CANDYBOTS: A New Generation of 3D‐Printed Sugar‐Based Transient Small‐Scale Robots

Sugars are ubiquitous in food, and are among the main sources of energy for almost all forms of life. Sugars can also form structural building blocks such as cellulose in plants. Because of their inherent degradability and biocompatibility characteristics, sugars are compelling materials for transie...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 32; no. 52; pp. e2005652 - n/a
Main Authors Gervasoni, Simone, Terzopoulou, Anastasia, Franco, Carlos, Veciana, Andrea, Pedrini, Norman, Burri, Jan T., de Marco, Carmela, Siringil, Erdem C., Chen, Xiang‐Zhong, Nelson, Bradley J., Puigmartí‐Luis, Josep, Pané, Salvador
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.12.2020
Subjects
Online AccessGet full text
ISSN0935-9648
1521-4095
1521-4095
DOI10.1002/adma.202005652

Cover

Abstract Sugars are ubiquitous in food, and are among the main sources of energy for almost all forms of life. Sugars can also form structural building blocks such as cellulose in plants. Because of their inherent degradability and biocompatibility characteristics, sugars are compelling materials for transient devices. Here, an additive manufacturing approach for the production of magnetic sugar‐based composites is introduced. First, it is shown that sugar‐based 3D architectures can be 3D printed by selective laser sintering. This method enables not only the caramelization chemistry but also the mechanical properties of the sugar architectures to be adjusted by varying the laser energy. It is also demonstrated that mixtures of sugar and magnetic particles can be processed as 3D composites. As a proof of concept, a sugar‐based millimeter‐scale helical swimmer, which is capable of corkscrew motion in a solution with a viscosity comparable to those of biological fluids, is fabricated. The millirobot quickly dissolves in water, while being manipulated through magnetic fields. The present fabrication method can pave the way to a new generation of transient sugar‐based small‐scale robots for minimally invasive procedures. Due to their rapid dissolution, sugars can be used as an intermediate step for transporting swarms of particles to specific target locations. Sugars are among the main sources of energy and structural building blocks for almost all forms of life. Because of their degradability and biocompatibility, sugars are compelling materials in transient devices and robotics. An additive manufacturing approach for the production of 3D sugar‐based composites is introduced, which can pave the way for a new generation of transient small‐scale devices.
AbstractList Sugars are ubiquitous in food, and are among the main sources of energy for almost all forms of life. Sugars can also form structural building blocks such as cellulose in plants. Because of their inherent degradability and biocompatibility characteristics, sugars are compelling materials for transient devices. Here, an additive manufacturing approach for the production of magnetic sugar-based composites is introduced. First, it is shown that sugar-based 3D architectures can be 3D printed by selective laser sintering. This method enables not only the caramelization chemistry but also the mechanical properties of the sugar architectures to be adjusted by varying the laser energy. It is also demonstrated that mixtures of sugar and magnetic particles can be processed as 3D composites. As a proof of concept, a sugar-based millimeter-scale helical swimmer, which is capable of corkscrew motion in a solution with a viscosity comparable to those of biological fluids, is fabricated. The millirobot quickly dissolves in water, while being manipulated through magnetic fields. The present fabrication method can pave the way to a new generation of transient sugar-based small-scale robots for minimally invasive procedures. Due to their rapid dissolution, sugars can be used as an intermediate step for transporting swarms of particles to specific target locations.Sugars are ubiquitous in food, and are among the main sources of energy for almost all forms of life. Sugars can also form structural building blocks such as cellulose in plants. Because of their inherent degradability and biocompatibility characteristics, sugars are compelling materials for transient devices. Here, an additive manufacturing approach for the production of magnetic sugar-based composites is introduced. First, it is shown that sugar-based 3D architectures can be 3D printed by selective laser sintering. This method enables not only the caramelization chemistry but also the mechanical properties of the sugar architectures to be adjusted by varying the laser energy. It is also demonstrated that mixtures of sugar and magnetic particles can be processed as 3D composites. As a proof of concept, a sugar-based millimeter-scale helical swimmer, which is capable of corkscrew motion in a solution with a viscosity comparable to those of biological fluids, is fabricated. The millirobot quickly dissolves in water, while being manipulated through magnetic fields. The present fabrication method can pave the way to a new generation of transient sugar-based small-scale robots for minimally invasive procedures. Due to their rapid dissolution, sugars can be used as an intermediate step for transporting swarms of particles to specific target locations.
Sugars are ubiquitous in food, and are among the main sources of energy for almost all forms of life. Sugars can also form structural building blocks such as cellulose in plants. Because of their inherent degradability and biocompatibility characteristics, sugars are compelling materials for transient devices. Here, an additive manufacturing approach for the production of magnetic sugar‐based composites is introduced. First, it is shown that sugar‐based 3D architectures can be 3D printed by selective laser sintering. This method enables not only the caramelization chemistry but also the mechanical properties of the sugar architectures to be adjusted by varying the laser energy. It is also demonstrated that mixtures of sugar and magnetic particles can be processed as 3D composites. As a proof of concept, a sugar‐based millimeter‐scale helical swimmer, which is capable of corkscrew motion in a solution with a viscosity comparable to those of biological fluids, is fabricated. The millirobot quickly dissolves in water, while being manipulated through magnetic fields. The present fabrication method can pave the way to a new generation of transient sugar‐based small‐scale robots for minimally invasive procedures. Due to their rapid dissolution, sugars can be used as an intermediate step for transporting swarms of particles to specific target locations.
Sugars are ubiquitous in food, and are among the main sources of energy for almost all forms of life. Sugars can also form structural building blocks such as cellulose in plants. Because of their inherent degradability and biocompatibility characteristics, sugars are compelling materials for transient devices. Here, an additive manufacturing approach for the production of magnetic sugar‐based composites is introduced. First, it is shown that sugar‐based 3D architectures can be 3D printed by selective laser sintering. This method enables not only the caramelization chemistry but also the mechanical properties of the sugar architectures to be adjusted by varying the laser energy. It is also demonstrated that mixtures of sugar and magnetic particles can be processed as 3D composites. As a proof of concept, a sugar‐based millimeter‐scale helical swimmer, which is capable of corkscrew motion in a solution with a viscosity comparable to those of biological fluids, is fabricated. The millirobot quickly dissolves in water, while being manipulated through magnetic fields. The present fabrication method can pave the way to a new generation of transient sugar‐based small‐scale robots for minimally invasive procedures. Due to their rapid dissolution, sugars can be used as an intermediate step for transporting swarms of particles to specific target locations. Sugars are among the main sources of energy and structural building blocks for almost all forms of life. Because of their degradability and biocompatibility, sugars are compelling materials in transient devices and robotics. An additive manufacturing approach for the production of 3D sugar‐based composites is introduced, which can pave the way for a new generation of transient small‐scale devices.
Author Chen, Xiang‐Zhong
Gervasoni, Simone
Franco, Carlos
Terzopoulou, Anastasia
Siringil, Erdem C.
Nelson, Bradley J.
Veciana, Andrea
de Marco, Carmela
Puigmartí‐Luis, Josep
Burri, Jan T.
Pané, Salvador
Pedrini, Norman
Author_xml – sequence: 1
  givenname: Simone
  surname: Gervasoni
  fullname: Gervasoni, Simone
  organization: ETH Zurich
– sequence: 2
  givenname: Anastasia
  surname: Terzopoulou
  fullname: Terzopoulou, Anastasia
  organization: ETH Zurich
– sequence: 3
  givenname: Carlos
  surname: Franco
  fullname: Franco, Carlos
  organization: ETH Zurich
– sequence: 4
  givenname: Andrea
  surname: Veciana
  fullname: Veciana, Andrea
  organization: ETH Zurich
– sequence: 5
  givenname: Norman
  surname: Pedrini
  fullname: Pedrini, Norman
  organization: ETH Zurich
– sequence: 6
  givenname: Jan T.
  surname: Burri
  fullname: Burri, Jan T.
  organization: ETH Zurich
– sequence: 7
  givenname: Carmela
  surname: de Marco
  fullname: de Marco, Carmela
  organization: ETH Zurich
– sequence: 8
  givenname: Erdem C.
  surname: Siringil
  fullname: Siringil, Erdem C.
  organization: ETH Zurich
– sequence: 9
  givenname: Xiang‐Zhong
  orcidid: 0000-0002-2294-7487
  surname: Chen
  fullname: Chen, Xiang‐Zhong
  email: chenxian@ethz.ch
  organization: ETH Zurich
– sequence: 10
  givenname: Bradley J.
  surname: Nelson
  fullname: Nelson, Bradley J.
  organization: ETH Zurich
– sequence: 11
  givenname: Josep
  surname: Puigmartí‐Luis
  fullname: Puigmartí‐Luis, Josep
  email: josep.puigmarti@ub.edu
  organization: Catalan Institution for Research and Advanced Studies
– sequence: 12
  givenname: Salvador
  surname: Pané
  fullname: Pané, Salvador
  email: vidalp@ethz.ch
  organization: ETH Zurich
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33191553$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAURi3Uik4LW5YoEhs2mV7_JmaXztBSqbSIGSRYWXcSB6VK7GInqrrjEfqMPAku0xapEmJlXeucq6vv2yc7zjtLyCsKcwrADrEZcM6AAUgl2TMyo5LRXICWO2QGmstcK1Hukf0YLwFAK1DPyR7nVFMp-Yx8XVTny29HF-vVu6zKzu11dmKdDTh23mW-zfjy18_bT6Fzo22y1fQdQ5qPMKZpHdDFzroxWw3Y9-l_VWNvs89-48f4guy22Ef78v49IF-O368XH_Kzi5PTRXWW16JQLLcbbBGwkFCoUsu62PBSYGsb2-hGtKi1kIVWJVOUC1Q1SMootdDIutW6UfyAvN3uvQr-x2TjaIYu1rbv0Vk_RcOESkFxwWRC3zxBL_0UXLouUQWHxOkyUa_vqWkz2MZchW7AcGMeMkuA2AJ18DEG25q6G_8ENgbsekPB3FVj7qoxj9Ukbf5Ee9j8T0Fvheuutzf_oU21_Fj9dX8DrRKgTg
CitedBy_id crossref_primary_10_1002_mba2_46
crossref_primary_10_1016_j_jfoodeng_2021_110887
crossref_primary_10_1007_s43154_021_00066_1
crossref_primary_10_1002_adma_202409403
crossref_primary_10_1002_advs_202202278
crossref_primary_10_1002_adma_202408374
crossref_primary_10_1002_adhm_202302395
crossref_primary_10_1002_admt_202200222
crossref_primary_10_1007_s12274_023_6184_y
crossref_primary_10_1038_s41467_022_33409_3
crossref_primary_10_1021_acsnano_2c11733
crossref_primary_10_1038_s41467_021_27730_6
crossref_primary_10_1039_D2TB02743G
crossref_primary_10_1002_adfm_202210345
crossref_primary_10_1021_acs_iecr_2c02299
crossref_primary_10_1088_2399_7532_ac4836
crossref_primary_10_1002_idm2_12027
crossref_primary_10_1021_acs_chemmater_2c01960
crossref_primary_10_1109_LRA_2022_3201696
crossref_primary_10_1109_TRO_2024_3463482
crossref_primary_10_1109_LRA_2021_3059621
crossref_primary_10_1038_s41598_024_84976_y
crossref_primary_10_1016_j_jconrel_2024_08_040
crossref_primary_10_1021_acsami_1c04559
crossref_primary_10_1126_sciadv_abh0273
crossref_primary_10_3390_mi15050664
crossref_primary_10_3390_sym14050910
crossref_primary_10_1016_j_matt_2021_10_010
crossref_primary_10_1038_s41598_022_07938_2
crossref_primary_10_3390_mi13030416
Cites_doi 10.1002/adfm.201903872
10.1021/jf204807z
10.1039/c3cc44998j
10.1002/smll.202002111
10.1002/anie.201703276
10.1002/jbm.b.33906
10.1002/jbm.b.33618
10.1016/j.jconrel.2015.09.053
10.1590/S0100-46702006000300002
10.1038/nmat3357
10.1021/nn507097k
10.1039/C7NR05775J
10.1002/adhm.201400256
10.1002/1520-6017(200010)89:10<1305::AID-JPS8>3.0.CO;2-Q
10.1016/j.carres.2004.06.022
10.1016/j.carres.2012.07.009
10.1021/jf104852u
10.1039/b505958e
10.1002/smll.200400159
10.1146/annurev-bioeng-010510-103409
10.1002/adma.201304098
10.1002/bit.25555
10.1016/j.matdes.2008.08.036
10.1002/adfm.201707228
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2020 Wiley-VCH GmbH.
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2020 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202005652
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
PubMed

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 33191553
10_1002_adma_202005652
ADMA202005652
Genre article
Journal Article
GrantInformation_xml – fundername: ERC‐2017‐CoG HINBOTS
  funderid: 771565
– fundername: ERC Advanced Grant SOMBOT
  funderid: 743217
– fundername: European Research Council
  funderid: ERC‐2015‐STG No. 677020
– fundername: ERC-2017-CoG HINBOTS
  grantid: 771565
– fundername: ERC Advanced Grant SOMBOT
  grantid: 743217
– fundername: European Research Council
  grantid: ERC-2015-STG No. 677020
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4762-ebafa0a75076895c7b384afeded9d4fa9945796826134a6c051211e0d5cf99d63
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Thu Jul 10 23:57:59 EDT 2025
Sun Jul 13 04:46:08 EDT 2025
Wed Feb 19 02:28:54 EST 2025
Tue Jul 01 02:32:55 EDT 2025
Thu Apr 24 22:59:49 EDT 2025
Wed Jan 22 16:59:00 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 52
Keywords magnetic manipulation
small-scale robotics
3D printing
magnetic materials
Language English
License 2020 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4762-ebafa0a75076895c7b384afeded9d4fa9945796826134a6c051211e0d5cf99d63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2294-7487
OpenAccessLink http://hdl.handle.net/20.500.11850/453839
PMID 33191553
PQID 2473010098
PQPubID 2045203
PageCount 10
ParticipantIDs proquest_miscellaneous_2461003425
proquest_journals_2473010098
pubmed_primary_33191553
crossref_citationtrail_10_1002_adma_202005652
crossref_primary_10_1002_adma_202005652
wiley_primary_10_1002_adma_202005652_ADMA202005652
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 12
2012; 60
2012; 361
2018; 28
2006; 31
2015; 4
2013; 49
2018; 106
2000; 89
2020; 16
2014; 26
2011; 59
2015; 9
2012; 11
2009; 30
2015; 112
2017; 56
2019; 29
2015; 219
2005; 1
2014
2005; 15
2004; 339
2018; 10
2017; 105
1989
e_1_2_5_27_1
e_1_2_5_25_1
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_21_1
e_1_2_5_22_1
Li J. (e_1_2_5_17_1) 2014
e_1_2_5_20_1
e_1_2_5_15_1
e_1_2_5_14_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_18_1
Tomasik P. (e_1_2_5_26_1) 1989
References_xml – start-page: 203
  year: 1989
  end-page: 278
– volume: 15
  start-page: 3913
  year: 2005
  publication-title: J. Mater. Chem.
– volume: 89
  start-page: 1305
  year: 2000
  publication-title: J. Pharm. Sci.
– volume: 361
  start-page: 212
  year: 2012
  publication-title: Carbohydr. Res.
– volume: 30
  start-page: 2099
  year: 2009
  publication-title: Mater. Des.
– volume: 339
  start-page: 2267
  year: 2004
  publication-title: Carbohydr. Res.
– volume: 9
  start-page: 117
  year: 2015
  publication-title: ACS Nano
– volume: 60
  start-page: 3266
  year: 2012
  publication-title: J. Agric. Food Chem.
– volume: 31
  start-page: 15
  year: 2006
  publication-title: Eclética Quím.
– volume: 56
  start-page: 7620
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 11
  start-page: 768
  year: 2012
  publication-title: Nat. Mater.
– volume: 10
  start-page: 1322
  year: 2018
  publication-title: Nanoscale
– volume: 26
  start-page: 952
  year: 2014
  publication-title: Adv. Mater.
– volume: 105
  start-page: 836
  year: 2017
  publication-title: J. Biomed. Mater. Res., Part B
– volume: 4
  start-page: 209
  year: 2015
  publication-title: Adv. Healthcare Mater.
– volume: 219
  start-page: 355
  year: 2015
  publication-title: J. Controlled Release
– year: 2014
– volume: 12
  start-page: 55
  year: 2010
  publication-title: Annu. Rev. Biomed. Eng.
– volume: 49
  start-page: 9125
  year: 2013
  publication-title: Chem. Commun.
– volume: 16
  year: 2020
  publication-title: Small
– volume: 112
  start-page: 1623
  year: 2015
  publication-title: Biotechnol. Bioeng.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 59
  start-page: 3306
  year: 2011
  publication-title: J. Agric. Food Chem.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 1
  start-page: 730
  year: 2005
  publication-title: Small
– volume: 106
  start-page: 997
  year: 2018
  publication-title: J. Biomed. Mater. Res., Part B
– ident: e_1_2_5_7_1
  doi: 10.1002/adfm.201903872
– ident: e_1_2_5_27_1
  doi: 10.1021/jf204807z
– ident: e_1_2_5_5_1
  doi: 10.1039/c3cc44998j
– ident: e_1_2_5_8_1
  doi: 10.1002/smll.202002111
– ident: e_1_2_5_13_1
  doi: 10.1002/anie.201703276
– ident: e_1_2_5_4_1
  doi: 10.1002/jbm.b.33906
– ident: e_1_2_5_3_1
  doi: 10.1002/jbm.b.33618
– ident: e_1_2_5_14_1
  doi: 10.1016/j.jconrel.2015.09.053
– ident: e_1_2_5_23_1
  doi: 10.1590/S0100-46702006000300002
– ident: e_1_2_5_22_1
– ident: e_1_2_5_16_1
  doi: 10.1038/nmat3357
– ident: e_1_2_5_12_1
  doi: 10.1021/nn507097k
– ident: e_1_2_5_6_1
  doi: 10.1039/C7NR05775J
– ident: e_1_2_5_2_1
  doi: 10.1002/adhm.201400256
– ident: e_1_2_5_21_1
  doi: 10.1002/1520-6017(200010)89:10<1305::AID-JPS8>3.0.CO;2-Q
– ident: e_1_2_5_25_1
  doi: 10.1016/j.carres.2004.06.022
– ident: e_1_2_5_20_1
  doi: 10.1016/j.carres.2012.07.009
– ident: e_1_2_5_24_1
  doi: 10.1021/jf104852u
– ident: e_1_2_5_19_1
  doi: 10.1039/b505958e
– volume-title: Mesoscale Modeling in Chemical Engineering Part I
  year: 2014
  ident: e_1_2_5_17_1
– start-page: 203
  volume-title: Advances in Carbohydrate Chemistry and Biochemistry
  year: 1989
  ident: e_1_2_5_26_1
– ident: e_1_2_5_15_1
  doi: 10.1002/smll.200400159
– ident: e_1_2_5_1_1
  doi: 10.1146/annurev-bioeng-010510-103409
– ident: e_1_2_5_9_1
  doi: 10.1002/adma.201304098
– ident: e_1_2_5_10_1
  doi: 10.1002/bit.25555
– ident: e_1_2_5_18_1
  doi: 10.1016/j.matdes.2008.08.036
– ident: e_1_2_5_11_1
  doi: 10.1002/adfm.201707228
SSID ssj0009606
Score 2.5055332
Snippet Sugars are ubiquitous in food, and are among the main sources of energy for almost all forms of life. Sugars can also form structural building blocks such as...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2005652
SubjectTerms 3D printing
Biocompatibility
Laser sintering
magnetic manipulation
magnetic materials
Materials science
Mechanical properties
Particulate composites
Rapid prototyping
Robots
small‐scale robotics
Sugar
Three dimensional composites
Three dimensional printing
Title CANDYBOTS: A New Generation of 3D‐Printed Sugar‐Based Transient Small‐Scale Robots
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202005652
https://www.ncbi.nlm.nih.gov/pubmed/33191553
https://www.proquest.com/docview/2473010098
https://www.proquest.com/docview/2461003425
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1521-4095
  dateEnd: 20241001
  omitProxy: false
  ssIdentifier: ssj0009606
  issn: 0935-9648
  databaseCode: ADMLS
  dateStart: 20120605
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0935-9648
  databaseCode: DR2
  dateStart: 19980101
  customDbUrl:
  isFulltext: true
  eissn: 1521-4095
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009606
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB1VnNoD0BZogFauVImTYXdjZ5PeAluEKhUQC9Jyisax3UO3m2o_Lpz4CfzG_pLOOLuBLaqQyi1OHMXxeN48fz0DfLKm5ZWxifTdbiwVUVaZ-jZKnSKiS7Gd2LBA9jQ5uVJfB3rwYBd_rQ_RDLixZwS8ZgdHMzm4Fw1FG3SDeFQk0QzC7ViHedqLe_0opudBbC_WMktUulBtbHUOll9fjkqPqOYycw2h53gNcFHoesXJj_3Z1OyXN3_pOT7nr9Zhdc5LRV43pNfwwo3ewKsHaoVvYXCUn_auD88u-59FLggdRa1ZzaYVlRdx7_ft3fmYBSis6M--45jShxQlrQgRkXdeiv5PHA7pfp_ahhMXlammkw24Ov5yeXQi5wczyFIReEpn0GMLiWxQZyXTZdfEqULvrLOZVR6zTPEWV-q5tGOFSUmOT_1M17K69Flmk3gTVkbVyL0DodBljliPJ8RWyiqjtfYpkWhN3Mg6F4FcGKYo56rlfHjGsKj1ljsF11jR1FgEe03-X7Vexz9z7i7sXMz9dlJ0FCMei6xG8LF5TB7H0yg4ctWM8xDlZOVEHcFW3T6aT8WEaHwSUwSdYOUnylDkvW95k9r-n5d24CVf1ytsdmFlOp6598STpuZD8IU_sKcIzA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NThsxEB4hONAeyk9bWP7qSpU4GZKsvdnlthBQoBAQCRI9rey1zaFptgrJhROPwDPyJMzsZpcGVFUqR3ttre3xzHy2x58Bvhldc0KbgLtm0-cCISsPXV1xGSqlbKjqgckDZDtB-0qcXMsympDuwhT8ENWGG2lGbq9JwWlDeveZNVSZnDiItkUCiVZ4jg7pSDdbl88MUgTQc7o9X_IoEGHJ21hr7E7Xn_ZLr8DmNHbNnc_RAuiy2UXMyc-d8UjvpHcvGB3f1K9F-DCBpiwu5tISzNjBMrz_g7DwI1wfxJ3Wj_3zXnePxQwNJCtoq0m6LHPMbz3eP1wMiYPCsO74Rg0xvY-O0rDcKdLlS9b9pfp9zO_i9LDsMtPZ6PYTXB0d9g7afPI2A08F2k9utXKqphBv4HolkmlT-6FQzhprIiOciiJBt1xx8VL3hQpS1H1catqakamLIhP4n2F2kA3sKjChbGQR-Dg02kIYoaWULkQcLREeGWs94KVkknRCXE7vZ_STgnK5kdCIJdWIebBdlf9dUHb8teRGKehkorq3SUOQ0SOeVQ--Vp9R6egkRQ1sNqYyiDqJPFF6sFJMkOpXPho1eozJg0Yu5n-0IYlbZ3GVWvufSl9gvt07O01Ojzvf1-Ed5RcBNxswOxqO7SbCppHeyhXjCUO_DOg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9swED8hJk3wMDb-bGFs8yQkngxtY6fJ3gJdBWwriIJUnqJLbO-B0lSlfdnTPsI-4z7J7pI2UNCEBI92bMXx-e5-55x_Btg2ac2p1ATSNZu-VARZZejqKHWIiDbEemCKBNlOcHihjnu6d-cUf8kPUW24sWYU9poVfGjc3i1pKJqCN4h3RQJNRviFCijEYlh0dksgxfi8YNvztYwCFc5oG2uNvfn-827pAdach66F72mvAM5GXaacXO1Oxulu9useoeNzPus1vJoCUxGXK-kNLNjBKizfoStcg95B3Gld7p-cd7-IWJB5FCVpNctW5E74rb-__5yOmIHCiO7kJ46ovE9u0ojCJfLRS9G9xn6f6ru0OKw4y9N8fLMOF-2v5weHcnozg8wUWU9pU3RYQ0IbFK1EOmumfqjQWWNNZJTDKFJ8xpVCl7qvMMhI8ynQtDWjMxdFJvA3YHGQD-w7EAptZAn2ODLZShmVaq1dSChaEzgy1nogZ4JJsiltOd-e0U9KwuVGwjOWVDPmwU7VflgSdvy35dZMzslUcW-ShmKTxyyrHnyuHpPK8X8UHNh8wm0IczJ1ovbgbbk-qlf5ZNL4KiYPGoWUHxlDErd-xFVp8ymdPsHL01Y7-X7U-fYelri6zLbZgsXxaGI_EGYapx8LtfgHCcILlw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CANDYBOTS%3A+A+New+Generation+of+3D-Printed+Sugar-Based+Transient+Small-Scale+Robots&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Gervasoni%2C+Simone&rft.au=Terzopoulou%2C+Anastasia&rft.au=Franco%2C+Carlos&rft.au=Veciana%2C+Andrea&rft.date=2020-12-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=32&rft.issue=52&rft.spage=e2005652&rft_id=info:doi/10.1002%2Fadma.202005652&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon