CANDYBOTS: A New Generation of 3D‐Printed Sugar‐Based Transient Small‐Scale Robots
Sugars are ubiquitous in food, and are among the main sources of energy for almost all forms of life. Sugars can also form structural building blocks such as cellulose in plants. Because of their inherent degradability and biocompatibility characteristics, sugars are compelling materials for transie...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 32; no. 52; pp. e2005652 - n/a |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.12.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0935-9648 1521-4095 1521-4095 |
DOI | 10.1002/adma.202005652 |
Cover
Abstract | Sugars are ubiquitous in food, and are among the main sources of energy for almost all forms of life. Sugars can also form structural building blocks such as cellulose in plants. Because of their inherent degradability and biocompatibility characteristics, sugars are compelling materials for transient devices. Here, an additive manufacturing approach for the production of magnetic sugar‐based composites is introduced. First, it is shown that sugar‐based 3D architectures can be 3D printed by selective laser sintering. This method enables not only the caramelization chemistry but also the mechanical properties of the sugar architectures to be adjusted by varying the laser energy. It is also demonstrated that mixtures of sugar and magnetic particles can be processed as 3D composites. As a proof of concept, a sugar‐based millimeter‐scale helical swimmer, which is capable of corkscrew motion in a solution with a viscosity comparable to those of biological fluids, is fabricated. The millirobot quickly dissolves in water, while being manipulated through magnetic fields. The present fabrication method can pave the way to a new generation of transient sugar‐based small‐scale robots for minimally invasive procedures. Due to their rapid dissolution, sugars can be used as an intermediate step for transporting swarms of particles to specific target locations.
Sugars are among the main sources of energy and structural building blocks for almost all forms of life. Because of their degradability and biocompatibility, sugars are compelling materials in transient devices and robotics. An additive manufacturing approach for the production of 3D sugar‐based composites is introduced, which can pave the way for a new generation of transient small‐scale devices. |
---|---|
AbstractList | Sugars are ubiquitous in food, and are among the main sources of energy for almost all forms of life. Sugars can also form structural building blocks such as cellulose in plants. Because of their inherent degradability and biocompatibility characteristics, sugars are compelling materials for transient devices. Here, an additive manufacturing approach for the production of magnetic sugar-based composites is introduced. First, it is shown that sugar-based 3D architectures can be 3D printed by selective laser sintering. This method enables not only the caramelization chemistry but also the mechanical properties of the sugar architectures to be adjusted by varying the laser energy. It is also demonstrated that mixtures of sugar and magnetic particles can be processed as 3D composites. As a proof of concept, a sugar-based millimeter-scale helical swimmer, which is capable of corkscrew motion in a solution with a viscosity comparable to those of biological fluids, is fabricated. The millirobot quickly dissolves in water, while being manipulated through magnetic fields. The present fabrication method can pave the way to a new generation of transient sugar-based small-scale robots for minimally invasive procedures. Due to their rapid dissolution, sugars can be used as an intermediate step for transporting swarms of particles to specific target locations.Sugars are ubiquitous in food, and are among the main sources of energy for almost all forms of life. Sugars can also form structural building blocks such as cellulose in plants. Because of their inherent degradability and biocompatibility characteristics, sugars are compelling materials for transient devices. Here, an additive manufacturing approach for the production of magnetic sugar-based composites is introduced. First, it is shown that sugar-based 3D architectures can be 3D printed by selective laser sintering. This method enables not only the caramelization chemistry but also the mechanical properties of the sugar architectures to be adjusted by varying the laser energy. It is also demonstrated that mixtures of sugar and magnetic particles can be processed as 3D composites. As a proof of concept, a sugar-based millimeter-scale helical swimmer, which is capable of corkscrew motion in a solution with a viscosity comparable to those of biological fluids, is fabricated. The millirobot quickly dissolves in water, while being manipulated through magnetic fields. The present fabrication method can pave the way to a new generation of transient sugar-based small-scale robots for minimally invasive procedures. Due to their rapid dissolution, sugars can be used as an intermediate step for transporting swarms of particles to specific target locations. Sugars are ubiquitous in food, and are among the main sources of energy for almost all forms of life. Sugars can also form structural building blocks such as cellulose in plants. Because of their inherent degradability and biocompatibility characteristics, sugars are compelling materials for transient devices. Here, an additive manufacturing approach for the production of magnetic sugar‐based composites is introduced. First, it is shown that sugar‐based 3D architectures can be 3D printed by selective laser sintering. This method enables not only the caramelization chemistry but also the mechanical properties of the sugar architectures to be adjusted by varying the laser energy. It is also demonstrated that mixtures of sugar and magnetic particles can be processed as 3D composites. As a proof of concept, a sugar‐based millimeter‐scale helical swimmer, which is capable of corkscrew motion in a solution with a viscosity comparable to those of biological fluids, is fabricated. The millirobot quickly dissolves in water, while being manipulated through magnetic fields. The present fabrication method can pave the way to a new generation of transient sugar‐based small‐scale robots for minimally invasive procedures. Due to their rapid dissolution, sugars can be used as an intermediate step for transporting swarms of particles to specific target locations. Sugars are ubiquitous in food, and are among the main sources of energy for almost all forms of life. Sugars can also form structural building blocks such as cellulose in plants. Because of their inherent degradability and biocompatibility characteristics, sugars are compelling materials for transient devices. Here, an additive manufacturing approach for the production of magnetic sugar‐based composites is introduced. First, it is shown that sugar‐based 3D architectures can be 3D printed by selective laser sintering. This method enables not only the caramelization chemistry but also the mechanical properties of the sugar architectures to be adjusted by varying the laser energy. It is also demonstrated that mixtures of sugar and magnetic particles can be processed as 3D composites. As a proof of concept, a sugar‐based millimeter‐scale helical swimmer, which is capable of corkscrew motion in a solution with a viscosity comparable to those of biological fluids, is fabricated. The millirobot quickly dissolves in water, while being manipulated through magnetic fields. The present fabrication method can pave the way to a new generation of transient sugar‐based small‐scale robots for minimally invasive procedures. Due to their rapid dissolution, sugars can be used as an intermediate step for transporting swarms of particles to specific target locations. Sugars are among the main sources of energy and structural building blocks for almost all forms of life. Because of their degradability and biocompatibility, sugars are compelling materials in transient devices and robotics. An additive manufacturing approach for the production of 3D sugar‐based composites is introduced, which can pave the way for a new generation of transient small‐scale devices. |
Author | Chen, Xiang‐Zhong Gervasoni, Simone Franco, Carlos Terzopoulou, Anastasia Siringil, Erdem C. Nelson, Bradley J. Veciana, Andrea de Marco, Carmela Puigmartí‐Luis, Josep Burri, Jan T. Pané, Salvador Pedrini, Norman |
Author_xml | – sequence: 1 givenname: Simone surname: Gervasoni fullname: Gervasoni, Simone organization: ETH Zurich – sequence: 2 givenname: Anastasia surname: Terzopoulou fullname: Terzopoulou, Anastasia organization: ETH Zurich – sequence: 3 givenname: Carlos surname: Franco fullname: Franco, Carlos organization: ETH Zurich – sequence: 4 givenname: Andrea surname: Veciana fullname: Veciana, Andrea organization: ETH Zurich – sequence: 5 givenname: Norman surname: Pedrini fullname: Pedrini, Norman organization: ETH Zurich – sequence: 6 givenname: Jan T. surname: Burri fullname: Burri, Jan T. organization: ETH Zurich – sequence: 7 givenname: Carmela surname: de Marco fullname: de Marco, Carmela organization: ETH Zurich – sequence: 8 givenname: Erdem C. surname: Siringil fullname: Siringil, Erdem C. organization: ETH Zurich – sequence: 9 givenname: Xiang‐Zhong orcidid: 0000-0002-2294-7487 surname: Chen fullname: Chen, Xiang‐Zhong email: chenxian@ethz.ch organization: ETH Zurich – sequence: 10 givenname: Bradley J. surname: Nelson fullname: Nelson, Bradley J. organization: ETH Zurich – sequence: 11 givenname: Josep surname: Puigmartí‐Luis fullname: Puigmartí‐Luis, Josep email: josep.puigmarti@ub.edu organization: Catalan Institution for Research and Advanced Studies – sequence: 12 givenname: Salvador surname: Pané fullname: Pané, Salvador email: vidalp@ethz.ch organization: ETH Zurich |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33191553$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAURi3Uik4LW5YoEhs2mV7_JmaXztBSqbSIGSRYWXcSB6VK7GInqrrjEfqMPAku0xapEmJlXeucq6vv2yc7zjtLyCsKcwrADrEZcM6AAUgl2TMyo5LRXICWO2QGmstcK1Hukf0YLwFAK1DPyR7nVFMp-Yx8XVTny29HF-vVu6zKzu11dmKdDTh23mW-zfjy18_bT6Fzo22y1fQdQ5qPMKZpHdDFzroxWw3Y9-l_VWNvs89-48f4guy22Ef78v49IF-O368XH_Kzi5PTRXWW16JQLLcbbBGwkFCoUsu62PBSYGsb2-hGtKi1kIVWJVOUC1Q1SMootdDIutW6UfyAvN3uvQr-x2TjaIYu1rbv0Vk_RcOESkFxwWRC3zxBL_0UXLouUQWHxOkyUa_vqWkz2MZchW7AcGMeMkuA2AJ18DEG25q6G_8ENgbsekPB3FVj7qoxj9Ukbf5Ee9j8T0Fvheuutzf_oU21_Fj9dX8DrRKgTg |
CitedBy_id | crossref_primary_10_1002_mba2_46 crossref_primary_10_1016_j_jfoodeng_2021_110887 crossref_primary_10_1007_s43154_021_00066_1 crossref_primary_10_1002_adma_202409403 crossref_primary_10_1002_advs_202202278 crossref_primary_10_1002_adma_202408374 crossref_primary_10_1002_adhm_202302395 crossref_primary_10_1002_admt_202200222 crossref_primary_10_1007_s12274_023_6184_y crossref_primary_10_1038_s41467_022_33409_3 crossref_primary_10_1021_acsnano_2c11733 crossref_primary_10_1038_s41467_021_27730_6 crossref_primary_10_1039_D2TB02743G crossref_primary_10_1002_adfm_202210345 crossref_primary_10_1021_acs_iecr_2c02299 crossref_primary_10_1088_2399_7532_ac4836 crossref_primary_10_1002_idm2_12027 crossref_primary_10_1021_acs_chemmater_2c01960 crossref_primary_10_1109_LRA_2022_3201696 crossref_primary_10_1109_TRO_2024_3463482 crossref_primary_10_1109_LRA_2021_3059621 crossref_primary_10_1038_s41598_024_84976_y crossref_primary_10_1016_j_jconrel_2024_08_040 crossref_primary_10_1021_acsami_1c04559 crossref_primary_10_1126_sciadv_abh0273 crossref_primary_10_3390_mi15050664 crossref_primary_10_3390_sym14050910 crossref_primary_10_1016_j_matt_2021_10_010 crossref_primary_10_1038_s41598_022_07938_2 crossref_primary_10_3390_mi13030416 |
Cites_doi | 10.1002/adfm.201903872 10.1021/jf204807z 10.1039/c3cc44998j 10.1002/smll.202002111 10.1002/anie.201703276 10.1002/jbm.b.33906 10.1002/jbm.b.33618 10.1016/j.jconrel.2015.09.053 10.1590/S0100-46702006000300002 10.1038/nmat3357 10.1021/nn507097k 10.1039/C7NR05775J 10.1002/adhm.201400256 10.1002/1520-6017(200010)89:10<1305::AID-JPS8>3.0.CO;2-Q 10.1016/j.carres.2004.06.022 10.1016/j.carres.2012.07.009 10.1021/jf104852u 10.1039/b505958e 10.1002/smll.200400159 10.1146/annurev-bioeng-010510-103409 10.1002/adma.201304098 10.1002/bit.25555 10.1016/j.matdes.2008.08.036 10.1002/adfm.201707228 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH 2020 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH – notice: 2020 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202005652 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 33191553 10_1002_adma_202005652 ADMA202005652 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: ERC‐2017‐CoG HINBOTS funderid: 771565 – fundername: ERC Advanced Grant SOMBOT funderid: 743217 – fundername: European Research Council funderid: ERC‐2015‐STG No. 677020 – fundername: ERC-2017-CoG HINBOTS grantid: 771565 – fundername: ERC Advanced Grant SOMBOT grantid: 743217 – fundername: European Research Council grantid: ERC-2015-STG No. 677020 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4762-ebafa0a75076895c7b384afeded9d4fa9945796826134a6c051211e0d5cf99d63 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Thu Jul 10 23:57:59 EDT 2025 Sun Jul 13 04:46:08 EDT 2025 Wed Feb 19 02:28:54 EST 2025 Tue Jul 01 02:32:55 EDT 2025 Thu Apr 24 22:59:49 EDT 2025 Wed Jan 22 16:59:00 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 52 |
Keywords | magnetic manipulation small-scale robotics 3D printing magnetic materials |
Language | English |
License | 2020 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4762-ebafa0a75076895c7b384afeded9d4fa9945796826134a6c051211e0d5cf99d63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2294-7487 |
OpenAccessLink | http://hdl.handle.net/20.500.11850/453839 |
PMID | 33191553 |
PQID | 2473010098 |
PQPubID | 2045203 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2461003425 proquest_journals_2473010098 pubmed_primary_33191553 crossref_citationtrail_10_1002_adma_202005652 crossref_primary_10_1002_adma_202005652 wiley_primary_10_1002_adma_202005652_ADMA202005652 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-01 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 12 2012; 60 2012; 361 2018; 28 2006; 31 2015; 4 2013; 49 2018; 106 2000; 89 2020; 16 2014; 26 2011; 59 2015; 9 2012; 11 2009; 30 2015; 112 2017; 56 2019; 29 2015; 219 2005; 1 2014 2005; 15 2004; 339 2018; 10 2017; 105 1989 e_1_2_5_27_1 e_1_2_5_25_1 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_21_1 e_1_2_5_22_1 Li J. (e_1_2_5_17_1) 2014 e_1_2_5_20_1 e_1_2_5_15_1 e_1_2_5_14_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_18_1 Tomasik P. (e_1_2_5_26_1) 1989 |
References_xml | – start-page: 203 year: 1989 end-page: 278 – volume: 15 start-page: 3913 year: 2005 publication-title: J. Mater. Chem. – volume: 89 start-page: 1305 year: 2000 publication-title: J. Pharm. Sci. – volume: 361 start-page: 212 year: 2012 publication-title: Carbohydr. Res. – volume: 30 start-page: 2099 year: 2009 publication-title: Mater. Des. – volume: 339 start-page: 2267 year: 2004 publication-title: Carbohydr. Res. – volume: 9 start-page: 117 year: 2015 publication-title: ACS Nano – volume: 60 start-page: 3266 year: 2012 publication-title: J. Agric. Food Chem. – volume: 31 start-page: 15 year: 2006 publication-title: Eclética Quím. – volume: 56 start-page: 7620 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 11 start-page: 768 year: 2012 publication-title: Nat. Mater. – volume: 10 start-page: 1322 year: 2018 publication-title: Nanoscale – volume: 26 start-page: 952 year: 2014 publication-title: Adv. Mater. – volume: 105 start-page: 836 year: 2017 publication-title: J. Biomed. Mater. Res., Part B – volume: 4 start-page: 209 year: 2015 publication-title: Adv. Healthcare Mater. – volume: 219 start-page: 355 year: 2015 publication-title: J. Controlled Release – year: 2014 – volume: 12 start-page: 55 year: 2010 publication-title: Annu. Rev. Biomed. Eng. – volume: 49 start-page: 9125 year: 2013 publication-title: Chem. Commun. – volume: 16 year: 2020 publication-title: Small – volume: 112 start-page: 1623 year: 2015 publication-title: Biotechnol. Bioeng. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 59 start-page: 3306 year: 2011 publication-title: J. Agric. Food Chem. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 1 start-page: 730 year: 2005 publication-title: Small – volume: 106 start-page: 997 year: 2018 publication-title: J. Biomed. Mater. Res., Part B – ident: e_1_2_5_7_1 doi: 10.1002/adfm.201903872 – ident: e_1_2_5_27_1 doi: 10.1021/jf204807z – ident: e_1_2_5_5_1 doi: 10.1039/c3cc44998j – ident: e_1_2_5_8_1 doi: 10.1002/smll.202002111 – ident: e_1_2_5_13_1 doi: 10.1002/anie.201703276 – ident: e_1_2_5_4_1 doi: 10.1002/jbm.b.33906 – ident: e_1_2_5_3_1 doi: 10.1002/jbm.b.33618 – ident: e_1_2_5_14_1 doi: 10.1016/j.jconrel.2015.09.053 – ident: e_1_2_5_23_1 doi: 10.1590/S0100-46702006000300002 – ident: e_1_2_5_22_1 – ident: e_1_2_5_16_1 doi: 10.1038/nmat3357 – ident: e_1_2_5_12_1 doi: 10.1021/nn507097k – ident: e_1_2_5_6_1 doi: 10.1039/C7NR05775J – ident: e_1_2_5_2_1 doi: 10.1002/adhm.201400256 – ident: e_1_2_5_21_1 doi: 10.1002/1520-6017(200010)89:10<1305::AID-JPS8>3.0.CO;2-Q – ident: e_1_2_5_25_1 doi: 10.1016/j.carres.2004.06.022 – ident: e_1_2_5_20_1 doi: 10.1016/j.carres.2012.07.009 – ident: e_1_2_5_24_1 doi: 10.1021/jf104852u – ident: e_1_2_5_19_1 doi: 10.1039/b505958e – volume-title: Mesoscale Modeling in Chemical Engineering Part I year: 2014 ident: e_1_2_5_17_1 – start-page: 203 volume-title: Advances in Carbohydrate Chemistry and Biochemistry year: 1989 ident: e_1_2_5_26_1 – ident: e_1_2_5_15_1 doi: 10.1002/smll.200400159 – ident: e_1_2_5_1_1 doi: 10.1146/annurev-bioeng-010510-103409 – ident: e_1_2_5_9_1 doi: 10.1002/adma.201304098 – ident: e_1_2_5_10_1 doi: 10.1002/bit.25555 – ident: e_1_2_5_18_1 doi: 10.1016/j.matdes.2008.08.036 – ident: e_1_2_5_11_1 doi: 10.1002/adfm.201707228 |
SSID | ssj0009606 |
Score | 2.5055332 |
Snippet | Sugars are ubiquitous in food, and are among the main sources of energy for almost all forms of life. Sugars can also form structural building blocks such as... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2005652 |
SubjectTerms | 3D printing Biocompatibility Laser sintering magnetic manipulation magnetic materials Materials science Mechanical properties Particulate composites Rapid prototyping Robots small‐scale robotics Sugar Three dimensional composites Three dimensional printing |
Title | CANDYBOTS: A New Generation of 3D‐Printed Sugar‐Based Transient Small‐Scale Robots |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202005652 https://www.ncbi.nlm.nih.gov/pubmed/33191553 https://www.proquest.com/docview/2473010098 https://www.proquest.com/docview/2461003425 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1521-4095 dateEnd: 20241001 omitProxy: false ssIdentifier: ssj0009606 issn: 0935-9648 databaseCode: ADMLS dateStart: 20120605 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0935-9648 databaseCode: DR2 dateStart: 19980101 customDbUrl: isFulltext: true eissn: 1521-4095 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009606 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB1VnNoD0BZogFauVImTYXdjZ5PeAluEKhUQC9Jyisax3UO3m2o_Lpz4CfzG_pLOOLuBLaqQyi1OHMXxeN48fz0DfLKm5ZWxifTdbiwVUVaZ-jZKnSKiS7Gd2LBA9jQ5uVJfB3rwYBd_rQ_RDLixZwS8ZgdHMzm4Fw1FG3SDeFQk0QzC7ViHedqLe_0opudBbC_WMktUulBtbHUOll9fjkqPqOYycw2h53gNcFHoesXJj_3Z1OyXN3_pOT7nr9Zhdc5LRV43pNfwwo3ewKsHaoVvYXCUn_auD88u-59FLggdRa1ZzaYVlRdx7_ft3fmYBSis6M--45jShxQlrQgRkXdeiv5PHA7pfp_ahhMXlammkw24Ov5yeXQi5wczyFIReEpn0GMLiWxQZyXTZdfEqULvrLOZVR6zTPEWV-q5tGOFSUmOT_1M17K69Flmk3gTVkbVyL0DodBljliPJ8RWyiqjtfYpkWhN3Mg6F4FcGKYo56rlfHjGsKj1ljsF11jR1FgEe03-X7Vexz9z7i7sXMz9dlJ0FCMei6xG8LF5TB7H0yg4ctWM8xDlZOVEHcFW3T6aT8WEaHwSUwSdYOUnylDkvW95k9r-n5d24CVf1ytsdmFlOp6598STpuZD8IU_sKcIzA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NThsxEB4hONAeyk9bWP7qSpU4GZKsvdnlthBQoBAQCRI9rey1zaFptgrJhROPwDPyJMzsZpcGVFUqR3ttre3xzHy2x58Bvhldc0KbgLtm0-cCISsPXV1xGSqlbKjqgckDZDtB-0qcXMsympDuwhT8ENWGG2lGbq9JwWlDeveZNVSZnDiItkUCiVZ4jg7pSDdbl88MUgTQc7o9X_IoEGHJ21hr7E7Xn_ZLr8DmNHbNnc_RAuiy2UXMyc-d8UjvpHcvGB3f1K9F-DCBpiwu5tISzNjBMrz_g7DwI1wfxJ3Wj_3zXnePxQwNJCtoq0m6LHPMbz3eP1wMiYPCsO74Rg0xvY-O0rDcKdLlS9b9pfp9zO_i9LDsMtPZ6PYTXB0d9g7afPI2A08F2k9utXKqphBv4HolkmlT-6FQzhprIiOciiJBt1xx8VL3hQpS1H1catqakamLIhP4n2F2kA3sKjChbGQR-Dg02kIYoaWULkQcLREeGWs94KVkknRCXE7vZ_STgnK5kdCIJdWIebBdlf9dUHb8teRGKehkorq3SUOQ0SOeVQ--Vp9R6egkRQ1sNqYyiDqJPFF6sFJMkOpXPho1eozJg0Yu5n-0IYlbZ3GVWvufSl9gvt07O01Ojzvf1-Ed5RcBNxswOxqO7SbCppHeyhXjCUO_DOg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9swED8hJk3wMDb-bGFs8yQkngxtY6fJ3gJdBWwriIJUnqJLbO-B0lSlfdnTPsI-4z7J7pI2UNCEBI92bMXx-e5-55x_Btg2ac2p1ATSNZu-VARZZejqKHWIiDbEemCKBNlOcHihjnu6d-cUf8kPUW24sWYU9poVfGjc3i1pKJqCN4h3RQJNRviFCijEYlh0dksgxfi8YNvztYwCFc5oG2uNvfn-827pAdach66F72mvAM5GXaacXO1Oxulu9useoeNzPus1vJoCUxGXK-kNLNjBKizfoStcg95B3Gld7p-cd7-IWJB5FCVpNctW5E74rb-__5yOmIHCiO7kJ46ovE9u0ojCJfLRS9G9xn6f6ru0OKw4y9N8fLMOF-2v5weHcnozg8wUWU9pU3RYQ0IbFK1EOmumfqjQWWNNZJTDKFJ8xpVCl7qvMMhI8ynQtDWjMxdFJvA3YHGQD-w7EAptZAn2ODLZShmVaq1dSChaEzgy1nogZ4JJsiltOd-e0U9KwuVGwjOWVDPmwU7VflgSdvy35dZMzslUcW-ShmKTxyyrHnyuHpPK8X8UHNh8wm0IczJ1ovbgbbk-qlf5ZNL4KiYPGoWUHxlDErd-xFVp8ymdPsHL01Y7-X7U-fYelri6zLbZgsXxaGI_EGYapx8LtfgHCcILlw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CANDYBOTS%3A+A+New+Generation+of+3D-Printed+Sugar-Based+Transient+Small-Scale+Robots&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Gervasoni%2C+Simone&rft.au=Terzopoulou%2C+Anastasia&rft.au=Franco%2C+Carlos&rft.au=Veciana%2C+Andrea&rft.date=2020-12-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=32&rft.issue=52&rft.spage=e2005652&rft_id=info:doi/10.1002%2Fadma.202005652&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |