PleThora: Pleural effusion and thoracic cavity segmentations in diseased lungs for benchmarking chest CT processing pipelines
This manuscript describes a dataset of thoracic cavity segmentations and discrete pleural effusion segmentations we have annotated on 402 computed tomography (CT) scans acquired from patients with non‐small cell lung cancer. The segmentation of these anatomic regions precedes fundamental tasks in im...
Saved in:
| Published in | Medical physics (Lancaster) Vol. 47; no. 11; pp. 5941 - 5952 |
|---|---|
| Main Authors | , , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
John Wiley and Sons Inc
01.11.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0094-2405 2473-4209 1522-8541 2473-4209 |
| DOI | 10.1002/mp.14424 |
Cover
| Abstract | This manuscript describes a dataset of thoracic cavity segmentations and discrete pleural effusion segmentations we have annotated on 402 computed tomography (CT) scans acquired from patients with non‐small cell lung cancer. The segmentation of these anatomic regions precedes fundamental tasks in image analysis pipelines such as lung structure segmentation, lesion detection, and radiomics feature extraction. Bilateral thoracic cavity volumes and pleural effusion volumes were manually segmented on CT scans acquired from The Cancer Imaging Archive “NSCLC Radiomics” data collection. Four hundred and two thoracic segmentations were first generated automatically by a U‐Net based algorithm trained on chest CTs without cancer, manually corrected by a medical student to include the complete thoracic cavity (normal, pathologic, and atelectatic lung parenchyma, lung hilum, pleural effusion, fibrosis, nodules, tumor, and other anatomic anomalies), and revised by a radiation oncologist or a radiologist. Seventy‐eight pleural effusions were manually segmented by a medical student and revised by a radiologist or radiation oncologist. Interobserver agreement between the radiation oncologist and radiologist corrections was acceptable. All expert‐vetted segmentations are publicly available in NIfTI format through The Cancer Imaging Archive at https://doi.org/10.7937/tcia.2020.6c7y‐gq39. Tabular data detailing clinical and technical metadata linked to segmentation cases are also available. Thoracic cavity segmentations will be valuable for developing image analysis pipelines on pathologic lungs — where current automated algorithms struggle most. In conjunction with gross tumor volume segmentations already available from “NSCLC Radiomics,” pleural effusion segmentations may be valuable for investigating radiomics profile differences between effusion and primary tumor or training algorithms to discriminate between them. |
|---|---|
| AbstractList | This manuscript describes a dataset of thoracic cavity segmentations and discrete pleural effusion segmentations we have annotated on 402 computed tomography (CT) scans acquired from patients with non-small cell lung cancer. The segmentation of these anatomic regions precedes fundamental tasks in image analysis pipelines such as lung structure segmentation, lesion detection, and radiomics feature extraction. Bilateral thoracic cavity volumes and pleural effusion volumes were manually segmented on CT scans acquired from The Cancer Imaging Archive "NSCLC Radiomics" data collection. Four hundred and two thoracic segmentations were first generated automatically by a U-Net based algorithm trained on chest CTs without cancer, manually corrected by a medical student to include the complete thoracic cavity (normal, pathologic, and atelectatic lung parenchyma, lung hilum, pleural effusion, fibrosis, nodules, tumor, and other anatomic anomalies), and revised by a radiation oncologist or a radiologist. Seventy-eight pleural effusions were manually segmented by a medical student and revised by a radiologist or radiation oncologist. Interobserver agreement between the radiation oncologist and radiologist corrections was acceptable. All expert-vetted segmentations are publicly available in NIfTI format through The Cancer Imaging Archive at https://doi.org/10.7937/tcia.2020.6c7y-gq39. Tabular data detailing clinical and technical metadata linked to segmentation cases are also available. Thoracic cavity segmentations will be valuable for developing image analysis pipelines on pathologic lungs - where current automated algorithms struggle most. In conjunction with gross tumor volume segmentations already available from "NSCLC Radiomics," pleural effusion segmentations may be valuable for investigating radiomics profile differences between effusion and primary tumor or training algorithms to discriminate between them. This manuscript describes a dataset of thoracic cavity segmentations and discrete pleural effusion segmentations we have annotated on 402 computed tomography (CT) scans acquired from patients with non-small cell lung cancer. The segmentation of these anatomic regions precedes fundamental tasks in image analysis pipelines such as lung structure segmentation, lesion detection, and radiomics