Prevalence dependence in model goodness measures with special emphasis on true skill statistics
It has long been a concern that performance measures of species distribution models react to attributes of the modeled entity arising from the input data structure rather than to model performance. Thus, the study of Allouche et al. (Journal of Applied Ecology, 43, 1223, 2006) identifying the true s...
Saved in:
Published in | Ecology and evolution Vol. 7; no. 3; pp. 863 - 872 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
John Wiley & Sons, Inc
01.02.2017
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
ISSN | 2045-7758 2045-7758 |
DOI | 10.1002/ece3.2654 |
Cover
Abstract | It has long been a concern that performance measures of species distribution models react to attributes of the modeled entity arising from the input data structure rather than to model performance. Thus, the study of Allouche et al. (Journal of Applied Ecology, 43, 1223, 2006) identifying the true skill statistics (TSS) as being independent of prevalence had a great impact. However, empirical experience questioned the validity of the statement. We searched for technical reasons behind these observations. We explored possible sources of prevalence dependence in TSS including sampling constraints and species characteristics, which influence the calculation of TSS. We also examined whether the widespread solution of using the maximum of TSS for comparison among species introduces a prevalence effect. We found that the design of Allouche et al. (Journal of Applied Ecology, 43, 1223, 2006) was flawed, but TSS is indeed independent of prevalence if model predictions are binary and under the strict set of assumptions methodological studies usually apply. However, if we take realistic sources of prevalence dependence, effects appear even in binary calculations. Furthermore, in the widespread approach of using maximum TSS for continuous predictions, the use of the maximum alone induces prevalence dependence for small, but realistic samples. Thus, prevalence differences need to be taken into account when model comparisons are carried out based on discrimination capacity. The sources we identified can serve as a checklist to safely control comparisons, so that true discrimination capacity is compared as opposed to artefacts arising from data structure, species characteristics, or the calculation of the comparison measure (here TSS).
It has long been a concern that performance measures of species distribution models (SDM) react to attributes of the modeled entity arising from the input data structure (including the ratio of presences and absences known as prevalence) rather than to model performance. The true skill statistics (TSS) has been propagated as unaffected by prevalence changes; however, experience questioned this. Therefore, we examined possible causes of observed prevalence dependence for TSS, while also extending the theory of prevalence dependence in general. |
---|---|
AbstractList | It has long been a concern that performance measures of species distribution models react to attributes of the modeled entity arising from the input data structure rather than to model performance. Thus, the study of Allouche et al. (Journal of Applied Ecology, 43, 1223, 2006) identifying the true skill statistics (TSS) as being independent of prevalence had a great impact. However, empirical experience questioned the validity of the statement. We searched for technical reasons behind these observations. We explored possible sources of prevalence dependence in TSS including sampling constraints and species characteristics, which influence the calculation of TSS. We also examined whether the widespread solution of using the maximum of TSS for comparison among species introduces a prevalence effect. We found that the design of Allouche et al. (Journal of Applied Ecology, 43, 1223, 2006) was flawed, but TSS is indeed independent of prevalence if model predictions are binary and under the strict set of assumptions methodological studies usually apply. However, if we take realistic sources of prevalence dependence, effects appear even in binary calculations. Furthermore, in the widespread approach of using maximum TSS for continuous predictions, the use of the maximum alone induces prevalence dependence for small, but realistic samples. Thus, prevalence differences need to be taken into account when model comparisons are carried out based on discrimination capacity. The sources we identified can serve as a checklist to safely control comparisons, so that true discrimination capacity is compared as opposed to artefacts arising from data structure, species characteristics, or the calculation of the comparison measure (here TSS). It has long been a concern that performance measures of species distribution models react to attributes of the modeled entity arising from the input data structure rather than to model performance. Thus, the study of Allouche et al. ( , 43, 1223, 2006) identifying the true skill statistics (TSS) as being independent of prevalence had a great impact. However, empirical experience questioned the validity of the statement. We searched for technical reasons behind these observations. We explored possible sources of prevalence dependence in TSS including sampling constraints and species characteristics, which influence the calculation of TSS. We also examined whether the widespread solution of using the maximum of TSS for comparison among species introduces a prevalence effect. We found that the design of Allouche et al. ( , 43, 1223, 2006) was flawed, but TSS is indeed independent of prevalence if model predictions are binary and under the strict set of assumptions methodological studies usually apply. However, if we take realistic sources of prevalence dependence, effects appear even in binary calculations. Furthermore, in the widespread approach of using maximum TSS for continuous predictions, the use of the maximum alone induces prevalence dependence for small, but realistic samples. Thus, prevalence differences need to be taken into account when model comparisons are carried out based on discrimination capacity. The sources we identified can serve as a checklist to safely control comparisons, so that true discrimination capacity is compared as opposed to artefacts arising from data structure, species characteristics, or the calculation of the comparison measure (here TSS). It has long been a concern that performance measures of species distribution models react to attributes of the modeled entity arising from the input data structure rather than to model performance. Thus, the study of Allouche et al. (Journal of Applied Ecology, 43, 1223, 2006) identifying the true skill statistics (TSS) as being independent of prevalence had a great impact. However, empirical experience questioned the validity of the statement. We searched for technical reasons behind these observations. We explored possible sources of prevalence dependence in TSS including sampling constraints and species characteristics, which influence the calculation of TSS. We also examined whether the widespread solution of using the maximum of TSS for comparison among species introduces a prevalence effect. We found that the design of Allouche et al. (Journal of Applied Ecology, 43, 1223, 2006) was flawed, but TSS is indeed independent of prevalence if model predictions are binary and under the strict set of assumptions methodological studies usually apply. However, if we take realistic sources of prevalence dependence, effects appear even in binary calculations. Furthermore, in the widespread approach of using maximum TSS for continuous predictions, the use of the maximum alone induces prevalence dependence for small, but realistic samples. Thus, prevalence differences need to be taken into account when model comparisons are carried out based on discrimination capacity. The sources we identified can serve as a checklist to safely control comparisons, so that true discrimination capacity is compared as opposed to artefacts arising from data structure, species characteristics, or the calculation of the comparison measure (here TSS). It has long been a concern that performance measures of species distribution models (SDM) react to attributes of the modeled entity arising from the input data structure (including the ratio of presences and absences known as prevalence) rather than to model performance. The true skill statistics (TSS) has been propagated as unaffected by prevalence changes; however, experience questioned this. Therefore, we examined possible causes of observed prevalence dependence for TSS, while also extending the theory of prevalence dependence in general. It has long been a concern that performance measures of species distribution models react to attributes of the modeled entity arising from the input data structure rather than to model performance. Thus, the study of Allouche et al. (Journal of Applied Ecology, 43, 1223, 2006) identifying the true skill statistics (TSS) as being independent of prevalence had a great impact. However, empirical experience questioned the validity of the statement. We searched for technical reasons behind these observations. We explored possible sources of prevalence dependence in TSS including sampling constraints and species characteristics, which influence the calculation of TSS. We also examined whether the widespread solution of using the maximum of TSS for comparison among species introduces a prevalence effect. We found that the design of Allouche et al. (Journal of Applied Ecology, 43, 1223, 2006) was flawed, but TSS is indeed independent of prevalence if model predictions are binary and under the strict set of assumptions methodological studies usually apply. However, if we take realistic sources of prevalence dependence, effects appear even in binary calculations. Furthermore, in the widespread approach of using maximum TSS for continuous predictions, the use of the maximum alone induces prevalence dependence for small, but realistic samples. Thus, prevalence differences need to be taken into account when model comparisons are carried out based on discrimination capacity. The sources we identified can serve as a checklist to safely control comparisons, so that true discrimination capacity is compared as opposed to artefacts arising from data structure, species characteristics, or the calculation of the comparison measure (here TSS). It has long been a concern that performance measures of species distribution models (SDM) react to attributes of the modeled entity arising from the input data structure (including the ratio of presences and absences known as prevalence) rather than to model performance. The true skill statistics (TSS) has been propagated as unaffected by prevalence changes; however, experience questioned this. Therefore, we examined possible causes of observed prevalence dependence for TSS, while also extending the theory of prevalence dependence in general. It has long been a concern that performance measures of species distribution models react to attributes of the modeled entity arising from the input data structure rather than to model performance. Thus, the study of Allouche et al. (Journal of Applied Ecology, 43, 1223, 2006) identifying the true skill statistics (TSS) as being independent of prevalence had a great impact. However, empirical experience questioned the validity of the statement. We searched for technical reasons behind these observations. We explored possible sources of prevalence dependence in TSS including sampling constraints and species characteristics, which influence the calculation of TSS. We also examined whether the widespread solution of using the maximum of TSS for comparison among species introduces a prevalence effect. We found that the design of Allouche et al. (Journal of Applied Ecology, 43, 1223, 2006) was flawed, but TSS is indeed independent of prevalence if model predictions are binary and under the strict set of assumptions methodological studies usually apply. However, if we take realistic sources of prevalence dependence, effects appear even in binary calculations. Furthermore, in the widespread approach of using maximum TSS for continuous predictions, the use of the maximum alone induces prevalence dependence for small, but realistic samples. Thus, prevalence differences need to be taken into account when model comparisons are carried out based on discrimination capacity. The sources we identified can serve as a checklist to safely control comparisons, so that true discrimination capacity is compared as opposed to artefacts arising from data structure, species characteristics, or the calculation of the comparison measure (here TSS). It has long been a concern that performance measures of species distribution models react to attributes of the modeled entity arising from the input data structure rather than to model performance. Thus, the study of Allouche et al. ( Journal of Applied Ecology , 43, 1223, 2006) identifying the true skill statistics (TSS) as being independent of prevalence had a great impact. However, empirical experience questioned the validity of the statement. We searched for technical reasons behind these observations. We explored possible sources of prevalence dependence in TSS including sampling constraints and species characteristics, which influence the calculation of TSS. We also examined whether the widespread solution of using the maximum of TSS for comparison among species introduces a prevalence effect. We found that the design of Allouche et al. ( Journal of Applied Ecology , 43, 1223, 2006) was flawed, but TSS is indeed independent of prevalence if model predictions are binary and under the strict set of assumptions methodological studies usually apply. However, if we take realistic sources of prevalence dependence, effects appear even in binary calculations. Furthermore, in the widespread approach of using maximum TSS for continuous predictions, the use of the maximum alone induces prevalence dependence for small, but realistic samples. Thus, prevalence differences need to be taken into account when model comparisons are carried out based on discrimination capacity. The sources we identified can serve as a checklist to safely control comparisons, so that true discrimination capacity is compared as opposed to artefacts arising from data structure, species characteristics, or the calculation of the comparison measure (here TSS). |
Author | Somodi, Imelda Botta‐Dukát, Zoltán Lepesi, Nikolett |
AuthorAffiliation | 3 National Adaptation Centre Geological and Geophysical Institute of Hungary Budapest Hungary 1 MTA Centre for Ecological Research Tihany Hungary 2 Department of Plant Systematics, Ecology and Theoretical Biology Eötvös Loránd University Budapest Hungary |
AuthorAffiliation_xml | – name: 1 MTA Centre for Ecological Research Tihany Hungary – name: 3 National Adaptation Centre Geological and Geophysical Institute of Hungary Budapest Hungary – name: 2 Department of Plant Systematics, Ecology and Theoretical Biology Eötvös Loránd University Budapest Hungary |
Author_xml | – sequence: 1 givenname: Imelda surname: Somodi fullname: Somodi, Imelda email: somodi.imelda@okologia.mta.hu organization: MTA Centre for Ecological Research – sequence: 2 givenname: Nikolett surname: Lepesi fullname: Lepesi, Nikolett organization: Geological and Geophysical Institute of Hungary – sequence: 3 givenname: Zoltán surname: Botta‐Dukát fullname: Botta‐Dukát, Zoltán organization: MTA Centre for Ecological Research |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28168023$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1rFTEUhoNUbK1d-Ack4EYXt83H5GM2glyuH1DQha5DbnKmNzWTjMlMS_-9M-2t1KJgNjmQ5305Oed9jg5SToDQS0pOKSHsDBzwUyZF8wQdMdKIlVJCHzyoD9FJrZdkPpKwhqhn6JBpKjVh_AiZrwWubITkAHsYIPnbMiTcZw8RX-TsE9SKe7B1KlDxdRh3uA7ggo0Y-mFna6g4JzyWCXD9EWLEdbRjqGNw9QV62tlY4WR_H6PvHzbf1p9W518-fl6_P1-5Rslm1VhBlKKMy0YxKinvHOWNbKVovdx2VlvJO9_ZzsHWS-0tAbKlqlPSW-6F5cfo3Z3vMG178A7SWGw0Qwm9LTcm22D-fElhZy7ylRFMa9bo2eDN3qDknxPU0fShOojRJshTNVRLzXnbKvk_qNBMiJbM6OtH6GWeSponYRhriWRs3spMvXrY_O-u79c0A2d3gCu51gKdcWEZcV7-EqKhxCxZMEsWzJKFWfH2keLe9G_s3v06RLj5N2g26w2_VfwCAsvDgQ |
CitedBy_id | crossref_primary_10_1016_j_watres_2019_114863 crossref_primary_10_3897_natureconservation_35_33918 crossref_primary_10_1002_ece3_6096 crossref_primary_10_1007_s43388_023_00124_6 crossref_primary_10_1016_j_scs_2022_103964 crossref_primary_10_1007_s10531_021_02126_6 crossref_primary_10_1016_j_scitotenv_2021_148067 crossref_primary_10_1016_j_apgeog_2020_102172 crossref_primary_10_1007_s11053_021_09940_3 crossref_primary_10_3390_biology11040497 crossref_primary_10_1016_j_ecoinf_2019_100974 crossref_primary_10_1007_s10340_022_01491_7 crossref_primary_10_1002_jez_2432 crossref_primary_10_1002_ece3_7663 crossref_primary_10_1016_j_cliser_2022_100330 crossref_primary_10_1007_s13744_022_01006_0 crossref_primary_10_1016_j_ecoinf_2021_101358 crossref_primary_10_1080_19768354_2025_2471476 crossref_primary_10_1016_j_flora_2024_152484 crossref_primary_10_1016_j_ecolmodel_2018_10_024 crossref_primary_10_1016_j_ecoinf_2021_101399 crossref_primary_10_1002_rra_4434 crossref_primary_10_1007_s11273_021_09799_4 crossref_primary_10_1016_j_rsase_2024_101273 crossref_primary_10_1111_ecog_04563 crossref_primary_10_1177_0959683620981689 crossref_primary_10_3390_s22041608 crossref_primary_10_1038_s41598_020_79491_9 crossref_primary_10_1029_2021EF002630 crossref_primary_10_1111_gcb_15330 crossref_primary_10_1038_s41598_018_25704_1 crossref_primary_10_1080_15481603_2021_1903281 crossref_primary_10_1016_j_jenvman_2024_122610 crossref_primary_10_1111_aec_12884 crossref_primary_10_15446_abc_v29n2_103070 crossref_primary_10_1111_1365_2664_14494 crossref_primary_10_1111_eff_12469 crossref_primary_10_1007_s10530_018_1690_7 crossref_primary_10_1007_s13253_023_00557_y crossref_primary_10_1016_j_funeco_2022_101174 crossref_primary_10_1007_s10531_020_02075_6 crossref_primary_10_1016_j_ecoinf_2022_101819 crossref_primary_10_3390_f15111935 crossref_primary_10_1007_s10531_021_02144_4 crossref_primary_10_1111_ddi_13358 crossref_primary_10_1002_ece3_4098 crossref_primary_10_1016_j_actao_2021_103764 crossref_primary_10_3390_f13020189 crossref_primary_10_1002_ece3_6874 crossref_primary_10_1016_j_ecolind_2021_108335 crossref_primary_10_1002_ece3_6316 crossref_primary_10_1111_jbi_14009 crossref_primary_10_1080_0035919X_2023_2205368 crossref_primary_10_1093_icesjms_fsy003 crossref_primary_10_1016_j_aquaculture_2019_734897 crossref_primary_10_1111_jbi_13402 crossref_primary_10_1649_0010_065X_76_4_595 crossref_primary_10_1007_s10530_023_03128_x crossref_primary_10_1007_s10530_024_03284_8 crossref_primary_10_1016_j_ecolmodel_2024_110667 crossref_primary_10_1111_2041_210X_14466 crossref_primary_10_22201_ib_20078706e_2019_90_2781 crossref_primary_10_3389_fmars_2024_1383063 crossref_primary_10_3390_rs11242995 crossref_primary_10_1016_j_ijpara_2021_01_005 crossref_primary_10_1038_s41598_020_60191_3 crossref_primary_10_1111_2041_210X_13140 crossref_primary_10_1111_csp2_12978 crossref_primary_10_1111_2041_210X_14071 crossref_primary_10_1111_geb_13204 crossref_primary_10_3390_f15020272 crossref_primary_10_1016_j_jenvman_2021_113086 crossref_primary_10_1007_s10661_023_11611_0 crossref_primary_10_1016_j_ecolind_2022_109830 crossref_primary_10_1111_eea_12961 crossref_primary_10_1016_j_ecoinf_2021_101545 crossref_primary_10_1093_jue_juac008 crossref_primary_10_1111_2041_210X_13826 crossref_primary_10_1080_20477724_2020_1870031 crossref_primary_10_3389_fmars_2021_632389 crossref_primary_10_1007_s10531_024_02908_8 crossref_primary_10_1016_j_gecco_2022_e02365 crossref_primary_10_1038_s41598_021_85205_6 crossref_primary_10_3390_su151612292 crossref_primary_10_1007_s42995_024_00226_0 |
Cites_doi | 10.1093/acprof:oso/9780199577859.001.0001 10.1016/S0895-4356(99)00075-X 10.1111/j.1472-4642.2007.00340.x 10.1016/S0304-3800(00)00322-7 10.1016/S0304-3800(03)00028-0 10.1073/pnas.0901956106 10.1111/jbi.12058 10.1111/j.0906-7590.2005.03957.x 10.1111/j.1600-0587.2011.07200.x 10.1111/j.1365-2664.2006.01141.x 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3 10.1111/j.1466-8238.2007.00359.x 10.1111/j.1523-1739.2006.00354.x 10.1111/j.1095-8312.1991.tb00549.x 10.1111/j.1466-8238.2009.00485.x 10.1111/j.0021-8901.2004.00881.x 10.1111/j.1365-2699.2006.01466.x 10.1111/j.0021-8901.2004.00943.x 10.1017/S0376892997000088 10.1111/j.1600-0587.2008.05505.x 10.1080/01431161.2011.552923 10.1126/science.ns-4.93.453-a 10.1046/j.1365-2745.1998.00324.x 10.1111/j.1472-4642.2007.00392.x 10.1111/j.1472-4642.2008.00482.x 10.1890/06-0539 10.1016/j.biocon.2013.02.001 10.1016/j.ppees.2010.04.002 10.1111/j.1600-0587.2013.00195.x 10.1046/j.1365-2664.2001.00647.x 10.1016/j.ecolmodel.2014.06.003 10.1177/030913339501900403 10.1016/0169-5347(93)90259-R 10.1890/06-1736.1 10.1148/radiology.143.1.7063747 10.1007/s13042-011-0012-5 10.1111/j.1472-4642.2008.00516.x 10.1016/j.foreco.2013.07.059 10.1002/ece3.2332 10.1038/371065a0 10.1111/j.1466-8238.2010.00581.x 10.1111/j.1365-2664.2007.01348.x 10.1016/j.ppees.2015.08.001 10.1111/2041-210X.12123 10.1016/S0006-3207(03)00190-3 10.1002/ece3.1878 10.1111/j.1600-0587.2008.05742.x 10.1073/pnas.0901643106 10.1111/j.1365-2664.2008.01524.x 10.1016/j.biocon.2010.07.007 10.1111/j.1472-4642.2009.00567.x 10.1016/B978-0-12-385022-5.00008-7 10.1111/j.0906-7590.2006.04700.x 10.1111/j.1466-8238.2007.00358.x 10.1111/j.1600-0587.2010.06416.x 10.1111/j.1365-2664.2006.01214.x 10.1890/08-2261.1 10.1177/001316446002000104 |
ContentType | Journal Article |
Copyright | 2017 The Authors. published by John Wiley & Sons Ltd. 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2017 The Authors. published by John Wiley & Sons Ltd. – notice: 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 3V. 7SN 7SS 7ST 7X2 8FD 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M0K M7P P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM |
DOI | 10.1002/ece3.2654 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed ProQuest Central (Corporate) Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection Biological Sciences Agriculture Science Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Agricultural Science Database Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Genetics Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Agricultural Science Database PubMed Ecology Abstracts MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access (Activated by CARLI) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central (New) url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology Statistics |
EISSN | 2045-7758 |
EndPage | 872 |
ExternalDocumentID | PMC5288248 28168023 10_1002_ece3_2654 ECE32654 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: EEA Grants ‐ Norway, Iceland, Lichtenstein via The Regional Environmental Center for Central and Eastern Europe funderid: EEA‐C11‐1 – fundername: Economy Development and Innovation Operative Programme, Hungary (GINOP) funderid: GINOP‐2.3.2‐15‐2016‐00019 – fundername: Hungarian Scientific Research Fund (OTKA) funderid: PD‐83522 – fundername: Economy Development and Innovation Operative Programme, Hungary (GINOP) grantid: GINOP‐2.3.2‐15‐2016‐00019 – fundername: EEA Grants ‐ Norway, Iceland, Lichtenstein via The Regional Environmental Center for Central and Eastern Europe grantid: EEA‐C11‐1 – fundername: Hungarian Scientific Research Fund (OTKA) grantid: PD‐83522 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 7X2 8-0 8-1 8FE 8FH AAFWJ AAHBH AAMMB AAZKR ACCMX ACGFO ACPRK ACXQS ADBBV ADKYN ADRAZ ADZMN AEFGJ AENEX AEUYN AFKRA AFPKN AFRAH AGXDD AIAGR AIDQK AIDYY ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS ATCPS AVUZU BAWUL BBNVY BCNDV BENPR BHPHI CCPQU D-8 D-9 DIK EBS ECGQY EJD GODZA GROUPED_DOAJ GX1 HCIFZ HYE IAO IEP ITC KQ8 LK8 M0K M48 M7P M~E OK1 PHGZM PHGZT PIMPY PQGLB PROAC PUEGO RNS ROL RPM SUPJJ WIN AAYXX CITATION AAHHS ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE NPM 3V. 7SN 7SS 7ST 8FD 8FK ABUWG AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM |
ID | FETCH-LOGICAL-c4764-4a507712364721613fc13469659d6bfa8a63fdfafcebd68da0e0b17f76da3d5a3 |
IEDL.DBID | M48 |
ISSN | 2045-7758 |
IngestDate | Tue Sep 30 16:56:44 EDT 2025 Wed Oct 01 13:17:48 EDT 2025 Thu Sep 04 17:12:11 EDT 2025 Wed Aug 13 07:03:03 EDT 2025 Thu Apr 03 07:06:55 EDT 2025 Wed Oct 01 02:20:09 EDT 2025 Thu Apr 24 23:12:11 EDT 2025 Sun Sep 21 06:17:03 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | predictive models sample size species distribution models Cohen's kappa model performance |
Language | English |
License | Attribution http://creativecommons.org/licenses/by/4.0 This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4764-4a507712364721613fc13469659d6bfa8a63fdfafcebd68da0e0b17f76da3d5a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1002/ece3.2654 |
PMID | 28168023 |
PQID | 2290622006 |
PQPubID | 2034651 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5288248 proquest_miscellaneous_1868339976 proquest_miscellaneous_1865825590 proquest_journals_2290622006 pubmed_primary_28168023 crossref_citationtrail_10_1002_ece3_2654 crossref_primary_10_1002_ece3_2654 wiley_primary_10_1002_ece3_2654_ECE32654 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2017 |
PublicationDateYYYYMMDD | 2017-02-01 |
PublicationDate_xml | – month: 02 year: 2017 text: February 2017 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Bognor Regis – name: Hoboken |
PublicationTitle | Ecology and evolution |
PublicationTitleAlternate | Ecol Evol |
PublicationYear | 2017 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc |
References | 2010; 12 1993; 8 1884; 4 2000; 135 2006; 33 1994; 371 2010; 143 1982; 143 2000; 133 2005; 28 2013; 160 1998; 86 2010; 20 2014; 5 2006; 20 1991; 42 2013; 310 2011; 20 2006; 29 1985 1999; 52 1950; 3 2009; 15 2009; 18 2014; 288 2003; 164 2010; 33 2004; 41 2015; 17 2011; 2 2013; 40 1997; 24 2008; 17 2008; 14 2011; 32 1995; 19 2012; 35 2007; 13 2016; 56 2007; 16 2016; 6 2004; 116 2009; 32 1960; 20 2006; 43 2014; 37 2008; 45 2016 2001; 38 2014 2013 2007; 88 2007; 44 2011; 100 2009; 106 e_1_2_8_28_1 Ribeiro D. (e_1_2_8_52_1) 2016; 56 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 Flather C. H. (e_1_2_8_16_1) 2013 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_37_1 e_1_2_8_58_1 Murphy A. H. (e_1_2_8_42_1) 1985 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_50_1 |
References_xml | – volume: 86 start-page: 1021 issue: 6 year: 1998 end-page: 1031 article-title: Spatial and temporal variation in population size of in ephemeral habitats: Implications for metapopulation dynamics publication-title: Journal of Ecology – volume: 19 start-page: 474 year: 1995 end-page: 499 article-title: Predictive vegetation mapping: Geographic modeling of biospatial patterns in relation to environmental gradients publication-title: Progress in Physical Geography – volume: 52 start-page: 885 issue: 9 year: 1999 end-page: 892 article-title: A comparison of C/B ratios from studies using receiver operating characteristic curve analysis publication-title: Journal of Clinical Epidemiology – volume: 44 start-page: 1057 year: 2007 end-page: 1067 article-title: Remote sensing‐based predictors improve distribution models of rare, early successional and broadleaf tree species in Utah publication-title: Journal of Applied Ecology – volume: 20 start-page: 311 year: 2010 end-page: 326 article-title: Combining local‐and large‐scale models to predict the distributions of invasive plant species publication-title: Ecological Applications – start-page: 379 year: 1985 end-page: 437 – volume: 33 start-page: 637 issue: 4 year: 2010 end-page: 642 article-title: ModEco: An integrated software package for ecological niche modeling publication-title: Ecography – volume: 6 start-page: 337 issue: 1 year: 2016 end-page: 348 article-title: On the selection of thresholds for predicting species occurrence with presence‐only data publication-title: Ecology and Evolution – volume: 20 start-page: 37 year: 1960 end-page: 46 article-title: A coefficient of agreement for nominal scales publication-title: Educational and Psychological Measurement – volume: 160 start-page: 225 year: 2013 end-page: 233 article-title: Evaluating the combined threat of climate change and biological invasions on endangered species publication-title: Biological Conservation – volume: 143 start-page: 29 issue: 1 year: 1982 end-page: 36 article-title: The meaning and use of the area under a receiver operating characteristic (ROC) curve publication-title: Radiology – volume: 17 start-page: 145 issue: 2 year: 2008 end-page: 151 article-title: AUC: A misleading measure of the performance of predictive distribution models publication-title: Global Ecology and Biogeography – volume: 20 start-page: 181 year: 2011 end-page: 192 article-title: Assessing the effect of prevalence on the predictive performance of species distribution models using simulated data publication-title: Global Ecology and Biogeography – volume: 143 start-page: 2647 issue: 11 year: 2010 end-page: 2657 article-title: Overcoming the rare species modelling paradox: A novel hierarchical framework applied to an Iberian endemic plant publication-title: Biological Conservation – volume: 16 start-page: 743 year: 2007 end-page: 753 article-title: The importance of biotic interactions for modelling species distributions under climate change publication-title: Global Ecology and Biogeography – year: 2014 – volume: 32 start-page: 66 issue: 1 year: 2009 end-page: 77 article-title: Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models publication-title: Ecography – volume: 116 start-page: 195 year: 2004 end-page: 203 article-title: Absent or undetected? Effects of non‐detection of species occurrence on wildlife–habitat models publication-title: Biological Conservation – volume: 5 start-page: 54 year: 2014 end-page: 64 article-title: Prevalence, thresholds and the performance of presence–absence models publication-title: Methods in Ecology and Evolution – volume: 43 start-page: 1223 year: 2006 end-page: 1232 article-title: Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS) publication-title: Journal of Applied Ecology – volume: 106 start-page: 19723 issue: Supplement 2 year: 2009 end-page: 19728 article-title: Climatic extremes improve predictions of spatial patterns of tree species publication-title: Proceedings of the National Academy of Sciences – volume: 56 start-page: 25 issue: 1 year: 2016 end-page: 43 article-title: Transferability of a predictive distribution model in northeast Slovenia publication-title: Geografski Zbornik/Acta Geographica Slovenica – volume: 288 start-page: 166 year: 2014 end-page: 177 article-title: Effects of alternative sets of climatic predictors on species distribution models and associated estimates of extinction risk: A test with plants in an arid environment publication-title: Ecological Modelling – volume: 18 start-page: 701 year: 2009 end-page: 710 article-title: Ensemble models predict Important Bird Areas in southern Africa will become less effective for conserving endemic birds under climate change publication-title: Global Ecology and Biogeography – volume: 41 start-page: 263 issue: 2 year: 2004 end-page: 274 article-title: An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo‐absence data publication-title: Journal of Applied Ecology – volume: 42 start-page: 17 year: 1991 end-page: 38 article-title: Single‐species metapopulation dynamics: Concepts, models and observations publication-title: Biological Journal of the Linnean Society – volume: 371 start-page: 65 issue: 6492 year: 1994 end-page: 66 article-title: Habitat destruction and the extinction debt publication-title: Nature – volume: 8 start-page: 298 issue: 8 year: 1993 end-page: 301 article-title: The biology of rarity: Patterns, causes and consequences publication-title: Trends in Ecology and Evolution – volume: 13 start-page: 265 issue: 3 year: 2007 end-page: 275 article-title: Predicting species distributions from museum and herbarium records using multiresponse models fitted with multivariate adaptive regression splines publication-title: Diversity and Distributions – volume: 17 start-page: 360 issue: 5 year: 2015 end-page: 368 article-title: Environmental drivers of diversity in Subtropical Highland Grasslands publication-title: Perspectives in Plant Ecology, Evolution and Systematics – volume: 13 start-page: 890 issue: 6 year: 2007 end-page: 902 article-title: Modelling ecological niches from low numbers of occurrences: Assessment of the conservation status of poorly known viverrids (Mammalia, Carnivora) across two continents publication-title: Diversity and Distributions – volume: 45 start-page: 1372 year: 2008 end-page: 1381 article-title: Habitat suitability modelling and niche theory publication-title: Journal of Applied Ecology – volume: 310 start-page: 64 year: 2013 end-page: 73 article-title: Combining ensemble modeling and remote sensing for mapping individual tree species at high spatial resolution publication-title: Forest Ecology and Management – volume: 88 start-page: 2427 issue: 10 year: 2007 end-page: 2439 article-title: Partitioning diversity into independent alpha and beta components publication-title: Ecology – volume: 100 year: 2011 – volume: 29 start-page: 773 year: 2006 end-page: 785 article-title: The effect of sample size and species characteristics on performance of different species distribution modeling methods publication-title: Ecography – volume: 24 start-page: 38 year: 1997 end-page: 49 article-title: A review of methods for the assessment of prediction errors in conservation presence/absence models publication-title: Environmental Conservation – volume: 33 start-page: 1689 year: 2006 end-page: 1703 article-title: Are niche‐based species distribution models transferable in space? publication-title: Journal of Biogeography – volume: 28 start-page: 385 issue: 3 year: 2005 end-page: 393 article-title: Selecting thresholds of occurrence in the prediction of species distributions publication-title: Ecography – volume: 12 start-page: 219 year: 2010 end-page: 225 article-title: Predictive performance of plant species distribution models depends on species traits publication-title: Perspectives in Plant Ecology, Evolution and Systematics – volume: 43 start-page: 424 issue: 3 year: 2006 end-page: 432 article-title: Modelling ecological niches with support vector machines publication-title: Journal of Applied Ecology – volume: 106 start-page: 10702 year: 2009 end-page: 10705 article-title: Multiple ecological pathways to extinction in mammals publication-title: Proceedings of the National Academy of Sciences – volume: 164 start-page: 153 issue: 2 year: 2003 end-page: 167 article-title: Comparing models for predicting species' potential distributions: A case study using correlative and mechanistic predictive modelling techniques publication-title: Ecological Modelling – year: 2016 – volume: 20 start-page: 501 year: 2006 end-page: 511 article-title: Using niche‐based models to improve the sampling of rare species publication-title: Conservation Biology – volume: 40 start-page: 778 issue: 4 year: 2013 end-page: 789 article-title: Selecting thresholds for the prediction of species occurrence with presence‐only data publication-title: Journal of Biogeography – start-page: 40 year: 2013 end-page: 66 – volume: 2 start-page: 37 year: 2011 end-page: 63 article-title: Evaluation: From precision, recall and F‐measure to ROC, informedness, markedness and correlation publication-title: Journal of Machine Learning Technologies – volume: 133 start-page: 225 issue: 3 year: 2000 end-page: 245 article-title: Evaluating the predictive performance of habitat models developed using logistic regression publication-title: Ecological Modelling – volume: 15 start-page: 108 year: 2009 end-page: 116 article-title: From introduction to the establishment of alien species: Bioclimatic differences between presence and reproduction localities in the slider turtle publication-title: Diversity and Distributions – volume: 32 start-page: 369 year: 2009 end-page: 373 article-title: BIOMOD—A platform for ensemble forecasting of species distributions publication-title: Ecography – volume: 135 start-page: 147 year: 2000 end-page: 186 article-title: Predictive habitat distribution models in ecology publication-title: Ecological Modelling – volume: 15 start-page: 565 year: 2009 end-page: 576 article-title: Using species distribution models to predict new occurrences for rare plants publication-title: Diversity and Distributions – volume: 28 start-page: 385 year: 2005 end-page: 393 article-title: Selecting thresholds of occurrence in the prediction of species distributions publication-title: Ecography – volume: 38 start-page: 921 year: 2001 end-page: 931 article-title: Evaluating presence–absence models in ecology: The need to account for prevalence publication-title: Journal of Applied Ecology – volume: 14 start-page: 763 issue: 5 year: 2008 end-page: 773 article-title: Effects of sample size on the performance of species distribution models publication-title: Diversity and Distributions – volume: 41 start-page: 811 year: 2004 end-page: 823 article-title: The effects of species' range sizes on the accuracy of distribution models: Ecological phenomenon or statistical artefact? publication-title: Journal of Applied Ecology – volume: 3 start-page: 32 issue: 1 year: 1950 end-page: 35 article-title: Index for rating diagnostic tests publication-title: Cancer – volume: 35 start-page: 590 year: 2012 end-page: 603 article-title: Uncertainty in predictions of range dynamics: Black grouse climbing the Swiss Alps publication-title: Ecography – volume: 6 start-page: 5973 issue: 16 year: 2016 end-page: 5986 article-title: A comparison of absolute performance of different correlative and mechanistic species distribution models in an independent area publication-title: Ecology and Evolution – volume: 4 start-page: 453 issue: 93 year: 1884 end-page: 454 article-title: The numerical measure of the success of predictions publication-title: Science – volume: 32 start-page: 4407 year: 2011 end-page: 4429 article-title: Death to Kappa: Birth of quantity disagreement and allocation disagreement for accuracy assessment publication-title: International Journal of Remote Sensing – volume: 37 start-page: 301 issue: 3 year: 2014 end-page: 308 article-title: Host plant availability potentially limits butterfly distributions under cold environmental conditions publication-title: Ecography – ident: e_1_2_8_44_1 doi: 10.1093/acprof:oso/9780199577859.001.0001 – ident: e_1_2_8_5_1 doi: 10.1016/S0895-4356(99)00075-X – ident: e_1_2_8_11_1 doi: 10.1111/j.1472-4642.2007.00340.x – ident: e_1_2_8_45_1 doi: 10.1016/S0304-3800(00)00322-7 – ident: e_1_2_8_53_1 doi: 10.1016/S0304-3800(03)00028-0 – ident: e_1_2_8_8_1 doi: 10.1073/pnas.0901956106 – ident: e_1_2_8_35_1 doi: 10.1111/jbi.12058 – ident: e_1_2_8_36_1 doi: 10.1111/j.0906-7590.2005.03957.x – ident: e_1_2_8_64_1 doi: 10.1111/j.1600-0587.2011.07200.x – ident: e_1_2_8_9_1 doi: 10.1111/j.1365-2664.2006.01141.x – ident: e_1_2_8_61_1 doi: 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3 – ident: e_1_2_8_3_1 doi: 10.1111/j.1466-8238.2007.00359.x – ident: e_1_2_8_20_1 doi: 10.1111/j.1523-1739.2006.00354.x – ident: e_1_2_8_24_1 doi: 10.1111/j.1095-8312.1991.tb00549.x – ident: e_1_2_8_6_1 doi: 10.1111/j.1466-8238.2009.00485.x – ident: e_1_2_8_12_1 doi: 10.1111/j.0021-8901.2004.00881.x – ident: e_1_2_8_51_1 doi: 10.1111/j.1365-2699.2006.01466.x – ident: e_1_2_8_41_1 doi: 10.1111/j.0021-8901.2004.00943.x – ident: e_1_2_8_15_1 doi: 10.1017/S0376892997000088 – ident: e_1_2_8_10_1 doi: 10.1111/j.1600-0587.2008.05505.x – ident: e_1_2_8_48_1 doi: 10.1080/01431161.2011.552923 – ident: e_1_2_8_46_1 doi: 10.1126/science.ns-4.93.453-a – ident: e_1_2_8_29_1 doi: 10.1046/j.1365-2745.1998.00324.x – ident: e_1_2_8_43_1 doi: 10.1111/j.1472-4642.2007.00392.x – ident: e_1_2_8_60_1 doi: 10.1111/j.1472-4642.2008.00482.x – ident: e_1_2_8_21_1 doi: 10.1890/06-0539 – ident: e_1_2_8_18_1 doi: 10.1016/j.biocon.2013.02.001 – ident: e_1_2_8_25_1 doi: 10.1016/j.ppees.2010.04.002 – ident: e_1_2_8_26_1 doi: 10.1111/j.1600-0587.2013.00195.x – ident: e_1_2_8_50_1 – ident: e_1_2_8_40_1 doi: 10.1046/j.1365-2664.2001.00647.x – ident: e_1_2_8_47_1 doi: 10.1016/j.ecolmodel.2014.06.003 – ident: e_1_2_8_17_1 doi: 10.1177/030913339501900403 – ident: e_1_2_8_32_1 doi: 10.1016/0169-5347(93)90259-R – ident: e_1_2_8_31_1 doi: 10.1890/06-1736.1 – ident: e_1_2_8_23_1 doi: 10.1148/radiology.143.1.7063747 – ident: e_1_2_8_49_1 doi: 10.1007/s13042-011-0012-5 – ident: e_1_2_8_14_1 doi: 10.1111/j.1472-4642.2008.00516.x – ident: e_1_2_8_13_1 doi: 10.1016/j.foreco.2013.07.059 – ident: e_1_2_8_34_1 doi: 10.1111/j.0906-7590.2005.03957.x – start-page: 379 volume-title: Probability, statistics, and decision making in the atmospheric sciences year: 1985 ident: e_1_2_8_42_1 – ident: e_1_2_8_55_1 doi: 10.1002/ece3.2332 – ident: e_1_2_8_57_1 doi: 10.1038/371065a0 – ident: e_1_2_8_54_1 doi: 10.1111/j.1466-8238.2010.00581.x – ident: e_1_2_8_62_1 doi: 10.1111/j.1365-2664.2007.01348.x – ident: e_1_2_8_4_1 doi: 10.1016/j.ppees.2015.08.001 – ident: e_1_2_8_33_1 doi: 10.1111/2041-210X.12123 – ident: e_1_2_8_19_1 doi: 10.1016/S0006-3207(03)00190-3 – ident: e_1_2_8_37_1 doi: 10.1002/ece3.1878 – ident: e_1_2_8_56_1 doi: 10.1111/j.1600-0587.2008.05742.x – ident: e_1_2_8_63_1 doi: 10.1073/pnas.0901643106 – ident: e_1_2_8_28_1 doi: 10.1111/j.1365-2664.2008.01524.x – ident: e_1_2_8_39_1 doi: 10.1016/j.biocon.2010.07.007 – ident: e_1_2_8_59_1 doi: 10.1111/j.1472-4642.2009.00567.x – ident: e_1_2_8_58_1 doi: 10.1016/B978-0-12-385022-5.00008-7 – ident: e_1_2_8_27_1 doi: 10.1111/j.0906-7590.2006.04700.x – ident: e_1_2_8_38_1 doi: 10.1111/j.1466-8238.2007.00358.x – volume: 56 start-page: 25 issue: 1 year: 2016 ident: e_1_2_8_52_1 article-title: Transferability of a predictive Robinia pseudacacia distribution model in northeast Slovenia publication-title: Geografski Zbornik/Acta Geographica Slovenica – start-page: 40 volume-title: Conservation of rare or little‐known species: Biological, social, and economic considerations year: 2013 ident: e_1_2_8_16_1 – ident: e_1_2_8_22_1 doi: 10.1111/j.1600-0587.2010.06416.x – ident: e_1_2_8_2_1 doi: 10.1111/j.1365-2664.2006.01214.x – ident: e_1_2_8_30_1 doi: 10.1890/08-2261.1 – ident: e_1_2_8_7_1 doi: 10.1177/001316446002000104 |
SSID | ssj0000602407 |
Score | 2.4154887 |
Snippet | It has long been a concern that performance measures of species distribution models react to attributes of the modeled entity arising from the input data... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 863 |
SubjectTerms | Cohen's kappa Data structures Datasets Dependence Discrimination Ecological monitoring Introduced species Kappa coefficient model performance Original Research predictive models sample size species distribution models Statistical methods Statistics |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9QwFH4qUyH1gqBsAwUZxIFLaOItzgEhqFJVSIwQolJvluMFRgxJIe2Bf4-fs8Co0Jslvyz28_L52f4-gBfSVZ7zymWiCTTjIpjM2IJmwVQIdx3POV5O_rCSJ6f8_Zk424HVdBcGj1VOY2IaqF1nMUZ-mHjJKS6A35z_yFA1CndXJwkNM0oruNeJYuwG7FJUVV7A7rt69fHTHHXJJXJ6lRPFUE4PvfXsFZWCb09MV9Dm1UOTf4PZNBsd34ZbI4wkbwe_34Ed3-7DzTpRUP_ahz3EkAMF813QSNNk0uUiMmnexuS6JUkGh3zpOocDHvk-xAt7gsFZ0g_K9MRHf5t-3ZOuJRc_Lz3pv603G9LPX7gHp8f156OTbNRVyCwvJc-4iSCwLAbq-Ij4WLAFi8tkKSonm2CUkSy4YIL1jZPKmdznTVGGUjrDnDDsPizarvUPgVgVn_KhVJwL3gilCqZUpaxkTYGmS3g5Vaq2I-k4al9s9ECXTDXWv8b6X8Lz2fR8YNr4l9HB5Bk9drZe_2kaS3g2Z8dugnsfpvXdZa8LFaEWLp_ya20Ui4CtjO95MDh7_hOK-iQR3yyh3GoGswHSdG_ntOuvia5b0LiK4SpWRWow_y-cro9qholH15fyMexRBBfp7PgBLND3TyI0umieju39N_vYEBA priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5Rqkq9ICilXR6VQT30Ekj8iqOeKrQIVWrFASRulhPbdMU2qZrlwL_HY29SVpSqN0seR8mMx_488XwD8FHaynFe2UzUnmZceJOZpqCZNxXCXctzjsnJ377L8yv-9Vpcr8HnIRcm8UOMATf0jLheo4Obuj_5QxrqGseOqRT8BbwscNdHWmd-MQZYcon0XZgujYzrAUUKNTAL5fRkHL26Hz0BmU_vSj7GsHETOtuEjSV6JF-SubdgzbVv4NU0Mk_fb4NGQiYT04jIUN02NGctiQVvyE3XWVzayM8UGewJhmFJn2rQExcsa_pZT7qWLH7fOdLfzuZzgjlHic75LVydTS9Pz7NlBYWs4aXkGTcB7pVFIokP2I75pmDhQCxFZWXtjTKSeeuNb1xtpbImd3ldlL6U1jArDNuB9bZr3XsgjQqjnC8V54LXQqmCKVWpRrK6QNEJfBr0qJslvThWuZjrRIxMNapco8oncDSK_kqcGn8T2h-MoZdu1etITk8xCjKBw7E7OAT-5TCt6-56XagAqvCglP9TRrEAzcrwnHfJvuObUKxEEpDMBMoVy48CSMi92tPOfkRibkHDeYWroIo4R57_OD09nTJs7P6_6B68pggp4o3xfVjHeXAQANGi_hAn_gNDlQcI priority: 102 providerName: Wiley-Blackwell |
Title | Prevalence dependence in model goodness measures with special emphasis on true skill statistics |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fece3.2654 https://www.ncbi.nlm.nih.gov/pubmed/28168023 https://www.proquest.com/docview/2290622006 https://www.proquest.com/docview/1865825590 https://www.proquest.com/docview/1868339976 https://pubmed.ncbi.nlm.nih.gov/PMC5288248 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2045-7758 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000602407 issn: 2045-7758 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-7758 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000602407 issn: 2045-7758 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2045-7758 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000602407 issn: 2045-7758 databaseCode: DIK dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2045-7758 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000602407 issn: 2045-7758 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-7758 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000602407 issn: 2045-7758 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2045-7758 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000602407 issn: 2045-7758 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central (New) customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2045-7758 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000602407 issn: 2045-7758 databaseCode: BENPR dateStart: 20110901 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Open Access Journals customDbUrl: eissn: 2045-7758 dateEnd: 20250831 omitProxy: true ssIdentifier: ssj0000602407 issn: 2045-7758 databaseCode: M48 dateStart: 20110901 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 2045-7758 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000602407 issn: 2045-7758 databaseCode: AVUZU dateStart: 20110901 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access (Activated by CARLI) customDbUrl: eissn: 2045-7758 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000602407 issn: 2045-7758 databaseCode: 24P dateStart: 20110101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9RAFD70gtAX0XrbWpdRRHxJ3cwtkwcRLSlFaCniQt_CJDOji2vSNi20_945M0no0tq3wJxMMufM5Zvb9wG8lya3nOcmEZWjCRdOJ7pOaeJ0jnDX8BnHy8lHx_Jwzr-fitM1GI419w7s7p3aoZ7U_GK5d31-88U3-M89gegnW1u2R6XgH87OE9STwn3XXlxjHTb9GEWxvh_1wD_20cjtlQ1UQ7czWR2g7qDOu4cnb4PaMCodPIHHPZwkX2P8n8KabbbhURGoqG-2YQuxZKRifgYl0jXpcMmIDNq3_nHRkCCHQ361rcGOj_yN64YdwUVa0kWFemJ93HW36EjbkMuLK0u6P4vlknTjF57D_KD4uX-Y9PoKSc0zyROuPRjM0kgh75Efc3XK_HRZitzIymmlJXPGaVfbykhl9MzOqjRzmTSaGaHZC9ho2sa-AlIr_5Z1meJc8EoolTKlclVLVqVoOoGPg1PLuicfRw2MZRlpk2mJ_i_R_xN4N5qeRcaN-4x2h8iUQ50pA3U9xTWSCbwdk31zwT0Q3dj2qitT5SEXTqNmD9oo5oFb5vN5GYM9_glFnRKPcyaQrVSD0QDpuldTmsXvQNstqJ_NcOVdESrM_wtXFvsFw4edh0v5GrYogoxwhnwXNjD2bzxEuqymsE75yRQ2vxXHJz-mYaFhGlrAP0E0Fic |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKK0QvCMproYBBIHEJTWzHcQ4VgrLVlrYrhFqpN9eJbVixJIW0Qv1z_DZmnAesCr31ZikTJx7PON84nm8IeSFt7oTIbZQWnkUi9SYyZcIib3KEu1bEApOT96dycig-HKVHS-RXnwuDxyr7NTEs1LYucY98I_CSMwyA35x8j7BqFP5d7UtomK60gt0MFGNdYseuO_8JIVyzufMe5vslY9vjg61J1FUZiEqRSREJA5AoS1oidcA_3JcJh6BRprmVhTfKSO6tN750hZXKmtjFRZL5TFrDbWo49HuNrADs4OBVK-_G04-fhl2eWCKHWNZTGsVsw5WOv2YyFYsfwgvo9uIhzb_Bc_j6bd8iNzvYSt-2dnabLLlqjVwfB8rr8zWyipi1pXy-QzTSQpmQzET7GrvQnFU0lN2hn-va4gJLv7X7kw3FzWCKOZ_gDNSBfZlm1tC6oqc_zhxtvs7mc9oMT7hLDq9Ew_fIclVX7gGhpYK7nM-UEKkoUqUSrlSuSsmLBEVH5FWvVF12JOdYa2OuW3pmplH_GvU_Is8H0ZOW2eNfQuv9zOjOuRv9xxRH5NlwGdwS_7WYytVnjU4UQDsM1-JLZRQHgJhBP_fbyR7ehGE9FMBTI5ItmMEggLTgi1eq2ZdAD54yiJqEAlUEg_n_4PR4a8yx8fDyUT4lNyYH-3t6b2e6-4isMgQ24dz6OllGO3gMsOy0eNLZPiXHV-1uvwE-dk0B |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUC9ICivhQIGgcQlbOI4jnOoELRZtRRWFaJSb8aJbVh1mxTSCvUv8qvwOA9YFXrrzVImTjyecb5xPN8AvOA6M4xlOkgKSwOWWBWoMqKBVRnCXc1ChsnJH2d854C9P0wOV-BXnwuDxyr7NdEv1LoucY984nnJKQbAE9sdi9jfnr45-R5gBSn809qX01BdmQW96enGuiSPPXP-04Vzzebutpv7l5RO889bO0FXcSAoWcpZwJSDR2nUkqo7LBTbMopdAMmTTPPCKqF4bLVVtjSF5kKr0IRFlNqUaxXrRMWu32uwmmK-6AhW3-Wz_U_Djk_IkU8s7emNQjoxpYlfU56w5Y_iBaR78cDm30Dafwmnt-BmB2HJ29bmbsOKqdbheu7pr8_XYQ3xa0v_fAckUkQpn9hE-nq7rjmviC_BQ77WtcbFlhy3e5UNwY1hgvmfzjGIcbammnlD6oqc_jgzpDmaLxakGZ5wFw6uRMP3YFTVlXkApBTuLmNTwVjCikSIKBYiEyWPiwhFx_CqV6osO8JzrLuxkC1VM5Wof4n6H8PzQfSkZfn4l9BGPzOyc_RG_jHLMTwbLjsXxf8uqjL1WSMj4WAehm7hpTIidmaTun7ut5M9vAnF2igOW40hXTKDQQApwpevVPNvnio8oS6CYsKpwhvM_wcn8608xsbDy0f5FG44t5Mfdmd7j2CNIsbxR9g3YIRm8NghtNPiSWf6BL5ctbf9BqrbUTs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prevalence+dependence+in+model+goodness+measures+with+special+emphasis+on+true+skill+statistics&rft.jtitle=Ecology+and+evolution&rft.au=Somodi%2C+Imelda&rft.au=Lepesi%2C+Nikolett&rft.au=Botta-Duk%C3%A1t%2C+Zolt%C3%A1n&rft.date=2017-02-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2045-7758&rft.volume=7&rft.issue=3&rft.spage=863&rft.epage=872&rft_id=info:doi/10.1002%2Fece3.2654&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-7758&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-7758&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-7758&client=summon |