity is compared as opposed to artefacts arising from data structure, species characteristics, or the calculation of the comparison measure (here TSS).
It has long been a concern that performance measures of species distribution models react to attributes of the modeled entity arising from the input data structure rather than to model performance. Thus, the study of Allouche et al. ( , 43, 1223, 2006) identifying the true skill statistics (TSS) as being independent of prevalence had a great impact. However, empirical experience questioned the validity of the statement. We searched for technical reasons behind these observations. We explored possible sources of prevalence dependence in TSS including sampling constraints and species characteristics, which influence the calculation of TSS. We also examined whether the widespread solution of using the maximum of TSS for comparison among species introduces a prevalence effect. We found that the design of Allouche et al. ( , 43, 1223, 2006) was flawed, but TSS is indeed independent of prevalence if model predictions are binary and under the strict set of assumptions methodological studies usually apply. However, if we take realistic sources of prevalence dependence, effects appear even in binary calculations. Furthermore, in the widespread approach of using maximum TSS for continuous predictions, the use of the maximum alone induces prevalence dependence for small, but realistic samples. Thus, prevalence differences need to be taken into account when model comparisons are carried out based on discrimination capacity. The sources we identified can serve as a checklist to safely control comparisons, so that true discrimination capacity is compared as opposed to artefacts arising from data structure, species characteristics, or the calculation of the comparison measure (here TSS).
It has long been a concern that performance measures of species distribution models react to attributes of the modeled entity arising from the input data structure rather than to model performance. Thus, the study of Allouche et al. (Journal of Applied Ecology, 43, 1223, 2006) identifying the true skill statistics (TSS) as being independent of prevalence had a great impact. However, empirical experience questioned the validity of the statement. We searched for technical reasons behind these observations. We explored possible sources of prevalence dependence in TSS including sampling constraints and species characteristics, which influence the calculation of TSS. We also examined whether the widespread solution of using the maximum of TSS for comparison among species introduces a prevalence effect. We found that the design of Allouche et al. (Journal of Applied Ecology, 43, 1223, 2006) was flawed, but TSS is indeed independent of prevalence if model predictions are binary and under the strict set of assumptions methodological studies usually apply. However, if we take realistic sources of prevalence dependence, effects appear even in binary calculations. Furthermore, in the widespread approach of using maximum TSS for continuous predictions, the use of the maximum alone induces prevalence dependence for small, but realistic samples. Thus, prevalence differences need to be taken into account when model comparisons are carried out based on discrimination capacity. The sources we identified can serve as a checklist to safely control comparisons, so that true discrimination capacity is compared as opposed to artefacts arising from data structure, species characteristics, or the calculation of the comparison measure (here TSS). It has long been a concern that performance measures of species distribution models (SDM) react to attributes of the modeled entity arising from the input data structure (including the ratio of presences and absences known as prevalence) rather than to model performance. The true skill statistics (TSS) has been propagated as unaffected by prevalence changes; however, experience questioned this. Therefore, we examined possible causes of observed prevalence dependence for TSS, while also extending the theory of prevalence dependence in general.
It has long been a concern that performance measures of species distribution models react to attributes of the modeled entity arising from the input data structure rather than to model performance. Thus, the study of Allouche et al. (Journal of Applied Ecology, 43, 1223, 2006) identifying the true skill statistics (TSS) as being independent of prevalence had a great impact. However, empirical experience questioned the validity of the statement. We searched for technical reasons behind these observations. We explored possible sources of prevalence dependence in TSS including sampling constraints and species characteristics, which influence the calculation of TSS. We also examined whether the widespread solution of using the maximum of TSS for comparison among species introduces a prevalence effect. We found that the design of Allouche et al. (Journal of Applied Ecology, 43, 1223, 2006) was flawed, but TSS is indeed independent of prevalence if model predictions are binary and under the strict set of assumptions methodological studies usually apply. However, if we take realistic sources of prevalence dependence, effects appear even in binary calculations. Furthermore, in the widespread approach of using maximum TSS for continuous predictions, the use of the maximum alone induces prevalence dependence for small, but realistic samples. Thus, prevalence differences need to be taken into account when model comparisons are carried out based on discrimination capacity. The sources we identified can serve as a checklist to safely control comparisons, so that true discrimination capacity is compared as opposed to artefacts arising from data structure, species characteristics, or the calculation of the comparison measure (here TSS). It has long been a concern that performance measures of species distribution models (SDM) react to attributes of the modeled entity arising from the input data structure (including the ratio of presences and absences known as prevalence) rather than to model performance. The true skill statistics (TSS) has been propagated as unaffected by prevalence changes; however, experience questioned this. Therefore, we examined possible causes of observed prevalence dependence for TSS, while also extending the theory of prevalence dependence in general.
It has long been a concern that performance measures of species distribution models react to attributes of the modeled entity arising from the input data structure rather than to model performance. Thus, the study of Allouche et al. (Journal of Applied Ecology, 43, 1223, 2006) identifying the true skill statistics (TSS) as being independent of prevalence had a great impact. However, empirical experience questioned the validity of the statement. We searched for technical reasons behind these observations. We explored possible sources of prevalence dependence in TSS including sampling constraints and species characteristics, which influence the calculation of TSS. We also examined whether the widespread solution of using the maximum of TSS for comparison among species introduces a prevalence effect. We found that the design of Allouche et al. (Journal of Applied Ecology, 43, 1223, 2006) was flawed, but TSS is indeed independent of prevalence if model predictions are binary and under the strict set of assumptions methodological studies usually apply. However, if we take realistic sources of prevalence dependence, effects appear even in binary calculations. Furthermore, in the widespread approach of using maximum TSS for continuous predictions, the use of the maximum alone induces prevalence dependence for small, but realistic samples. Thus, prevalence differences need to be taken into account when model comparisons are carried out based on discrimination capacity. The sources we identified can serve as a checklist to safely control comparisons, so that true discrimination capacity is compared as opposed to artefacts arising from data structure, species characteristics, or the calculation of the comparison measure (here TSS).
It has long been a concern that performance measures of species distribution models react to attributes of the modeled entity arising from the input data structure rather than to model performance. Thus, the study of Allouche et al. ( Journal of Applied Ecology , 43, 1223, 2006) identifying the true skill statistics (TSS) as being independent of prevalence had a great impact. However, empirical experience questioned the validity of the statement. We searched for technical reasons behind these observations. We explored possible sources of prevalence dependence in TSS including sampling constraints and species characteristics, which influence the calculation of TSS. We also examined whether the widespread solution of using the maximum of TSS for comparison among species introduces a prevalence effect. We found that the design of Allouche et al. ( Journal of Applied Ecology , 43, 1223, 2006) was flawed, but TSS is indeed independent of prevalence if model predictions are binary and under the strict set of assumptions methodological studies usually apply. However, if we take realistic sources of prevalence dependence, effects appear even in binary calculations. Furthermore, in the widespread approach of using maximum TSS for continuous predictions, the use of the maximum alone induces prevalence dependence for small, but realistic samples. Thus, prevalence differences need to be taken into account when model comparisons are carried out based on discrimination capacity. The sources we identified can serve as a checklist to safely control comparisons, so that true discrimination capacity is compared as opposed to artefacts arising from data structure, species characteristics, or the calculation of the comparison measure (here TSS).
Author Somodi, Imelda
Botta‐Dukát, Zoltán
Lepesi, Nikolett
AuthorAffiliation 3 National Adaptation Centre Geological and Geophysical Institute of Hungary Budapest Hungary
1 MTA Centre for Ecological Research Tihany Hungary
2 Department of Plant Systematics, Ecology and Theoretical Biology Eötvös Loránd University Budapest Hungary
AuthorAffiliation_xml – name: 1 MTA Centre for Ecological Research Tihany Hungary
– name: 3 National Adaptation Centre Geological and Geophysical Institute of Hungary Budapest Hungary
– name: 2 Department of Plant Systematics, Ecology and Theoretical Biology Eötvös Loránd University Budapest Hungary
Author_xml – sequence: 1
  givenname: Imelda
  surname: Somodi
  fullname: Somodi, Imelda
  email: somodi.imelda@okologia.mta.hu
  organization: MTA Centre for Ecological Research
– sequence: 2
  givenname: Nikolett
  surname: Lepesi
  fullname: Lepesi, Nikolett
  organization: Geological and Geophysical Institute of Hungary
– sequence: 3
  givenname: Zoltán
  surname: Botta‐Dukát
  fullname: Botta‐Dukát, Zoltán
  organization: MTA Centre for Ecological Research
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28168023$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1rFTEUhoNUbK1d-Ack4EYXt83H5GM2glyuH1DQha5DbnKmNzWTjMlMS_-9M-2t1KJgNjmQ5305Oed9jg5SToDQS0pOKSHsDBzwUyZF8wQdMdKIlVJCHzyoD9FJrZdkPpKwhqhn6JBpKjVh_AiZrwWubITkAHsYIPnbMiTcZw8RX-TsE9SKe7B1KlDxdRh3uA7ggo0Y-mFna6g4JzyWCXD9EWLEdbRjqGNw9QV62tlY4WR_H6PvHzbf1p9W518-fl6_P1-5Rslm1VhBlKKMy0YxKinvHOWNbKVovdx2VlvJO9_ZzsHWS-0tAbKlqlPSW-6F5cfo3Z3vMG178A7SWGw0Qwm9LTcm22D-fElhZy7ylRFMa9bo2eDN3qDknxPU0fShOojRJshTNVRLzXnbKvk_qNBMiJbM6OtH6GWeSponYRhriWRs3spMvXrY_O-u79c0A2d3gCu51gKdcWEZcV7-EqKhxCxZMEsWzJKFWfH2keLe9G_s3v06RLj5N2g26w2_VfwCAsvDgQ
CitedBy_id crossref_primary_10_1016_j_watres_2019_114863
crossref_primary_10_3897_natureconservation_35_33918
crossref_primary_10_1002_ece3_6096
crossref_primary_10_1007_s43388_023_00124_6
crossref_primary_10_1016_j_scs_2022_103964
crossref_primary_10_1007_s10531_021_02126_6
crossref_primary_10_1016_j_scitotenv_2021_148067
crossref_primary_10_1016_j_apgeog_2020_102172
crossref_primary_10_1007_s11053_021_09940_3
crossref_primary_10_3390_biology11040497
crossref_primary_10_1016_j_ecoinf_2019_100974
crossref_primary_10_1007_s10340_022_01491_7
crossref_primary_10_1002_jez_2432
crossref_primary_10_1002_ece3_7663
crossref_primary_10_1016_j_cliser_2022_100330
crossref_primary_10_1007_s13744_022_01006_0
crossref_primary_10_1016_j_ecoinf_2021_101358
crossref_primary_10_1080_19768354_2025_2471476
crossref_primary_10_1016_j_flora_2024_152484
crossref_primary_10_1016_j_ecolmodel_2018_10_024
crossref_primary_10_1016_j_ecoinf_2021_101399
crossref_primary_10_1002_rra_4434
crossref_primary_10_1007_s11273_021_09799_4
crossref_primary_10_1016_j_rsase_2024_101273
crossref_primary_10_1111_ecog_04563
crossref_primary_10_1177_0959683620981689
crossref_primary_10_3390_s22041608
crossref_primary_10_1038_s41598_020_79491_9
crossref_primary_10_1029_2021EF002630
crossref_primary_10_1111_gcb_15330
crossref_primary_10_1038_s41598_018_25704_1
crossref_primary_10_1080_15481603_2021_1903281
crossref_primary_10_1016_j_jenvman_2024_122610
crossref_primary_10_1111_aec_12884
crossref_primary_10_15446_abc_v29n2_103070
crossref_primary_10_1111_1365_2664_14494
crossref_primary_10_1111_eff_12469
crossref_primary_10_1007_s10530_018_1690_7
crossref_primary_10_1007_s13253_023_00557_y
crossref_primary_10_1016_j_funeco_2022_101174
crossref_primary_10_1007_s10531_020_02075_6
crossref_primary_10_1016_j_ecoinf_2022_101819
crossref_primary_10_3390_f15111935
crossref_primary_10_1007_s10531_021_02144_4
crossref_primary_10_1111_ddi_13358
crossref_primary_10_1002_ece3_4098
crossref_primary_10_1016_j_actao_2021_103764
crossref_primary_10_3390_f13020189
crossref_primary_10_1002_ece3_6874
crossref_primary_10_1016_j_ecolind_2021_108335
crossref_primary_10_1002_ece3_6316
crossref_primary_10_1111_jbi_14009
crossref_primary_10_1080_0035919X_2023_2205368
crossref_primary_10_1093_icesjms_fsy003
crossref_primary_10_1016_j_aquaculture_2019_734897
crossref_primary_10_1111_jbi_13402
crossref_primary_10_1649_0010_065X_76_4_595
crossref_primary_10_1007_s10530_023_03128_x
crossref_primary_10_1007_s10530_024_03284_8
crossref_primary_10_1016_j_ecolmodel_2024_110667
crossref_primary_10_1111_2041_210X_14466
crossref_primary_10_22201_ib_20078706e_2019_90_2781
crossref_primary_10_3389_fmars_2024_1383063
crossref_primary_10_3390_rs11242995
crossref_primary_10_1016_j_ijpara_2021_01_005
crossref_primary_10_1038_s41598_020_60191_3
crossref_primary_10_1111_2041_210X_13140
crossref_primary_10_1111_csp2_12978
crossref_primary_10_1111_2041_210X_14071
crossref_primary_10_1111_geb_13204
crossref_primary_10_3390_f15020272
crossref_primary_10_1016_j_jenvman_2021_113086
crossref_primary_10_1007_s10661_023_11611_0
crossref_primary_10_1016_j_ecolind_2022_109830
crossref_primary_10_1111_eea_12961
crossref_primary_10_1016_j_ecoinf_2021_101545
crossref_primary_10_1093_jue_juac008
crossref_primary_10_1111_2041_210X_13826
crossref_primary_10_1080_20477724_2020_1870031
crossref_primary_10_3389_fmars_2021_632389
crossref_primary_10_1007_s10531_024_02908_8
crossref_primary_10_1016_j_gecco_2022_e02365
crossref_primary_10_1038_s41598_021_85205_6
crossref_primary_10_3390_su151612292
crossref_primary_10_1007_s42995_024_00226_0
Cites_doi 10.1093/acprof:oso/9780199577859.001.0001
10.1016/S0895-4356(99)00075-X
10.1111/j.1472-4642.2007.00340.x
10.1016/S0304-3800(00)00322-7
10.1016/S0304-3800(03)00028-0
10.1073/pnas.0901956106
10.1111/jbi.12058
10.1111/j.0906-7590.2005.03957.x
10.1111/j.1600-0587.2011.07200.x
10.1111/j.1365-2664.2006.01141.x
10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3
10.1111/j.1466-8238.2007.00359.x
10.1111/j.1523-1739.2006.00354.x
10.1111/j.1095-8312.1991.tb00549.x
10.1111/j.1466-8238.2009.00485.x
10.1111/j.0021-8901.2004.00881.x
10.1111/j.1365-2699.2006.01466.x
10.1111/j.0021-8901.2004.00943.x
10.1017/S0376892997000088
10.1111/j.1600-0587.2008.05505.x
10.1080/01431161.2011.552923
10.1126/science.ns-4.93.453-a
10.1046/j.1365-2745.1998.00324.x
10.1111/j.1472-4642.2007.00392.x
10.1111/j.1472-4642.2008.00482.x
10.1890/06-0539
10.1016/j.biocon.2013.02.001
10.1016/j.ppees.2010.04.002
10.1111/j.1600-0587.2013.00195.x
10.1046/j.1365-2664.2001.00647.x
10.1016/j.ecolmodel.2014.06.003
10.1177/030913339501900403
10.1016/0169-5347(93)90259-R
10.1890/06-1736.1
10.1148/radiology.143.1.7063747
10.1007/s13042-011-0012-5
10.1111/j.1472-4642.2008.00516.x
10.1016/j.foreco.2013.07.059
10.1002/ece3.2332
10.1038/371065a0
10.1111/j.1466-8238.2010.00581.x
10.1111/j.1365-2664.2007.01348.x
10.1016/j.ppees.2015.08.001
10.1111/2041-210X.12123
10.1016/S0006-3207(03)00190-3
10.1002/ece3.1878
10.1111/j.1600-0587.2008.05742.x
10.1073/pnas.0901643106
10.1111/j.1365-2664.2008.01524.x
10.1016/j.biocon.2010.07.007
10.1111/j.1472-4642.2009.00567.x
10.1016/B978-0-12-385022-5.00008-7
10.1111/j.0906-7590.2006.04700.x
10.1111/j.1466-8238.2007.00358.x
10.1111/j.1600-0587.2010.06416.x
10.1111/j.1365-2664.2006.01214.x
10.1890/08-2261.1
10.1177/001316446002000104
ContentType Journal Article
Copyright 2017 The Authors. published by John Wiley & Sons Ltd.
2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2017 The Authors. published by John Wiley & Sons Ltd.
– notice: 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
3V.
7SN
7SS
7ST
7X2
8FD
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M0K
M7P
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOI 10.1002/ece3.2654
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Agricultural Science Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Agriculture Science Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Genetics Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Agricultural Science Database
PubMed

Ecology Abstracts
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access (Activated by CARLI)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central (New)
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
Statistics
EISSN 2045-7758
EndPage 872
ExternalDocumentID PMC5288248
28168023
10_1002_ece3_2654
ECE32654
Genre article
Journal Article
GrantInformation_xml – fundername: EEA Grants ‐ Norway, Iceland, Lichtenstein via The Regional Environmental Center for Central and Eastern Europe
  funderid: EEA‐C11‐1
– fundername: Economy Development and Innovation Operative Programme, Hungary (GINOP)
  funderid: GINOP‐2.3.2‐15‐2016‐00019
– fundername: Hungarian Scientific Research Fund (OTKA)
  funderid: PD‐83522
– fundername: Economy Development and Innovation Operative Programme, Hungary (GINOP)
  grantid: GINOP‐2.3.2‐15‐2016‐00019
– fundername: EEA Grants ‐ Norway, Iceland, Lichtenstein via The Regional Environmental Center for Central and Eastern Europe
  grantid: EEA‐C11‐1
– fundername: Hungarian Scientific Research Fund (OTKA)
  grantid: PD‐83522
GroupedDBID 0R~
1OC
24P
53G
5VS
7X2
8-0
8-1
8FE
8FH
AAFWJ
AAHBH
AAMMB
AAZKR
ACCMX
ACGFO
ACPRK
ACXQS
ADBBV
ADKYN
ADRAZ
ADZMN
AEFGJ
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AGXDD
AIAGR
AIDQK
AIDYY
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
ATCPS
AVUZU
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
D-8
D-9
DIK
EBS
ECGQY
EJD
GODZA
GROUPED_DOAJ
GX1
HCIFZ
HYE
IAO
IEP
ITC
KQ8
LK8
M0K
M48
M7P
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PUEGO
RNS
ROL
RPM
SUPJJ
WIN
AAYXX
CITATION
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
NPM
3V.
7SN
7SS
7ST
8FD
8FK
ABUWG
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
ID FETCH-LOGICAL-c4764-4a507712364721613fc13469659d6bfa8a63fdfafcebd68da0e0b17f76da3d5a3
IEDL.DBID M48
ISSN 2045-7758
IngestDate Tue Sep 30 16:56:44 EDT 2025
Wed Oct 01 13:17:48 EDT 2025
Thu Sep 04 17:12:11 EDT 2025
Wed Aug 13 07:03:03 EDT 2025
Thu Apr 03 07:06:55 EDT 2025
Wed Oct 01 02:20:09 EDT 2025
Thu Apr 24 23:12:11 EDT 2025
Sun Sep 21 06:17:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords predictive models
sample size
species distribution models
Cohen's kappa
model performance
Language English
License Attribution
http://creativecommons.org/licenses/by/4.0
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4764-4a507712364721613fc13469659d6bfa8a63fdfafcebd68da0e0b17f76da3d5a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1002/ece3.2654
PMID 28168023
PQID 2290622006
PQPubID 2034651
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5288248
proquest_miscellaneous_1868339976
proquest_miscellaneous_1865825590
proquest_journals_2290622006
pubmed_primary_28168023
crossref_citationtrail_10_1002_ece3_2654
crossref_primary_10_1002_ece3_2654
wiley_primary_10_1002_ece3_2654_ECE32654
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2017
PublicationDateYYYYMMDD 2017-02-01
PublicationDate_xml – month: 02
  year: 2017
  text: February 2017
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Bognor Regis
– name: Hoboken
PublicationTitle Ecology and evolution
PublicationTitleAlternate Ecol Evol
PublicationYear 2017
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References 2010; 12
1993; 8
1884; 4
2000; 135
2006; 33
1994; 371
2010; 143
1982; 143
2000; 133
2005; 28
2013; 160
1998; 86
2010; 20
2014; 5
2006; 20
1991; 42
2013; 310
2011; 20
2006; 29
1985
1999; 52
1950; 3
2009; 15
2009; 18
2014; 288
2003; 164
2010; 33
2004; 41
2015; 17
2011; 2
2013; 40
1997; 24
2008; 17
2008; 14
2011; 32
1995; 19
2012; 35
2007; 13
2016; 56
2007; 16
2016; 6
2004; 116
2009; 32
1960; 20
2006; 43
2014; 37
2008; 45
2016
2001; 38
2014
2013
2007; 88
2007; 44
2011; 100
2009; 106
e_1_2_8_28_1
Ribeiro D. (e_1_2_8_52_1) 2016; 56
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
Flather C. H. (e_1_2_8_16_1) 2013
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_37_1
e_1_2_8_58_1
Murphy A. H. (e_1_2_8_42_1) 1985
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_50_1
References_xml – volume: 86
  start-page: 1021
  issue: 6
  year: 1998
  end-page: 1031
  article-title: Spatial and temporal variation in population size of in ephemeral habitats: Implications for metapopulation dynamics
  publication-title: Journal of Ecology
– volume: 19
  start-page: 474
  year: 1995
  end-page: 499
  article-title: Predictive vegetation mapping: Geographic modeling of biospatial patterns in relation to environmental gradients
  publication-title: Progress in Physical Geography
– volume: 52
  start-page: 885
  issue: 9
  year: 1999
  end-page: 892
  article-title: A comparison of C/B ratios from studies using receiver operating characteristic curve analysis
  publication-title: Journal of Clinical Epidemiology
– volume: 44
  start-page: 1057
  year: 2007
  end-page: 1067
  article-title: Remote sensing‐based predictors improve distribution models of rare, early successional and broadleaf tree species in Utah
  publication-title: Journal of Applied Ecology
– volume: 20
  start-page: 311
  year: 2010
  end-page: 326
  article-title: Combining local‐and large‐scale models to predict the distributions of invasive plant species
  publication-title: Ecological Applications
– start-page: 379
  year: 1985
  end-page: 437
– volume: 33
  start-page: 637
  issue: 4
  year: 2010
  end-page: 642
  article-title: ModEco: An integrated software package for ecological niche modeling
  publication-title: Ecography
– volume: 6
  start-page: 337
  issue: 1
  year: 2016
  end-page: 348
  article-title: On the selection of thresholds for predicting species occurrence with presence‐only data
  publication-title: Ecology and Evolution
– volume: 20
  start-page: 37
  year: 1960
  end-page: 46
  article-title: A coefficient of agreement for nominal scales
  publication-title: Educational and Psychological Measurement
– volume: 160
  start-page: 225
  year: 2013
  end-page: 233
  article-title: Evaluating the combined threat of climate change and biological invasions on endangered species
  publication-title: Biological Conservation
– volume: 143
  start-page: 29
  issue: 1
  year: 1982
  end-page: 36
  article-title: The meaning and use of the area under a receiver operating characteristic (ROC) curve
  publication-title: Radiology
– volume: 17
  start-page: 145
  issue: 2
  year: 2008
  end-page: 151
  article-title: AUC: A misleading measure of the performance of predictive distribution models
  publication-title: Global Ecology and Biogeography
– volume: 20
  start-page: 181
  year: 2011
  end-page: 192
  article-title: Assessing the effect of prevalence on the predictive performance of species distribution models using simulated data
  publication-title: Global Ecology and Biogeography
– volume: 143
  start-page: 2647
  issue: 11
  year: 2010
  end-page: 2657
  article-title: Overcoming the rare species modelling paradox: A novel hierarchical framework applied to an Iberian endemic plant
  publication-title: Biological Conservation
– volume: 16
  start-page: 743
  year: 2007
  end-page: 753
  article-title: The importance of biotic interactions for modelling species distributions under climate change
  publication-title: Global Ecology and Biogeography
– year: 2014
– volume: 32
  start-page: 66
  issue: 1
  year: 2009
  end-page: 77
  article-title: Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models
  publication-title: Ecography
– volume: 116
  start-page: 195
  year: 2004
  end-page: 203
  article-title: Absent or undetected? Effects of non‐detection of species occurrence on wildlife–habitat models
  publication-title: Biological Conservation
– volume: 5
  start-page: 54
  year: 2014
  end-page: 64
  article-title: Prevalence, thresholds and the performance of presence–absence models
  publication-title: Methods in Ecology and Evolution
– volume: 43
  start-page: 1223
  year: 2006
  end-page: 1232
  article-title: Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS)
  publication-title: Journal of Applied Ecology
– volume: 106
  start-page: 19723
  issue: Supplement 2
  year: 2009
  end-page: 19728
  article-title: Climatic extremes improve predictions of spatial patterns of tree species
  publication-title: Proceedings of the National Academy of Sciences
– volume: 56
  start-page: 25
  issue: 1
  year: 2016
  end-page: 43
  article-title: Transferability of a predictive distribution model in northeast Slovenia
  publication-title: Geografski Zbornik/Acta Geographica Slovenica
– volume: 288
  start-page: 166
  year: 2014
  end-page: 177
  article-title: Effects of alternative sets of climatic predictors on species distribution models and associated estimates of extinction risk: A test with plants in an arid environment
  publication-title: Ecological Modelling
– volume: 18
  start-page: 701
  year: 2009
  end-page: 710
  article-title: Ensemble models predict Important Bird Areas in southern Africa will become less effective for conserving endemic birds under climate change
  publication-title: Global Ecology and Biogeography
– volume: 41
  start-page: 263
  issue: 2
  year: 2004
  end-page: 274
  article-title: An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo‐absence data
  publication-title: Journal of Applied Ecology
– volume: 42
  start-page: 17
  year: 1991
  end-page: 38
  article-title: Single‐species metapopulation dynamics: Concepts, models and observations
  publication-title: Biological Journal of the Linnean Society
– volume: 371
  start-page: 65
  issue: 6492
  year: 1994
  end-page: 66
  article-title: Habitat destruction and the extinction debt
  publication-title: Nature
– volume: 8
  start-page: 298
  issue: 8
  year: 1993
  end-page: 301
  article-title: The biology of rarity: Patterns, causes and consequences
  publication-title: Trends in Ecology and Evolution
– volume: 13
  start-page: 265
  issue: 3
  year: 2007
  end-page: 275
  article-title: Predicting species distributions from museum and herbarium records using multiresponse models fitted with multivariate adaptive regression splines
  publication-title: Diversity and Distributions
– volume: 17
  start-page: 360
  issue: 5
  year: 2015
  end-page: 368
  article-title: Environmental drivers of diversity in Subtropical Highland Grasslands
  publication-title: Perspectives in Plant Ecology, Evolution and Systematics
– volume: 13
  start-page: 890
  issue: 6
  year: 2007
  end-page: 902
  article-title: Modelling ecological niches from low numbers of occurrences: Assessment of the conservation status of poorly known viverrids (Mammalia, Carnivora) across two continents
  publication-title: Diversity and Distributions
– volume: 45
  start-page: 1372
  year: 2008
  end-page: 1381
  article-title: Habitat suitability modelling and niche theory
  publication-title: Journal of Applied Ecology
– volume: 310
  start-page: 64
  year: 2013
  end-page: 73
  article-title: Combining ensemble modeling and remote sensing for mapping individual tree species at high spatial resolution
  publication-title: Forest Ecology and Management
– volume: 88
  start-page: 2427
  issue: 10
  year: 2007
  end-page: 2439
  article-title: Partitioning diversity into independent alpha and beta components
  publication-title: Ecology
– volume: 100
  year: 2011
– volume: 29
  start-page: 773
  year: 2006
  end-page: 785
  article-title: The effect of sample size and species characteristics on performance of different species distribution modeling methods
  publication-title: Ecography
– volume: 24
  start-page: 38
  year: 1997
  end-page: 49
  article-title: A review of methods for the assessment of prediction errors in conservation presence/absence models
  publication-title: Environmental Conservation
– volume: 33
  start-page: 1689
  year: 2006
  end-page: 1703
  article-title: Are niche‐based species distribution models transferable in space?
  publication-title: Journal of Biogeography
– volume: 28
  start-page: 385
  issue: 3
  year: 2005
  end-page: 393
  article-title: Selecting thresholds of occurrence in the prediction of species distributions
  publication-title: Ecography
– volume: 12
  start-page: 219
  year: 2010
  end-page: 225
  article-title: Predictive performance of plant species distribution models depends on species traits
  publication-title: Perspectives in Plant Ecology, Evolution and Systematics
– volume: 43
  start-page: 424
  issue: 3
  year: 2006
  end-page: 432
  article-title: Modelling ecological niches with support vector machines
  publication-title: Journal of Applied Ecology
– volume: 106
  start-page: 10702
  year: 2009
  end-page: 10705
  article-title: Multiple ecological pathways to extinction in mammals
  publication-title: Proceedings of the National Academy of Sciences
– volume: 164
  start-page: 153
  issue: 2
  year: 2003
  end-page: 167
  article-title: Comparing models for predicting species' potential distributions: A case study using correlative and mechanistic predictive modelling techniques
  publication-title: Ecological Modelling
– year: 2016
– volume: 20
  start-page: 501
  year: 2006
  end-page: 511
  article-title: Using niche‐based models to improve the sampling of rare species
  publication-title: Conservation Biology
– volume: 40
  start-page: 778
  issue: 4
  year: 2013
  end-page: 789
  article-title: Selecting thresholds for the prediction of species occurrence with presence‐only data
  publication-title: Journal of Biogeography
– start-page: 40
  year: 2013
  end-page: 66
– volume: 2
  start-page: 37
  year: 2011
  end-page: 63
  article-title: Evaluation: From precision, recall and F‐measure to ROC, informedness, markedness and correlation
  publication-title: Journal of Machine Learning Technologies
– volume: 133
  start-page: 225
  issue: 3
  year: 2000
  end-page: 245
  article-title: Evaluating the predictive performance of habitat models developed using logistic regression
  publication-title: Ecological Modelling
– volume: 15
  start-page: 108
  year: 2009
  end-page: 116
  article-title: From introduction to the establishment of alien species: Bioclimatic differences between presence and reproduction localities in the slider turtle
  publication-title: Diversity and Distributions
– volume: 32
  start-page: 369
  year: 2009
  end-page: 373
  article-title: BIOMOD—A platform for ensemble forecasting of species distributions
  publication-title: Ecography
– volume: 135
  start-page: 147
  year: 2000
  end-page: 186
  article-title: Predictive habitat distribution models in ecology
  publication-title: Ecological Modelling
– volume: 15
  start-page: 565
  year: 2009
  end-page: 576
  article-title: Using species distribution models to predict new occurrences for rare plants
  publication-title: Diversity and Distributions
– volume: 28
  start-page: 385
  year: 2005
  end-page: 393
  article-title: Selecting thresholds of occurrence in the prediction of species distributions
  publication-title: Ecography
– volume: 38
  start-page: 921
  year: 2001
  end-page: 931
  article-title: Evaluating presence–absence models in ecology: The need to account for prevalence
  publication-title: Journal of Applied Ecology
– volume: 14
  start-page: 763
  issue: 5
  year: 2008
  end-page: 773
  article-title: Effects of sample size on the performance of species distribution models
  publication-title: Diversity and Distributions
– volume: 41
  start-page: 811
  year: 2004
  end-page: 823
  article-title: The effects of species' range sizes on the accuracy of distribution models: Ecological phenomenon or statistical artefact?
  publication-title: Journal of Applied Ecology
– volume: 3
  start-page: 32
  issue: 1
  year: 1950
  end-page: 35
  article-title: Index for rating diagnostic tests
  publication-title: Cancer
– volume: 35
  start-page: 590
  year: 2012
  end-page: 603
  article-title: Uncertainty in predictions of range dynamics: Black grouse climbing the Swiss Alps
  publication-title: Ecography
– volume: 6
  start-page: 5973
  issue: 16
  year: 2016
  end-page: 5986
  article-title: A comparison of absolute performance of different correlative and mechanistic species distribution models in an independent area
  publication-title: Ecology and Evolution
– volume: 4
  start-page: 453
  issue: 93
  year: 1884
  end-page: 454
  article-title: The numerical measure of the success of predictions
  publication-title: Science
– volume: 32
  start-page: 4407
  year: 2011
  end-page: 4429
  article-title: Death to Kappa: Birth of quantity disagreement and allocation disagreement for accuracy assessment
  publication-title: International Journal of Remote Sensing
– volume: 37
  start-page: 301
  issue: 3
  year: 2014
  end-page: 308
  article-title: Host plant availability potentially limits butterfly distributions under cold environmental conditions
  publication-title: Ecography
– ident: e_1_2_8_44_1
  doi: 10.1093/acprof:oso/9780199577859.001.0001
– ident: e_1_2_8_5_1
  doi: 10.1016/S0895-4356(99)00075-X
– ident: e_1_2_8_11_1
  doi: 10.1111/j.1472-4642.2007.00340.x
– ident: e_1_2_8_45_1
  doi: 10.1016/S0304-3800(00)00322-7
– ident: e_1_2_8_53_1
  doi: 10.1016/S0304-3800(03)00028-0
– ident: e_1_2_8_8_1
  doi: 10.1073/pnas.0901956106
– ident: e_1_2_8_35_1
  doi: 10.1111/jbi.12058
– ident: e_1_2_8_36_1
  doi: 10.1111/j.0906-7590.2005.03957.x
– ident: e_1_2_8_64_1
  doi: 10.1111/j.1600-0587.2011.07200.x
– ident: e_1_2_8_9_1
  doi: 10.1111/j.1365-2664.2006.01141.x
– ident: e_1_2_8_61_1
  doi: 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3
– ident: e_1_2_8_3_1
  doi: 10.1111/j.1466-8238.2007.00359.x
– ident: e_1_2_8_20_1
  doi: 10.1111/j.1523-1739.2006.00354.x
– ident: e_1_2_8_24_1
  doi: 10.1111/j.1095-8312.1991.tb00549.x
– ident: e_1_2_8_6_1
  doi: 10.1111/j.1466-8238.2009.00485.x
– ident: e_1_2_8_12_1
  doi: 10.1111/j.0021-8901.2004.00881.x
– ident: e_1_2_8_51_1
  doi: 10.1111/j.1365-2699.2006.01466.x
– ident: e_1_2_8_41_1
  doi: 10.1111/j.0021-8901.2004.00943.x
– ident: e_1_2_8_15_1
  doi: 10.1017/S0376892997000088
– ident: e_1_2_8_10_1
  doi: 10.1111/j.1600-0587.2008.05505.x
– ident: e_1_2_8_48_1
  doi: 10.1080/01431161.2011.552923
– ident: e_1_2_8_46_1
  doi: 10.1126/science.ns-4.93.453-a
– ident: e_1_2_8_29_1
  doi: 10.1046/j.1365-2745.1998.00324.x
– ident: e_1_2_8_43_1
  doi: 10.1111/j.1472-4642.2007.00392.x
– ident: e_1_2_8_60_1
  doi: 10.1111/j.1472-4642.2008.00482.x
– ident: e_1_2_8_21_1
  doi: 10.1890/06-0539
– ident: e_1_2_8_18_1
  doi: 10.1016/j.biocon.2013.02.001
– ident: e_1_2_8_25_1
  doi: 10.1016/j.ppees.2010.04.002
– ident: e_1_2_8_26_1
  doi: 10.1111/j.1600-0587.2013.00195.x
– ident: e_1_2_8_50_1
– ident: e_1_2_8_40_1
  doi: 10.1046/j.1365-2664.2001.00647.x
– ident: e_1_2_8_47_1
  doi: 10.1016/j.ecolmodel.2014.06.003
– ident: e_1_2_8_17_1
  doi: 10.1177/030913339501900403
– ident: e_1_2_8_32_1
  doi: 10.1016/0169-5347(93)90259-R
– ident: e_1_2_8_31_1
  doi: 10.1890/06-1736.1
– ident: e_1_2_8_23_1
  doi: 10.1148/radiology.143.1.7063747
– ident: e_1_2_8_49_1
  doi: 10.1007/s13042-011-0012-5
– ident: e_1_2_8_14_1
  doi: 10.1111/j.1472-4642.2008.00516.x
– ident: e_1_2_8_13_1
  doi: 10.1016/j.foreco.2013.07.059
– ident: e_1_2_8_34_1
  doi: 10.1111/j.0906-7590.2005.03957.x
– start-page: 379
  volume-title: Probability, statistics, and decision making in the atmospheric sciences
  year: 1985
  ident: e_1_2_8_42_1
– ident: e_1_2_8_55_1
  doi: 10.1002/ece3.2332
– ident: e_1_2_8_57_1
  doi: 10.1038/371065a0
– ident: e_1_2_8_54_1
  doi: 10.1111/j.1466-8238.2010.00581.x
– ident: e_1_2_8_62_1
  doi: 10.1111/j.1365-2664.2007.01348.x
– ident: e_1_2_8_4_1
  doi: 10.1016/j.ppees.2015.08.001
– ident: e_1_2_8_33_1
  doi: 10.1111/2041-210X.12123
– ident: e_1_2_8_19_1
  doi: 10.1016/S0006-3207(03)00190-3
– ident: e_1_2_8_37_1
  doi: 10.1002/ece3.1878
– ident: e_1_2_8_56_1
  doi: 10.1111/j.1600-0587.2008.05742.x
– ident: e_1_2_8_63_1
  doi: 10.1073/pnas.0901643106
– ident: e_1_2_8_28_1
  doi: 10.1111/j.1365-2664.2008.01524.x
– ident: e_1_2_8_39_1
  doi: 10.1016/j.biocon.2010.07.007
– ident: e_1_2_8_59_1
  doi: 10.1111/j.1472-4642.2009.00567.x
– ident: e_1_2_8_58_1
  doi: 10.1016/B978-0-12-385022-5.00008-7
– ident: e_1_2_8_27_1
  doi: 10.1111/j.0906-7590.2006.04700.x
– ident: e_1_2_8_38_1
  doi: 10.1111/j.1466-8238.2007.00358.x
– volume: 56
  start-page: 25
  issue: 1
  year: 2016
  ident: e_1_2_8_52_1
  article-title: Transferability of a predictive Robinia pseudacacia distribution model in northeast Slovenia
  publication-title: Geografski Zbornik/Acta Geographica Slovenica
– start-page: 40
  volume-title: Conservation of rare or little‐known species: Biological, social, and economic considerations
  year: 2013
  ident: e_1_2_8_16_1
– ident: e_1_2_8_22_1
  doi: 10.1111/j.1600-0587.2010.06416.x
– ident: e_1_2_8_2_1
  doi: 10.1111/j.1365-2664.2006.01214.x
– ident: e_1_2_8_30_1
  doi: 10.1890/08-2261.1
– ident: e_1_2_8_7_1
  doi: 10.1177/001316446002000104
SSID ssj0000602407
Score 2.4154887
Snippet It has long been a concern that performance measures of species distribution models react to attributes of the modeled entity arising from the input data...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 863
SubjectTerms Cohen's kappa
Data structures
Datasets
Dependence
Discrimination
Ecological monitoring
Introduced species
Kappa coefficient
model performance
Original Research
predictive models
sample size
species distribution models
Statistical methods
Statistics
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9QwFH4qUyH1gqBsAwUZxIFLaOItzgEhqFJVSIwQolJvluMFRgxJIe2Bf4-fs8Co0Jslvyz28_L52f4-gBfSVZ7zymWiCTTjIpjM2IJmwVQIdx3POV5O_rCSJ6f8_Zk424HVdBcGj1VOY2IaqF1nMUZ-mHjJKS6A35z_yFA1CndXJwkNM0oruNeJYuwG7FJUVV7A7rt69fHTHHXJJXJ6lRPFUE4PvfXsFZWCb09MV9Dm1UOTf4PZNBsd34ZbI4wkbwe_34Ed3-7DzTpRUP_ahz3EkAMF813QSNNk0uUiMmnexuS6JUkGh3zpOocDHvk-xAt7gsFZ0g_K9MRHf5t-3ZOuJRc_Lz3pv603G9LPX7gHp8f156OTbNRVyCwvJc-4iSCwLAbq-Ij4WLAFi8tkKSonm2CUkSy4YIL1jZPKmdznTVGGUjrDnDDsPizarvUPgVgVn_KhVJwL3gilCqZUpaxkTYGmS3g5Vaq2I-k4al9s9ECXTDXWv8b6X8Lz2fR8YNr4l9HB5Bk9drZe_2kaS3g2Z8dugnsfpvXdZa8LFaEWLp_ya20Ui4CtjO95MDh7_hOK-iQR3yyh3GoGswHSdG_ntOuvia5b0LiK4SpWRWow_y-cro9qholH15fyMexRBBfp7PgBLND3TyI0umieju39N_vYEBA
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5Rqkq9ICilXR6VQT30Ekj8iqOeKrQIVWrFASRulhPbdMU2qZrlwL_HY29SVpSqN0seR8mMx_488XwD8FHaynFe2UzUnmZceJOZpqCZNxXCXctzjsnJ377L8yv-9Vpcr8HnIRcm8UOMATf0jLheo4Obuj_5QxrqGseOqRT8BbwscNdHWmd-MQZYcon0XZgujYzrAUUKNTAL5fRkHL26Hz0BmU_vSj7GsHETOtuEjSV6JF-SubdgzbVv4NU0Mk_fb4NGQiYT04jIUN02NGctiQVvyE3XWVzayM8UGewJhmFJn2rQExcsa_pZT7qWLH7fOdLfzuZzgjlHic75LVydTS9Pz7NlBYWs4aXkGTcB7pVFIokP2I75pmDhQCxFZWXtjTKSeeuNb1xtpbImd3ldlL6U1jArDNuB9bZr3XsgjQqjnC8V54LXQqmCKVWpRrK6QNEJfBr0qJslvThWuZjrRIxMNapco8oncDSK_kqcGn8T2h-MoZdu1etITk8xCjKBw7E7OAT-5TCt6-56XagAqvCglP9TRrEAzcrwnHfJvuObUKxEEpDMBMoVy48CSMi92tPOfkRibkHDeYWroIo4R57_OD09nTJs7P6_6B68pggp4o3xfVjHeXAQANGi_hAn_gNDlQcI
  priority: 102
  providerName: Wiley-Blackwell
Title Prevalence dependence in model goodness measures with special emphasis on true skill statistics
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fece3.2654
https://www.ncbi.nlm.nih.gov/pubmed/28168023
https://www.proquest.com/docview/2290622006
https://www.proquest.com/docview/1865825590
https://www.proquest.com/docview/1868339976
https://pubmed.ncbi.nlm.nih.gov/PMC5288248
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2045-7758
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000602407
  issn: 2045-7758
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-7758
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000602407
  issn: 2045-7758
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2045-7758
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000602407
  issn: 2045-7758
  databaseCode: DIK
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2045-7758
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000602407
  issn: 2045-7758
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-7758
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000602407
  issn: 2045-7758
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2045-7758
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000602407
  issn: 2045-7758
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central (New)
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2045-7758
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000602407
  issn: 2045-7758
  databaseCode: BENPR
  dateStart: 20110901
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Open Access Journals
  customDbUrl:
  eissn: 2045-7758
  dateEnd: 20250831
  omitProxy: true
  ssIdentifier: ssj0000602407
  issn: 2045-7758
  databaseCode: M48
  dateStart: 20110901
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 2045-7758
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000602407
  issn: 2045-7758
  databaseCode: AVUZU
  dateStart: 20110901
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access (Activated by CARLI)
  customDbUrl:
  eissn: 2045-7758
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000602407
  issn: 2045-7758
  databaseCode: 24P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9RAFD70gtAX0XrbWpdRRHxJ3cwtkwcRLSlFaCniQt_CJDOji2vSNi20_945M0no0tq3wJxMMufM5Zvb9wG8lya3nOcmEZWjCRdOJ7pOaeJ0jnDX8BnHy8lHx_Jwzr-fitM1GI419w7s7p3aoZ7U_GK5d31-88U3-M89gegnW1u2R6XgH87OE9STwn3XXlxjHTb9GEWxvh_1wD_20cjtlQ1UQ7czWR2g7qDOu4cnb4PaMCodPIHHPZwkX2P8n8KabbbhURGoqG-2YQuxZKRifgYl0jXpcMmIDNq3_nHRkCCHQ361rcGOj_yN64YdwUVa0kWFemJ93HW36EjbkMuLK0u6P4vlknTjF57D_KD4uX-Y9PoKSc0zyROuPRjM0kgh75Efc3XK_HRZitzIymmlJXPGaVfbykhl9MzOqjRzmTSaGaHZC9ho2sa-AlIr_5Z1meJc8EoolTKlclVLVqVoOoGPg1PLuicfRw2MZRlpk2mJ_i_R_xN4N5qeRcaN-4x2h8iUQ50pA3U9xTWSCbwdk31zwT0Q3dj2qitT5SEXTqNmD9oo5oFb5vN5GYM9_glFnRKPcyaQrVSD0QDpuldTmsXvQNstqJ_NcOVdESrM_wtXFvsFw4edh0v5GrYogoxwhnwXNjD2bzxEuqymsE75yRQ2vxXHJz-mYaFhGlrAP0E0Fic
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKK0QvCMproYBBIHEJTWzHcQ4VgrLVlrYrhFqpN9eJbVixJIW0Qv1z_DZmnAesCr31ZikTJx7PON84nm8IeSFt7oTIbZQWnkUi9SYyZcIib3KEu1bEApOT96dycig-HKVHS-RXnwuDxyr7NTEs1LYucY98I_CSMwyA35x8j7BqFP5d7UtomK60gt0MFGNdYseuO_8JIVyzufMe5vslY9vjg61J1FUZiEqRSREJA5AoS1oidcA_3JcJh6BRprmVhTfKSO6tN750hZXKmtjFRZL5TFrDbWo49HuNrADs4OBVK-_G04-fhl2eWCKHWNZTGsVsw5WOv2YyFYsfwgvo9uIhzb_Bc_j6bd8iNzvYSt-2dnabLLlqjVwfB8rr8zWyipi1pXy-QzTSQpmQzET7GrvQnFU0lN2hn-va4gJLv7X7kw3FzWCKOZ_gDNSBfZlm1tC6oqc_zhxtvs7mc9oMT7hLDq9Ew_fIclVX7gGhpYK7nM-UEKkoUqUSrlSuSsmLBEVH5FWvVF12JOdYa2OuW3pmplH_GvU_Is8H0ZOW2eNfQuv9zOjOuRv9xxRH5NlwGdwS_7WYytVnjU4UQDsM1-JLZRQHgJhBP_fbyR7ehGE9FMBTI5ItmMEggLTgi1eq2ZdAD54yiJqEAlUEg_n_4PR4a8yx8fDyUT4lNyYH-3t6b2e6-4isMgQ24dz6OllGO3gMsOy0eNLZPiXHV-1uvwE-dk0B
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUC9ICivhQIGgcQlbOI4jnOoELRZtRRWFaJSb8aJbVh1mxTSCvUv8qvwOA9YFXrrzVImTjyecb5xPN8AvOA6M4xlOkgKSwOWWBWoMqKBVRnCXc1ChsnJH2d854C9P0wOV-BXnwuDxyr7NdEv1LoucY984nnJKQbAE9sdi9jfnr45-R5gBSn809qX01BdmQW96enGuiSPPXP-04Vzzebutpv7l5RO889bO0FXcSAoWcpZwJSDR2nUkqo7LBTbMopdAMmTTPPCKqF4bLVVtjSF5kKr0IRFlNqUaxXrRMWu32uwmmK-6AhW3-Wz_U_Djk_IkU8s7emNQjoxpYlfU56w5Y_iBaR78cDm30Dafwmnt-BmB2HJ29bmbsOKqdbheu7pr8_XYQ3xa0v_fAckUkQpn9hE-nq7rjmviC_BQ77WtcbFlhy3e5UNwY1hgvmfzjGIcbammnlD6oqc_jgzpDmaLxakGZ5wFw6uRMP3YFTVlXkApBTuLmNTwVjCikSIKBYiEyWPiwhFx_CqV6osO8JzrLuxkC1VM5Wof4n6H8PzQfSkZfn4l9BGPzOyc_RG_jHLMTwbLjsXxf8uqjL1WSMj4WAehm7hpTIidmaTun7ut5M9vAnF2igOW40hXTKDQQApwpevVPNvnio8oS6CYsKpwhvM_wcn8608xsbDy0f5FG44t5Mfdmd7j2CNIsbxR9g3YIRm8NghtNPiSWf6BL5ctbf9BqrbUTs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prevalence+dependence+in+model+goodness+measures+with+special+emphasis+on+true+skill+statistics&rft.jtitle=Ecology+and+evolution&rft.au=Somodi%2C+Imelda&rft.au=Lepesi%2C+Nikolett&rft.au=Botta-Duk%C3%A1t%2C+Zolt%C3%A1n&rft.date=2017-02-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2045-7758&rft.volume=7&rft.issue=3&rft.spage=863&rft.epage=872&rft_id=info:doi/10.1002%2Fece3.2654&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-7758&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-7758&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-7758&client=summon