feature extraction. Bilateral thoracic cavity volumes and pleural effusion volumes were manually segmented on CT scans acquired from The Cancer Imaging Archive "NSCLC Radiomics" data collection. Four hundred and two thoracic segmentations were first generated automatically by a U-Net based algorithm trained on chest CTs without cancer, manually corrected by a medical student to include the complete thoracic cavity (normal, pathologic, and atelectatic lung parenchyma, lung hilum, pleural effusion, fibrosis, nodules, tumor, and other anatomic anomalies), and revised by a radiation oncologist or a radiologist. Seventy-eight pleural effusions were manually segmented by a medical student and revised by a radiologist or radiation oncologist. Interobserver agreement between the radiation oncologist and radiologist corrections was acceptable. All expert-vetted segmentations are publicly available in NIfTI format through The Cancer Imaging Archive at https://doi.org/10.7937/tcia.2020.6c7y-gq39. Tabular data detailing clinical and technical metadata linked to segmentation cases are also available. Thoracic cavity segmentations will be valuable for developing image analysis pipelines on pathologic lungs - where current automated algorithms struggle most. In conjunction with gross tumor volume segmentations already available from "NSCLC Radiomics," pleural effusion segmentations may be valuable for investigating radiomics profile differences between effusion and primary tumor or training algorithms to discriminate between them.This manuscript describes a dataset of thoracic cavity segmentations and discrete pleural effusion segmentations we have annotated on 402 computed tomography (CT) scans acquired from patients with non-small cell lung cancer. The segmentation of these anatomic regions precedes fundamental tasks in image analysis pipelines such as lung structure segmentation, lesion detection, and radiomics feature extraction. Bilateral thoracic cavity volumes and pleural effusion volumes were manually segmented on CT scans acquired from The Cancer Imaging Archive "NSCLC Radiomics" data collection. Four hundred and two thoracic segmentations were first generated automatically by a U-Net based algorithm trained on chest CTs without cancer, manually corrected by a medical student to include the complete thoracic cavity (normal, pathologic, and atelectatic lung parenchyma, lung hilum, pleural effusion, fibrosis, nodules, tumor, and other anatomic anomalies), and revised by a radiation oncologist or a radiologist. Seventy-eight pleural effusions were manually segmented by a medical student and revised by a radiologist or radiation oncologist. Interobserver agreement between the radiation oncologist and radiologist corrections was acceptable. All expert-vetted segmentations are publicly available in NIfTI format through The Cancer Imaging Archive at https://doi.org/10.7937/tcia.2020.6c7y-gq39. Tabular data detailing clinical and technical metadata linked to segmentation cases are also available. Thoracic cavity segmentations will be valuable for developing image analysis pipelines on pathologic lungs - where current automated algorithms struggle most. In conjunction with gross tumor volume segmentations already available from "NSCLC Radiomics," pleural effusion segmentations may be valuable for investigating radiomics profile differences between effusion and primary tumor or training algorithms to discriminate between them. This manuscript describes a dataset of thoracic cavity segmentations and discrete pleural effusion segmentations we have annotated on 402 computed tomography (CT) scans acquired from patients with non‐small cell lung cancer. The segmentation of these anatomic regions precedes fundamental tasks in image analysis pipelines such as lung structure segmentation, lesion detection, and radiomics feature extraction. Bilateral thoracic cavity volumes and pleural effusion volumes were manually segmented on CT scans acquired from The Cancer Imaging Archive “NSCLC Radiomics” data collection. Four hundred and two thoracic segmentations were first generated automatically by a U‐Net based algorithm trained on chest CTs without cancer, manually corrected by a medical student to include the complete thoracic cavity (normal, pathologic, and atelectatic lung parenchyma, lung hilum, pleural effusion, fibrosis, nodules, tumor, and other anatomic anomalies), and revised by a radiation oncologist or a radiologist. Seventy‐eight pleural effusions were manually segmented by a medical student and revised by a radiologist or radiation oncologist. Interobserver agreement between the radiation oncologist and radiologist corrections was acceptable. All expert‐vetted segmentations are publicly available in NIfTI format through The Cancer Imaging Archive at https://doi.org/10.7937/tcia.2020.6c7y‐gq39 . Tabular data detailing clinical and technical metadata linked to segmentation cases are also available. Thoracic cavity segmentations will be valuable for developing image analysis pipelines on pathologic lungs — where current automated algorithms struggle most. In conjunction with gross tumor volume segmentations already available from “NSCLC Radiomics,” pleural effusion segmentations may be valuable for investigating radiomics profile differences between effusion and primary tumor or training algorithms to discriminate between them. |
| Author | Wang, Brandon J. Fuller, Clifton D. Mohamed, Abdallah S. R. Li, Zhao Stieb, Sonja Park, Peter Y. S. Barman, Arko Kiser, Kendall J. Ahmed, Sara Giancardo, Luca Elhalawani, Hesham Doyle, Nathan S. Zheng, W. Jim |
| AuthorAffiliation | 3 Department of Radiation Oncology University of Texas MD Anderson Cancer Center Houston TX USA 2 Center for Precision Health UTHealth School of Biomedical Informatics Houston TX USA 6 Department of Diagnostic and Interventional Imaging John P. and Kathrine G. McGovern Medical School Houston TX USA 4 MD Anderson Cancer Center‐UTHealth Graduate School of Biomedical Sciences Houston TX USA 1 John P. and Kathrine G. McGovern Medical School Houston TX USA 5 Department of Radiation Oncology Cleveland Clinic Taussig Cancer Center Cleveland OH USA |
| AuthorAffiliation_xml | – name: 1 John P. and Kathrine G. McGovern Medical School Houston TX USA – name: 2 Center for Precision Health UTHealth School of Biomedical Informatics Houston TX USA – name: 4 MD Anderson Cancer Center‐UTHealth Graduate School of Biomedical Sciences Houston TX USA – name: 5 Department of Radiation Oncology Cleveland Clinic Taussig Cancer Center Cleveland OH USA – name: 3 Department of Radiation Oncology University of Texas MD Anderson Cancer Center Houston TX USA – name: 6 Department of Diagnostic and Interventional Imaging John P. and Kathrine G. McGovern Medical School Houston TX USA |
| Author_xml | – sequence: 1 givenname: Kendall J. surname: Kiser fullname: Kiser, Kendall J. email: Kendall.j.kiser@uth.tmc.edu organization: University of Texas MD Anderson Cancer Center – sequence: 2 givenname: Sara surname: Ahmed fullname: Ahmed, Sara organization: University of Texas MD Anderson Cancer Center – sequence: 3 givenname: Sonja surname: Stieb fullname: Stieb, Sonja organization: University of Texas MD Anderson Cancer Center – sequence: 4 givenname: Abdallah S. R. surname: Mohamed fullname: Mohamed, Abdallah S. R. organization: MD Anderson Cancer Center‐UTHealth Graduate School of Biomedical Sciences – sequence: 5 givenname: Hesham surname: Elhalawani fullname: Elhalawani, Hesham organization: Cleveland Clinic Taussig Cancer Center – sequence: 6 givenname: Peter Y. S. surname: Park fullname: Park, Peter Y. S. organization: John P. and Kathrine G. McGovern Medical School – sequence: 7 givenname: Nathan S. surname: Doyle fullname: Doyle, Nathan S. organization: John P. and Kathrine G. McGovern Medical School – sequence: 8 givenname: Brandon J. surname: Wang fullname: Wang, Brandon J. organization: John P. and Kathrine G. McGovern Medical School – sequence: 9 givenname: Arko surname: Barman fullname: Barman, Arko organization: UTHealth School of Biomedical Informatics – sequence: 10 givenname: Zhao surname: Li fullname: Li, Zhao organization: UTHealth School of Biomedical Informatics – sequence: 11 givenname: W. Jim surname: Zheng fullname: Zheng, W. Jim organization: UTHealth School of Biomedical Informatics – sequence: 12 givenname: Clifton D. surname: Fuller fullname: Fuller, Clifton D. email: cdfuller@mdanderson.org organization: MD Anderson Cancer Center‐UTHealth Graduate School of Biomedical Sciences – sequence: 13 givenname: Luca surname: Giancardo fullname: Giancardo, Luca email: Luca.Giancardo@uth.tmc.edu organization: Cleveland Clinic Taussig Cancer Center |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32749075$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU9v1DAQxS1URLcFiU-AfCyHLBPHsTcckKoV_6QieljOlteZ7BocO9hJqz3w3fGSUgECTrZmfp437_mMnPjgkZCnJSxLAPaiH5Yl54w_IAvGZVVwBs0JWQA0vGAc6lNyltJnABBVDY_IacUkb0DWC_Lt2uFmH6J-SfNtitpR7Lop2eCp9i0djz1jDTX6xo4HmnDXox_1mIFEraetTagTttRNfpdoFyLdojf7Xscv1u-o2WMa6XpDhxgMpnSsDXZAZz2mx-Rhp13CJ3fnOfn05vVm_a64-vj2_fryqjBciqOFqoFVxVpTAhdcct20dd1ILkS70p3ZMt42W9QooEYtNepcBLlqGK5EJaE6J8_nuZMf9OFWO6eGaPOKB1WCOkao-kH9iDCzr2Z2mLY9tia7zanc80Fb9XvH273ahRslJWPAZB5wcTcghq9Tdq96mww6pz2GKamsAZUUgtcZffar1r3Iz__JwHIGTAwpReyUsXP4Wdq6v21_8ceD_xgtZvTWOjz8k1Mfrmf-O64QwA0 |
| CitedBy_id | crossref_primary_10_2139_ssrn_4121063 crossref_primary_10_1140_epjp_s13360_023_03896_4 crossref_primary_10_1109_ACCESS_2023_3330238 crossref_primary_10_1002_ima_22672 crossref_primary_10_1002_mp_14595 crossref_primary_10_1155_2022_1379937 crossref_primary_10_1002_mp_14676 crossref_primary_10_1016_j_ejmp_2021_06_001 crossref_primary_10_4103_ecdt_ecdt_30_24 crossref_primary_10_1007_s10278_021_00460_3 crossref_primary_10_1016_j_neucom_2022_12_003 crossref_primary_10_1080_0952813X_2023_2165724 crossref_primary_10_1016_j_bspc_2023_104905 crossref_primary_10_2139_ssrn_4192612 crossref_primary_10_1007_s11548_021_02501_2 crossref_primary_10_37737_ace_22014 crossref_primary_10_1097_RLI_0000000000000869 crossref_primary_10_1148_ryai_240215 crossref_primary_10_1109_JBHI_2023_3327726 |
| Cites_doi | 10.1109/TMI.2016.2528821 10.1097/MD.0000000000001010 10.1109/MCSE.2007.58 10.1117/1.JMI.6.2.020901 10.1371/journal.pone.0185850 10.1007/s00408-017-0032-3 10.1148/rg.2015140232 10.1177/001316446002000104 10.1016/j.rmed.2017.02.013 10.1002/mp.13141 10.1007/978-3-030-00946-5_21 10.1007/978-3-030-00889-5_1 10.1016/j.acra.2010.02.011 10.1109/3DV.2016.79 10.21037/qims.2019.12.02 10.2307/1932409 10.1007/s10278-019-00254-8 10.1109/TMI.2014.2337057 10.1016/j.media.2018.11.002 10.1186/s41747-020-00173-2 10.1016/j.mri.2012.06.010 10.1214/aoms/1177730491 10.1038/s41598-018-28100-x 10.1007/s10278-013-9622-7 10.1016/j.compmedimag.2014.10.008 10.1016/j.compbiomed.2018.10.033 10.1109/TMI.2016.2606370 10.1002/mp.12256 10.21037/atm.2019.05.20 10.1109/MCSE.2007.55 10.1109/34.232073 10.1016/j.neuroimage.2006.01.015 10.1016/j.phro.2019.12.001 10.1109/42.929615 10.1038/s41591-019-0447-x 10.1016/j.jneumeth.2016.03.001 10.1007/978-3-319-46723-8_49 10.1038/sdata.2016.18 10.2307/2529310 10.1109/TBME.2013.2243446 10.1371/journal.pone.0193714 10.25080/Majora-92bf1922-00a 10.1101/2020.05.14.20102103 10.1378/chest.12-1292 10.1109/ISBI.2019.8759475 10.1109/TMI.2018.2890510 10.1007/978-3-319-66179-7_71 10.3389/fninf.2014.00014 10.1038/ncomms5006 10.1148/radiol.2015142388 |
| ContentType | Journal Article |
| Copyright | 2020 The Authors. Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine 2020 The Authors. Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine. |
| Copyright_xml | – notice: 2020 The Authors. Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine – notice: 2020 The Authors. Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine. |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY |
| DOI | 10.1002/mp.14424 |
| DatabaseName | Wiley Online Library Open Access (Activated by CARLI) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Physics |
| DocumentTitleAlternate | PleThora |
| EISSN | 2473-4209 |
| EndPage | 5952 |
| ExternalDocumentID | 10.1002/mp.14424 PMC7722027 32749075 10_1002_mp_14424 MP14424 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: HHS | NIH | National Cancer Institute (NCI) funderid: P50CA097007 – fundername: HHS | NIH | National Cancer Institute (NCI) funderid: P30CA016672 – fundername: HHS | National Institutes of Health (NIH) funderid: 1R01CA214825 – fundername: UTHealth Center for Clinical and Translational Sciences – fundername: Cancer Prevention and Research Institute of Texas (CPRIT) funderid: RP170668 – fundername: National Science Foundation (NSF) funderid: NSF1933369 – fundername: HHS | NIH | National Cancer Institute (NCI) funderid: 1R01CA218148 – fundername: HHS | National Institutes of Health (NIH) funderid: R01AG066749 – fundername: Swiss Cancer League funderid: BIL KLS‐4300‐08‐2017 – fundername: HHS | National Institutes of Health (NIH) funderid: UL1TR003167 – fundername: NIA NIH HHS grantid: R01 AG066749 – fundername: NIDCR NIH HHS grantid: R56 DE025248 – fundername: NCI NIH HHS grantid: R01 CA214825 – fundername: National Science Foundation (NSF) grantid: NSF1557679 – fundername: HHS | National Institutes of Health (NIH) grantid: R01AG066749 – fundername: HHS | National Institutes of Health (NIH) grantid: R01DE028290 – fundername: HHS | National Institutes of Health (NIH) grantid: 1R01CA214825 – fundername: NCI NIH HHS grantid: P30 CA016672 – fundername: NIDCR NIH HHS grantid: R01 DE025248 – fundername: NCATS NIH HHS grantid: UL1 TR003167 – fundername: ; – fundername: HHS | NIH | National Cancer Institute (NCI) grantid: P50CA097007 – fundername: ; grantid: R01DE028290 – fundername: ; grantid: RP170668 – fundername: ; grantid: R01AG066749 – fundername: ; grantid: 1R01DE025248 – fundername: ; grantid: NSF1557679 – fundername: HHS | NIH | National Cancer Institute (NCI) grantid: 1R01CA218148 – fundername: ; grantid: R25EB025787‐01 – fundername: ; grantid: 1R01CA214825 |
| GroupedDBID | --- --Z -DZ .GJ 0R~ 1OB 1OC 24P 29M 2WC 33P 36B 3O- 4.4 53G 5GY 5RE 5VS AAHHS AAHQN AAIPD AAMNL AANLZ AAQQT AASGY AAXRX AAYCA AAZKR ABCUV ABDPE ABEFU ABFTF ABJNI ABLJU ABQWH ABTAH ABXGK ACAHQ ACBEA ACCFJ ACCZN ACGFO ACGFS ACGOF ACPOU ACXBN ACXQS ADBBV ADBTR ADKYN ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AHBTC AIACR AIAGR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ASPBG BFHJK C45 CS3 DCZOG DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMB EMOBN F5P HDBZQ HGLYW I-F KBYEO LATKE LEEKS LOXES LUTES LYRES MEWTI O9- OVD P2P P2W PALCI PHY RJQFR RNS ROL SAMSI SUPJJ SV3 TEORI TN5 TWZ USG WOHZO WXSBR XJT ZGI ZVN ZXP ZY4 ZZTAW AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY AIQQE CITATION LH4 CGR CUY CVF ECM EIF NPM 7X8 5PM ABUFD ADTOC UNPAY |
| ID | FETCH-LOGICAL-c4764-24390832dc1046474a9d5597466d8afcb24d9beae605ea7aeaafc07892e863703 |
| IEDL.DBID | UNPAY |
| ISSN | 0094-2405 2473-4209 1522-8541 |
| IngestDate | Sun Oct 26 02:57:57 EDT 2025 Tue Sep 30 16:51:26 EDT 2025 Fri Sep 05 12:35:25 EDT 2025 Mon Jul 21 06:00:21 EDT 2025 Wed Oct 01 04:33:05 EDT 2025 Thu Apr 24 23:04:07 EDT 2025 Wed Jan 22 16:32:20 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | image processing quantitative imaging image segmentation techniques computer-aided decision support systems informatics in imaging |
| Language | English |
| License | Attribution 2020 The Authors. Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4764-24390832dc1046474a9d5597466d8afcb24d9beae605ea7aeaafc07892e863703 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1002/mp.14424 |
| PMID | 32749075 |
| PQID | 2430376645 |
| PQPubID | 23479 |
| PageCount | 13 |
| ParticipantIDs | unpaywall_primary_10_1002_mp_14424 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7722027 proquest_miscellaneous_2430376645 pubmed_primary_32749075 crossref_citationtrail_10_1002_mp_14424 crossref_primary_10_1002_mp_14424 wiley_primary_10_1002_mp_14424_MP14424 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | November 2020 |
| PublicationDateYYYYMMDD | 2020-11-01 |
| PublicationDate_xml | – month: 11 year: 2020 text: November 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Hoboken |
| PublicationTitle | Medical physics (Lancaster) |
| PublicationTitleAlternate | Med Phys |
| PublicationYear | 2020 |
| Publisher | John Wiley and Sons Inc |
| Publisher_xml | – name: John Wiley and Sons Inc |
| References | 2015; 35 2013; 26 2006; 31 2019; 51 2010; 17 2017; 44 2016; 264 2020; 13 2017; 195 2011; 12 2020; 10 2018; 45 2016; 35 2018; 8 2014; 5 2018; 5 2017; 36 2015; 40 2019; 25 2016; 278 2007; 9 2013; 60 1977; 33 2014; 8 2017; 124 2019; 7 2019; 6 2013; 49 2017; 25 2010 2019; 32 2015; 94 2018; 103 2019; 38 2013; 143 2012; 30 2001; 20 1993; 15 1960; 20 2016; 3 2020 1945; 26 1947; 18 2017; 12 2019 2018 2017 2017; 18 2014; 33 2018; 13 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 Waskom M (e_1_2_8_36_1) e_1_2_8_48_1 Pedregosa F (e_1_2_8_34_1) 2011; 12 e_1_2_8_2_1 e_1_2_8_4_1 Anderson SA (e_1_2_8_42_1) 2013; 49 e_1_2_8_6_1 Gudmundsson E (e_1_2_8_13_1) 2018; 5 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 Song L (e_1_2_8_43_1) 2017; 25 Deen KJ (e_1_2_8_12_1) 2017; 18 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
| References_xml | – volume: 30 start-page: 1234 year: 2012 end-page: 1248 article-title: Radiomics: the process and the challenges publication-title: Magn Reson Imaging – volume: 12 start-page: 2825 year: 2011 end-page: 2830 article-title: Scikit‐learn: machine learning in Python publication-title: J Mach Learn Res – volume: 44 start-page: e43 year: 2017 end-page: e76 article-title: Use of image registration and fusion algorithms and techniques in radiotherapy: report of the AAPM Radiation Therapy Committee Task Group No. 132 publication-title: Med Phys – volume: 26 start-page: 297 year: 1945 article-title: Measures of the amount of ecologic association between species publication-title: Ecology – volume: 20 start-page: 490 year: 2001 end-page: 498 article-title: Automatic lung segmentation for accurate quantitation of volumetric X‐ray CT images publication-title: IEEE Trans Med Imaging – volume: 18 start-page: 50 year: 1947 end-page: 60 article-title: On a test of whether one of two random variables is stochastically larger than the other publication-title: Ann Math Stat – volume: 12 year: 2017 article-title: Pleural effusion biomarkers and computed tomography findings in diagnosing malignant pleural mesothelioma: a retrospective study in a single center publication-title: PLoS One – volume: 51 start-page: 169 year: 2019 end-page: 183 article-title: Disease quantification on PET/CT images without explicit object delineation publication-title: Med Image Anal – volume: 103 start-page: 287 year: 2018 end-page: 300 article-title: Automatic nodule detection for lung cancer in CT images: a review publication-title: Comput Biol Med – year: 2018 – volume: 35 start-page: 1056 year: 2015 end-page: 1076 article-title: Segmentation and image analysis of abnormal lungs at CT: current approaches, challenges, and future trends publication-title: Radiographics – volume: 35 start-page: 1229 year: 2016 end-page: 1239 article-title: Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation publication-title: IEEE Trans Med Imaging – volume: 6 start-page: 1 year: 2019 article-title: Computer‐aided detection of lung nodules: a review publication-title: J Med Imaging – volume: 7 start-page: 259 year: 2019 article-title: Imaging phenotype using radiomics to predict dry pleural dissemination in non‐small cell lung cancer publication-title: Ann Transl Med – volume: 15 start-page: 850 year: 1993 end-page: 863 article-title: Comparing images using the Hausdorff distance publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 13 year: 2018 article-title: Differential diagnosis between benign and malignant pleural effusion with dual‐energy spectral CT publication-title: PLoS One – volume: 8 start-page: 14 year: 2014 article-title: Machine learning for neuroimaging with scikit‐learn publication-title: Front Neuroinform – volume: 143 start-page: 1054 year: 2013 end-page: 1059 article-title: A new, simple method for estimating pleural effusion size on CT scans publication-title: Chest – volume: 60 start-page: 1834 year: 2013 end-page: 1840 article-title: Automatic segmentation and measurement of pleural effusions on CT publication-title: IEEE Trans Bio‐med Eng – volume: 8 start-page: 9802 year: 2018 article-title: Unsupervised CT lung image segmentation of a mycobacterium tuberculosis infection model publication-title: Sci Rep – volume: 45 start-page: 4568 year: 2018 end-page: 4581 article-title: Autosegmentation for thoracic radiation treatment planning: a grand challenge at AAPM 2017 publication-title: Med Phys – volume: 49 start-page: 13 year: 2013 end-page: 19 article-title: Semiautomatic method of quantifying pleural effusions using computed tomography scans ‐ biomed 2013 publication-title: Biomed Sci Instrum – year: 2019 – volume: 94 year: 2015 article-title: Diagnostic ability of FDG‐PET/CT in the detection of malignant pleural effusion publication-title: Medicine (Baltimore) – volume: 38 start-page: 1736 year: 2019 end-page: 1749 article-title: Automatic pathological lung segmentation in low‐dose CT image using Eigenspace sparse shape composition publication-title: IEEE Trans Med Imaging – volume: 264 start-page: 47 year: 2016 end-page: 56 article-title: The first step for neuroimaging data analysis: DICOM to NIfTI conversion publication-title: J Neurosci Methods – volume: 195 start-page: 653 year: 2017 end-page: 660 article-title: Predicting malignant and paramalignant pleural effusions by combining clinical, radiological and pleural fluid analytical parameters publication-title: Lung – volume: 9 start-page: 10 year: 2007 end-page: 20 article-title: Python for scientific computing publication-title: Comput Sci Eng – volume: 5 year: 2018 article-title: Deep convolutional neural networks for the automated segmentation of malignant pleural mesothelioma on computed tomography scans publication-title: J Med Imaging (Bellingham) – volume: 33 start-page: 159 year: 1977 article-title: The measurement of observer agreement for categorical data publication-title: Biometrics – volume: 18 start-page: 1869 year: 2017 end-page: 1874 article-title: Fuzzy‐C‐means clustering based segmentation and CNN‐classification for accurate segmentation of lung nodules publication-title: Asian Pac J Cancer Prev – volume: 40 start-page: 13 year: 2015 end-page: 29 article-title: Review of automatic pulmonary lobe segmentation methods from CT publication-title: Comput Med Imaging Graph – volume: 5 start-page: 4006 year: 2014 article-title: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach publication-title: Nat Commun – volume: 20 start-page: 37 year: 1960 end-page: 46 article-title: A coefficient of agreement for nominal scales publication-title: Educat Psychol Meas – volume: 32 start-page: 1019 year: 2019 end-page: 1026 article-title: Lung segmentation on HRCT and volumetric CT for diffuse interstitial lung disease using deep convolutional neural networks publication-title: J Digit Imaging – volume: 33 start-page: 2293 year: 2014 end-page: 2310 article-title: A generic approach to pathological lung segmentation publication-title: IEEE Trans Med Imaging – volume: 278 start-page: 593 year: 2016 end-page: 600 article-title: Minimal pleural effusion in small cell lung cancer: proportion, mechanisms, and prognostic effect publication-title: Radiology – volume: 25 start-page: 887 year: 2017 end-page: 905 article-title: A quantitative evaluation of pleural effusion on computed tomography scans using B‐spline and local clustering level set publication-title: J Xray Sci Technol – volume: 25 start-page: 954 year: 2019 end-page: 961 article-title: End‐to‐end lung cancer screening with three‐dimensional deep learning on low‐dose chest computed tomography publication-title: Nat Med – volume: 26 start-page: 1045 year: 2013 end-page: 1057 article-title: The cancer imaging archive (TCIA): maintaining and operating a public information repository publication-title: J Digit Imaging – year: 2020 – start-page: 51 year: 2010 end-page: 56 – volume: 36 start-page: 263 year: 2017 end-page: 276 article-title: Accurate lungs segmentation on CT chest images by adaptive appearance‐guided shape modeling publication-title: IEEE Trans Med Imaging – volume: 31 start-page: 1116 year: 2006 end-page: 1128 article-title: User‐guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability publication-title: Neuroimage – volume: 10 start-page: 233 year: 2020 end-page: 242 article-title: An unsupervised semi‐automated pulmonary nodule segmentation method based on enhanced region growing publication-title: Quant Imaging Med Surg – volume: 9 start-page: 90 year: 2007 end-page: 95 article-title: Matplotlib: a 2d graphics environment publication-title: Comput Sci Eng – volume: 124 start-page: 88 year: 2017 end-page: 99 article-title: State‐of‐the‐art: radiological investigation of pleural disease publication-title: Respir Med – year: 2017 – volume: 17 start-page: 841 year: 2010 end-page: 848 article-title: Semiautomated segmentation of pleural effusions in MDCT datasets publication-title: Acad Radiol – volume: 13 start-page: 1 year: 2020 end-page: 6 article-title: Evaluation of measures for assessing time‐saving of automatic organ‐at‐risk segmentation in radiotherapy publication-title: Phy Imaging Radiat Oncol – volume: 3 start-page: 160018 year: 2016 article-title: The FAIR Guiding Principles for scientific data management and stewardship publication-title: Sci Data – volume-title: MWaskom/Seaborn ident: e_1_2_8_36_1 – volume: 5 start-page: 034503 year: 2018 ident: e_1_2_8_13_1 article-title: Deep convolutional neural networks for the automated segmentation of malignant pleural mesothelioma on computed tomography scans publication-title: J Med Imaging (Bellingham) – volume: 12 start-page: 2825 year: 2011 ident: e_1_2_8_34_1 article-title: Scikit‐learn: machine learning in Python publication-title: J Mach Learn Res – ident: e_1_2_8_57_1 doi: 10.1109/TMI.2016.2528821 – ident: e_1_2_8_64_1 doi: 10.1097/MD.0000000000001010 – ident: e_1_2_8_30_1 doi: 10.1109/MCSE.2007.58 – ident: e_1_2_8_21_1 doi: 10.1117/1.JMI.6.2.020901 – ident: e_1_2_8_62_1 doi: 10.1371/journal.pone.0185850 – ident: e_1_2_8_63_1 doi: 10.1007/s00408-017-0032-3 – ident: e_1_2_8_7_1 doi: 10.1148/rg.2015140232 – ident: e_1_2_8_38_1 doi: 10.1177/001316446002000104 – ident: e_1_2_8_58_1 – ident: e_1_2_8_65_1 doi: 10.1016/j.rmed.2017.02.013 – ident: e_1_2_8_46_1 doi: 10.1002/mp.13141 – ident: e_1_2_8_10_1 doi: 10.1007/978-3-030-00946-5_21 – ident: e_1_2_8_56_1 doi: 10.1007/978-3-030-00889-5_1 – ident: e_1_2_8_41_1 doi: 10.1016/j.acra.2010.02.011 – volume: 25 start-page: 887 year: 2017 ident: e_1_2_8_43_1 article-title: A quantitative evaluation of pleural effusion on computed tomography scans using B‐spline and local clustering level set publication-title: J Xray Sci Technol – ident: e_1_2_8_55_1 doi: 10.1109/3DV.2016.79 – ident: e_1_2_8_18_1 doi: 10.21037/qims.2019.12.02 – ident: e_1_2_8_37_1 doi: 10.2307/1932409 – ident: e_1_2_8_14_1 doi: 10.1007/s10278-019-00254-8 – ident: e_1_2_8_8_1 doi: 10.1109/TMI.2014.2337057 – ident: e_1_2_8_6_1 doi: 10.1016/j.media.2018.11.002 – ident: e_1_2_8_20_1 doi: 10.1186/s41747-020-00173-2 – ident: e_1_2_8_2_1 doi: 10.1016/j.mri.2012.06.010 – ident: e_1_2_8_49_1 doi: 10.1214/aoms/1177730491 – ident: e_1_2_8_9_1 doi: 10.1038/s41598-018-28100-x – ident: e_1_2_8_22_1 doi: 10.1007/s10278-013-9622-7 – ident: e_1_2_8_17_1 doi: 10.1016/j.compmedimag.2014.10.008 – ident: e_1_2_8_23_1 – ident: e_1_2_8_53_1 – ident: e_1_2_8_29_1 – ident: e_1_2_8_3_1 doi: 10.1016/j.compbiomed.2018.10.033 – volume: 18 start-page: 1869 year: 2017 ident: e_1_2_8_12_1 article-title: Fuzzy‐C‐means clustering based segmentation and CNN‐classification for accurate segmentation of lung nodules publication-title: Asian Pac J Cancer Prev – ident: e_1_2_8_16_1 doi: 10.1109/TMI.2016.2606370 – ident: e_1_2_8_45_1 doi: 10.1002/mp.12256 – ident: e_1_2_8_66_1 doi: 10.21037/atm.2019.05.20 – ident: e_1_2_8_35_1 doi: 10.1109/MCSE.2007.55 – ident: e_1_2_8_39_1 doi: 10.1109/34.232073 – ident: e_1_2_8_28_1 doi: 10.1016/j.neuroimage.2006.01.015 – ident: e_1_2_8_48_1 doi: 10.1016/j.phro.2019.12.001 – ident: e_1_2_8_5_1 doi: 10.1109/42.929615 – ident: e_1_2_8_25_1 – ident: e_1_2_8_33_1 – ident: e_1_2_8_4_1 doi: 10.1038/s41591-019-0447-x – ident: e_1_2_8_26_1 doi: 10.1016/j.jneumeth.2016.03.001 – ident: e_1_2_8_54_1 doi: 10.1007/978-3-319-46723-8_49 – ident: e_1_2_8_51_1 doi: 10.1038/sdata.2016.18 – volume: 49 start-page: 13 year: 2013 ident: e_1_2_8_42_1 article-title: Semiautomatic method of quantifying pleural effusions using computed tomography scans ‐ biomed 2013 publication-title: Biomed Sci Instrum – ident: e_1_2_8_47_1 doi: 10.2307/2529310 – ident: e_1_2_8_40_1 doi: 10.1109/TBME.2013.2243446 – ident: e_1_2_8_27_1 – ident: e_1_2_8_52_1 – ident: e_1_2_8_61_1 doi: 10.1371/journal.pone.0193714 – ident: e_1_2_8_32_1 doi: 10.25080/Majora-92bf1922-00a – ident: e_1_2_8_50_1 doi: 10.1101/2020.05.14.20102103 – ident: e_1_2_8_19_1 – ident: e_1_2_8_44_1 doi: 10.1378/chest.12-1292 – ident: e_1_2_8_59_1 doi: 10.1109/ISBI.2019.8759475 – ident: e_1_2_8_15_1 doi: 10.1109/TMI.2018.2890510 – ident: e_1_2_8_11_1 doi: 10.1007/978-3-319-66179-7_71 – ident: e_1_2_8_31_1 doi: 10.3389/fninf.2014.00014 – ident: e_1_2_8_24_1 doi: 10.1038/ncomms5006 – ident: e_1_2_8_60_1 doi: 10.1148/radiol.2015142388 |
| SSID | ssj0006350 |
| Score | 2.4467373 |
| Snippet | This manuscript describes a dataset of thoracic cavity segmentations and discrete pleural effusion segmentations we have annotated on 402 computed tomography... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 5941 |
| SubjectTerms | Algorithms Benchmarking Carcinoma, Non-Small-Cell Lung - diagnostic imaging computer‐aided decision support systems Humans image processing image segmentation techniques informatics in imaging Lung - diagnostic imaging Lung Neoplasms - diagnostic imaging Medical Physics Dataset Pleural Effusion - diagnostic imaging quantitative imaging Thoracic Cavity Tomography, X-Ray Computed |
| SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access (Activated by CARLI) dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB7ShD4uJUmbxn2hhNKeTHZlWbZ7K6EhBLbsYQO5Gb3cXfAqpt6l5ND_3hnZ67CkLT3ZSGNja6TRPDTfAHwQMlQPMLEx4yIWfJzERWVcbLJMOmlMlQjKHZ58k5fX4uomvelPVVIuTIcPMTjcaGUEeU0LXOn27B40dNlQYJKLR7A3RjWGZjcX00EK40bapZ8UgiII6QZ4dsTPNk9ub0UP9MuHxySfrn2j7n6qut5WZcNedLEPz3slkn3puH4AO84fwpNJHyY_hMfhXKdpX8Cvae1mc2TzZ4Z3BLHBXFWtyUXGlLdsRX1mYZhRVESCte77ss9G8i1beNYHcCyrUSq0DFVcpnFiz5cqONlZqLfFzmes6TIOqK1ZNJTl7tqXcH3xdXZ-GfcVF2IjMkkDlRSok3FrKPQrMqEKG0wOKW2uKqO5sIV2yqER5FSmnMJGAqznLpcJCo8j2PW33h0DGwnhcq1ymyc5AdAUWqdj7ayt8L2jVEXwaTP4penhyKkqRl12QMq8XDZlYFMEJwNl00Fw_Ilmw78S1wcFPZR3t-u2xF8aoRCVIo3gVcfP4S0JmuQF6kwRZFucHggIe3u7xy_mAYMbjRJyG0VwOsyJf3zcxzBZ_kpQTqbh-vp_Cd_AM052f8iJfAu7qx9r9w6Vo5V-H1bBb2UwDCQ priority: 102 providerName: Wiley-Blackwell |
| Title | PleThora: Pleural effusion and thoracic cavity segmentations in diseased lungs for benchmarking chest CT processing pipelines |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmp.14424 https://www.ncbi.nlm.nih.gov/pubmed/32749075 https://www.proquest.com/docview/2430376645 https://pubmed.ncbi.nlm.nih.gov/PMC7722027 https://doi.org/10.1002/mp.14424 |
| UnpaywallVersion | publishedVersion |
| Volume | 47 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2473-4209 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0006350 issn: 0094-2405 databaseCode: ADMLS dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9trfh4GTAGZEBlEIKnjNZxnIS3ajBNiE6VaKXxFDmOQyvSLCKN0Cbxv3PnpBVhMPGUKD45cXy27_N3AK-EtNUDtKv1KHIFH3lulGnj6iCQRmqdeYJyhydn8nQuPp775zvANrkwXf89f7sqyf3IxS70pY_Sdg_687Pp-EsDLinIOeBbSFTUqULfFqrkIvDwrcNogzX7Wzfd0-eaSHk9MvJOXZTq8ofK8670ao-fk3tNGGRlUQsp6uTbUb1OjvTVH5iON43sPuy1sicbN8zyAHZMsQ-3J613fR9u2XBQXT2En9PczBbIHe8Y3hEyBzNZVpNljakiZWtq00vNtKLaE6wyX1dtElNRsWXBWr9PynLcTCqGkjFLcD0sVsra5pkt08WOZ6xsEhXoWbksKTneVAcwP_kwOz5120INrhaBpEnwIhTleKrJYywCoaLUaipSpqHKdMJFGiVGGdSdjAqUUfiQcO65CaWHe84j6BUXhXkCbCiECRMVpqEXEm5NlCT-KDFpmmG_Q1858GYzgbFuUcypmEYeN_jLPF6Vsf2vDrzYUpYNcsffaDY8EOOyIl-JKsxFXcU4pCHuvVL4DjxueGLbi4eafISilgNBh1u2BATZ3W0plgsL3Y26DFmbHHi55asbPu61Zbh_EsSTqb0e_k9vT-EuJ1OBTaN8Br3199o8R3lqnQxgl4vpAPrj95NPnwftAvsFZKMc1Q |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIiiXCsorPA1CcIq66zhOUk6oolqgW-1hK_UWObbDrpR1I7Krqgf-OzPOA60KiFMiexIlHns8D883AO-E9NUDdKj1OAsFH0dhVmob6iSRVmpdRoJyh6dncnIuvl7EFzvwsc-FafEhBocbrQwvr2mBk0P68Ddq6KqmyCQXt-C2kGNJlhcXs0EM407a5p9kgkIIcY88O-KH_ZPbe9ENBfPmOcm9javV9ZWqqm1d1m9GJ_dhv9Mi2aeW7Q9gx7oDuDvt4uQHcMcf7NTNQ_g5q-x8gXw-YnhHGBvMluWGfGRMOcPW1KeXmmlFVSRYY7-vunQk17ClY10Ex7AKxULDUMdlBc7sxUp5LzvzBbfY8ZzVbcoBtdXLmtLcbfMIzk8-z48nYVdyIdQikTRQUYZKGTeaYr8iESoz3uaQ0qSq1AUXJiussmgFWZUoq7CREOu5TWWE0uMx7LpLZ58CGwlh00KlJo1SQqDJiiIeF9aYEt87ilUAH_rBz3WHR05lMaq8RVLm-arOPZsCeDNQ1i0Gx59oev7luEAo6qGcvdw0Of7SCKWoFHEAT1p-Dm-J0CbPUGkKINni9EBA4NvbPW658CDcaJWQ3yiAt8Oc-MfHvfeT5a8E-XTmr8_-l_A17E3m09P89MvZt-dwj5MTwCdIvoDd9Y-NfYma0rp45VfEL9XtD5A |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIgqXCsorlIdBCE5RdxPHSdoTKqzKY6s9bKXeIseesCtl04jsCnHgvzPjPNCqgDglsidR4rHH8_B8A_BaKlc9wPjGjFNfBuPQTwuDvoljhcqYIpScOzw9V2cX8tNldLkDJ30uTIsPMTjceGU4ec0LHGtbHP1GDV3VHJkM5A24KSPaCBnWWc4GMUw7aZt_kkoOIUQ98uwoOOqf3N6LrimY189J3t5Utf7xXZflti7rNqPJXdjvtEjxrmX7PdjB6gD2pl2c_ABuuYOdprkPP2clzhfE52NBd4yxIbAoNuwjE7qyYs19ZmmE0VxFQjT4ddWlI1WNWFaii-BYUZJYaATpuCKnmb1YaedlF67gljidi7pNOeC2ellzmjs2D-Bi8mF-euZ3JRd8I2PFAxWmpJQF1nDsV8ZSp9bZHErZRBcmD6RNc9RIVhDqWKOmRkasDzBRIUmPh7BbXVX4GMRISkxyndgkTBiBJs3zaJyjtQW9dxRpD972g5-ZDo-cy2KUWYukHGSrOnNs8uDlQFm3GBx_oun5l9EC4aiHrvBq02T0SyOSokpGHjxq-Tm8JSSbPCWlyYN4i9MDAYNvb_dUy4UD4SarhP1GHrwa5sQ_Pu6Nmyx_JcimM3d98r-EL2Bv9n6Sffl4_vkQ7gTsA3D5kU9hd_1tg89IUVrnz92C-AV9kQ8f |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB4tXfG48Fhe4SWDEJyytI7jJNxWK1YrpK56aKXlFNmOQytSb0QaIZD478w4aUVYWHFKFI-cOB7b8_wG4LWQvnqACY2ZZKHgkyjMSmNDkyTSSmPKSFDu8PRMni7Ex_P4fA_YNhdm6L_n79Y1uR-5uAb7MkZpewT7i7PZ0acOXFKQcyD2kKioU6WxL1TJRRLhW8fZFmv2t26Gp88lkfJyZOTN1tXq-zdVVUPp1R8_J3e6MMjGoxZS1MmXw3ajD82PPzAdrxrZXbjdy57sqGOWe7Bn3QHcmPbe9QO47sNBTXMffs4qO18id7xneEfIHMyWZUuWNaZcwTbUZlaGGUW1J1hjP6_7JCbXsJVjvd-nYBVuJg1DyZhpXA_LtfK2eebLdLHjOau7RAV6Vq9qSo63zQNYnHyYH5-GfaGG0IhE0iREGYpyvDDkMRaJUFnhNRUpi1SVRnNRZNoqi7qTVYmyCh8Szj23qYxwz3kII3fh7GNgYyFsqlVapFFKuDWZ1vFE26Iosd9xrAJ4u53A3PQo5lRMo8o7_GWer-vc_9cAXu4o6w654280Wx7IcVmRr0Q5e9E2OQ5pjHuvFHEAjzqe2PUSoSafoagVQDLglh0BQXYPW9xq6aG7UZcha1MAr3Z8dcXHvfEM90-CfDrz1yf_09tTuMXJVODTKJ_BaPO1tc9RntroF_2S-gXpBhpq |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PleThora%3A+Pleural+effusion+and+thoracic+cavity+segmentations+in+diseased+lungs+for+benchmarking+chest+CT+processing+pipelines&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Kiser%2C+Kendall+J.&rft.au=Ahmed%2C+Sara&rft.au=Stieb%2C+Sonja&rft.au=Mohamed%2C+Abdallah+S.+R.&rft.date=2020-11-01&rft.issn=0094-2405&rft.eissn=2473-4209&rft.volume=47&rft.issue=11&rft.spage=5941&rft.epage=5952&rft_id=info:doi/10.1002%2Fmp.14424&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mp_14424 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon |