PleThora: Pleural effusion and thoracic cavity segmentations in diseased lungs for benchmarking chest CT processing pipelines

This manuscript describes a dataset of thoracic cavity segmentations and discrete pleural effusion segmentations we have annotated on 402 computed tomography (CT) scans acquired from patients with non‐small cell lung cancer. The segmentation of these anatomic regions precedes fundamental tasks in im...

Full description

Saved in:
Bibliographic Details
Published inMedical physics (Lancaster) Vol. 47; no. 11; pp. 5941 - 5952
Main Authors Kiser, Kendall J., Ahmed, Sara, Stieb, Sonja, Mohamed, Abdallah S. R., Elhalawani, Hesham, Park, Peter Y. S., Doyle, Nathan S., Wang, Brandon J., Barman, Arko, Li, Zhao, Zheng, W. Jim, Fuller, Clifton D., Giancardo, Luca
Format Journal Article
LanguageEnglish
Published United States John Wiley and Sons Inc 01.11.2020
Subjects
Online AccessGet full text
ISSN0094-2405
2473-4209
1522-8541
2473-4209
DOI10.1002/mp.14424

Cover

Abstract This manuscript describes a dataset of thoracic cavity segmentations and discrete pleural effusion segmentations we have annotated on 402 computed tomography (CT) scans acquired from patients with non‐small cell lung cancer. The segmentation of these anatomic regions precedes fundamental tasks in image analysis pipelines such as lung structure segmentation, lesion detection, and radiomics feature extraction. Bilateral thoracic cavity volumes and pleural effusion volumes were manually segmented on CT scans acquired from The Cancer Imaging Archive “NSCLC Radiomics” data collection. Four hundred and two thoracic segmentations were first generated automatically by a U‐Net based algorithm trained on chest CTs without cancer, manually corrected by a medical student to include the complete thoracic cavity (normal, pathologic, and atelectatic lung parenchyma, lung hilum, pleural effusion, fibrosis, nodules, tumor, and other anatomic anomalies), and revised by a radiation oncologist or a radiologist. Seventy‐eight pleural effusions were manually segmented by a medical student and revised by a radiologist or radiation oncologist. Interobserver agreement between the radiation oncologist and radiologist corrections was acceptable. All expert‐vetted segmentations are publicly available in NIfTI format through The Cancer Imaging Archive at https://doi.org/10.7937/tcia.2020.6c7y‐gq39. Tabular data detailing clinical and technical metadata linked to segmentation cases are also available. Thoracic cavity segmentations will be valuable for developing image analysis pipelines on pathologic lungs — where current automated algorithms struggle most. In conjunction with gross tumor volume segmentations already available from “NSCLC Radiomics,” pleural effusion segmentations may be valuable for investigating radiomics profile differences between effusion and primary tumor or training algorithms to discriminate between them.
AbstractList This manuscript describes a dataset of thoracic cavity segmentations and discrete pleural effusion segmentations we have annotated on 402 computed tomography (CT) scans acquired from patients with non-small cell lung cancer. The segmentation of these anatomic regions precedes fundamental tasks in image analysis pipelines such as lung structure segmentation, lesion detection, and radiomics feature extraction. Bilateral thoracic cavity volumes and pleural effusion volumes were manually segmented on CT scans acquired from The Cancer Imaging Archive "NSCLC Radiomics" data collection. Four hundred and two thoracic segmentations were first generated automatically by a U-Net based algorithm trained on chest CTs without cancer, manually corrected by a medical student to include the complete thoracic cavity (normal, pathologic, and atelectatic lung parenchyma, lung hilum, pleural effusion, fibrosis, nodules, tumor, and other anatomic anomalies), and revised by a radiation oncologist or a radiologist. Seventy-eight pleural effusions were manually segmented by a medical student and revised by a radiologist or radiation oncologist. Interobserver agreement between the radiation oncologist and radiologist corrections was acceptable. All expert-vetted segmentations are publicly available in NIfTI format through The Cancer Imaging Archive at https://doi.org/10.7937/tcia.2020.6c7y-gq39. Tabular data detailing clinical and technical metadata linked to segmentation cases are also available. Thoracic cavity segmentations will be valuable for developing image analysis pipelines on pathologic lungs - where current automated algorithms struggle most. In conjunction with gross tumor volume segmentations already available from "NSCLC Radiomics," pleural effusion segmentations may be valuable for investigating radiomics profile differences between effusion and primary tumor or training algorithms to discriminate between them.
This manuscript describes a dataset of thoracic cavity segmentations and discrete pleural effusion segmentations we have annotated on 402 computed tomography (CT) scans acquired from patients with non-small cell lung cancer. The segmentation of these anatomic regions precedes fundamental tasks in image analysis pipelines such as lung structure segmentation, lesion detection, and radiomics feature extraction. Bilateral thoracic cavity volumes and pleural effusion volumes were manually segmented on CT scans acquired from The Cancer Imaging Archive "NSCLC Radiomics" data collection. Four hundred and two thoracic segmentations were first generated automatically by a U-Net based algorithm trained on chest CTs without cancer, manually corrected by a medical student to include the complete thoracic cavity (normal, pathologic, and atelectatic lung parenchyma, lung hilum, pleural effusion, fibrosis, nodules, tumor, and other anatomic anomalies), and revised by a radiation oncologist or a radiologist. Seventy-eight pleural effusions were manually segmented by a medical student and revised by a radiologist or radiation oncologist. Interobserver agreement between the radiation oncologist and radiologist corrections was acceptable. All expert-vetted segmentations are publicly available in NIfTI format through The Cancer Imaging Archive at https://doi.org/10.7937/tcia.2020.6c7y-gq39. Tabular data detailing clinical and technical metadata linked to segmentation cases are also available. Thoracic cavity segmentations will be valuable for developing image analysis pipelines on pathologic lungs - where current automated algorithms struggle most. In conjunction with gross tumor volume segmentations already available from "NSCLC Radiomics," pleural effusion segmentations may be valuable for investigating radiomics profile differences between effusion and primary tumor or training algorithms to discriminate between them.This manuscript describes a dataset of thoracic cavity segmentations and discrete pleural effusion segmentations we have annotated on 402 computed tomography (CT) scans acquired from patients with non-small cell lung cancer. The segmentation of these anatomic regions precedes fundamental tasks in image analysis pipelines such as lung structure segmentation, lesion detection, and radiomics feature extraction. Bilateral thoracic cavity volumes and pleural effusion volumes were manually segmented on CT scans acquired from The Cancer Imaging Archive "NSCLC Radiomics" data collection. Four hundred and two thoracic segmentations were first generated automatically by a U-Net based algorithm trained on chest CTs without cancer, manually corrected by a medical student to include the complete thoracic cavity (normal, pathologic, and atelectatic lung parenchyma, lung hilum, pleural effusion, fibrosis, nodules, tumor, and other anatomic anomalies), and revised by a radiation oncologist or a radiologist. Seventy-eight pleural effusions were manually segmented by a medical student and revised by a radiologist or radiation oncologist. Interobserver agreement between the radiation oncologist and radiologist corrections was acceptable. All expert-vetted segmentations are publicly available in NIfTI format through The Cancer Imaging Archive at https://doi.org/10.7937/tcia.2020.6c7y-gq39. Tabular data detailing clinical and technical metadata linked to segmentation cases are also available. Thoracic cavity segmentations will be valuable for developing image analysis pipelines on pathologic lungs - where current automated algorithms struggle most. In conjunction with gross tumor volume segmentations already available from "NSCLC Radiomics," pleural effusion segmentations may be valuable for investigating radiomics profile differences between effusion and primary tumor or training algorithms to discriminate between them.
This manuscript describes a dataset of thoracic cavity segmentations and discrete pleural effusion segmentations we have annotated on 402 computed tomography (CT) scans acquired from patients with non‐small cell lung cancer. The segmentation of these anatomic regions precedes fundamental tasks in image analysis pipelines such as lung structure segmentation, lesion detection, and radiomics feature extraction. Bilateral thoracic cavity volumes and pleural effusion volumes were manually segmented on CT scans acquired from The Cancer Imaging Archive “NSCLC Radiomics” data collection. Four hundred and two thoracic segmentations were first generated automatically by a U‐Net based algorithm trained on chest CTs without cancer, manually corrected by a medical student to include the complete thoracic cavity (normal, pathologic, and atelectatic lung parenchyma, lung hilum, pleural effusion, fibrosis, nodules, tumor, and other anatomic anomalies), and revised by a radiation oncologist or a radiologist. Seventy‐eight pleural effusions were manually segmented by a medical student and revised by a radiologist or radiation oncologist. Interobserver agreement between the radiation oncologist and radiologist corrections was acceptable. All expert‐vetted segmentations are publicly available in NIfTI format through The Cancer Imaging Archive at https://doi.org/10.7937/tcia.2020.6c7y‐gq39 . Tabular data detailing clinical and technical metadata linked to segmentation cases are also available. Thoracic cavity segmentations will be valuable for developing image analysis pipelines on pathologic lungs — where current automated algorithms struggle most. In conjunction with gross tumor volume segmentations already available from “NSCLC Radiomics,” pleural effusion segmentations may be valuable for investigating radiomics profile differences between effusion and primary tumor or training algorithms to discriminate between them.
Author Wang, Brandon J.
Fuller, Clifton D.
Mohamed, Abdallah S. R.
Li, Zhao
Stieb, Sonja
Park, Peter Y. S.
Barman, Arko
Kiser, Kendall J.
Ahmed, Sara
Giancardo, Luca
Elhalawani, Hesham
Doyle, Nathan S.
Zheng, W. Jim
AuthorAffiliation 3 Department of Radiation Oncology University of Texas MD Anderson Cancer Center Houston TX USA
2 Center for Precision Health UTHealth School of Biomedical Informatics Houston TX USA
6 Department of Diagnostic and Interventional Imaging John P. and Kathrine G. McGovern Medical School Houston TX USA
4 MD Anderson Cancer Center‐UTHealth Graduate School of Biomedical Sciences Houston TX USA
1 John P. and Kathrine G. McGovern Medical School Houston TX USA
5 Department of Radiation Oncology Cleveland Clinic Taussig Cancer Center Cleveland OH USA
AuthorAffiliation_xml – name: 1 John P. and Kathrine G. McGovern Medical School Houston TX USA
– name: 2 Center for Precision Health UTHealth School of Biomedical Informatics Houston TX USA
– name: 4 MD Anderson Cancer Center‐UTHealth Graduate School of Biomedical Sciences Houston TX USA
– name: 5 Department of Radiation Oncology Cleveland Clinic Taussig Cancer Center Cleveland OH USA
– name: 3 Department of Radiation Oncology University of Texas MD Anderson Cancer Center Houston TX USA
– name: 6 Department of Diagnostic and Interventional Imaging John P. and Kathrine G. McGovern Medical School Houston TX USA
Author_xml – sequence: 1
  givenname: Kendall J.
  surname: Kiser
  fullname: Kiser, Kendall J.
  email: Kendall.j.kiser@uth.tmc.edu
  organization: University of Texas MD Anderson Cancer Center
– sequence: 2
  givenname: Sara
  surname: Ahmed
  fullname: Ahmed, Sara
  organization: University of Texas MD Anderson Cancer Center
– sequence: 3
  givenname: Sonja
  surname: Stieb
  fullname: Stieb, Sonja
  organization: University of Texas MD Anderson Cancer Center
– sequence: 4
  givenname: Abdallah S. R.
  surname: Mohamed
  fullname: Mohamed, Abdallah S. R.
  organization: MD Anderson Cancer Center‐UTHealth Graduate School of Biomedical Sciences
– sequence: 5
  givenname: Hesham
  surname: Elhalawani
  fullname: Elhalawani, Hesham
  organization: Cleveland Clinic Taussig Cancer Center
– sequence: 6
  givenname: Peter Y. S.
  surname: Park
  fullname: Park, Peter Y. S.
  organization: John P. and Kathrine G. McGovern Medical School
– sequence: 7
  givenname: Nathan S.
  surname: Doyle
  fullname: Doyle, Nathan S.
  organization: John P. and Kathrine G. McGovern Medical School
– sequence: 8
  givenname: Brandon J.
  surname: Wang
  fullname: Wang, Brandon J.
  organization: John P. and Kathrine G. McGovern Medical School
– sequence: 9
  givenname: Arko
  surname: Barman
  fullname: Barman, Arko
  organization: UTHealth School of Biomedical Informatics
– sequence: 10
  givenname: Zhao
  surname: Li
  fullname: Li, Zhao
  organization: UTHealth School of Biomedical Informatics
– sequence: 11
  givenname: W. Jim
  surname: Zheng
  fullname: Zheng, W. Jim
  organization: UTHealth School of Biomedical Informatics
– sequence: 12
  givenname: Clifton D.
  surname: Fuller
  fullname: Fuller, Clifton D.
  email: cdfuller@mdanderson.org
  organization: MD Anderson Cancer Center‐UTHealth Graduate School of Biomedical Sciences
– sequence: 13
  givenname: Luca
  surname: Giancardo
  fullname: Giancardo, Luca
  email: Luca.Giancardo@uth.tmc.edu
  organization: Cleveland Clinic Taussig Cancer Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32749075$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9v1DAQxS1URLcFiU-AfCyHLBPHsTcckKoV_6QieljOlteZ7BocO9hJqz3w3fGSUgECTrZmfp437_mMnPjgkZCnJSxLAPaiH5Yl54w_IAvGZVVwBs0JWQA0vGAc6lNyltJnABBVDY_IacUkb0DWC_Lt2uFmH6J-SfNtitpR7Lop2eCp9i0djz1jDTX6xo4HmnDXox_1mIFEraetTagTttRNfpdoFyLdojf7Xscv1u-o2WMa6XpDhxgMpnSsDXZAZz2mx-Rhp13CJ3fnOfn05vVm_a64-vj2_fryqjBciqOFqoFVxVpTAhdcct20dd1ILkS70p3ZMt42W9QooEYtNepcBLlqGK5EJaE6J8_nuZMf9OFWO6eGaPOKB1WCOkao-kH9iDCzr2Z2mLY9tia7zanc80Fb9XvH273ahRslJWPAZB5wcTcghq9Tdq96mww6pz2GKamsAZUUgtcZffar1r3Iz__JwHIGTAwpReyUsXP4Wdq6v21_8ceD_xgtZvTWOjz8k1Mfrmf-O64QwA0
CitedBy_id crossref_primary_10_2139_ssrn_4121063
crossref_primary_10_1140_epjp_s13360_023_03896_4
crossref_primary_10_1109_ACCESS_2023_3330238
crossref_primary_10_1002_ima_22672
crossref_primary_10_1002_mp_14595
crossref_primary_10_1155_2022_1379937
crossref_primary_10_1002_mp_14676
crossref_primary_10_1016_j_ejmp_2021_06_001
crossref_primary_10_4103_ecdt_ecdt_30_24
crossref_primary_10_1007_s10278_021_00460_3
crossref_primary_10_1016_j_neucom_2022_12_003
crossref_primary_10_1080_0952813X_2023_2165724
crossref_primary_10_1016_j_bspc_2023_104905
crossref_primary_10_2139_ssrn_4192612
crossref_primary_10_1007_s11548_021_02501_2
crossref_primary_10_37737_ace_22014
crossref_primary_10_1097_RLI_0000000000000869
crossref_primary_10_1148_ryai_240215
crossref_primary_10_1109_JBHI_2023_3327726
Cites_doi 10.1109/TMI.2016.2528821
10.1097/MD.0000000000001010
10.1109/MCSE.2007.58
10.1117/1.JMI.6.2.020901
10.1371/journal.pone.0185850
10.1007/s00408-017-0032-3
10.1148/rg.2015140232
10.1177/001316446002000104
10.1016/j.rmed.2017.02.013
10.1002/mp.13141
10.1007/978-3-030-00946-5_21
10.1007/978-3-030-00889-5_1
10.1016/j.acra.2010.02.011
10.1109/3DV.2016.79
10.21037/qims.2019.12.02
10.2307/1932409
10.1007/s10278-019-00254-8
10.1109/TMI.2014.2337057
10.1016/j.media.2018.11.002
10.1186/s41747-020-00173-2
10.1016/j.mri.2012.06.010
10.1214/aoms/1177730491
10.1038/s41598-018-28100-x
10.1007/s10278-013-9622-7
10.1016/j.compmedimag.2014.10.008
10.1016/j.compbiomed.2018.10.033
10.1109/TMI.2016.2606370
10.1002/mp.12256
10.21037/atm.2019.05.20
10.1109/MCSE.2007.55
10.1109/34.232073
10.1016/j.neuroimage.2006.01.015
10.1016/j.phro.2019.12.001
10.1109/42.929615
10.1038/s41591-019-0447-x
10.1016/j.jneumeth.2016.03.001
10.1007/978-3-319-46723-8_49
10.1038/sdata.2016.18
10.2307/2529310
10.1109/TBME.2013.2243446
10.1371/journal.pone.0193714
10.25080/Majora-92bf1922-00a
10.1101/2020.05.14.20102103
10.1378/chest.12-1292
10.1109/ISBI.2019.8759475
10.1109/TMI.2018.2890510
10.1007/978-3-319-66179-7_71
10.3389/fninf.2014.00014
10.1038/ncomms5006
10.1148/radiol.2015142388
ContentType Journal Article
Copyright 2020 The Authors. Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine
2020 The Authors. Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine.
Copyright_xml – notice: 2020 The Authors. Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine
– notice: 2020 The Authors. Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1002/mp.14424
DatabaseName Wiley Online Library Open Access (Activated by CARLI)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
DocumentTitleAlternate PleThora
EISSN 2473-4209
EndPage 5952
ExternalDocumentID 10.1002/mp.14424
PMC7722027
32749075
10_1002_mp_14424
MP14424
Genre article
Journal Article
GrantInformation_xml – fundername: HHS | NIH | National Cancer Institute (NCI)
  funderid: P50CA097007
– fundername: HHS | NIH | National Cancer Institute (NCI)
  funderid: P30CA016672
– fundername: HHS | National Institutes of Health (NIH)
  funderid: 1R01CA214825
– fundername: UTHealth Center for Clinical and Translational Sciences
– fundername: Cancer Prevention and Research Institute of Texas (CPRIT)
  funderid: RP170668
– fundername: National Science Foundation (NSF)
  funderid: NSF1933369
– fundername: HHS | NIH | National Cancer Institute (NCI)
  funderid: 1R01CA218148
– fundername: HHS | National Institutes of Health (NIH)
  funderid: R01AG066749
– fundername: Swiss Cancer League
  funderid: BIL KLS‐4300‐08‐2017
– fundername: HHS | National Institutes of Health (NIH)
  funderid: UL1TR003167
– fundername: NIA NIH HHS
  grantid: R01 AG066749
– fundername: NIDCR NIH HHS
  grantid: R56 DE025248
– fundername: NCI NIH HHS
  grantid: R01 CA214825
– fundername: National Science Foundation (NSF)
  grantid: NSF1557679
– fundername: HHS | National Institutes of Health (NIH)
  grantid: R01AG066749
– fundername: HHS | National Institutes of Health (NIH)
  grantid: R01DE028290
– fundername: HHS | National Institutes of Health (NIH)
  grantid: 1R01CA214825
– fundername: NCI NIH HHS
  grantid: P30 CA016672
– fundername: NIDCR NIH HHS
  grantid: R01 DE025248
– fundername: NCATS NIH HHS
  grantid: UL1 TR003167
– fundername: ;
– fundername: HHS | NIH | National Cancer Institute (NCI)
  grantid: P50CA097007
– fundername: ;
  grantid: R01DE028290
– fundername: ;
  grantid: RP170668
– fundername: ;
  grantid: R01AG066749
– fundername: ;
  grantid: 1R01DE025248
– fundername: ;
  grantid: NSF1557679
– fundername: HHS | NIH | National Cancer Institute (NCI)
  grantid: 1R01CA218148
– fundername: ;
  grantid: R25EB025787‐01
– fundername: ;
  grantid: 1R01CA214825
GroupedDBID ---
--Z
-DZ
.GJ
0R~
1OB
1OC
24P
29M
2WC
33P
36B
3O-
4.4
53G
5GY
5RE
5VS
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAQQT
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDPE
ABEFU
ABFTF
ABJNI
ABLJU
ABQWH
ABTAH
ABXGK
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AHBTC
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
BFHJK
C45
CS3
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F5P
HDBZQ
HGLYW
I-F
KBYEO
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
OVD
P2P
P2W
PALCI
PHY
RJQFR
RNS
ROL
SAMSI
SUPJJ
SV3
TEORI
TN5
TWZ
USG
WOHZO
WXSBR
XJT
ZGI
ZVN
ZXP
ZY4
ZZTAW
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
LH4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ABUFD
ADTOC
UNPAY
ID FETCH-LOGICAL-c4764-24390832dc1046474a9d5597466d8afcb24d9beae605ea7aeaafc07892e863703
IEDL.DBID UNPAY
ISSN 0094-2405
2473-4209
1522-8541
IngestDate Sun Oct 26 02:57:57 EDT 2025
Tue Sep 30 16:51:26 EDT 2025
Fri Sep 05 12:35:25 EDT 2025
Mon Jul 21 06:00:21 EDT 2025
Wed Oct 01 04:33:05 EDT 2025
Thu Apr 24 23:04:07 EDT 2025
Wed Jan 22 16:32:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords image processing
quantitative imaging
image segmentation techniques
computer-aided decision support systems
informatics in imaging
Language English
License Attribution
2020 The Authors. Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4764-24390832dc1046474a9d5597466d8afcb24d9beae605ea7aeaafc07892e863703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1002/mp.14424
PMID 32749075
PQID 2430376645
PQPubID 23479
PageCount 13
ParticipantIDs unpaywall_primary_10_1002_mp_14424
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7722027
proquest_miscellaneous_2430376645
pubmed_primary_32749075
crossref_citationtrail_10_1002_mp_14424
crossref_primary_10_1002_mp_14424
wiley_primary_10_1002_mp_14424_MP14424
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2020
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: November 2020
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Medical physics (Lancaster)
PublicationTitleAlternate Med Phys
PublicationYear 2020
Publisher John Wiley and Sons Inc
Publisher_xml – name: John Wiley and Sons Inc
References 2015; 35
2013; 26
2006; 31
2019; 51
2010; 17
2017; 44
2016; 264
2020; 13
2017; 195
2011; 12
2020; 10
2018; 45
2016; 35
2018; 8
2014; 5
2018; 5
2017; 36
2015; 40
2019; 25
2016; 278
2007; 9
2013; 60
1977; 33
2014; 8
2017; 124
2019; 7
2019; 6
2013; 49
2017; 25
2010
2019; 32
2015; 94
2018; 103
2019; 38
2013; 143
2012; 30
2001; 20
1993; 15
1960; 20
2016; 3
2020
1945; 26
1947; 18
2017; 12
2019
2018
2017
2017; 18
2014; 33
2018; 13
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
Waskom M (e_1_2_8_36_1)
e_1_2_8_48_1
Pedregosa F (e_1_2_8_34_1) 2011; 12
e_1_2_8_2_1
e_1_2_8_4_1
Anderson SA (e_1_2_8_42_1) 2013; 49
e_1_2_8_6_1
Gudmundsson E (e_1_2_8_13_1) 2018; 5
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
Song L (e_1_2_8_43_1) 2017; 25
Deen KJ (e_1_2_8_12_1) 2017; 18
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 30
  start-page: 1234
  year: 2012
  end-page: 1248
  article-title: Radiomics: the process and the challenges
  publication-title: Magn Reson Imaging
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  article-title: Scikit‐learn: machine learning in Python
  publication-title: J Mach Learn Res
– volume: 44
  start-page: e43
  year: 2017
  end-page: e76
  article-title: Use of image registration and fusion algorithms and techniques in radiotherapy: report of the AAPM Radiation Therapy Committee Task Group No. 132
  publication-title: Med Phys
– volume: 26
  start-page: 297
  year: 1945
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
– volume: 20
  start-page: 490
  year: 2001
  end-page: 498
  article-title: Automatic lung segmentation for accurate quantitation of volumetric X‐ray CT images
  publication-title: IEEE Trans Med Imaging
– volume: 18
  start-page: 50
  year: 1947
  end-page: 60
  article-title: On a test of whether one of two random variables is stochastically larger than the other
  publication-title: Ann Math Stat
– volume: 12
  year: 2017
  article-title: Pleural effusion biomarkers and computed tomography findings in diagnosing malignant pleural mesothelioma: a retrospective study in a single center
  publication-title: PLoS One
– volume: 51
  start-page: 169
  year: 2019
  end-page: 183
  article-title: Disease quantification on PET/CT images without explicit object delineation
  publication-title: Med Image Anal
– volume: 103
  start-page: 287
  year: 2018
  end-page: 300
  article-title: Automatic nodule detection for lung cancer in CT images: a review
  publication-title: Comput Biol Med
– year: 2018
– volume: 35
  start-page: 1056
  year: 2015
  end-page: 1076
  article-title: Segmentation and image analysis of abnormal lungs at CT: current approaches, challenges, and future trends
  publication-title: Radiographics
– volume: 35
  start-page: 1229
  year: 2016
  end-page: 1239
  article-title: Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation
  publication-title: IEEE Trans Med Imaging
– volume: 6
  start-page: 1
  year: 2019
  article-title: Computer‐aided detection of lung nodules: a review
  publication-title: J Med Imaging
– volume: 7
  start-page: 259
  year: 2019
  article-title: Imaging phenotype using radiomics to predict dry pleural dissemination in non‐small cell lung cancer
  publication-title: Ann Transl Med
– volume: 15
  start-page: 850
  year: 1993
  end-page: 863
  article-title: Comparing images using the Hausdorff distance
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 13
  year: 2018
  article-title: Differential diagnosis between benign and malignant pleural effusion with dual‐energy spectral CT
  publication-title: PLoS One
– volume: 8
  start-page: 14
  year: 2014
  article-title: Machine learning for neuroimaging with scikit‐learn
  publication-title: Front Neuroinform
– volume: 143
  start-page: 1054
  year: 2013
  end-page: 1059
  article-title: A new, simple method for estimating pleural effusion size on CT scans
  publication-title: Chest
– volume: 60
  start-page: 1834
  year: 2013
  end-page: 1840
  article-title: Automatic segmentation and measurement of pleural effusions on CT
  publication-title: IEEE Trans Bio‐med Eng
– volume: 8
  start-page: 9802
  year: 2018
  article-title: Unsupervised CT lung image segmentation of a mycobacterium tuberculosis infection model
  publication-title: Sci Rep
– volume: 45
  start-page: 4568
  year: 2018
  end-page: 4581
  article-title: Autosegmentation for thoracic radiation treatment planning: a grand challenge at AAPM 2017
  publication-title: Med Phys
– volume: 49
  start-page: 13
  year: 2013
  end-page: 19
  article-title: Semiautomatic method of quantifying pleural effusions using computed tomography scans ‐ biomed 2013
  publication-title: Biomed Sci Instrum
– year: 2019
– volume: 94
  year: 2015
  article-title: Diagnostic ability of FDG‐PET/CT in the detection of malignant pleural effusion
  publication-title: Medicine (Baltimore)
– volume: 38
  start-page: 1736
  year: 2019
  end-page: 1749
  article-title: Automatic pathological lung segmentation in low‐dose CT image using Eigenspace sparse shape composition
  publication-title: IEEE Trans Med Imaging
– volume: 264
  start-page: 47
  year: 2016
  end-page: 56
  article-title: The first step for neuroimaging data analysis: DICOM to NIfTI conversion
  publication-title: J Neurosci Methods
– volume: 195
  start-page: 653
  year: 2017
  end-page: 660
  article-title: Predicting malignant and paramalignant pleural effusions by combining clinical, radiological and pleural fluid analytical parameters
  publication-title: Lung
– volume: 9
  start-page: 10
  year: 2007
  end-page: 20
  article-title: Python for scientific computing
  publication-title: Comput Sci Eng
– volume: 5
  year: 2018
  article-title: Deep convolutional neural networks for the automated segmentation of malignant pleural mesothelioma on computed tomography scans
  publication-title: J Med Imaging (Bellingham)
– volume: 33
  start-page: 159
  year: 1977
  article-title: The measurement of observer agreement for categorical data
  publication-title: Biometrics
– volume: 18
  start-page: 1869
  year: 2017
  end-page: 1874
  article-title: Fuzzy‐C‐means clustering based segmentation and CNN‐classification for accurate segmentation of lung nodules
  publication-title: Asian Pac J Cancer Prev
– volume: 40
  start-page: 13
  year: 2015
  end-page: 29
  article-title: Review of automatic pulmonary lobe segmentation methods from CT
  publication-title: Comput Med Imaging Graph
– volume: 5
  start-page: 4006
  year: 2014
  article-title: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
  publication-title: Nat Commun
– volume: 20
  start-page: 37
  year: 1960
  end-page: 46
  article-title: A coefficient of agreement for nominal scales
  publication-title: Educat Psychol Meas
– volume: 32
  start-page: 1019
  year: 2019
  end-page: 1026
  article-title: Lung segmentation on HRCT and volumetric CT for diffuse interstitial lung disease using deep convolutional neural networks
  publication-title: J Digit Imaging
– volume: 33
  start-page: 2293
  year: 2014
  end-page: 2310
  article-title: A generic approach to pathological lung segmentation
  publication-title: IEEE Trans Med Imaging
– volume: 278
  start-page: 593
  year: 2016
  end-page: 600
  article-title: Minimal pleural effusion in small cell lung cancer: proportion, mechanisms, and prognostic effect
  publication-title: Radiology
– volume: 25
  start-page: 887
  year: 2017
  end-page: 905
  article-title: A quantitative evaluation of pleural effusion on computed tomography scans using B‐spline and local clustering level set
  publication-title: J Xray Sci Technol
– volume: 25
  start-page: 954
  year: 2019
  end-page: 961
  article-title: End‐to‐end lung cancer screening with three‐dimensional deep learning on low‐dose chest computed tomography
  publication-title: Nat Med
– volume: 26
  start-page: 1045
  year: 2013
  end-page: 1057
  article-title: The cancer imaging archive (TCIA): maintaining and operating a public information repository
  publication-title: J Digit Imaging
– year: 2020
– start-page: 51
  year: 2010
  end-page: 56
– volume: 36
  start-page: 263
  year: 2017
  end-page: 276
  article-title: Accurate lungs segmentation on CT chest images by adaptive appearance‐guided shape modeling
  publication-title: IEEE Trans Med Imaging
– volume: 31
  start-page: 1116
  year: 2006
  end-page: 1128
  article-title: User‐guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability
  publication-title: Neuroimage
– volume: 10
  start-page: 233
  year: 2020
  end-page: 242
  article-title: An unsupervised semi‐automated pulmonary nodule segmentation method based on enhanced region growing
  publication-title: Quant Imaging Med Surg
– volume: 9
  start-page: 90
  year: 2007
  end-page: 95
  article-title: Matplotlib: a 2d graphics environment
  publication-title: Comput Sci Eng
– volume: 124
  start-page: 88
  year: 2017
  end-page: 99
  article-title: State‐of‐the‐art: radiological investigation of pleural disease
  publication-title: Respir Med
– year: 2017
– volume: 17
  start-page: 841
  year: 2010
  end-page: 848
  article-title: Semiautomated segmentation of pleural effusions in MDCT datasets
  publication-title: Acad Radiol
– volume: 13
  start-page: 1
  year: 2020
  end-page: 6
  article-title: Evaluation of measures for assessing time‐saving of automatic organ‐at‐risk segmentation in radiotherapy
  publication-title: Phy Imaging Radiat Oncol
– volume: 3
  start-page: 160018
  year: 2016
  article-title: The FAIR Guiding Principles for scientific data management and stewardship
  publication-title: Sci Data
– volume-title: MWaskom/Seaborn
  ident: e_1_2_8_36_1
– volume: 5
  start-page: 034503
  year: 2018
  ident: e_1_2_8_13_1
  article-title: Deep convolutional neural networks for the automated segmentation of malignant pleural mesothelioma on computed tomography scans
  publication-title: J Med Imaging (Bellingham)
– volume: 12
  start-page: 2825
  year: 2011
  ident: e_1_2_8_34_1
  article-title: Scikit‐learn: machine learning in Python
  publication-title: J Mach Learn Res
– ident: e_1_2_8_57_1
  doi: 10.1109/TMI.2016.2528821
– ident: e_1_2_8_64_1
  doi: 10.1097/MD.0000000000001010
– ident: e_1_2_8_30_1
  doi: 10.1109/MCSE.2007.58
– ident: e_1_2_8_21_1
  doi: 10.1117/1.JMI.6.2.020901
– ident: e_1_2_8_62_1
  doi: 10.1371/journal.pone.0185850
– ident: e_1_2_8_63_1
  doi: 10.1007/s00408-017-0032-3
– ident: e_1_2_8_7_1
  doi: 10.1148/rg.2015140232
– ident: e_1_2_8_38_1
  doi: 10.1177/001316446002000104
– ident: e_1_2_8_58_1
– ident: e_1_2_8_65_1
  doi: 10.1016/j.rmed.2017.02.013
– ident: e_1_2_8_46_1
  doi: 10.1002/mp.13141
– ident: e_1_2_8_10_1
  doi: 10.1007/978-3-030-00946-5_21
– ident: e_1_2_8_56_1
  doi: 10.1007/978-3-030-00889-5_1
– ident: e_1_2_8_41_1
  doi: 10.1016/j.acra.2010.02.011
– volume: 25
  start-page: 887
  year: 2017
  ident: e_1_2_8_43_1
  article-title: A quantitative evaluation of pleural effusion on computed tomography scans using B‐spline and local clustering level set
  publication-title: J Xray Sci Technol
– ident: e_1_2_8_55_1
  doi: 10.1109/3DV.2016.79
– ident: e_1_2_8_18_1
  doi: 10.21037/qims.2019.12.02
– ident: e_1_2_8_37_1
  doi: 10.2307/1932409
– ident: e_1_2_8_14_1
  doi: 10.1007/s10278-019-00254-8
– ident: e_1_2_8_8_1
  doi: 10.1109/TMI.2014.2337057
– ident: e_1_2_8_6_1
  doi: 10.1016/j.media.2018.11.002
– ident: e_1_2_8_20_1
  doi: 10.1186/s41747-020-00173-2
– ident: e_1_2_8_2_1
  doi: 10.1016/j.mri.2012.06.010
– ident: e_1_2_8_49_1
  doi: 10.1214/aoms/1177730491
– ident: e_1_2_8_9_1
  doi: 10.1038/s41598-018-28100-x
– ident: e_1_2_8_22_1
  doi: 10.1007/s10278-013-9622-7
– ident: e_1_2_8_17_1
  doi: 10.1016/j.compmedimag.2014.10.008
– ident: e_1_2_8_23_1
– ident: e_1_2_8_53_1
– ident: e_1_2_8_29_1
– ident: e_1_2_8_3_1
  doi: 10.1016/j.compbiomed.2018.10.033
– volume: 18
  start-page: 1869
  year: 2017
  ident: e_1_2_8_12_1
  article-title: Fuzzy‐C‐means clustering based segmentation and CNN‐classification for accurate segmentation of lung nodules
  publication-title: Asian Pac J Cancer Prev
– ident: e_1_2_8_16_1
  doi: 10.1109/TMI.2016.2606370
– ident: e_1_2_8_45_1
  doi: 10.1002/mp.12256
– ident: e_1_2_8_66_1
  doi: 10.21037/atm.2019.05.20
– ident: e_1_2_8_35_1
  doi: 10.1109/MCSE.2007.55
– ident: e_1_2_8_39_1
  doi: 10.1109/34.232073
– ident: e_1_2_8_28_1
  doi: 10.1016/j.neuroimage.2006.01.015
– ident: e_1_2_8_48_1
  doi: 10.1016/j.phro.2019.12.001
– ident: e_1_2_8_5_1
  doi: 10.1109/42.929615
– ident: e_1_2_8_25_1
– ident: e_1_2_8_33_1
– ident: e_1_2_8_4_1
  doi: 10.1038/s41591-019-0447-x
– ident: e_1_2_8_26_1
  doi: 10.1016/j.jneumeth.2016.03.001
– ident: e_1_2_8_54_1
  doi: 10.1007/978-3-319-46723-8_49
– ident: e_1_2_8_51_1
  doi: 10.1038/sdata.2016.18
– volume: 49
  start-page: 13
  year: 2013
  ident: e_1_2_8_42_1
  article-title: Semiautomatic method of quantifying pleural effusions using computed tomography scans ‐ biomed 2013
  publication-title: Biomed Sci Instrum
– ident: e_1_2_8_47_1
  doi: 10.2307/2529310
– ident: e_1_2_8_40_1
  doi: 10.1109/TBME.2013.2243446
– ident: e_1_2_8_27_1
– ident: e_1_2_8_52_1
– ident: e_1_2_8_61_1
  doi: 10.1371/journal.pone.0193714
– ident: e_1_2_8_32_1
  doi: 10.25080/Majora-92bf1922-00a
– ident: e_1_2_8_50_1
  doi: 10.1101/2020.05.14.20102103
– ident: e_1_2_8_19_1
– ident: e_1_2_8_44_1
  doi: 10.1378/chest.12-1292
– ident: e_1_2_8_59_1
  doi: 10.1109/ISBI.2019.8759475
– ident: e_1_2_8_15_1
  doi: 10.1109/TMI.2018.2890510
– ident: e_1_2_8_11_1
  doi: 10.1007/978-3-319-66179-7_71
– ident: e_1_2_8_31_1
  doi: 10.3389/fninf.2014.00014
– ident: e_1_2_8_24_1
  doi: 10.1038/ncomms5006
– ident: e_1_2_8_60_1
  doi: 10.1148/radiol.2015142388
SSID ssj0006350
Score 2.4467373
Snippet This manuscript describes a dataset of thoracic cavity segmentations and discrete pleural effusion segmentations we have annotated on 402 computed tomography...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5941
SubjectTerms Algorithms
Benchmarking
Carcinoma, Non-Small-Cell Lung - diagnostic imaging
computer‐aided decision support systems
Humans
image processing
image segmentation techniques
informatics in imaging
Lung - diagnostic imaging
Lung Neoplasms - diagnostic imaging
Medical Physics Dataset
Pleural Effusion - diagnostic imaging
quantitative imaging
Thoracic Cavity
Tomography, X-Ray Computed
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access (Activated by CARLI)
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB7ShD4uJUmbxn2hhNKeTHZlWbZ7K6EhBLbsYQO5Gb3cXfAqpt6l5ND_3hnZ67CkLT3ZSGNja6TRPDTfAHwQMlQPMLEx4yIWfJzERWVcbLJMOmlMlQjKHZ58k5fX4uomvelPVVIuTIcPMTjcaGUEeU0LXOn27B40dNlQYJKLR7A3RjWGZjcX00EK40bapZ8UgiII6QZ4dsTPNk9ub0UP9MuHxySfrn2j7n6qut5WZcNedLEPz3slkn3puH4AO84fwpNJHyY_hMfhXKdpX8Cvae1mc2TzZ4Z3BLHBXFWtyUXGlLdsRX1mYZhRVESCte77ss9G8i1beNYHcCyrUSq0DFVcpnFiz5cqONlZqLfFzmes6TIOqK1ZNJTl7tqXcH3xdXZ-GfcVF2IjMkkDlRSok3FrKPQrMqEKG0wOKW2uKqO5sIV2yqER5FSmnMJGAqznLpcJCo8j2PW33h0DGwnhcq1ymyc5AdAUWqdj7ayt8L2jVEXwaTP4penhyKkqRl12QMq8XDZlYFMEJwNl00Fw_Ilmw78S1wcFPZR3t-u2xF8aoRCVIo3gVcfP4S0JmuQF6kwRZFucHggIe3u7xy_mAYMbjRJyG0VwOsyJf3zcxzBZ_kpQTqbh-vp_Cd_AM052f8iJfAu7qx9r9w6Vo5V-H1bBb2UwDCQ
  priority: 102
  providerName: Wiley-Blackwell
Title PleThora: Pleural effusion and thoracic cavity segmentations in diseased lungs for benchmarking chest CT processing pipelines
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmp.14424
https://www.ncbi.nlm.nih.gov/pubmed/32749075
https://www.proquest.com/docview/2430376645
https://pubmed.ncbi.nlm.nih.gov/PMC7722027
https://doi.org/10.1002/mp.14424
UnpaywallVersion publishedVersion
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2473-4209
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0006350
  issn: 0094-2405
  databaseCode: ADMLS
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9trfh4GTAGZEBlEIKnjNZxnIS3ajBNiE6VaKXxFDmOQyvSLCKN0Cbxv3PnpBVhMPGUKD45cXy27_N3AK-EtNUDtKv1KHIFH3lulGnj6iCQRmqdeYJyhydn8nQuPp775zvANrkwXf89f7sqyf3IxS70pY_Sdg_687Pp-EsDLinIOeBbSFTUqULfFqrkIvDwrcNogzX7Wzfd0-eaSHk9MvJOXZTq8ofK8670ao-fk3tNGGRlUQsp6uTbUb1OjvTVH5iON43sPuy1sicbN8zyAHZMsQ-3J613fR9u2XBQXT2En9PczBbIHe8Y3hEyBzNZVpNljakiZWtq00vNtKLaE6wyX1dtElNRsWXBWr9PynLcTCqGkjFLcD0sVsra5pkt08WOZ6xsEhXoWbksKTneVAcwP_kwOz5120INrhaBpEnwIhTleKrJYywCoaLUaipSpqHKdMJFGiVGGdSdjAqUUfiQcO65CaWHe84j6BUXhXkCbCiECRMVpqEXEm5NlCT-KDFpmmG_Q1858GYzgbFuUcypmEYeN_jLPF6Vsf2vDrzYUpYNcsffaDY8EOOyIl-JKsxFXcU4pCHuvVL4DjxueGLbi4eafISilgNBh1u2BATZ3W0plgsL3Y26DFmbHHi55asbPu61Zbh_EsSTqb0e_k9vT-EuJ1OBTaN8Br3199o8R3lqnQxgl4vpAPrj95NPnwftAvsFZKMc1Q
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIiiXCsorPA1CcIq66zhOUk6oolqgW-1hK_UWObbDrpR1I7Krqgf-OzPOA60KiFMiexIlHns8D883AO-E9NUDdKj1OAsFH0dhVmob6iSRVmpdRoJyh6dncnIuvl7EFzvwsc-FafEhBocbrQwvr2mBk0P68Ddq6KqmyCQXt-C2kGNJlhcXs0EM407a5p9kgkIIcY88O-KH_ZPbe9ENBfPmOcm9javV9ZWqqm1d1m9GJ_dhv9Mi2aeW7Q9gx7oDuDvt4uQHcMcf7NTNQ_g5q-x8gXw-YnhHGBvMluWGfGRMOcPW1KeXmmlFVSRYY7-vunQk17ClY10Ex7AKxULDUMdlBc7sxUp5LzvzBbfY8ZzVbcoBtdXLmtLcbfMIzk8-z48nYVdyIdQikTRQUYZKGTeaYr8iESoz3uaQ0qSq1AUXJiussmgFWZUoq7CREOu5TWWE0uMx7LpLZ58CGwlh00KlJo1SQqDJiiIeF9aYEt87ilUAH_rBz3WHR05lMaq8RVLm-arOPZsCeDNQ1i0Gx59oev7luEAo6qGcvdw0Of7SCKWoFHEAT1p-Dm-J0CbPUGkKINni9EBA4NvbPW658CDcaJWQ3yiAt8Oc-MfHvfeT5a8E-XTmr8_-l_A17E3m09P89MvZt-dwj5MTwCdIvoDd9Y-NfYma0rp45VfEL9XtD5A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIgqXCsorlIdBCE5RdxPHSdoTKqzKY6s9bKXeIseesCtl04jsCnHgvzPjPNCqgDglsidR4rHH8_B8A_BaKlc9wPjGjFNfBuPQTwuDvoljhcqYIpScOzw9V2cX8tNldLkDJ30uTIsPMTjceGU4ec0LHGtbHP1GDV3VHJkM5A24KSPaCBnWWc4GMUw7aZt_kkoOIUQ98uwoOOqf3N6LrimY189J3t5Utf7xXZflti7rNqPJXdjvtEjxrmX7PdjB6gD2pl2c_ABuuYOdprkPP2clzhfE52NBd4yxIbAoNuwjE7qyYs19ZmmE0VxFQjT4ddWlI1WNWFaii-BYUZJYaATpuCKnmb1YaedlF67gljidi7pNOeC2ellzmjs2D-Bi8mF-euZ3JRd8I2PFAxWmpJQF1nDsV8ZSp9bZHErZRBcmD6RNc9RIVhDqWKOmRkasDzBRIUmPh7BbXVX4GMRISkxyndgkTBiBJs3zaJyjtQW9dxRpD972g5-ZDo-cy2KUWYukHGSrOnNs8uDlQFm3GBx_oun5l9EC4aiHrvBq02T0SyOSokpGHjxq-Tm8JSSbPCWlyYN4i9MDAYNvb_dUy4UD4SarhP1GHrwa5sQ_Pu6Nmyx_JcimM3d98r-EL2Bv9n6Sffl4_vkQ7gTsA3D5kU9hd_1tg89IUVrnz92C-AV9kQ8f
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB4tXfG48Fhe4SWDEJyytI7jJNxWK1YrpK56aKXlFNmOQytSb0QaIZD478w4aUVYWHFKFI-cOB7b8_wG4LWQvnqACY2ZZKHgkyjMSmNDkyTSSmPKSFDu8PRMni7Ex_P4fA_YNhdm6L_n79Y1uR-5uAb7MkZpewT7i7PZ0acOXFKQcyD2kKioU6WxL1TJRRLhW8fZFmv2t26Gp88lkfJyZOTN1tXq-zdVVUPp1R8_J3e6MMjGoxZS1MmXw3ajD82PPzAdrxrZXbjdy57sqGOWe7Bn3QHcmPbe9QO47sNBTXMffs4qO18id7xneEfIHMyWZUuWNaZcwTbUZlaGGUW1J1hjP6_7JCbXsJVjvd-nYBVuJg1DyZhpXA_LtfK2eebLdLHjOau7RAV6Vq9qSo63zQNYnHyYH5-GfaGG0IhE0iREGYpyvDDkMRaJUFnhNRUpi1SVRnNRZNoqi7qTVYmyCh8Szj23qYxwz3kII3fh7GNgYyFsqlVapFFKuDWZ1vFE26Iosd9xrAJ4u53A3PQo5lRMo8o7_GWer-vc_9cAXu4o6w654280Wx7IcVmRr0Q5e9E2OQ5pjHuvFHEAjzqe2PUSoSafoagVQDLglh0BQXYPW9xq6aG7UZcha1MAr3Z8dcXHvfEM90-CfDrz1yf_09tTuMXJVODTKJ_BaPO1tc9RntroF_2S-gXpBhpq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PleThora%3A+Pleural+effusion+and+thoracic+cavity+segmentations+in+diseased+lungs+for+benchmarking+chest+CT+processing+pipelines&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Kiser%2C+Kendall+J.&rft.au=Ahmed%2C+Sara&rft.au=Stieb%2C+Sonja&rft.au=Mohamed%2C+Abdallah+S.+R.&rft.date=2020-11-01&rft.issn=0094-2405&rft.eissn=2473-4209&rft.volume=47&rft.issue=11&rft.spage=5941&rft.epage=5952&rft_id=info:doi/10.1002%2Fmp.14424&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mp_14424
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon